JP4161565B2 - Lead-free glass and glass-ceramic composition for electronic circuit board production - Google Patents

Lead-free glass and glass-ceramic composition for electronic circuit board production Download PDF

Info

Publication number
JP4161565B2
JP4161565B2 JP2001361156A JP2001361156A JP4161565B2 JP 4161565 B2 JP4161565 B2 JP 4161565B2 JP 2001361156 A JP2001361156 A JP 2001361156A JP 2001361156 A JP2001361156 A JP 2001361156A JP 4161565 B2 JP4161565 B2 JP 4161565B2
Authority
JP
Japan
Prior art keywords
glass
electronic circuit
circuit board
powder
ceramic composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001361156A
Other languages
Japanese (ja)
Other versions
JP2003165746A (en
Inventor
仁 小野田
寛 臼井
祐美 根岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2001361156A priority Critical patent/JP4161565B2/en
Publication of JP2003165746A publication Critical patent/JP2003165746A/en
Application granted granted Critical
Publication of JP4161565B2 publication Critical patent/JP4161565B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0036Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and a divalent metal oxide as main constituents
    • C03C10/0045Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and a divalent metal oxide as main constituents containing SiO2, Al2O3 and MgO as main constituents

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Glass Compositions (AREA)
  • Inorganic Insulating Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、900℃以下の低温で焼成して電子回路基板を作製するのに好適な無鉛ガラスおよびガラスセラミックス組成物に関する。
【0002】
【従来の技術】
従来、電子回路基板として、アルミナ粉末を焼結して作製されるアルミナ基板が広く使用されている。
【0003】
【発明が解決しようとする課題】
前記アルミナ基板においては、アルミナ粉末の焼結温度が約1600℃と高いために、アルミナ基板作製と同時に焼成する電極の材料としてタングステン(融点:3400℃)、モリブデン(融点:2620℃)等の高融点金属しか使用できなかった。そのため、比抵抗が小さいが融点が1600℃以下である銀(融点:962℃)等の非・高融点金属を前記電極の材料として使用できない問題があった。
【0004】
近年、前記アルミナ粉末に代わる、900℃以下で焼成して電子回路基板を作製できる電子回路基板用材料が求められている。
本発明は、以上の課題を解決する無鉛ガラスおよびガラスセラミックス組成物の提供を目的とする。
【0005】
【課題を解決するための手段】
本発明は、下記酸化物基準のモル%表示で、本質的に、
SiO 40〜55%、
Al 2〜10%、
MgO 32〜39%、
ZnO 1〜15%、
からなる無鉛ガラスを提供する。
また、電子回路基板作製に用いられる前記無鉛ガラスであって、粉末化して900℃またはそれ以下の温度で焼成したときにエンスタタイトが析出する電子回路基板作製用無鉛ガラスを提供する。
【0006】
また、前記無鉛ガラスの粉末と融点またはガラス転移点が1000℃以上である無機物粉末とから本質的になるガラスセラミックス組成物であって、当該無鉛ガラスの粉末を質量百分率表示で40%以上含有するガラスセラミックス組成物を提供する。
【0007】
【発明の実施の形態】
本発明の無鉛ガラス(以下本発明のガラスという。)は通常、粉末化してガラス粉末とされる。該ガラス粉末は、必要に応じてフィラー等と混合し、焼成して電子回路基板を作製するのに好適である。なお、本発明のガラスの粉末は900℃またはそれ以下の温度で焼成したときに結晶を析出する。
【0008】
前記粉末化する方法は本発明の目的を損なわないものであれば限定されず、ボールミルによる乾式粉砕、ボールミルによる湿式粉砕、ジェットミルによる粉砕等が例示される。
また、前記ガラス粉末の50%粒子径D50は0.5〜15μmであることが好ましい。より好ましくは1〜8μmである。
【0009】
本発明のガラスを粉末化して焼成し電子回路基板を作製する場合、前記焼成する温度、当該温度に保持する時間はそれぞれ典型的には900℃、60分間である。
【0010】
本発明のガラスを粉末化して900℃またはそれ以下の温度で焼成したときに析出する結晶はエンスタタイトであることが好ましい。エンスタタイトは比誘電率が低く、また誘電損失も小さいので、本発明のガラスの粉末を焼成して得られる電子回路基板の比誘電率および誘電損失を小さくできる。
【0011】
本発明のガラスを粉末化して900℃で焼成して得られる焼成体の20℃、35GHzにおける比誘電率εは6.5以下であることが好ましい。6.5超では、電子回路基板の作製に用いた場合、高周波信号の伝送特性が低下するおそれがある。より好ましくは6.0以下である。なお、εは典型的には4以上である。
【0012】
前記焼成体の20℃、35GHzにおける誘電損失tanδは0.0030以下であることが好ましい。0.0030超では電子回路基板の作製に用いた場合、高周波信号の伝送特性が低下するおそれがある。より好ましくは0.0025以下、特に好ましくは0.0020以下である。なお、tanδは典型的には0.0001以上である。
【0013】
本発明のガラスを、シリコンチップが形成される電子回路基板の作製に用いる等の場合、前記焼成体の50〜350℃における平均線膨張係数αは40×10−7/℃〜80×10−7/℃の範囲にあることが好ましい。40×10−7/℃未満または80×10−7/℃超ではシリコンチップとの膨張マッチングが困難になるおそれがある。
【0014】
また、本発明のガラスを、樹脂基板とハンダ接合して使用される電子回路基板の作製に用いる等の場合、前記焼成体のαは80×10−7/℃〜150×10−7/℃の範囲にあることが好ましい。80×10−7/℃未満または150×10−7/℃超では樹脂基板との膨張マッチングが困難になり、ハンダ接合部の強度が低下するおそれがある。
【0015】
次に、本発明のガラスの成分について、モル%を単に%と記して説明する。
SiOはネットワークフォーマであり、またεを低下させる成分であり、必須である。また、SiOはエンスタタイトの構成成分である。40%未満ではεが大きくなる。好ましくは45%以上である。55%超では軟化点Tが高くなり、900℃またはそれ以下の温度で焼成することが困難になる。好ましくは53%以下である。
【0016】
Alは、ガラスを安定化させる成分であり、必須である。2%未満ではガラスが不安定になる。好ましくは4%以上、より好ましくは5%以上である。10%超ではTが高くなる、または焼成時に析出する主結晶がコーディエライトとなり焼成体のαが小さくなる。好ましくは8%以下である。
【0017】
MgOは、ガラスを安定化させ、またはTを低下させる成分であり、必須である。また、エンスタタイトの構成成分である。32%未満では焼成時にエンスタタイトが析出しにくくなり、焼成体のtanδが大きくなる。39%超ではかえってガラスが不安定になる。好ましくは37%以下である。
【0018】
ZnOは、ガラスを安定化させ、Tを低下させ、または焼結性を向上させる成分であり、必須である。1%未満では焼結性が低下し、焼成体が緻密になりにくくなる。好ましくは3%以上、より好ましくは5%以上である。15%超では化学的耐久性、特に耐酸性が低下する、または、焼成時にウィレマイトが析出し、焼成体のtanδが大きくなる。好ましくは12%以下、より好ましくは10%以下である。
【0019】
本発明のガラスは本質的に上記成分からなるが、本発明の目的を損なわない範囲で他の成分を、たとえば焼成時の結晶析出を促進するため、ガラスを着色するため、等のために含有してもよい。該「他の成分」の含有量の合計は好ましくは10%以下である。10%超ではガラスが不安定になるおそれがある。より好ましくは5%以下である。
【0020】
前記「他の成分」として、B、CaO、SrO、BaO、LiO、NaO、KO、TiO、ZrO、SnO、TeO、P、Y、La、Ga、In、Ta、Nb、CeO、MoO、WO、Fe、Sb、Bi、MnO、CuO、CoO、V、Crが例示される。
なお、本発明のガラスはPbOを含有しない無鉛ガラスである。
【0021】
次に、本発明のガラスセラミックス組成物(以下本発明の組成物という。)の成分について、質量百分率表示を用いて以下に説明する。
本発明のガラスの粉末は焼成体の緻密性を向上させる成分であり、必須である。40%未満では焼成体の緻密性が低下する、または900℃またはそれ以下の温度で焼成して電子回路基板を作製することが困難になる。好ましくは50%以上、より好ましくは55%以上である。
【0022】
融点またはガラス転移点が1000℃以上である無機物粉末(以下耐火性粉末という。)は焼成体の強度を増加させる成分であり必須である。その含有量は10%以上であることが好ましい。また、その含有量は、好ましくは50%以下、より好ましくは45%以下である。
【0023】
焼成体のtanδを低下させるためには、耐火性粉末は、石英(融点=1550℃)、クリストバライト(融点=1713℃)、α−アルミナ(融点=2050℃)、コーディエライト(融点=1460℃)、フォルステライト(融点=1890℃)、エンスタタイト(融点=1550℃)およびスピネル(融点=2050℃)からなる群から選ばれる1種以上の無機物の粉末であることが好ましい。α−アルミナ粉末を含有することがより好ましい。
【0024】
耐火性粉末の粒子の長径Lと短径Wの比L/Wの平均ΨAVは1.4以下であることが好ましい。1.4超では焼成体のtanδが大きくなるおそれがある。好ましくは1.3以下、より好ましくは1.25以下である。
【0025】
前記L、W、ΨAVは次のようにして測定または算出される。
まず、耐火性粉末を走査型電子顕微鏡(SEM)の試料台に撒布する。なお、試料台には粒子を固着するために予めマニキュア(たとえば、ベースコート用の無色の爪化粧材)等の固着剤を塗布しておく。試料台上の粒子が凝集している場合は柔らかいブラシを用いて分散させ、その後ゴム製ブロワ等を用いて試料台に固着していない粒子を吹き払う。
【0026】
次に、試料台上の粒子をSEMで観察し、LおよびWを測定する。すなわち、他の粒子に遮られずに観察できる粒子を選び、当該粒子の画像を2本の平行線ではさんだときにその2本の平行線の距離が最も小さくなるときのその距離をW、当該2本の平行線に直交する2本の平行線で前記画像をはさんだときのその2本の平行線の距離をLとする。
この測定を20個以上の粒子について行い、L/Wの平均ΨAVを算出する。
【0027】
耐火性粉末の90%粒子径D90と10%粒子径D10の比D90/D10は5以下であることが好ましい。5超では焼成体の緻密性すなわち焼結性が低下し、その結果焼成体の強度が低下するおそれがある。より好ましくは3以下である。なお、D90およびD10は、たとえばレーザー回折式粒度分布測定器を用いて測定される。
【0028】
本発明の組成物は本質的に上記成分からなるが、他の成分を本発明の目的を損なわない範囲で含有してもよい。該「他の成分」の含有量の合計は10%以下であることが好ましい。より好ましくは5%以下である。
前記「他の成分」として、たとえば耐熱着色顔料、酸化セリウム粉末が挙げられる。
【0029】
本発明の組成物を電子回路基板作製に用いる場合、通常、グリーンシート化して使用される。すなわち、該ガラスセラミックス組成物はポリビニルブチラールやアクリル樹脂等の樹脂と、さらに必要に応じて、フタル酸ジブチル、フタル酸ジオクチル、フタル酸ブチルベンジル等の可塑剤も添加して混合される。次に、トルエン、キシレン、ブタノール等の溶剤を添加してスラリーとし、ポリエチレンテレフタレート(PET)等のフィルム上にドクターブレード法等によってこのスラリーをシート状に成形する。最後にこのシート状に成形されたものを乾燥して溶剤を除去しグリーンシートとする。このグリーンシートは、典型的には800〜900℃に5〜180分間、より典型的には850〜900℃に5〜150分間保持する焼成工程を経て電子回路基板とされる。
【0030】
【実施例】
表のSiO〜ZnOの欄にモル%表示で示した組成となるように原料を調合、混合し、該混合された原料を白金ルツボに入れて1500℃で120分間溶融後、溶融ガラスを流し出し冷却した。得られたガラスをアルミナ製ボールミルで30時間粉砕してガラス粉末とした。例1〜3は実施例、例4〜6は比較例であり、このうち例6の溶融ガラスは流し出したとき失透が認められガラスが不安定であった。
【0031】
例1〜6のガラスの粉末について、T(単位:℃)を示差熱分析計(マックサイエンス社製 TG−DTA2000)により測定した。またε、tanδ、焼結性、αおよび析出結晶を以下の方法で測定または評価した。結果を表1に示す。なお、表中の「−」は測定しなかったことを示す。
【0032】
焼結性:粉末2gを直径12.7mmの円柱状に加圧成形し、これを900℃に60分保持して得た焼成体を赤色の浸透液(マークテック社製 スーパーチェックUP−G3)に浸漬後水洗いし、焼成体が赤色に着色しているか否かを観察した。赤色に着色していない場合を○、着色していた場合を×とする。
【0033】
α(単位:10−7/℃):ガラスの粉末5gを加圧成形し、これを、例1、2、3、6については900℃に、例4、5については1000℃にそれぞれ60分間保持して焼成し、得られた焼成体を5mmφ×20mmに加工し、試料とした。この試料について、石英ガラスを標準として示差熱膨張計(マックサイエンス社製 DILATOMETER5000)を用いて測定した。
【0034】
ε、tanδ:ガラスの粉末40gを60mm×60mmの金型に入れて加圧成形したものを900℃に60分間保持して焼成し、得られた焼成体の上下両面を研削して厚み250μmに加工後鏡面研磨し、空洞共振法により20℃、35GHzにおけるε、tanδを測定した。例4、5では緻密な焼成体が得られず測定できなかった。
【0035】
析出結晶:900℃に60分間保持して得られた焼成体を粉砕し、粉末X線回折法により析出結晶を同定した。表中のEはエンスタタイト、Cはコーディエライト、Wはウィレマイトである。なお、例6のエンスタタイトの析出量は少なかった。
【0036】
【表1】

Figure 0004161565
【0037】
次に、質量百分率表示で、例2のガラス粉末80%とα−アルミナ粉末(住友化学工業社製スミコランダムAA−2)20%を混合し、得られた混合粉末と有機溶剤(トルエンとイソプロピルアルコールを質量比で3:1に混合したもの)、可塑剤(フタル酸ジ−2−エチルヘキシル)および樹脂(デンカ社製ポリビニルブチラール PVK#3000k)を混合し、これをPETフィルム上にドクターブレード法によって塗布、乾燥しグリーンシートを作製した。
【0038】
前記α−アルミナ粉末の23個の粒子について先に述べたようにSEM(倍率:5000倍)で観察しL、Wを測定した。L/Wの平均ΨAVは1.22であった。
【0039】
また、水を溶媒として島津製作所製レーザー回折式粒度分布計SALD2100を用いて前記α−アルミナ粉末粒度分布(質量百分率表示)を測定した。その結果、90%粒子径D90は4.3μm、10%粒子径D10は1.7μm、それらの比D90/D10は2.5であった。
【0040】
前記グリーンシートを50mm×50mmに切断し、12枚積層して、20MPaで1分間圧着プレスした。この圧着プレス品を550℃に5時間保持後、870℃に1時間保持する焼成を行って焼成体を作製した。
【0041】
得られた焼成体について、以下のようにしてα、焼結性、ε、tanδ、曲げ強度を評価または測定した。
α:前記示差熱膨張計を用いて測定した結果、84×10−7/℃であった。焼結性:焼成体を前記浸透液に浸漬後水洗いし、焼成体が赤色に着色しているか否かを観察したところ着色しておらず、焼結性は良好であった。
【0042】
ε、tanδ:焼成体の上下両面を研削後、鏡面研磨し厚み200μmとし、先に述べたと同様にして測定した。その結果、εは5.6、tanδは0.0018であった。
【0043】
曲げ強度:焼成体を4mm×20mmに切断し、表面を#1000のSi研磨剤で仕上げ、クロスヘッドスピード0.5mm/分、スパン15mmの条件で3点曲げ強度を測定した。5回の測定結果の平均は258MPaであった。この平均は200MPa以上であることが好ましい。
【0044】
【発明の効果】
本発明によれば、εおよびtanδのいずれもが低い電子回路基板を900℃以下の温度で焼成して作製できる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a lead-free glass and a glass ceramic composition suitable for producing an electronic circuit board by firing at a low temperature of 900 ° C. or lower.
[0002]
[Prior art]
Conventionally, an alumina substrate produced by sintering alumina powder has been widely used as an electronic circuit substrate.
[0003]
[Problems to be solved by the invention]
In the alumina substrate, since the sintering temperature of the alumina powder is as high as about 1600 ° C., the material of the electrode to be fired simultaneously with the preparation of the alumina substrate is high such as tungsten (melting point: 3400 ° C.), molybdenum (melting point: 2620 ° C.). Only melting point metals could be used. Therefore, there is a problem that non-high melting point metals such as silver (melting point: 962 ° C.) having a small specific resistance but a melting point of 1600 ° C. or less cannot be used as the material of the electrode.
[0004]
In recent years, there has been a demand for an electronic circuit board material that can be baked at 900 ° C. or lower to produce an electronic circuit board instead of the alumina powder.
An object of this invention is to provide the lead-free glass and glass-ceramics composition which solve the above subject.
[0005]
[Means for Solving the Problems]
The present invention is essentially expressed in terms of mol% based on the following oxides,
SiO 2 40~55%,
Al 2 O 3 2-10%,
MgO 32-39%,
ZnO 1-15%,
A lead-free glass is provided.
The present invention also provides the lead-free glass used for producing an electronic circuit board, wherein the enstatite is precipitated when powdered and fired at a temperature of 900 ° C. or lower .
[0006]
Moreover, it is a glass ceramic composition which consists essentially of the said lead-free glass powder and an inorganic powder having a melting point or glass transition point of 1000 ° C. or higher, and contains 40% or more of the lead-free glass powder in terms of mass percentage. A glass ceramic composition is provided.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The lead-free glass of the present invention (hereinafter referred to as the glass of the present invention) is usually pulverized into a glass powder. The glass powder is suitable for producing an electronic circuit board by mixing with a filler or the like, if necessary, and firing. The glass powder of the present invention precipitates crystals when fired at a temperature of 900 ° C. or lower.
[0008]
The powdering method is not limited as long as the object of the present invention is not impaired, and examples thereof include dry pulverization using a ball mill, wet pulverization using a ball mill, and pulverization using a jet mill.
Further, the 50% particle size D 50 of the glass powder is preferably 0.5 to 15 m. More preferably, it is 1-8 micrometers.
[0009]
When the glass of the present invention is pulverized and fired to produce an electronic circuit board, the firing temperature and the time maintained at the temperature are typically 900 ° C. and 60 minutes, respectively.
[0010]
The crystals that precipitate when the glass of the present invention is powdered and fired at a temperature of 900 ° C. or lower are preferably enstatite. Since enstatite has a low relative dielectric constant and low dielectric loss, the relative dielectric constant and dielectric loss of an electronic circuit board obtained by firing the glass powder of the present invention can be reduced.
[0011]
The relative permittivity ε at 20 ° C. and 35 GHz of the fired product obtained by pulverizing the glass of the present invention and firing at 900 ° C. is preferably 6.5 or less. If it exceeds 6.5, there is a risk that the transmission characteristics of the high-frequency signal may be deteriorated when used for manufacturing an electronic circuit board. More preferably, it is 6.0 or less. Note that ε is typically 4 or more.
[0012]
The dielectric loss tan δ at 20 ° C. and 35 GHz of the fired body is preferably 0.0030 or less. If it exceeds 0.0030, there is a possibility that the transmission characteristics of the high-frequency signal may be deteriorated when used for producing an electronic circuit board. More preferably, it is 0.0025 or less, Most preferably, it is 0.0020 or less. Note that tan δ is typically 0.0001 or more.
[0013]
When the glass of the present invention is used for producing an electronic circuit board on which a silicon chip is formed, the average linear expansion coefficient α of the fired body at 50 to 350 ° C. is 40 × 10 −7 / ° C. to 80 × 10 −. It is preferably in the range of 7 / ° C. If it is less than 40 × 10 −7 / ° C. or more than 80 × 10 −7 / ° C., expansion matching with the silicon chip may be difficult.
[0014]
In addition, when the glass of the present invention is used for producing an electronic circuit board used by soldering to a resin substrate, α of the fired body is 80 × 10 −7 / ° C. to 150 × 10 −7 / ° C. It is preferable that it exists in the range. If it is less than 80 × 10 −7 / ° C. or more than 150 × 10 −7 / ° C., expansion matching with the resin substrate becomes difficult, and the strength of the solder joint may be lowered.
[0015]
Next, regarding the components of the glass of the present invention, mol% is simply described as%.
SiO 2 is a network former and a component that lowers ε and is essential. SiO 2 is a constituent of enstatite. If it is less than 40%, ε increases. Preferably it is 45% or more. Softening point T S becomes high at 55 percent, it becomes difficult to baking at 900 ° C. or lower temperatures. Preferably it is 53% or less.
[0016]
Al 2 O 3 is a component that stabilizes the glass and is essential. If it is less than 2%, the glass becomes unstable. Preferably it is 4% or more, More preferably, it is 5% or more. T S increases is 10 percent, or primary crystals precipitated during firing is α of the sintered body becomes cordierite becomes smaller. Preferably it is 8% or less.
[0017]
MgO is a glass to stabilize, or a component to lower the T S, is essential. It is a constituent of enstatite. If it is less than 32%, enstatite hardly precipitates at the time of firing, and the tan δ of the fired body increases. If it exceeds 39%, the glass becomes unstable. Preferably it is 37% or less.
[0018]
ZnO is a glass to stabilize, a component for improving the lowering of T S, or sinterability, is essential. If it is less than 1%, the sinterability is lowered, and the fired body is difficult to become dense. Preferably it is 3% or more, More preferably, it is 5% or more. If it exceeds 15%, chemical durability, particularly acid resistance, decreases, or willemite precipitates during firing, and tan δ of the fired product increases. Preferably it is 12% or less, More preferably, it is 10% or less.
[0019]
The glass of the present invention consists essentially of the above-mentioned components, but contains other components within the range that does not impair the purpose of the present invention, for example, to promote crystal precipitation during firing, to color the glass, etc. May be. The total content of the “other components” is preferably 10% or less. If it exceeds 10%, the glass may become unstable. More preferably, it is 5% or less.
[0020]
As the “other components”, B 2 O 3 , CaO, SrO, BaO, Li 2 O, Na 2 O, K 2 O, TiO 2 , ZrO 2 , SnO 2 , TeO 2 , P 2 O 5 , Y 2 O 5, La 2 O 5, Ga 2 O 5, In 2 O 5, Ta 2 O 5, Nb 2 O 5, CeO 2, MoO 3, WO 3, Fe 2 O 3, Sb 2 O 3, Bi 2 O 3, MnO, CuO, CoO, V 2 O 5, Cr 2 O 3 is exemplified.
The glass of the present invention is a lead-free glass that does not contain PbO.
[0021]
Next, components of the glass ceramic composition of the present invention (hereinafter referred to as the composition of the present invention) will be described below using mass percentage display.
The glass powder of the present invention is a component that improves the denseness of the fired body and is essential. If it is less than 40%, the density of the fired body is lowered, or it becomes difficult to produce an electronic circuit board by firing at a temperature of 900 ° C. or lower. Preferably it is 50% or more, more preferably 55% or more.
[0022]
An inorganic powder (hereinafter referred to as a refractory powder) having a melting point or glass transition point of 1000 ° C. or higher is a component that increases the strength of the fired body and is essential. The content is preferably 10% or more. Moreover, the content is preferably 50% or less, more preferably 45% or less.
[0023]
In order to reduce the tan δ of the fired product, the refractory powder is made of quartz (melting point = 1550 ° C.), cristobalite (melting point = 1713 ° C.), α-alumina (melting point = 2050 ° C.), cordierite (melting point = 1460 ° C.). ), Forsterite (melting point = 1890 ° C.), enstatite (melting point = 1550 ° C.), and spinel (melting point = 2050 ° C.), preferably one or more inorganic powders. More preferably, α-alumina powder is contained.
[0024]
The average Ψ AV of the ratio L / W of the major axis L to the minor axis W of the refractory powder particles is preferably 1.4 or less. If it exceeds 1.4, the tan δ of the fired product may increase. Preferably it is 1.3 or less, More preferably, it is 1.25 or less.
[0025]
The L, W, and Ψ AV are measured or calculated as follows.
First, the refractory powder is distributed on a sample stage of a scanning electron microscope (SEM). It should be noted that a sticking agent such as nail polish (for example, a colorless nail cosmetic material for base coat) is previously applied to the sample stage in order to fix the particles. If the particles on the sample stage are agglomerated, they are dispersed using a soft brush, and then the particles not fixed to the sample stage are blown off using a rubber blower or the like.
[0026]
Next, the particles on the sample stage are observed with an SEM, and L and W are measured. That is, select a particle that can be observed without being blocked by other particles, and when the image of the particle is sandwiched between two parallel lines, the distance when the distance between the two parallel lines is the smallest is W, Let L be the distance between the two parallel lines when the image is sandwiched between the two parallel lines orthogonal to the two parallel lines.
This measurement is performed on 20 or more particles, and an average L / W Ψ AV is calculated.
[0027]
The ratio D 90 / D 10 between the 90% particle diameter D 90 and the 10% particle diameter D 10 of the refractory powder is preferably 5 or less. If it exceeds 5, the denseness, that is, the sinterability of the fired body is lowered, and as a result, the strength of the fired body may be lowered. More preferably, it is 3 or less. Incidentally, D 90 and D 10 represent respectively the particle diameters, for example, is measured using a laser diffraction particle size distribution analyzer.
[0028]
The composition of the present invention consists essentially of the above components, but may contain other components within a range not impairing the object of the present invention. The total content of the “other components” is preferably 10% or less. More preferably, it is 5% or less.
Examples of the “other components” include heat-resistant coloring pigments and cerium oxide powder.
[0029]
When the composition of the present invention is used for producing an electronic circuit board, it is usually used as a green sheet. That is, the glass ceramic composition is mixed with a resin such as polyvinyl butyral or an acrylic resin and, if necessary, a plasticizer such as dibutyl phthalate, dioctyl phthalate, or butyl benzyl phthalate. Next, a solvent such as toluene, xylene, or butanol is added to form a slurry, and this slurry is formed into a sheet shape by a doctor blade method or the like on a film of polyethylene terephthalate (PET) or the like. Finally, the sheet formed into a sheet is dried to remove the solvent to obtain a green sheet. This green sheet is typically made into an electronic circuit board through a baking step of holding at 800 to 900 ° C. for 5 to 180 minutes, more typically 850 to 900 ° C. for 5 to 150 minutes.
[0030]
【Example】
The raw materials were prepared and mixed so as to have the composition shown in mol% in the column of SiO 2 to ZnO in the table, the mixed raw materials were put into a platinum crucible and melted at 1500 ° C. for 120 minutes, and then molten glass was poured. Cooled out. The obtained glass was pulverized with an alumina ball mill for 30 hours to obtain a glass powder. Examples 1 to 3 are examples, and examples 4 to 6 are comparative examples. Among these, the molten glass of Example 6 was devitrified and was unstable.
[0031]
The powder of the glass of Example 1 to 6, T S (unit: ° C.) was measured by differential thermal analyzer (Mac Science Co. TG-DTA2000) a. Further, ε, tan δ, sinterability, α, and precipitated crystals were measured or evaluated by the following methods. The results are shown in Table 1. In addition, "-" in a table | surface shows not having measured.
[0032]
Sinterability: 2 g of powder was pressure-molded into a cylindrical shape with a diameter of 12.7 mm, and the fired body obtained by holding it at 900 ° C. for 60 minutes was a red penetrant (Super Check UP-G3 manufactured by Marktec). After immersing in, it was washed with water, and it was observed whether the fired body was colored in red. The case where it is not colored red is indicated by ◯, and the case where it is colored is indicated by ×.
[0033]
α (unit: 10 −7 / ° C.): 5 g of glass powder was pressure-molded, and this was applied to 900 ° C. for Examples 1, 2, 3, and 6 and to 1000 ° C. for Examples 4 and 5 for 60 minutes. Holding and firing, the fired body obtained was processed to 5 mmφ × 20 mm to prepare a sample. This sample was measured using a differential thermal dilatometer (DILATOMETER 5000 manufactured by Mac Science) with quartz glass as a standard.
[0034]
ε, tan δ: Glass powder 40 g placed in a 60 mm × 60 mm mold and press-molded is held at 900 ° C. for 60 minutes and fired, and the upper and lower surfaces of the fired body are ground to a thickness of 250 μm. After processing, mirror polishing was performed, and ε and tan δ at 20 ° C. and 35 GHz were measured by a cavity resonance method. In Examples 4 and 5, a dense fired product could not be obtained and measurement was not possible.
[0035]
Precipitated crystal: The fired body obtained by maintaining at 900 ° C. for 60 minutes was pulverized, and the precipitated crystal was identified by a powder X-ray diffraction method. In the table, E is enstatite, C is cordierite, and W is willemite. The amount of enstatite deposited in Example 6 was small.
[0036]
[Table 1]
Figure 0004161565
[0037]
Next, 80% of the glass powder of Example 2 and 20% of α-alumina powder (Sumicorundum AA-2 manufactured by Sumitomo Chemical Co., Ltd.) were mixed in terms of mass percentage, and the obtained mixed powder and an organic solvent (toluene and isopropyl) A mixture of alcohol in a mass ratio of 3: 1), a plasticizer (di-2-ethylhexyl phthalate) and a resin (polyvinyl butyral PVK # 3000k manufactured by Denka) are mixed, and this is doctor blade method on a PET film. Was applied and dried to prepare a green sheet.
[0038]
As described above, 23 particles of the α-alumina powder were observed with an SEM (magnification: 5000 times), and L and W were measured. The average Ψ AV of L / W was 1.22.
[0039]
In addition, the α-alumina powder particle size distribution (mass percentage display) was measured using a laser diffraction particle size distribution analyzer SALD2100 manufactured by Shimadzu Corporation using water as a solvent. As a result, the 90% particle size D 90 was 4.3 μm, the 10% particle size D 10 was 1.7 μm, and the ratio D 90 / D 10 was 2.5.
[0040]
The green sheet was cut into 50 mm × 50 mm, 12 sheets were stacked, and press-pressed at 20 MPa for 1 minute. The press-bonded product was held at 550 ° C. for 5 hours and then baked at 870 ° C. for 1 hour to prepare a fired body.
[0041]
About the obtained sintered body, α, sinterability, ε, tan δ, and bending strength were evaluated or measured as follows.
α: The result of measurement using the differential thermal dilatometer was 84 × 10 −7 / ° C. Sinterability: The fired body was immersed in the permeation solution and washed with water. When the fired body was colored in red, it was not colored and the sinterability was good.
[0042]
ε, tan δ: The upper and lower surfaces of the fired body were ground and then mirror-polished to a thickness of 200 μm, and measured in the same manner as described above. As a result, ε was 5.6 and tan δ was 0.0018.
[0043]
Bending strength: The fired body was cut into 4 mm × 20 mm, the surface was finished with # 1000 Si 3 N 4 abrasive, and the three-point bending strength was measured under the conditions of a crosshead speed of 0.5 mm / min and a span of 15 mm. The average of the five measurement results was 258 MPa. This average is preferably 200 MPa or more.
[0044]
【The invention's effect】
According to the present invention, an electronic circuit board having both low ε and tan δ can be produced by firing at a temperature of 900 ° C. or lower.

Claims (4)

下記酸化物基準のモル%表示で、本質的に、
SiO 40〜55%、
Al 2〜10%、
MgO 32〜39%、
ZnO 1〜15%、
からなり、粉末化して900℃またはそれ以下の温度で焼成したときにエンスタタイトが析出する電子回路基板作製用無鉛ガラス。
In essence, expressed as mole percent on the oxide basis below,
SiO 2 40~55%,
Al 2 O 3 2-10%,
MgO 32-39%,
ZnO 1-15%,
Tona is, powdered to 900 ° C. or electronic circuit board fabrication lead-free glass enstatite is you deposit when it was fired at a temperature below.
請求項1に記載の電子回路基板作製用無鉛ガラスの粉末と融点またはガラス転移点が1000℃以上である無機物粉末とから本質的になるガラスセラミックス組成物であって、当該無鉛ガラスの粉末を質量百分率表示で40%以上含有するガラスセラミックス組成物。A glass ceramic composition consisting essentially of a lead-free glass powder for producing an electronic circuit board according to claim 1 and an inorganic powder having a melting point or glass transition point of 1000 ° C or higher, wherein the lead-free glass powder is a mass Glass ceramic composition containing 40% or more by percentage display. 前記無機物粉末の粒子の長径Lと短径Wの比L/Wの平均が1.4以下である請求項に記載のガラスセラミックス組成物。The glass ceramic composition according to claim 2 , wherein an average of the ratio L / W of the major axis L to the minor axis W of the particles of the inorganic powder is 1.4 or less. 前記無機物粉末の90%粒子径D90と10%粒子径D10の比D90/D10が5以下である請求項またはに記載のガラスセラミックス組成物。Glass ceramic composition according to claim 2 or 3 ratio D 90 / D 10 is 5 or less and 90% particle size D 90 and the 10% particle size D 10 of the inorganic powder.
JP2001361156A 2001-11-27 2001-11-27 Lead-free glass and glass-ceramic composition for electronic circuit board production Expired - Lifetime JP4161565B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001361156A JP4161565B2 (en) 2001-11-27 2001-11-27 Lead-free glass and glass-ceramic composition for electronic circuit board production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001361156A JP4161565B2 (en) 2001-11-27 2001-11-27 Lead-free glass and glass-ceramic composition for electronic circuit board production

Publications (2)

Publication Number Publication Date
JP2003165746A JP2003165746A (en) 2003-06-10
JP4161565B2 true JP4161565B2 (en) 2008-10-08

Family

ID=19171863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001361156A Expired - Lifetime JP4161565B2 (en) 2001-11-27 2001-11-27 Lead-free glass and glass-ceramic composition for electronic circuit board production

Country Status (1)

Country Link
JP (1) JP4161565B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060102228A1 (en) * 2004-11-12 2006-05-18 Ferro Corporation Method of making solar cell contacts
JP4738166B2 (en) * 2005-12-22 2011-08-03 京セラ株式会社 Wiring board and manufacturing method thereof
JP5746929B2 (en) * 2011-08-23 2015-07-08 株式会社ノリタケカンパニーリミテド Insulation film

Also Published As

Publication number Publication date
JP2003165746A (en) 2003-06-10

Similar Documents

Publication Publication Date Title
JP4590866B2 (en) Glass ceramic composition
JP3240271B2 (en) Ceramic substrate
KR101020143B1 (en) Bismuth-based sealing material and bismuth-based paste material
TWI769168B (en) Sealing material
KR102631524B1 (en) Low melting point glass composition excellent in water resistance
JP2002220256A (en) Lead-free glass, electronic circuit board composition, and the electronic circuit board
JP2004168597A (en) Lead-free glass and composition for electronic circuit board
JP2006124201A (en) Nonlead glass, glass ceramic composition and dielectric
JP4161565B2 (en) Lead-free glass and glass-ceramic composition for electronic circuit board production
JP2002338295A (en) Alkali-free glass, composition for electronic circuit board and electronic circuit board
JP4229045B2 (en) Electronic circuit board and lead-free glass for producing electronic circuit board
KR102331481B1 (en) Ceramic powder and its manufacturing method
JP2003128431A (en) Lead-free glass and glass ceramic composition
JP5516026B2 (en) Glass ceramic composition, light emitting diode element substrate, and light emitting device
JP2002220255A (en) Lead-free glass, electronic circuit board composition, and the electronic circuit board
JP5683778B2 (en) Lead free bismuth glass composition
JP2002080240A (en) Low dielectric constant alkali-free glass
JP2004244271A (en) Lead-free glass, composition for electronic circuit board, and electronic circuit board
JP4880022B2 (en) Low dielectric constant ceramic dielectric composition and low dielectric constant ceramic dielectric for low temperature firing
TW202138322A (en) Semiconductor element coating glass and semiconductor element coating material using same
JP4407199B2 (en) Crystallized lead-free glass, glass ceramic composition, green sheet and electronic circuit board
JP2001158641A (en) Glass and glass ceramic composition
JP2005126250A (en) Glass ceramic composition and electronic circuit board
JP2004175645A (en) Glass frit mixture, method of manufacturing electronic circuit board and electronic circuit board
JP4288656B2 (en) Glass ceramic dielectric material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071122

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080402

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080701

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080714

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4161565

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term