JP4161829B2 - 車両の姿勢制御装置 - Google Patents
車両の姿勢制御装置 Download PDFInfo
- Publication number
- JP4161829B2 JP4161829B2 JP2003195868A JP2003195868A JP4161829B2 JP 4161829 B2 JP4161829 B2 JP 4161829B2 JP 2003195868 A JP2003195868 A JP 2003195868A JP 2003195868 A JP2003195868 A JP 2003195868A JP 4161829 B2 JP4161829 B2 JP 4161829B2
- Authority
- JP
- Japan
- Prior art keywords
- angle
- steering wheel
- vehicle
- handle
- turning angle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
- Regulating Braking Force (AREA)
- Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
- Steering Control In Accordance With Driving Conditions (AREA)
Description
【発明の属する技術分野】
本発明は、車両の姿勢制御装置に関する。
【0002】
【従来の技術】
従来、この種の装置として、ハンドル角度及び車速に基づいて目標ヨーレートを設定するとともに、車両の実際のヨーレート(実ヨーレート)をヨーレートセンサにより検出し、目標ヨーレートと実ヨーレートとの差であるヨーレート差を算出し、このヨーレート差を小さくするように車両の姿勢を制御するものは知られている。具体的には、車輪の制動力または/およびエンジンの出力を制御することにより、車両のヨーイング方向または/およびローリング方向の姿勢を制御している。このような装置におけるハンドル角度は一般的には相対舵角を検出する舵角センサにより検出されている。そして、舵角センサの零点位置が迅速かつ正確に決定され、検出されたハンドル角度が決定された零点位置に基づいて補正されるようになっている(例えば、特許文献1参照。)。
【0003】
【特許文献1】
特開平06−234370号公報(第3,4頁、図2)
【0004】
【発明が解決しようとする課題】
しかしながら、ハンドルの回転方向の剛性が低い車両または剛性が低下した車両、すなわちハンドルの遊びまたはガタを有する車両において、ハンドル角度の増加(または減少)と実際の操舵輪の切れ角との増加(または減少)との間に偏差が生じる場合があり、この場合、従来装置の如くハンドル角度の零点位置を確実に精度よく導出してもその零点位置によってハンドル角度を補正する処理だけでは正確な操舵輪の切れ角を得ることができないという問題があった。すなわち、図11に示すように、ハンドル角度から計算した車両のヨーレートは、実ヨーレートから乖離しているわけである。
【0005】
本発明の目的は、ハンドルの回転方向の剛性が低い車両、剛性が低下した車両においても、正確な操舵輪の切れ角をハンドル角度より導出して車両の姿勢制御を確実かつ正確に実施する車両の姿勢制御装置を提供することにある。
【0006】
【課題を解決するための手段、発明の作用および効果】
上記の課題を解決するため、請求項1に係る発明の構成上の特徴は、車両のハンドル角度を算出するハンドル角度算出手段と、ハンドル角度と車両の操舵輪の切れ角との間での車両のハンドルの回転方向の低剛性によるあらかじめ決められた偏差に基づいてハンドル角度算出手段によって算出されたハンドル角度を補正することで、車両のハンドルの操作により操舵される車両の操舵輪の切れ角を導出する操舵輪切れ角導出手段と、この操舵輪切れ角導出手段によって導出された操舵輪の切れ角に基づいて車両の姿勢を制御する第1の姿勢制御手段を備えたことである。
【0007】
これによれば、操舵輪切れ角導出手段は、ハンドル角度と車両の操舵輪の切れ角との間での車両のハンドルの回転方向の低剛性によるあらかじめ決められた偏差に基づいてハンドル角度算出手段によって算出されたハンドル角度を補正することで、車両のハンドルの操作により操舵される車両の操舵輪の切れ角を導出し、第1の姿勢制御手段は、操舵輪切れ角導出手段によって導出された操舵輪の切れ角に基づいて車両の姿勢を制御する。したがって、ハンドルの回転方向の剛性が低い車両、剛性が低下した車両において、ハンドル角度の増加と実際の操舵輪の切れ角との増加との間に偏差が生じる場合であっても、正確な操舵輪の切れ角をハンドル角度より導出して、確実かつ正確な車両の姿勢制御を行うことができる。
【0008】
請求項2に係る発明の構成上の特徴は、車両の実際のヨーレートを検出する実ヨーレート検出手段と、車両のハンドル角度を算出するハンドル角度算出手段と、ハンドル角度と車両の操舵輪の切れ角との間での車両のハンドルの回転方向の低剛性によるあらかじめ決められた偏差に基づいてハンドル角度算出手段によって算出されたハンドル角度を補正することで、車両のハンドルの操作により操舵される車両の操舵輪の切れ角を導出する操舵輪切れ角導出手段と、この操舵輪切れ角導出手段によって導出された操舵輪の切れ角に基づいて車両の目標ヨーレートを算出する目標ヨーレート算出手段と、実ヨーレート検出手段によって検出された実際のヨーレートと目標ヨーレート算出手段によって算出された目標ヨーレートとを減算してヨーレート差を算出するヨーレート差算出手段と、このヨーレート差算出手段によって算出されたヨーレート差に基づいて車両の姿勢を制御する第2の姿勢制御手段を備えたことである。
【0009】
これによれば、操舵輪切れ角導出手段は、ハンドル角度と車両の操舵輪の切れ角との間での車両のハンドルの回転方向の低剛性によるあらかじめ決められた偏差に基づいてハンドル角度算出手段によって算出されたハンドル角度を補正することで、車両のハンドルの操作により操舵される車両の操舵輪の切れ角を導出し、目標ヨーレート算出手段は操舵輪切れ角導出手段によって導出された操舵輪の切れ角に基づいて車両の目標ヨーレートを算出し、ヨーレート差算出手段は、実ヨーレート検出手段によって検出された実際のヨーレートと目標ヨーレート算出手段によって算出された目標ヨーレートとを減算してヨーレート差を算出し、第2の姿勢制御手段はヨーレート差算出手段によって算出されたヨーレート差に基づいて車両の姿勢を制御する。したがって、ハンドルの回転方向の剛性が低い車両、剛性が低下した車両において、ハンドル角度の増加と実際の操舵輪の切れ角との増加との間に偏差が生じる場合であっても、正確な目標ヨーレートひいてはヨーレート差をハンドル角度より導出して、確実かつ正確な車両の姿勢制御を行うことができる。
【0010】
請求項3に係る発明の構成上の特徴は、請求項1または請求項2において、操舵輪切れ角導出手段は、ハンドル角度を偏差に基づいて補正するための第1マップまたは第1演算式と、ハンドル角度算出手段によって算出されたハンドル角度を第1マップまたは第1演算式に基づいて補正して補正ハンドル角度を導出する補正ハンドル角度導出手段を備え、この補正ハンドル角度導出手段によって導出された補正ハンドル角度から操舵輪の切れ角を導出することである。
【0011】
これによれば、補正ハンドル角度導出手段は、ハンドル角度を同ハンドル角度と操舵輪の切れ角との偏差に基づいて補正するための第1マップまたは第1演算式に基づいて補正して補正ハンドル角度を導出し、操舵輪切れ角導出手段は、補正ハンドル角度導出手段によって導出された補正ハンドル角度から操舵輪の切れ角を導出する。したがって、正確な操舵輪の切れ角をハンドル角度より導出することができる。
【0012】
請求項4に係る発明の構成上の特徴は、請求項1または請求項2において、操舵輪切れ角導出手段は、ハンドル角度と操舵輪の切れ角との関係を示す第2マップまたは第2演算式を備え、車両のハンドルの操作により操舵される操舵輪の切れ角を、ハンドル角度算出手段によって算出されたハンドル角度を第2マップまたは第2演算式に基づいて補正して導出することである。
【0013】
これによれば、操舵輪切れ角導出手段は、ハンドル角度算出手段によって算出されたハンドル角度を第2マップまたは第2演算式に基づいて補正して操舵輪の切れ角を導出するので、簡単かつ正確に操舵輪の切れ角をハンドル角度より導出することができる。
【0014】
請求項5に係る発明の構成上の特徴は、請求項3において、車両の挙動状態に基づいて操舵輪の切れ角を推定する操舵輪切れ角推定手段と、この操舵輪切れ角推定手段によって推定された操舵輪の切れ角に対応する推定ハンドル角度を導出する推定ハンドル角度導出手段と、ハンドル角度算出手段によって算出されたハンドル角度と、推定ハンドル角度導出手段によって導出された推定ハンドル角度とに基づいて偏差の有無および程度を検出する偏差検出手段と、互いに異なる複数の偏差にそれぞれ対応した複数の第1マップまたは第1演算式と、偏差検出手段によって検出された偏差に適した第1マップまたは第1演算式を複数の第1マップまたは第1演算式のなかから選択する選択手段をさらに備え、操舵輪切れ角導出手段は選択手段によって選択された第1マップまたは第1演算式に基づいて操舵輪の切れ角を導出することである。
【0015】
これによれば、偏差検出手段は、ハンドル角度算出手段によって算出されたハンドル角度と、推定ハンドル角度導出手段によって導出された推定ハンドル角度とに基づいて偏差の有無および程度を検出し、選択手段は、偏差検出手段によって検出された偏差に適した第1マップまたは第1演算式を複数の第1マップまたは第1演算式のなかから選択する。そして、選択された第1マップまたは第1演算式に基づいて、正確な操舵輪の切れ角を導出することができる。したがって、互いに異なる偏差の車両にも個々の偏差にそれぞれ的確に対応し、また偏差が変化してもその変化に的確に対応した操舵輪の切れ角を正確に導出することができる。
【0016】
請求項6に係る発明の構成上の特徴は、請求項4において、車両の挙動状態に基づいて操舵輪の切れ角を推定する操舵輪切れ角推定手段と、この操舵輪切れ角推定手段によって推定された操舵輪の切れ角に対応する推定ハンドル角度を導出する推定ハンドル角度導出手段と、ハンドル角度算出手段によって算出されたハンドル角度と、推定ハンドル角度導出手段によって導出された推定ハンドル角度とに基づいて偏差の有無および程度を検出する偏差検出手段と、互いに異なる複数の偏差にそれぞれ対応した複数の第2マップまたは第2演算式と、偏差検出手段によって検出された偏差に適した第2マップまたは第2演算式を複数の第2マップまたは第2演算式のなかから選択する選択手段をさらに備え、操舵輪切れ角導出手段は選択手段によって選択された第2マップまたは第2演算式に基づいて操舵輪の切れ角を導出することである。
【0017】
これによれば、偏差検出手段は、ハンドル角度算出手段によって算出されたハンドル角度と、推定ハンドル角度導出手段によって導出された推定ハンドル角度とに基づいて偏差の有無および程度を検出し、選択手段は、偏差検出手段によって検出された偏差に適した第2マップまたは第2演算式を複数の第2マップまたは第2演算式のなかから選択する。そして、選択された第2マップまたは第2演算式に基づいて、正確な操舵輪の切れ角を導出することができる。したがって、互いに異なる偏差の車両にも個々の偏差にそれぞれ的確に対応し、また偏差が変化してもその変化に的確に対応した操舵輪の切れ角を正確に導出することができる。
【0018】
請求項7に係る発明の構成上の特徴は、請求項3において、ハンドル角度と操舵輪の切れ角との間で生じる車両毎の偏差に適した第1マップまたは第1演算式を予め備え、操舵輪切れ角導出手段は第1マップまたは第1演算式に基づいて操舵輪の切れ角を導出することである。
【0019】
これによれば、各車両の偏差が予めわかっていれば、その偏差に適した第1マップまたは第1演算式を予め備え、この第1マップまたは第1演算式に基づいて操舵輪切れ角導出手段は操舵輪の切れ角を導出するので、より簡単な構成によって正確に操舵輪の切れ角を導出することができる。
【0020】
請求項8に係る発明の構成上の特徴は、請求項4において、ハンドル角度と操舵輪の切れ角との間で生じる車両毎の偏差に適した第2マップまたは第2演算式を予め備え、操舵輪切れ角導出手段は第2マップまたは第2演算式に基づいて操舵輪の切れ角を導出することである。
【0021】
これによれば、各車両の偏差が予めわかっていれば、その偏差に適した第2マップまたは第2演算式を予め備え、この第2マップまたは第2演算式に基づいて操舵輪切れ角導出手段は操舵輪の切れ角を導出するので、より簡単な構成により正確に操舵輪の切れ角を導出することができる。
【0022】
請求項9に係る発明の構成上の特徴は、請求項3、請求項5および請求項7において、第1マップまたは第1演算式は車両のハンドルの回転方向に対するヒステリシスを含んでいることである。これによれば、ハンドルを切り込む場合と切り戻す場合のいずれの場合にも的確にハンドル角度を補正することができる。
【0023】
請求項10に係る発明の構成上の特徴は、請求項4、請求項6および請求項8において、第2マップまたは第2演算式は車両のハンドルの回転方向に対するヒステリシスを含んでいることである。これによれば、ハンドルを切り込む場合と切り戻す場合のいずれの場合にも的確にハンドル角度に対応する操舵輪の切れ角を導出することができる。
【0024】
請求項11に係る発明の構成上の特徴は、請求項3、請求項5および請求項7において、第1マップまたは第1演算式は車両のハンドル角度と操舵輪の実際の切れ角との偏差を打ち消すように構成されていることである。これによれば、ハンドル角度算出手段によって算出されたハンドル角度を第1マップまたは第1演算式に基づいて正確かつ確実に補正した補正ハンドル角度を導出することができる。
【0025】
請求項12に係る発明の構成上の特徴は、請求項4、請求項6および請求項8において、第2マップまたは第2演算式は車両のハンドル角度と操舵輪の実際の切れ角との偏差を打ち消すように構成されていることである。これによれば、ハンドル角度算出手段によって算出されたハンドル角度から第2マップまたは第2演算式に基づいて正確かつ確実に操舵輪の実際の切れ角を導出することができる。
【0026】
請求項13に係る発明の構成上の特徴は、請求項1乃至請求項12において、姿勢制御手段は、車輪の制動力または/およびエンジンの出力を制御することにより、車両のヨーイング方向または/およびローリング方向の姿勢を制御することである。これによれば、車両のヨーイング方向または/およびローリング方向の姿勢の制御を正確かつ確実に行うことができる。
【0027】
【発明の実施の形態】
a)第1の実施の形態
以下、本発明による車両の姿勢制御装置の第1の実施の形態について図面を参照して説明する。この車両の姿勢制御装置は、図1に示すように、車両の左右前後輪Wfl,Wfr,Wrl,Wrrに対しそれぞれ独立に制動力を付与可能な車両用制動装置20を備えた後輪駆動の車両Mに適用されている。
【0028】
この車両Mは、車体前部に縦置きに配置されたエンジン10を備えている。エンジン10には、プロペラシャフト11、ディファレンシャル装置12、左右のリヤアクスルシャフト13,14を介して左右後輪Wrl,Wrrが接続されており、エンジン10の出力トルクによって左右後輪Wrl,Wrrが駆動されるようになっている。また、車両Mには運転者によって操作されるステアリングホイール(ハンドル)15が設けられている。ハンドル15はステアリングシャフト16に一体的に連結され、ステアリングシャフト16は舵取機構17を介してタイロッド18に連結され、タイロッド18には操舵輪である左右前輪Wfl,Wfrが取り付けられており、ハンドル15の操作により左右前輪Wfl,Wfrが操舵されるようになっている。
【0029】
車両用制動装置20は、ブレーキペダル21の踏み込み操作に応じた油圧のブレーキ油を圧送するマスタシリンダ22と、複数の電磁バルブ(図示しない)を備えて左右前後輪Wfl,Wfr,Wrl,Wrrの各ホイールシリンダ25,26,27,28へ供給される油圧を調整するブレーキ調圧ユニット23と、後述する制御装置30からの指令を受けてブレーキ調圧ユニット23の各電磁バルブの状態を切り換え制御しホイールシリンダ25,26,27,28に付与する油圧すなわち各車輪Wfl,Wfr,Wrl,Wrrに付与する制動力を制御するブレーキ制御装置24を備えている。
【0030】
車両Mは制御装置30を備えており、この制御装置30には、ステアリングシャフト16に設けられて車両Mのハンドル15のハンドル角度θを検出する操舵角センサ31、左右前後輪Wfl,Wfr,Wrl,Wrrの近傍にそれぞれ設けられて左右前後輪Wfl,Wfr,Wrl,Wrrの回転速度をそれぞれ検出する車輪速センサSfl,Sfr,Srl,Srr、車体の重心近傍位置に組み付けられて車両Mの実際のヨーレート(実ヨーレートRω)を検出するヨーレートセンサ32が接続されている。
【0031】
操舵角センサ31は、ステアリングシャフト16が所定角度だけ回転する毎にレベルが変化するパルス列信号であって、位相が互いに4分の1周期だけ異なるとともにステアリングシャフト16の回動方向により位相の進む側が互いに逆になる2相のパルス列信号を出力する。車輪速センサSfl,Sfr,Srl,Srrは、左右前後輪Wfl,Wfr,Wrl,Wrrの各回転速度をそれぞれ検出するものであり、左右前後輪Wfl,Wfr,Wrl,Wrrの各回転をそれぞれピックアップすることにより、各回転速度に反比例する周期のパルス列信号をそれぞれ出力する。ヨーレートセンサ32は、振動子を備えてなりコリオリ力を用いて車体重心位置の垂直軸回りの角速度を検出する角速度センサで構成されており、車体に作用するヨーレートの向きを表すとともに同ヨーレートの大きさに比例した大きさを表す信号を出力する。
【0032】
また、車両Mには、制御装置30からの指令を受けてエンジン10のスロットル(図示省略)の開度を制御し出力トルクを制御するエンジン制御装置40が備えられている。
【0033】
また、制御装置30は、マイクロコンピュータ(図示省略)を有しており、マイクロコンピュータは、バスを介してそれぞれ接続された入出力インターフェース、CPU、RAMおよびROM(いずれも図示省略)を備えている。CPUは、図2のフローチャートに対応したプログラムを実行して、車両Mの姿勢を制御するものであり、ROMは前記プログラム、およびハンドル15の回転方向の低剛性によるハンドル角度θと操舵輪の切れ角ξとの偏差に基づいてハンドル角度θを補正するための第1マップ(または第1演算式)を記憶するものであり、RAMは制御に関する演算値を一時的に記憶するものである。なお、第1マップはROMに限られず、CPUに接続される記憶装置に記憶してもよい。なお、操舵輪の切れ角ξとは、車両Mが直進する方向に対する操舵輪の操舵方向の角度のことをいう。
【0034】
第1マップは、図3に示すように、後述するように算出されたハンドル角度θと、ハンドル15の回転方向の低剛性によるハンドル角度θと操舵輪の切れ角ξとの偏差、すなわち遊びまたはガタツキによるハンドル15の遊び量θbを考慮して前記ハンドル角度θを補正した補正ハンドル角度θaとの関係を示している。さらに、第1マップは、車両Mのハンドル角度θと操舵輪の実際の切れ角ξとの偏差を打ち消すように構成されている。
【0035】
この第1マップは次のように作成される。まず車両Mのハンドル15の遊び量θb(上記偏差)を測定する。そして、特にハンドル角度θの中立点付近にて偏差の影響を防止するため、中立点付近においては所定範囲の補正ハンドル角度θaは0°となるように、それ以外の範囲はハンドル角度θに対してリニアに変化するように作成する。すなわち、ハンドル角度θが−θb≦θ≦+θbの範囲にある場合には、補正ハンドル角度θaは0°となるように、ハンドル角度θがθ<−θbの範囲にある場合には、補正ハンドル角度θaはθa=θc+c1・θとなるように、ハンドル角度θがθb<θの範囲にある場合には、補正ハンドル角度θaはθa=−θd+c2・θとなるように作成される。なお、c1,c2はハンドル角度θに対する補正ハンドル角度θaの比例定数である。
【0036】
このように作成された第1マップは、ハンドル角度θと操舵輪の切れ角ξとの間で生じる車両毎の偏差、すなわちハンドル15の遊び量θbに適したものであり、車両毎に予め測定された偏差に対応するものが制御装置30に記憶されている。なお、第1マップの代わりに第1演算式を用いるようにしてもよい。第1演算式は第1マップに基づいて導出されるものである。
【0037】
次に、上記のように構成した車両の姿勢制御装置の動作を図2のフローチャートに沿って説明する。制御装置30は、図示しない車両Mのイグニションスイッチがオン状態にあるとき、所定の短時間毎に、上記フローチャートに対応したプログラムを繰り返し実行する。制御装置30は、図2のステップ100にてプログラムの実行を開始する毎に、車体速度Vおよびハンドル角度θを算出し、実ヨーレートRωを検出する(ステップ102〜106)。
【0038】
制御装置30は、ステップ102において、まず車両Mの車体速度Vを算出する。具体的には、車輪速センサSfl,Sfr,Srl,Srrからそれぞれ入力された各パルス列信号に基づいて同各パルス列信号の周期に反比例した値をそれぞれ左右前後輪Wfl,Wfr,Wrl,Wrrの各車輪速として計算する。そして、これら各車輪速を平均した値を車体速度Vとして算出する。なお、左右前輪Wfl,Wfrまたは左右後輪Wrl,Wrrの各車輪速を平均した値を車体速度Vとして算出するようにしてもよい。また、変速機(図示しない)の出力軸の回転をピックアップして同回転速度に反比例する周期を有するパルス列信号を出力する車速センサを制御装置30に接続して、制御装置30は車速センサから入力されたパルス列信号に基づいて同パルス列信号の周期に反比例した値を車体速度Vとして算出するようにしてもよい。
【0039】
制御装置30は、ステップ104において、車両Mのハンドル角度θを算出する(ハンドル角度算出手段)。すなわち、ハンドル角度θは、下記数1に示すように操舵角センサ30から入力された2相パルス列信号に基づいて、両パルス列信号のレベルが変化する毎に操舵軸31の回動方向(2相のパルス列信号のレベルの変化の仕方によって検出される)に応じて前回のハンドル角度θを所定角度Δθずつ増減することにより算出される。
【0040】
【数1】
ハンドル角度θ=前回のハンドル角度θ+加算値×Δθ
上記数1の加算値は、ハンドル15の回転方向を示すものであり、操舵角センサ31から入力された2相パルス列信号の前回値および今回値の変化の仕方に基づいて決定される。例えば、前回値と今回値が(0,0)と同じであれば加算値は0であり、(0,0)の前回値が(0,1)となれば加算値は+1であり、(0,0)の前回値が(1,0)となれば加算値は−1である。
【0041】
イグニッションスイッチ(図示しない)を投入した直後に、このハンドル角度θの初期値は0にリセットされ、これに基づきその後のハンドル角度θの計算が実行される。また、ハンドル角度θは初期値からの相対的な角度を表すのみで、絶対的な角度を表していないので、ハンドル角度θの中立点を算出してこの算出した中立点に基づいて補正されてはじめて中立点からの絶対角度であるハンドル角度θが算出される。
【0042】
制御装置30は、ステップ106において、ヨーレートセンサ32からのヨーレートの方向及び大きさを表す信号を実際のヨーレートである実ヨーレートRωとして検出する(実ヨーレート検出手段)。なお、実ヨーレートRωを左右前輪Wfl,Wfr(または左右後輪Wrl,Wrr)の車輪速度に基づいて算出するようにしてもよい。
【0043】
制御装置30は、ステップ108,110において、上述したステップ104にて算出されたハンドル角度θから操舵輪の切れ角ξを算出する(操舵輪切れ角導出手段)。まず、ステップ108にてハンドル角度θから補正ハンドル角度θaを導出する(補正ハンドル角度導出手段)。具体的には、ハンドル角度θを図3に示す第1マップ(または第1演算式)に基づいて補正して補正ハンドル角度θaを導出する。ハンドル角度θが−θb≦θ≦+θbの範囲にある場合には、補正ハンドル角度θaが0°となるように、ハンドル角度θがθ<−θbの範囲にある場合には、補正ハンドル角度θaはθa=θc+c1・θとなるように、ハンドル角度θがθb<θの範囲にある場合には、補正ハンドル角度θaはθa=−θd+c2・θとなるよう補正して、ハンドル角度θに相当する補正ハンドル角度θaをそれぞれ導出する。
【0044】
そして、制御装置30は、ステップ110にて、ステップ108にて導出された補正ハンドル角度θaから操舵輪の切れ角ξを下記数2により導出する。
【0045】
【数2】
操舵輪の切れ角ξ=c3×補正ハンドル角度θa
なお、c3は補正ハンドル角度θaに対する操舵輪の切れ角ξの比例定数である。
【0046】
次に、制御装置30は、ステップ112において、下記数3によってハンドル角度θに基づいて目標ヨーレートTωを算出する(目標ヨーレート算出手段)。
【0047】
【数3】
なお、上記数3にて、Aはスタビリティファクタであり、Lは車両Mのホイールベースである。
【0048】
そして、制御装置30は、目標ヨーレートTωの算出が完了すると、ステップ114〜120の処理により車両Mの姿勢を制御する(第1の姿勢制御手段)。制御装置30は、ステップ114において、ステップ106にて検出された実ヨーレートRωとステップ112にて算出された目標ヨーレートTωとの差分値であるヨーレート差Δωを算出する(ヨーレート差算出手段)。そして、ステップ116において、算出されたヨーレート差Δωの絶対値|Δω|が所定値Th0以上であれば、車両Mは安定した状態にないので、プログラムをステップ118に進めて、車両Mの姿勢制御を実施する(第2の姿勢制御手段)。
【0049】
制御装置30は、ステップ118において、ブレーキ制御装置24に指令を送り、各車輪Wfl,Wfr,Wrl,Wrrに付与する制動力を制御して、車両Mの姿勢を安定な状態となるように制御する。すなわち、制御装置30は、各車輪Wfl,Wfr,Wrl,Wrrの制動力または/およびエンジン10の出力を制御することにより、車両Mのヨーイング方向または/およびローリング方向の姿勢を制御する。例えば、車両Mがアンダーステアの状態にある場合には、内側の車輪に制動力を付与して車両Mに内向きモーメントを発生させ、オーバーステアの状態にある場合には、外側の車輪に制動力を付与して車両Mに外向きモーメントを発生させる。また、制御装置30は、エンジン制御装置40に指令を送り、エンジン10のスロットルの開度を制御し出力トルクを制御して、車両Mの姿勢を安定な状態となるように制御する。例えば、車両Mがアンダーステアの状態にある場合にはスロットルを閉じ出力トルクを抑える。その後、プログラムをステップ122に進めて一旦終了する。
【0050】
一方、ステップ116において、ヨーレート差Δωの絶対値|Δω|が所定値Th0未満であれば、車両Mは安定した状態にあるので、プログラムをステップ120に進めて、上述した車両Mの姿勢制御を実施しない。その後、プログラムをステップ122に進めて一旦終了する。
【0051】
上述したように、上記第1の実施の形態によれば、ステップ108,110にて、車両Mのハンドル15の操作により操舵される車両Mの操舵輪の切れ角ξを、ステップ104にて算出されたハンドル角度θを車両Mのハンドル15の回転方向の低剛性によるハンドル角度θと操舵輪の切れ角ξとの偏差に基づいて補正して導出し、ステップ112にて、ステップ108,110によって導出された操舵輪の切れ角ξに基づいて車両Mの目標ヨーレートTωを算出し、ステップ114にて、ステップ106によって検出された実際のヨーレート(実ヨーレートRω)とステップ112によって算出された目標ヨーレートTωとを減算してヨーレート差Δωを算出し、ステップ116,118にてステップ114によって算出されたヨーレート差Δωに基づいて車両の姿勢を制御する。したがって、ハンドル15の回転方向の剛性が低い車両、剛性が低下した車両において、ハンドル角度θの増加と実際の操舵輪の切れ角ξとの増加との間に偏差が生じる場合であっても、正確な目標ヨーレートTωひいてはヨーレート差Δωをハンドル角度θより導出して、確実かつ正確な車両の姿勢制御を行うことができる。
【0052】
また、上記第1の実施の形態によれば、ステップ108にて、ハンドル角度θを同ハンドル角度θと操舵輪の切れ角ξとの偏差に基づいて補正するための第1マップ(または第1演算式)に基づいて補正して補正ハンドル角度θaを導出し、ステップ110にて、ステップ108によって導出された補正ハンドル角度θaから操舵輪の切れ角ξを導出する。したがって、正確な操舵輪の切れ角ξをハンドル角度θより導出することができる。
【0053】
また、上記第1の実施の形態によれば、第1マップ(または第1演算式)は車両Mのハンドル角度θと操舵輪の実際の切れ角ξとの偏差を打ち消すように構成されているので、ステップ104によって算出されたハンドル角度θを第1マップ(または第1演算式)に基づいて正確かつ確実に補正した補正ハンドル角度θaを導出することができる。
【0054】
また、上記第1の実施の形態によれば、制御装置30は、ハンドル角度θと操舵輪の切れ角ξとの間で生じる車両毎の偏差に適した第1マップ(または第1演算式)を予め備え、ステップ108,110にて第1マップ(または第1演算式)に基づいて操舵輪の切れ角ξを導出する。したがって、各車両の偏差が予めわかっていれば、より簡単な構成によって正確に操舵輪の切れ角ξを導出することができる。
【0055】
また、上記第1の実施の形態によれば、制御装置30は、各車輪Wfl,Wfr,Wrl,Wrrの制動力または/およびエンジン10の出力を制御することにより、車両Mのヨーイング方向または/およびローリング方向の姿勢を制御するので、車両Mのヨーイング方向または/およびローリング方向の姿勢の制御を正確かつ確実に行うことができる。
【0056】
b)第2の実施の形態
なお、上記第1の実施の形態においては、車両の姿勢制御装置は、ハンドル角度θを偏差に基づいて補正するための第1マップまたは第1演算式を記憶し、制御装置30は、ステップ108にて、第1マップまたは第1演算式に基づいてハンドル角度θを補正して補正ハンドル角度θaを導出し、ステップ110にて、この導出された補正ハンドル角度θaから操舵輪の切れ角ξを導出したが、これに代えて、車両の姿勢制御装置は、ハンドル角度θと操舵輪の切れ角ξとの関係を示す第2マップまたは第2演算式を記憶し、制御装置30は、ハンドル角度θを第2マップまたは第2演算式に基づいて補正して操舵輪の切れ角ξを導出するようにしてもよい。
【0057】
第2マップは、ハンドル角度θを、ハンドル15の回転方向の低剛性によるハンドル角度θと操舵輪の切れ角ξとの偏差に基づいて補正するためのものであり、図4に示すように、遊びまたはガタツキによるハンドル15の遊び量θbを考慮して、前記ハンドル角度θと操舵角の切れ角ξとの関係を示している。さらに、第2マップは、車両Mのハンドル角度θと操舵輪の実際の切れ角ξとの偏差を打ち消すように構成されている。
【0058】
この第2マップは第1マップと同様に次のように作成される。まず車両Mのハンドル15の遊び量θb(上記偏差)を測定する。そして、特にハンドル角度θの中立点付近にて偏差の影響を防止するため、中立点付近においては所定範囲の操舵輪の切れ角ξは0°となるように、それ以外の範囲はハンドル角度θに対してリニアに変化するように作成する。すなわち、ハンドル角度θが−θb≦θ≦+θbの範囲にある場合には、切れ角ξは0°となるように、ハンドル角度θがθ<−θbの範囲にある場合には、切れ角ξはξ=ξ1+c4・θとなるように、ハンドル角度θがθb<θの範囲にある場合には、切れ角ξはθa=−ξ2+c5・θとなるように作成される。なお、c4,c5はハンドル角度θに対する切れ角ξの比例定数である。
【0059】
このように作成された第2マップは、ハンドル角度θと操舵輪の切れ角ξとの間で生じる車両毎の偏差、すなわちハンドル15の遊び量θbに適したものであり、車両毎に予め測定された偏差に対応するものが制御装置30に記憶されている。なお、第2マップの代わりに第2演算式を用いるようにしてもよい。第2演算式は第2マップに基づいて導出されるものである。
【0060】
上述した第2マップまたは第2演算式に基づいて補正して操舵輪の切れ角ξを導出する場合には、上述したステップ108,110の処理の代わりに、図5に示すステップ130の処理を実行すればよい。制御装置30は、ステップ130において、上述したステップ104にて算出されたハンドル角度θから第2マップ(または第2演算式)に基づいて操舵輪の切れ角ξを導出する(操舵輪切れ角導出手段)。具体的には、ハンドル角度θが−θb≦θ≦+θbの範囲にある場合には、切れ角ξは0°となり、ハンドル角度θがθ<−θbの範囲にある場合には、切れ角ξはξ=ξ1+c4・θとなり、ハンドル角度θがθb<θの範囲にある場合には、切れ角ξはθa=−ξ2+c5・θとなる。
【0061】
このような第2の実施の形態によれば、第1の実施の形態による作用・効果に加えて、制御装置30は、ステップ130にて、ステップ104によって算出されたハンドル角度θを第2マップまたは第2演算式に基づいて補正して操舵輪の切れ角ξを導出するので、簡単かつ正確に操舵輪の切れ角ξをハンドル角度θより導出することができる。
【0062】
また、上記第2の実施の形態によれば、第2マップ(または第2演算式)は車両Mのハンドル角度θと操舵輪の実際の切れ角ξとの偏差を打ち消すように構成されているので、ステップ104によって算出されたハンドル角度θを第2マップ(または第2演算式)に基づいて正確かつ確実に補正した操舵輪の切れ角ξを導出することができる。
【0063】
また、上記第2の実施の形態によれば、制御装置30は、ハンドル角度θと操舵輪の切れ角ξとの間で生じる車両毎の偏差に適した第2マップ(または第2演算式)を予め備え、ステップ130にて第2マップ(または第2演算式)に基づいて操舵輪の切れ角ξを導出する。したがって、各車両の偏差が予めわかっていれば、より簡単な構成によって正確に操舵輪の切れ角ξを導出することができる。
【0064】
c)第1の変形例
また、上述した各実施の形態において、第1マップ(または第1演算式)および第2マップ(または第2演算式)は、車両Mのハンドル15の回転方向に対するヒステリシスを含むようにしてもよい。この場合、第1マップ(第2マップ)は、図6に示すように、交点X1(θb,0)からスタートし分岐点X2(θ1,θ2)を通過する経路K1と、逆方向から戻ってきて分岐点X2(θ1,θ2)を通過して交点X3(−θb,0)に到達する経路K3と、交点X3(−θb,0)からスタートし分岐点X4(−θ1,−θ2)を通過する経路K2と、逆方向から戻ってきて分岐点X4(−θ1,−θ2)を通過して交点X1(θb,0)に到達する経路K4から構成されている。すなわち、経路K1をハンドル15の右回転への切り込みに対応した経路とすると、経路K3は左回転への切り戻しに対応した経路であり、経路K2は左回転への切り込みに対応した経路であり、経路K4は右回転への切り戻しに対応した経路である。なお、θbはハンドル15の遊び量である。
【0065】
この場合、制御装置30は、ステップ108にて、ハンドル角度θを図6に示す第1マップに基づいて補正して補正ハンドル角度θaを導出する(補正ハンドル角度導出手段)。具体的には、ハンドル角度θの絶対値|θ|が所定値θ1未満である場合にハンドル15が切り込まれると、経路K1,K2に準じて補正されてハンドル角度θaが導出され、ハンドル角度θの絶対値|θ|が所定値θ1以上である場合にハンドル15が切り戻されると、経路K3,K4に準じて補正されてハンドル角度θaが導出される。また、制御装置30は、ステップ130にて、ハンドル角度θを図6に示す第2マップに基づいて補正して操舵輪の切れ角ξを導出する(操舵輪切れ角導出手段)。具体的には、ハンドル角度θの絶対値|θ|が所定値θ1未満である場合にハンドル15が切り込まれると、経路K1,K2に準じて補正されて操舵輪の切れ角ξが導出され、ハンドル角度θの絶対値|θ|が所定値θ1以上である場合にハンドル15が切り戻されると、経路K3,K4に準じて補正されて操舵輪の切れ角ξが導出される。
【0066】
この変形例によれば、ハンドル15を切り込む場合と切り戻す場合のいずれの場合にも、的確にハンドル角度θを補正ハンドル角度θaに補正することができ、また、的確にハンドル角度θに対応する操舵輪の切れ角ξを導出することができる。
【0067】
また、第1マップ(第2マップ)は、図7に示すように、原点X0(0,0)からスタートし分岐点X2(θ1,θ2)を通過する経路K1と、逆方向から戻ってきて分岐点X2(θ1,θ2)を通過して原点X0(0,0)に回帰する経路K3と、原点X0(0,0)からスタートし分岐点X4(−θ1,−θ2)を通過する経路K2と、逆方向から戻ってきて分岐点X4(−θ1,−θ2)を通過してX0(0,0)に回帰する経路K4から構成されている。すなわち、経路K1をハンドル15の右回転への切り込みに対応した経路とすると、経路K3は左回転への切り戻しに対応した経路であり、経路K2は左回転への切り込みに対応した経路であり、経路K4は右回転への切り戻しに対応した経路である。
【0068】
この場合、制御装置30は、ステップ108にて、ハンドル角度θを図7に示す第1マップに基づいて補正して補正ハンドル角度θaを導出する(補正ハンドル角度導出手段)。具体的には、ハンドル角度θの絶対値|θ|が所定値θ1未満である場合にハンドル15が切り込まれると、経路K1,K2に準じて補正されてハンドル角度θaが導出され、ハンドル角度θの絶対値|θ|が所定値θ1以上である場合にハンドル15が切り戻されると、経路K3,K4に準じて補正されてハンドル角度θaが導出される。また、制御装置30は、ステップ130にて、ハンドル角度θを図7に示す第2マップに基づいて補正して操舵輪の切れ角ξを導出する(操舵輪切れ角導出手段)。具体的には、ハンドル角度θの絶対値|θ|が所定値θ1未満である場合にハンドル15が切り込まれると、経路K1,K2に準じて補正されて操舵輪の切れ角ξが導出され、ハンドル角度θの絶対値|θ|が所定値θ1以上である場合にハンドル15が切り戻されると、経路K3,K4に準じて補正されて操舵輪の切れ角ξが導出される。
【0069】
次に、この変形例を車両に適用した場合の補正された操舵角の切れ角ξから計算した車両のヨーレートと実ヨーレートとを比較することにより、ハンドルの遊び量の補正の有用性を検証する。テスト走行中の両ヨーレートの一部を図8に示す。この図から明らかなように、補正された操舵角の切れ角ξから計算した車両のヨーレートは概ね実ヨーレートと近い値となっており、上述した補正の有用性が確認できる。
【0070】
この変形例によれば、ハンドル15を切り込む場合と切り戻す場合のいずれの場合にも、的確にハンドル角度θを補正ハンドル角度θaに補正することができ、また、的確にハンドル角度θに対応する操舵輪の切れ角ξを導出することができることに加えて、さらに、補正ハンドル角度θa(または操舵輪切れ角ξ)は不連続に変化しないで、連続に変化するので、中立点付近のハンドル操作性に違和感を付与することがないため操舵感が向上される。
【0071】
d)第2の変形例
また、上記各実施の形態、および変形例において、互いに異なる複数の偏差に対応した第1マップ(または第1演算式)を制御装置30に記憶し、偏差の有無および程度を検出し、検出された偏差に適した第1マップ(または第1演算式)を選択し、その選択された第1マップ(または第1演算式)に基づいて操舵輪の切れ角を導出するようにしてもよい。なお、この処理は、車両の走行開始後、上述した図2に示すフローチャートとは別に実施してもよいし、同フローチャートの処理中に実施するようにしてもよい。
【0072】
この場合、制御装置30は、図9に示すフローチャートに対応したプログラムを短時間毎に繰り返し実行する。制御装置30は、ステップ200にてプログラムの実行を開始する度に、ステップ202,204にて、車両Mの挙動状態に基づいて推定ハンドル角度θsを導出する(推定ハンドル角度導出手段)。まずステップ202にて、ヨーレートセンサ32からのヨーレートの方向及び大きさを表す信号を実際のヨーレートである実ヨーレートRωとして検出し、この実ヨーレートRωおよび上記数3から操舵輪の切れ角ξsを導出する(操舵輪切れ角推定手段)。そして、ステップ204にて、ステップ202にて導出した操舵輪の切れ角ξsに対応する推定ハンドル角度θsを導出する(推定ハンドル角度導出手段)。この推定ハンドル角度θsの時間経過を図10に示す。ハンドル15に遊びがあるので、ハンドル15を回動し始めてから実際に操舵輪が切れ始めるまで、すなわちハンドル回動開始時点(t1)から推定ハンドル角度θs変動開始時点(t2)までは、推定ハンドル角度θsは0のままである。そして、操舵輪が切れ始めた時点(t2)以降は、実際のハンドル15の回動量に応じた推定ハンドル角度θsが導出される。
【0073】
また、上述したステップ104と同様な処理によって実際のハンドル角度θが算出されている。このハンドル角度θの時間経過も図10に示す。ハンドル15を回動し始めてから実際に操舵輪が切れ始めるまで、すなわちハンドル回動開始時点(t1)から推定ハンドル角度θs変動開始時点(t2)までは、ハンドル15に遊びがあるのでハンドル15の操作にはほとんど抵抗がないため、ハンドル角度θはリニアに増加する。そして、操舵輪が切れ始めた時点(t2)以降は、ハンドル15に遊びがなくなりハンドル15の操作に応じて操舵輪が操舵されるため、操舵輪の実際のハンドル15の回動量に応じたハンドル角度θが導出される。
【0074】
制御装置30は、ステップ206にて、これらハンドル角度θと推定ハンドル角度θsとに基づいて偏差の有無および程度を検出する(偏差検出手段)。具体的には、ハンドル回動開始時点(t1)と推定ハンドル角度θsの変動開始時点(t2)とがずれていない場合には、「偏差はない」と判断し、ハンドル回動開始時点(t1)と推定ハンドル角度θsの変動開始時点(t2)とがずれている場合には、「偏差がある」と判断する。そして、推定ハンドル角度θsの変動開始時点(t2)におけるハンドル角度θと推定ハンドル角度θsとの差を偏差の程度(ハンドルの遊び量θb)として検出する。
【0075】
制御装置30は、ステップ208にて、ステップ206にて検出された偏差に適した第1マップを、予め記憶されている複数の第1マップのなかから選択する(選択手段)。例えば、遊び量θbが10°、20°、30°の第1マップが予め記憶されており、このなかから検出された偏差に適したものが選択される。
【0076】
そして、制御装置30は、図2に示すフローチャートのステップ108(またはステップ130)にて選択手段によって選択された第1マップに基づいて操舵輪の切れ角ξを導出する。
【0077】
この変形例によれば、ステップ206にて、ハンドル角度θと推定ハンドル角度θsとに基づいて偏差の有無および程度を検出し、ステップ208にて、ステップ206によって検出された偏差に適した第1マップ(または第1演算式)を複数の第1マップ(または第1演算式)のなかから選択する。そして、選択された第1マップ(または第1演算式)に基づいて、正確な操舵輪の切れ角ξを導出することができる。したがって、互いに異なる偏差の車両にも個々の偏差にそれぞれ的確に対応することができ、また偏差が変化してもその変化に的確に対応した操舵輪の切れ角ξを正確に導出することができる。
【0078】
また、上記第2の変形例において、互いに異なる複数の偏差に対応した第2マップ(または第2演算式)を制御装置30に記憶し、偏差の有無および程度を検出し、検出された偏差に適した第2マップ(または第2演算式)を選択し、その選択された第2マップ(または第2演算式)に基づいて操舵輪の切れ角を導出するようにしてもよい。これによっても、第2の変形例と同様な作用・効果を得ることができる。
【図面の簡単な説明】
【図1】 本発明の一実施の形態に係る車両の姿勢制御装置にて採用した車両の姿勢制御装置の概略図である。
【図2】 図1の制御装置にて実行されるプログラムを表すフローチャートである。
【図3】 ハンドル角度を補正ハンドル角度に補正するための第1マップを示す図である。
【図4】 ハンドル角度を操舵輪の切れ角に補正するための第2マップを示す図である。
【図5】 図1の制御装置にて実行されるプログラムを表す他のフローチャートである。
【図6】 ハンドル角度を補正ハンドル角度(または操舵輪の切れ角)に補正するための他の第1マップ(または第2マップ)を示す図である。
【図7】 ハンドル角度を補正ハンドル角度(または操舵輪の切れ角)に補正するための他の第1マップ(または第2マップ)を示す図である。
【図8】 車両走行時の実ヨーレートと補正された操舵輪の切れ角から計算した車両のヨーレートとの時間変化を示す図である。
【図9】 図1の制御装置にて実行されるプログラムを表すフローチャートである。
【図10】 ハンドル角度と推定ハンドル角度の時間変化を示す図である。
【図11】 従来技術による補正されたハンドル角度から計算した車両のヨーレートと実ヨーレートとの時間変化を示す図である。
【符号の説明】
10…エンジン、11…プロペラシャフト、12…ディファレンシャル装置、13,14…左右のリヤアクスルシャフト、15…ステアリングホイール(ハンドル)、16…ステアリングシャフト、17…舵取機構、18…タイロッド、20…車両用制動装置、21…ブレーキペダル、22…マスタシリンダ、23…ブレーキ調圧ユニット、24…ブレーキ制御装置、25,26,27,28…各ホイールシリンダ、30…制御装置30、31…操舵角センサ、Sfl,Sfr,Srl,Srr…車輪速センサ、32…ヨーレートセンサ、M…車両、Wfl,Wfr,Wrl,Wrr…左右前後輪。
Claims (13)
- 車両のハンドル角度を算出するハンドル角度算出手段と、
前記ハンドル角度と前記車両の操舵輪の切れ角との間での前記車両のハンドルの回転方向の低剛性によるあらかじめ決められた偏差に基づいて前記ハンドル角度算出手段によって算出されたハンドル角度を補正することで、前記車両のハンドルの操作により操舵される前記車両の操舵輪の切れ角を導出する操舵輪切れ角導出手段と、
該操舵輪切れ角導出手段によって導出された操舵輪の切れ角に基づいて車両の姿勢を制御する第1の姿勢制御手段を備えたことを特徴とする車両の姿勢制御装置。 - 車両の実際のヨーレートを検出する実ヨーレート検出手段と、
車両のハンドル角度を算出するハンドル角度算出手段と、
前記ハンドル角度と前記車両の操舵輪の切れ角との間での前記車両のハンドルの回転方向の低剛性によるあらかじめ決められた偏差に基づいて前記ハンドル角度算出手段によって算出されたハンドル角度を補正することで、前記車両のハンドルの操作により操舵される前記車両の操舵輪の切れ角を導出する操舵輪切れ角導出手段と、
該操舵輪切れ角導出手段によって導出された操舵輪の切れ角に基づいて車両の目標ヨーレートを算出する目標ヨーレート算出手段と、
前記実ヨーレート検出手段によって検出された実際のヨーレートと前記目標ヨーレート算出手段によって算出された目標ヨーレートとを減算してヨーレート差を算出するヨーレート差算出手段と、
該ヨーレート差算出手段によって算出されたヨーレート差に基づいて前記車両の姿勢を制御する第2の姿勢制御手段を備えたことを特徴とする車両の姿勢制御装置。 - 請求項1または請求項2において、前記操舵輪切れ角導出手段は、前記ハンドル角度を前記偏差に基づいて補正するための第1マップまたは第1演算式と、
前記ハンドル角度算出手段によって算出されたハンドル角度を前記第1マップまたは第1演算式に基づいて補正して補正ハンドル角度を導出する補正ハンドル角度導出手段を備え、
該補正ハンドル角度導出手段によって導出された補正ハンドル角度から前記操舵輪の切れ角を導出することを特徴とする車両の姿勢制御装置。 - 請求項1または請求項2において、前記操舵輪切れ角導出手段は、前記ハンドル角度と前記操舵輪の切れ角との関係を示す第2マップまたは第2演算式を備え、
前記車両のハンドルの操作により操舵される前記操舵輪の切れ角を、前記ハンドル角度算出手段によって算出されたハンドル角度を前記第2マップまたは第2演算式に基づいて補正して導出することを特徴とする車両の姿勢制御装置。 - 請求項3において、前記車両の挙動状態に基づいて前記操舵輪の切れ角を推定する操舵輪切れ角推定手段と、
該操舵輪切れ角推定手段によって推定された操舵輪の切れ角に対応する推定ハンドル角度を導出する推定ハンドル角度導出手段と、
前記ハンドル角度算出手段によって算出されたハンドル角度と、前記推定ハンドル角度導出手段によって導出された推定ハンドル角度とに基づいて前記偏差の有無および程度を検出する偏差検出手段と、
互いに異なる複数の偏差にそれぞれ対応した複数の前記第1マップまたは第1演算式と、
前記偏差検出手段によって検出された偏差に適した第1マップまたは第1演算式を前記複数の第1マップまたは第1演算式のなかから選択する選択手段をさらに備え、
前記操舵輪切れ角導出手段は前記選択手段によって選択された第1マップまたは第1演算式に基づいて操舵輪の切れ角を導出することを特徴とする車両の姿勢制御装置。 - 請求項4において、前記車両の挙動状態に基づいて前記操舵輪の切れ角を推定する操舵輪切れ角推定手段と、
該操舵輪切れ角推定手段によって推定された操舵輪の切れ角に対応する推定ハンドル角度を導出する推定ハンドル角度導出手段と、
前記ハンドル角度算出手段によって算出されたハンドル角度と、前記推定ハンドル角度導出手段によって導出された推定ハンドル角度とに基づいて前記偏差の有無および程度を検出する偏差検出手段と、
互いに異なる複数の偏差にそれぞれ対応した複数の前記第2マップまたは第2演算式と、
前記偏差検出手段によって検出された偏差に適した第2マップまたは第2演算式を前記複数の第2マップまたは第2演算式のなかから選択する選択手段をさらに備え、
前記操舵輪切れ角導出手段は前記選択手段によって選択された第2マップまたは第2演算式に基づいて操舵輪の切れ角を導出することを特徴とする車両の姿勢制御装置。 - 請求項3において、前記ハンドル角度と前記操舵輪の切れ角との間で生じる車両毎の偏差に適した前記第1マップまたは第1演算式を予め備え、前記操舵輪切れ角導出手段は前記第1マップまたは第1演算式に基づいて操舵輪の切れ角を導出することを特徴とする車両の姿勢制御装置。
- 請求項4において、前記ハンドル角度と前記操舵輪の切れ角との間で生じる車両毎の偏差に適した前記第2マップまたは第2演算式を予め備え、前記操舵輪切れ角導出手段は前記第2マップまたは第2演算式に基づいて操舵輪の切れ角を導出することを特徴とする車両の姿勢制御装置。
- 請求項3、請求項5および請求項7において、前記第1マップまたは第1演算式は前記車両のハンドルの回転方向に対するヒステリシスを含んでいることを特徴とする車両の姿勢制御装置。
- 請求項4、請求項6および請求項8において、前記第2マップまたは第2演算式は前記車両のハンドルの回転方向に対するヒステリシスを含んでいることを特徴とする車両の姿勢制御装置。
- 請求項3、請求項5および請求項7において、前記第1マップまたは第1演算式は前記車両のハンドル角度と前記操舵輪の実際の切れ角との偏差を打ち消すように構成されていることを特徴とする車両の姿勢制御装置。
- 請求項4、請求項6および請求項8において、前記第2マップまたは第2演算式は前記車両のハンドル角度と前記操舵輪の実際の切れ角との偏差を打ち消すように構成されていることを特徴とする車両の姿勢制御装置。
- 請求項1乃至請求項12において、前記姿勢制御手段は、車輪の制動力または/およびエンジンの出力を制御することにより、前記車両のヨーイング方向または/およびローリング方向の姿勢を制御することを特徴とする車両の姿勢制御装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003195868A JP4161829B2 (ja) | 2003-07-11 | 2003-07-11 | 車両の姿勢制御装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003195868A JP4161829B2 (ja) | 2003-07-11 | 2003-07-11 | 車両の姿勢制御装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005028986A JP2005028986A (ja) | 2005-02-03 |
JP4161829B2 true JP4161829B2 (ja) | 2008-10-08 |
Family
ID=34206569
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003195868A Expired - Fee Related JP4161829B2 (ja) | 2003-07-11 | 2003-07-11 | 車両の姿勢制御装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4161829B2 (ja) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5083025B2 (ja) * | 2008-05-13 | 2012-11-28 | トヨタ自動車株式会社 | 車両の制駆動力制御装置 |
DE102012104369A1 (de) * | 2012-05-21 | 2013-11-21 | Tedrive Steering Systems Gmbh | Verfahren zur Kompensation des Spiels im Getriebe zwischen Lenkrad und Lenkventil |
JP5920198B2 (ja) * | 2012-12-14 | 2016-05-18 | トヨタ自動車株式会社 | 車両用制御装置 |
CN109466620A (zh) * | 2017-09-08 | 2019-03-15 | 约翰迪尔(天津)有限公司 | 收割机转向控制系统及其收割机 |
JP6988579B2 (ja) | 2018-03-05 | 2022-01-05 | いすゞ自動車株式会社 | 制御装置及び制御方法 |
-
2003
- 2003-07-11 JP JP2003195868A patent/JP4161829B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2005028986A (ja) | 2005-02-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4202872B2 (ja) | 車両用操舵装置 | |
US9090285B2 (en) | Method for providing a lanekeeping assistance based on modifying mechanical sources of steering torques | |
EP1650103B1 (en) | Vehicular steering apparatus with capability of providing suitable steering angle correction and power assistance | |
EP2022703B1 (en) | Vehicular steering angle estimating apparatus and electric power steering apparatus mounted therewith | |
US6625529B2 (en) | Apparatus for controlling steering angles of front rear wheels of vehicle | |
US7845218B2 (en) | Tire state estimator and tire state estimation method | |
US20020011093A1 (en) | Road friction coefficient estimating apparatus and vehicle equipped with road friction coefficient estimating apparatus | |
JPH06104455B2 (ja) | 車両運動状態推定装置 | |
EP2891591B1 (en) | Steer-by-wire steering reaction force control device | |
JP2005112285A (ja) | 車両用操舵制御装置 | |
EP3517407B1 (en) | Steering control device | |
WO2003099636A1 (fr) | Dispositif de direction | |
KR20090027646A (ko) | 차량용 주행 제어 장치 | |
EP3315371A1 (en) | Vehicle attitude control system | |
JP2007022169A (ja) | 車両制御装置およびカント状態判定方法 | |
JP2005343315A (ja) | 車両用操舵装置 | |
JP2008162398A (ja) | 車両用操舵制御装置 | |
JP4501568B2 (ja) | 車両の姿勢制御装置 | |
US10625777B2 (en) | Attitude control system | |
EP3656648B1 (en) | Apparatus and method for controlling steering system of vehicle | |
JP4568996B2 (ja) | 操舵装置と操舵装置の抗力算出装置 | |
JP4140409B2 (ja) | 車両の操舵角検出装置 | |
JPH08202403A (ja) | 車両状態量推定装置 | |
JP4161829B2 (ja) | 車両の姿勢制御装置 | |
JP2017105277A (ja) | 車両用操舵装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060310 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080219 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080416 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080701 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080714 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110801 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110801 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120801 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120801 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130801 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |