JP4161515B2 - Exhaust gas oxygen concentration control method and apparatus for oxyfuel boiler equipment - Google Patents

Exhaust gas oxygen concentration control method and apparatus for oxyfuel boiler equipment Download PDF

Info

Publication number
JP4161515B2
JP4161515B2 JP2000160163A JP2000160163A JP4161515B2 JP 4161515 B2 JP4161515 B2 JP 4161515B2 JP 2000160163 A JP2000160163 A JP 2000160163A JP 2000160163 A JP2000160163 A JP 2000160163A JP 4161515 B2 JP4161515 B2 JP 4161515B2
Authority
JP
Japan
Prior art keywords
oxygen concentration
exhaust gas
boiler body
outlet
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000160163A
Other languages
Japanese (ja)
Other versions
JP2001336736A (en
Inventor
直史 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2000160163A priority Critical patent/JP4161515B2/en
Publication of JP2001336736A publication Critical patent/JP2001336736A/en
Application granted granted Critical
Publication of JP4161515B2 publication Critical patent/JP4161515B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • Y02E20/344

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)
  • Regulation And Control Of Combustion (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、酸素燃焼ボイラ設備の排ガス酸素濃度制御方法及び装置に関するものである。
【0002】
【従来の技術】
図2は発電所等に設けられるボイラの一例を表わすものであって、図2中、1はボイラ本体、2はボイラ本体1内へ燃料を噴射して燃焼させるバーナ、3は一次過熱器、4は二次過熱器、5は三次過熱器、6は最終過熱器、7は一次再熱器、8は二次再熱器、9は節炭器であり、バーナ2からボイラ本体1内へ燃料を噴射して燃焼させることにより、燃焼ガスを生成し、生成された燃焼ガスを流通させ、二次過熱器4、三次過熱器5、最終過熱器6、二次再熱器8、一次過熱器3、一次再熱器7及び節炭器9と熱交換させ、熱交換した後の排ガスを排ガスダクト10へ流出させ、下流側に設けられた脱硝、脱硫等の排煙処理装置(図示せず)で窒素酸化物や硫黄酸化物等を除去した後、大気へ放出するようになっている。
【0003】
一方、図3は前述のボイラの給水・蒸気系統を表わすものであり、ボイラ給水は、燃料が燃焼されるボイラ本体1の火炉炉壁に形成される蒸発器11で加熱され、ノーズ部12を経て、汽水分離器13で水と蒸気に分離され、該汽水分離器13で水と分離された蒸気は、ボイラ本体1の天井並びに後部伝熱部周壁14を通過し、一次過熱器3、二次過熱器4、三次過熱器5及び最終過熱器6で過熱され、高圧タービン15へ導かれ、該高圧タービン15が駆動されて発電が行われると共に、前記高圧タービン15を駆動した後の蒸気は、一次再熱器7及び二次再熱器8へ導かれ、該一次再熱器7及び二次再熱器8で再熱された後、中・低圧タービン16へ導入され、該中・低圧タービン16が駆動されて発電が行われ、前記中・低圧タービン16を駆動した後の蒸気は、復水器17へ導かれてボイラ給水に戻され、該ボイラ給水は、復水脱塩装置18と低圧給水加熱器19と脱気器20とを経由し、給水ポンプ21により高圧給水加熱器22を介して節炭器9へ圧送され、該節炭器9で加熱され、前記蒸発器11へ送給され、循環されるようになっている。
【0004】
ところで、近年、地球温暖化防止のために、二酸化炭素等の温室効果ガス排出量を削減することが望まれており、ボイラ本体1から排出される排ガス中の二酸化炭素を回収して海洋や地中に廃棄処理する技術の開発が進められている。
【0005】
図4は排ガス中の二酸化炭素を回収して海洋や地中に廃棄処理するために提案されている酸素燃焼ボイラ設備の一例を表わすものであって、30はボイラ本体1の入側に接続された大気供給ライン、31は大気供給ライン30途中に設けられたファン、32はボイラ本体1の出側に接続された排ガスライン、33は煙突であり、排ガスライン32途中から排ガス循環ライン34を分岐させて大気供給ライン30のファン31より上流側に接続し、該排ガス循環ライン34の分岐部より下流側における排ガスライン32途中に排ガスダンパ35を設け、前記排ガス循環ライン34の接続部より上流側における大気供給ライン30途中に大気供給ダンパ36を設け、前記排ガス循環ライン34途中に排ガス循環ダンパ37を設けると共に、途中に二酸化炭素回収ダンパ38が設けられた二酸化炭素回収ライン39を排ガス循環ライン34の所要箇所から分岐させ、前記ファン31より下流側における大気供給ライン30途中に、高純度酸素製造装置40から供給される酸素を導入するための酸素導入ライン41を接続し、該酸素導入ライン41途中に酸素導入ダンパ42を設けたものである。
【0006】
図4に示される酸素燃焼ボイラ設備においては、起動時には、高純度酸素製造装置40から酸素を供給することができないため、酸素導入ダンパ42と排ガス循環ダンパ37と二酸化炭素回収ダンパ38とを閉じ、大気供給ダンパ36と排ガスダンパ35とを開いた状態で、通常のボイラと同様、ファン31の作動により大気を大気供給ライン30を介してボイラ本体1へ導入し燃料の大気燃焼を行い、ボイラ本体1から排出される排ガスは、排ガスライン32を介して煙突33から大気中へ放出し、起動完了後には、前記排ガス循環ダンパ37を開き、大気供給ダンパ36と排ガスダンパ35とを閉じ、ボイラ本体1から排出される排ガスを排ガス循環ライン34によって循環させ煙突33から放出しないようにすると共に、酸素導入ダンパ42の開度を調節し、ボイラ本体1に高純度酸素製造装置40から供給される酸素を酸素導入ライン41を介して導入し、排ガスの循環による酸素濃度の低下を抑えつつ燃料の酸素燃焼を行い、これにより、排ガス中の二酸化炭素濃度を高め、適宜、二酸化炭素回収ダンパ38を開き、二酸化炭素濃度を高めた排ガスの一部を二酸化炭素回収ライン39から抜き出し、図示していない圧縮機により圧縮して回収するようにし、海洋や地中に廃棄処理するようにしてある。
【0007】
【発明が解決しようとする課題】
しかしながら、前述の如き酸素燃焼ボイラ設備では、具体的な制御方法が確立されていないため、排ガス酸素濃度が不安定となって、ボイラ本体1における燃料の燃焼が安定しなくなり、運転を継続できなくなる虞があった。
【0008】
本発明は、斯かる実情に鑑み、排ガス酸素濃度が不安定となることを防止し得、ボイラ本体における燃料の燃焼を安定させることができ、運転を円滑に行い得る酸素燃焼ボイラ設備の排ガス酸素濃度制御方法及び装置を提供しようとするものである。
【0009】
【課題を解決するための手段】
本発明は、起動時には、ボイラ本体に大気を導入して燃料の大気燃焼を行い、起動完了後には、ボイラ本体に高純度酸素製造装置から供給される酸素を導入しつつ排ガスを循環させて燃料の酸素燃焼を行い、二酸化炭素濃度を高めた排ガスの一部を圧縮して回収するようにした酸素燃焼ボイラ設備の排ガス酸素濃度制御方法であって、
起動時には、ボイラ本体の出口酸素濃度が出口酸素濃度設定値と等しくなるよう大気の流量を調節し、起動完了後には、ボイラ本体の出口酸素濃度が出口酸素濃度設定値と等しくなるよう高純度酸素製造装置から供給される酸素の流量を調節し、且つボイラ本体の入口酸素濃度が入口酸素濃度設定値と等しくなるよう排ガス循環流量を調節することを特徴とする酸素燃焼ボイラ設備の排ガス酸素濃度制御方法にかかるものである。
【0010】
又、本発明は、起動時には、ファンの作動によりボイラ本体に大気を導入して燃料の大気燃焼を行い、起動完了後には、ボイラ本体に高純度酸素製造装置から供給される酸素を酸素導入ダンパの開度調節により導入しつつ排ガスをファンの作動により循環させて燃料の酸素燃焼を行い、二酸化炭素濃度を高めた排ガスの一部を圧縮して回収するようにした酸素燃焼ボイラ設備の排ガス酸素濃度制御装置であって、
ボイラ本体の入口酸素濃度を検出する入口酸素濃度計と、
ボイラ本体の出口酸素濃度を検出する出口酸素濃度計と、
起動時には、出口酸素濃度計で検出されたボイラ本体の出口酸素濃度が出口酸素濃度設定値と等しくなるよう大気の流量を調節するための制御指令をファンへ出力し、起動完了後には、出口酸素濃度計で検出されたボイラ本体の出口酸素濃度が出口酸素濃度設定値と等しくなるよう高純度酸素製造装置から供給される酸素の流量を調節するための制御指令を酸素導入ダンパへ出力し、且つ入口酸素濃度計で検出されたボイラ本体の入口酸素濃度が入口酸素濃度設定値と等しくなるよう排ガス循環流量を調節するための制御指令をファンへ出力する制御器と
を備えたことを特徴とする酸素燃焼ボイラ設備の排ガス酸素濃度制御装置にかかるものである。
【0011】
上記手段によれば、以下のような作用が得られる。
【0012】
本発明の酸素燃焼ボイラ設備の排ガス酸素濃度制御方法においては、起動時には、ボイラ本体の出口酸素濃度が出口酸素濃度設定値と等しくなるようボイラ本体へ導入される大気の流量が調節され、燃料の大気燃焼が行われ、起動完了後には、ボイラ本体の出口酸素濃度が出口酸素濃度設定値と等しくなるよう高純度酸素製造装置から供給される酸素の流量が調節され、且つボイラ本体の入口酸素濃度が入口酸素濃度設定値と等しくなるよう排ガス循環流量が調節され、これにより、排ガスの循環による酸素濃度の低下が確実に抑えられつつ燃料の酸素燃焼が安定して行われる形となり、排ガス中の二酸化炭素濃度が高められ、二酸化炭素濃度が高められた排ガスの一部が圧縮されて回収され、海洋や地中に廃棄処理される。
【0013】
又、本発明の酸素燃焼ボイラ設備の排ガス酸素濃度制御装置においては、起動時には、出口酸素濃度計で検出されたボイラ本体の出口酸素濃度が出口酸素濃度設定値と等しくなるよう大気の流量を調節するための制御指令が制御器からファンへ出力され、ファンの作動によりボイラ本体へ導入される大気の流量が調節され、燃料の大気燃焼が行われ、起動完了後には、出口酸素濃度計で検出されたボイラ本体の出口酸素濃度が出口酸素濃度設定値と等しくなるよう高純度酸素製造装置から供給される酸素の流量を調節するための制御指令が制御器から酸素導入ダンパへ出力され、該酸素導入ダンパの開度が調節され、ボイラ本体の出口酸素濃度が出口酸素濃度設定値と等しくなるよう高純度酸素製造装置から供給される酸素の流量が調節され、且つ入口酸素濃度計で検出されたボイラ本体の入口酸素濃度が入口酸素濃度設定値と等しくなるよう排ガス循環流量を調節するための制御指令が制御器からファンへ出力され、該ファンの作動により、ボイラ本体の入口酸素濃度が入口酸素濃度設定値と等しくなるよう排ガス循環流量が調節され、これにより、排ガスの循環による酸素濃度の低下が確実に抑えられつつ燃料の酸素燃焼が安定して行われる形となり、排ガス中の二酸化炭素濃度が高められ、二酸化炭素濃度が高められた排ガスの一部が圧縮されて回収され、海洋や地中に廃棄処理される。
【0014】
この結果、本発明の酸素燃焼ボイラ設備の排ガス酸素濃度制御方法及び装置においては、排ガス酸素濃度が不安定とならず、ボイラ本体における燃料の燃焼が安定し、円滑な運転を継続することが可能となる。
【0015】
【発明の実施の形態】
以下、本発明の実施の形態を図示例と共に説明する。
【0016】
図1は本発明を実施する形態の一例であって、図中、図4と同一の符号を付した部分は同一物を表わしており、基本的な構成は図4に示すものと同様であるが、本図示例の特徴とするところは、図1に示す如く、ボイラ本体1の入口酸素濃度43を検出する入口酸素濃度計44と、ボイラ本体1の出口酸素濃度45を検出する出口酸素濃度計46と、起動時には、出口酸素濃度計46で検出されたボイラ本体1の出口酸素濃度45が出口酸素濃度設定値47と等しくなるよう大気の流量を調節するための制御指令48をファン31へ出力し、起動完了後には、出口酸素濃度計46で検出されたボイラ本体1の出口酸素濃度45が出口酸素濃度設定値47と等しくなるよう高純度酸素製造装置40から供給される酸素の流量を調節するための制御指令49を酸素導入ダンパ42へ出力し、且つ入口酸素濃度計44で検出されたボイラ本体1の入口酸素濃度43が入口酸素濃度設定値50と等しくなるよう排ガス循環流量を調節するための制御指令48をファン31へ出力する制御器51とを設けた点にある。
【0017】
本図示例の場合、前記制御器51は、
ボイラ本体1の出口酸素濃度設定値47と出口酸素濃度計46で検出されたボイラ本体1の出口酸素濃度45との差を求め出口酸素濃度偏差52を出力する減算器53と、
該減算器53から出力される出口酸素濃度偏差52を比例積分処理して該出口酸素濃度偏差52をなくすためのファン31の動翼開度調節用の大気流量制御指令54を出力する比例積分調節器55と、
入口酸素濃度計44で検出されたボイラ本体1の入口酸素濃度43とボイラ本体1の入口酸素濃度設定値50との差を求め入口酸素濃度偏差56を出力する減算器57と、
該減算器57から出力される入口酸素濃度偏差56を比例積分処理して該入口酸素濃度偏差56をなくすためのファン31の動翼開度調節用の排ガス循環流量制御指令58を出力する比例積分調節器59と、
起動時には図中a側に切り換えられ前記比例積分調節器55から出力される大気流量制御指令54を制御指令48としてファン31へ出力する一方、起動完了後には図中b側に切り換えられ前記比例積分調節器59から出力される排ガス循環流量制御指令58を制御指令48としてファン31へ出力する切換器60と、前記減算器53から出力される出口酸素濃度偏差52を比例積分処理して該出口酸素濃度偏差52をなくすための酸素導入ダンパ42の開度制御指令61を出力する比例積分調節器62と、
起動時には図中a側に切り換えられ全閉指令63を制御指令49として酸素導入ダンパ42へ出力する一方、起動完了後には図中b側に切り換えられ前記比例積分調節器62から出力される開度制御指令61を制御指令49として酸素導入ダンパ42へ出力する切換器64と
を備えてなる構成を有している。
【0018】
次に、上記図示例の作動を説明する。
【0019】
起動時には、切換器60は図中a側に切り換えられ、又、切換器64も図中a側に切り換えられ全閉指令63が制御指令49として酸素導入ダンパ42へ出力され、該酸素導入ダンパ42は閉じており、更に、排ガス循環ダンパ37と二酸化炭素回収ダンパ38とが閉じ、大気供給ダンパ36と排ガスダンパ35とが開いた状態で、通常のボイラと同様、ファン31の作動により大気が大気供給ライン30を介してボイラ本体1へ導入され燃料の大気燃焼が行われ、ボイラ本体1から排出される排ガスは、排ガスライン32を介して煙突33から大気中へ放出されるが、このとき、出口酸素濃度計46によってボイラ本体1の出口酸素濃度45が検出され、制御器51の減算器53へ入力されており、該制御器51の減算器53において、ボイラ本体1の出口酸素濃度設定値47と前記出口酸素濃度計46で検出されたボイラ本体1の出口酸素濃度45との差が求められ出口酸素濃度偏差52が比例積分調節器55へ出力され、該比例積分調節器55において、前記減算器53から出力される出口酸素濃度偏差52が比例積分処理されて該出口酸素濃度偏差52をなくすためのファン31の動翼開度調節用の大気流量制御指令54が切換器60を介し制御指令48としてファン31へ出力され、該ファン31の動翼開度が調節され、ボイラ本体1の出口酸素濃度45が出口酸素濃度設定値47と等しくなるよう大気の流量が調節される。尚、大気における酸素濃度は一定であるため、燃料の大気燃焼が行われる起動時には、ボイラ本体1の入口酸素濃度43を制御する必要はない。
【0020】
起動完了後には、前記切換器60と切換器64は共に図中b側に切り換えられ、又、前記排ガス循環ダンパ37が開き、大気供給ダンパ36と排ガスダンパ35とが閉じ、ボイラ本体1から排出される排ガスが排ガス循環ライン34によって循環され煙突33から放出しないようにされるが、このとき、前記出口酸素濃度計46で検出されたボイラ本体1の出口酸素濃度45が前記制御器51の減算器53へ入力され、該制御器51の減算器53において、ボイラ本体1の出口酸素濃度設定値47と前記出口酸素濃度計46で検出されたボイラ本体1の出口酸素濃度45との差が求められ出口酸素濃度偏差52が比例積分調節器62へ出力され、該比例積分調節器62において、前記減算器53から出力される出口酸素濃度偏差52が比例積分処理されて該出口酸素濃度偏差52をなくすための酸素導入ダンパ42の開度制御指令61が切換器64を介し制御指令49として酸素導入ダンパ42へ出力され、該酸素導入ダンパ42の開度が調節され、ボイラ本体1の出口酸素濃度45が出口酸素濃度設定値47と等しくなるよう高純度酸素製造装置40から供給される酸素の流量が調節されると共に、入口酸素濃度計44によってボイラ本体1の入口酸素濃度43が検出され、制御器51の減算器57へ入力され、該制御器51の減算器57において、前記入口酸素濃度計44で検出されたボイラ本体1の入口酸素濃度43とボイラ本体1の入口酸素濃度設定値50との差が求められ入口酸素濃度偏差56が比例積分調節器59へ出力され、該比例積分調節器59において、前記減算器57から出力される入口酸素濃度偏差56が比例積分処理されて該入口酸素濃度偏差56をなくすためのファン31の動翼開度調節用の排ガス循環流量制御指令58が切換器60を介し制御指令48としてファン31へ出力され、該ファン31の動翼開度が調節され、ボイラ本体1の入口酸素濃度43が入口酸素濃度設定値50と等しくなるよう排ガス循環流量が調節され、これにより、排ガスの循環による酸素濃度の低下が確実に抑えられつつ燃料の酸素燃焼が安定して行われる形となり、排ガス中の二酸化炭素濃度が高められ、適宜、二酸化炭素回収ダンパ38を開くことにより、二酸化炭素濃度が高められた排ガスの一部が二酸化炭素回収ライン39から抜き出され、図示していない圧縮機により圧縮されて回収され、海洋や地中に廃棄処理されることとなる。
【0021】
この結果、排ガス酸素濃度が不安定とならず、ボイラ本体1における燃料の燃焼が安定し、円滑な運転を継続することが可能となる。
【0022】
こうして、排ガス酸素濃度が不安定となることを防止し得、ボイラ本体1における燃料の燃焼を安定させることができ、運転を円滑に行い得る。
【0023】
尚、本発明の酸素燃焼ボイラ設備の排ガス酸素濃度制御方法及び装置は、上述の図示例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。
【0024】
【発明の効果】
以上、説明したように本発明の酸素燃焼ボイラ設備の排ガス酸素濃度制御方法及び装置によれば、排ガス酸素濃度が不安定となることを防止し得、ボイラ本体における燃料の燃焼を安定させることができ、運転を円滑に行い得るという優れた効果を奏し得る。
【図面の簡単な説明】
【図1】本発明を実施する形態の一例の概要構成図である。
【図2】一般的なボイラの一例を表わす概要構成図である。
【図3】図2に示されるボイラの給水・蒸気系統を表わす概要構成図である。
【図4】開発が進められている酸素燃焼ボイラ設備の一例の概要構成図である。
【符号の説明】
1 ボイラ本体
31 ファン
34 排ガス循環ライン
39 二酸化炭素回収ライン
40 高純度酸素製造装置
42 酸素導入ダンパ
43 入口酸素濃度
44 入口酸素濃度計
45 出口酸素濃度
46 出口酸素濃度計
47 出口酸素濃度設定値
48 制御指令
49 制御指令
50 入口酸素濃度設定値
51 制御器
54 大気流量制御指令
58 排ガス循環流量制御指令
61 開度制御指令
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an exhaust gas oxygen concentration control method and apparatus for an oxyfuel boiler facility.
[0002]
[Prior art]
FIG. 2 shows an example of a boiler provided in a power plant or the like. In FIG. 2, 1 is a boiler body, 2 is a burner that injects fuel into the boiler body 1 and burns, 3 is a primary superheater, 4 is a secondary superheater, 5 is a tertiary superheater, 6 is a final superheater, 7 is a primary reheater, 8 is a secondary reheater, and 9 is a economizer, from the burner 2 into the boiler body 1 By injecting and burning the fuel, combustion gas is generated, the generated combustion gas is circulated, the secondary superheater 4, the tertiary superheater 5, the final superheater 6, the secondary reheater 8, and the primary superheater. Exhaust gas treatment equipment (not shown) such as denitrification and desulfurization provided on the downstream side by exchanging heat with the heat exchanger 3, primary reheater 7 and economizer 9 and exhausting the exhaust gas after heat exchange to the exhaust gas duct 10. After removing nitrogen oxides and sulfur oxides, etc., it is released to the atmosphere.
[0003]
On the other hand, FIG. 3 shows the above-mentioned boiler feed water / steam system. The boiler feed water is heated by the evaporator 11 formed on the furnace wall of the boiler body 1 where the fuel is burned, and the nose portion 12 is heated. After that, the steam separated into water and steam by the brackish water separator 13, and the steam separated from the water by the brackish water separator 13 pass through the ceiling of the boiler body 1 and the rear heat transfer portion peripheral wall 14, and the primary superheaters 3, 2 The secondary superheater 4, the tertiary superheater 5 and the final superheater 6 are superheated and guided to the high pressure turbine 15, the high pressure turbine 15 is driven to generate electric power, and the steam after driving the high pressure turbine 15 is , Led to the primary reheater 7 and the secondary reheater 8, reheated by the primary reheater 7 and the secondary reheater 8, and then introduced into the medium / low pressure turbine 16, The turbine 16 is driven to generate power, and the medium / low pressure turbine The steam after driving 6 is guided to the condenser 17 and returned to the boiler feed water. The boiler feed water passes through the condensate demineralizer 18, the low-pressure feed water heater 19, and the deaerator 20, The feed pump 21 is pumped to the economizer 9 through the high-pressure feed water heater 22, heated by the economizer 9, fed to the evaporator 11, and circulated.
[0004]
By the way, in recent years, in order to prevent global warming, it has been desired to reduce the amount of greenhouse gas emissions such as carbon dioxide. The technology for disposal is being developed.
[0005]
FIG. 4 shows an example of an oxyfuel boiler facility proposed for recovering carbon dioxide in exhaust gas and disposing it in the ocean or in the ground. 30 is connected to the inlet side of the boiler body 1. The air supply line 31 is a fan provided in the middle of the air supply line 30, 32 is an exhaust gas line connected to the outlet side of the boiler body 1, and 33 is a chimney, and the exhaust gas circulation line 34 is branched from the middle of the exhaust gas line 32. The exhaust gas damper 35 is connected to the upstream side of the fan 31 of the air supply line 30, the exhaust gas damper 35 is provided in the middle of the exhaust gas line 32 downstream of the branch portion of the exhaust gas circulation line 34, and upstream of the connection portion of the exhaust gas circulation line 34. An air supply damper 36 is provided in the middle of the air supply line 30 and an exhaust gas circulation damper 37 is provided in the middle of the exhaust gas circulation line 34. A carbon dioxide recovery line 39 provided with a carbon oxide recovery damper 38 is branched from a required portion of the exhaust gas circulation line 34 and supplied from the high-purity oxygen production apparatus 40 in the middle of the air supply line 30 on the downstream side of the fan 31. An oxygen introduction line 41 for introducing oxygen is connected, and an oxygen introduction damper 42 is provided in the middle of the oxygen introduction line 41.
[0006]
In the oxyfuel boiler facility shown in FIG. 4, since oxygen cannot be supplied from the high-purity oxygen production apparatus 40 at the time of startup, the oxygen introduction damper 42, the exhaust gas circulation damper 37, and the carbon dioxide recovery damper 38 are closed, With the air supply damper 36 and the exhaust gas damper 35 opened, the air is introduced into the boiler body 1 through the air supply line 30 by the operation of the fan 31 and the fuel is combusted in the atmosphere, as in a normal boiler. The exhaust gas discharged from 1 is discharged into the atmosphere from the chimney 33 via the exhaust gas line 32. After the start-up is completed, the exhaust gas circulation damper 37 is opened, the air supply damper 36 and the exhaust gas damper 35 are closed, and the boiler body The exhaust gas discharged from 1 is circulated by the exhaust gas circulation line 34 so as not to be released from the chimney 33, and the oxygen introduction dan 42 is adjusted, oxygen supplied from the high-purity oxygen production apparatus 40 is introduced into the boiler body 1 through an oxygen introduction line 41, and oxygen combustion of fuel is suppressed while suppressing a decrease in oxygen concentration due to exhaust gas circulation. The carbon dioxide concentration in the exhaust gas is increased, the carbon dioxide recovery damper 38 is opened as appropriate, a part of the exhaust gas having the increased carbon dioxide concentration is extracted from the carbon dioxide recovery line 39, and is compressed by a compressor (not shown). They are compressed and collected, and disposed of in the ocean or underground.
[0007]
[Problems to be solved by the invention]
However, in the oxyfuel boiler equipment as described above, since a specific control method has not been established, the exhaust gas oxygen concentration becomes unstable, the fuel combustion in the boiler body 1 becomes unstable, and the operation cannot be continued. There was a fear.
[0008]
In view of such circumstances, the present invention can prevent the exhaust gas oxygen concentration from becoming unstable, can stabilize the combustion of the fuel in the boiler body, and can perform the operation smoothly. It is an object of the present invention to provide a concentration control method and apparatus.
[0009]
[Means for Solving the Problems]
The present invention introduces the atmosphere into the boiler body at the time of startup and performs atmospheric combustion of the fuel. After the startup is completed, the exhaust gas is circulated while introducing oxygen supplied from the high-purity oxygen production device into the boiler body. Exhaust gas oxygen concentration control method for oxyfuel boiler equipment that compresses and recovers part of exhaust gas with increased carbon dioxide concentration
At startup, the atmospheric flow rate is adjusted so that the outlet oxygen concentration of the boiler body is equal to the outlet oxygen concentration setting value.After the startup is completed, the high purity oxygen is set so that the outlet oxygen concentration of the boiler body is equal to the outlet oxygen concentration setting value. Exhaust gas oxygen concentration control for oxyfuel boiler equipment, characterized by adjusting the flow rate of oxygen supplied from the manufacturing equipment and adjusting the exhaust gas circulation flow rate so that the inlet oxygen concentration of the boiler body becomes equal to the inlet oxygen concentration setting value It depends on the method.
[0010]
In addition, the present invention introduces the atmosphere into the boiler body by operating the fan at the time of start-up and performs atmospheric combustion of the fuel. After the start-up is completed, oxygen supplied from the high-purity oxygen production apparatus is supplied to the boiler body as an oxygen introduction damper. Exhaust gas oxygen from an oxyfuel boiler facility in which exhaust gas is circulated by operating the fan and oxygen is burned by operating the fan while compressing and recovering part of the exhaust gas with increased carbon dioxide concentration A concentration control device,
An inlet oximeter for detecting the inlet oxygen concentration of the boiler body;
An outlet oximeter for detecting the outlet oxygen concentration of the boiler body;
At startup, a control command for adjusting the air flow rate is output to the fan so that the outlet oxygen concentration of the boiler body detected by the outlet oximeter is equal to the outlet oxygen concentration setting value. A control command for adjusting the flow rate of oxygen supplied from the high-purity oxygen production apparatus so that the outlet oxygen concentration of the boiler body detected by the densitometer is equal to the outlet oxygen concentration set value is output to the oxygen introduction damper; and And a controller that outputs a control command for adjusting the exhaust gas circulation flow rate to the fan so that the inlet oxygen concentration of the boiler body detected by the inlet oxygen concentration meter is equal to the inlet oxygen concentration set value. The present invention relates to an exhaust gas oxygen concentration control device for an oxyfuel boiler facility.
[0011]
According to the above means, the following operation can be obtained.
[0012]
In the exhaust gas oxygen concentration control method for an oxyfuel boiler facility according to the present invention, at the time of startup, the flow rate of the air introduced into the boiler body is adjusted so that the outlet oxygen concentration of the boiler body becomes equal to the outlet oxygen concentration set value, After atmospheric combustion is performed and the startup is completed, the flow rate of oxygen supplied from the high-purity oxygen production device is adjusted so that the outlet oxygen concentration of the boiler body becomes equal to the outlet oxygen concentration set value, and the inlet oxygen concentration of the boiler body As a result, the exhaust gas circulation flow rate is adjusted so that becomes equal to the inlet oxygen concentration setting value, so that the decrease in oxygen concentration due to the exhaust gas circulation is reliably suppressed, and the oxygen combustion of the fuel is stably performed. The carbon dioxide concentration is increased, and a part of the exhaust gas with the increased carbon dioxide concentration is compressed and recovered and disposed of in the ocean or the ground.
[0013]
In addition, in the exhaust gas oxygen concentration control device of the oxyfuel boiler equipment of the present invention, at the time of start-up, the air flow rate is adjusted so that the outlet oxygen concentration of the boiler body detected by the outlet oxygen concentration meter becomes equal to the outlet oxygen concentration set value. A control command is output from the controller to the fan, and the air flow rate introduced into the boiler body is adjusted by the operation of the fan, the fuel is combusted in the atmosphere, and is detected by the outlet oximeter after startup is complete. A control command for adjusting the flow rate of oxygen supplied from the high-purity oxygen production device so that the outlet oxygen concentration of the boiler main body is equal to the outlet oxygen concentration set value is output from the controller to the oxygen introduction damper. The opening of the introduction damper is adjusted, and the flow rate of oxygen supplied from the high-purity oxygen production device is adjusted so that the outlet oxygen concentration of the boiler body becomes equal to the outlet oxygen concentration set value. In addition, a control command for adjusting the exhaust gas circulation flow rate is output from the controller to the fan so that the inlet oxygen concentration of the boiler body detected by the inlet oxygen concentration meter becomes equal to the inlet oxygen concentration set value. The exhaust gas circulation flow rate is adjusted so that the inlet oxygen concentration of the boiler body becomes equal to the inlet oxygen concentration set value, and this ensures stable reduction of oxygen concentration due to the exhaust gas circulation while stably performing oxygen combustion of fuel. The carbon dioxide concentration in the exhaust gas is increased, and a part of the exhaust gas with the increased carbon dioxide concentration is compressed and recovered and disposed of in the ocean or the ground.
[0014]
As a result, in the exhaust gas oxygen concentration control method and apparatus for oxyfuel boiler equipment of the present invention, the exhaust gas oxygen concentration does not become unstable, fuel combustion in the boiler body is stable, and smooth operation can be continued. It becomes.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0016]
FIG. 1 shows an example of an embodiment of the present invention. In the figure, the same reference numerals as those in FIG. 4 denote the same components, and the basic configuration is the same as that shown in FIG. However, as shown in FIG. 1, the feature of the illustrated example is that an inlet oxygen concentration meter 44 that detects the inlet oxygen concentration 43 of the boiler body 1 and an outlet oxygen concentration that detects the outlet oxygen concentration 45 of the boiler body 1. The control command 48 for adjusting the air flow rate to the fan 31 so that the outlet oxygen concentration 45 of the boiler main body 1 detected by the outlet oxygen concentration meter 46 and the outlet oxygen concentration setting value 47 becomes equal to the outlet oxygen concentration set value 47 at the time of startup. After the start-up is completed, the flow rate of oxygen supplied from the high-purity oxygen production apparatus 40 is adjusted so that the outlet oxygen concentration 45 of the boiler body 1 detected by the outlet oxygen concentration meter 46 becomes equal to the outlet oxygen concentration set value 47. Control to adjust A control command for outputting the command 49 to the oxygen introduction damper 42 and adjusting the exhaust gas circulation flow rate so that the inlet oxygen concentration 43 of the boiler body 1 detected by the inlet oxygen concentration meter 44 becomes equal to the inlet oxygen concentration set value 50. The controller 51 for outputting 48 to the fan 31 is provided.
[0017]
In the illustrated example, the controller 51 is
A subtractor 53 for obtaining a difference between the outlet oxygen concentration set value 47 of the boiler body 1 and the outlet oxygen concentration 45 of the boiler body 1 detected by the outlet oxygen concentration meter 46 and outputting an outlet oxygen concentration deviation 52;
Proportional integral adjustment for outputting an atmospheric flow rate control command 54 for adjusting the blade opening degree of the fan 31 for eliminating the outlet oxygen concentration deviation 52 by proportionally integrating the outlet oxygen concentration deviation 52 output from the subtractor 53. Instrument 55;
A subtractor 57 that obtains a difference between the inlet oxygen concentration 43 of the boiler body 1 detected by the inlet oxygen concentration meter 44 and the inlet oxygen concentration set value 50 of the boiler body 1 and outputs an inlet oxygen concentration deviation 56;
Proportional integration that outputs an exhaust gas circulation flow rate control command 58 for adjusting the moving blade opening degree of the fan 31 for eliminating the inlet oxygen concentration deviation 56 by proportionally integrating the inlet oxygen concentration deviation 56 output from the subtractor 57. A regulator 59;
At the time of start-up, the air flow control command 54 output from the proportional-plus-integral controller 55 is output to the fan 31 as the control command 48 and is switched to the b-side in the drawing after the start-up is completed. The exhaust gas circulation flow rate control command 58 output from the regulator 59 is output as a control command 48 to the fan 31 and the outlet oxygen concentration deviation 52 output from the subtractor 53 is proportionally integrated to the outlet oxygen. A proportional-plus-integral regulator 62 that outputs an opening control command 61 of the oxygen introduction damper 42 for eliminating the concentration deviation 52;
At the time of start-up, it is switched to the a side in the figure, and the full-close command 63 is output to the oxygen introduction damper 42 as the control command 49. On the other hand, after the start is completed, the opening is switched to the b side in the figure and output from the proportional integral controller 62 And a switch 64 that outputs the control command 61 as the control command 49 to the oxygen introduction damper 42.
[0018]
Next, the operation of the illustrated example will be described.
[0019]
At the time of start-up, the switching device 60 is switched to the a side in the figure, and the switching device 64 is also switched to the a side in the figure, and the full-close command 63 is output to the oxygen introduction damper 42 as the control command 49. Is closed, and the exhaust gas circulation damper 37 and the carbon dioxide recovery damper 38 are closed, and the air supply damper 36 and the exhaust gas damper 35 are opened. The fuel is introduced into the boiler body 1 through the supply line 30 and the fuel is combusted in the atmosphere. The exhaust gas discharged from the boiler body 1 is discharged from the chimney 33 through the exhaust gas line 32 into the atmosphere. The outlet oxygen concentration meter 46 detects the outlet oxygen concentration 45 of the boiler body 1 and inputs it to the subtracter 53 of the controller 51. The difference between the outlet oxygen concentration set value 47 of the main body 1 and the outlet oxygen concentration 45 of the boiler body 1 detected by the outlet oxygen concentration meter 46 is obtained, and an outlet oxygen concentration deviation 52 is output to the proportional integral controller 55. In the proportional-plus-integral regulator 55, the outlet oxygen concentration deviation 52 output from the subtractor 53 is proportional-integrated to eliminate the outlet oxygen concentration deviation 52, and the air flow rate control for adjusting the blade opening of the fan 31 is performed. The command 54 is output to the fan 31 as a control command 48 via the switch 60, the moving blade opening of the fan 31 is adjusted, and the outlet oxygen concentration 45 of the boiler body 1 is equal to the outlet oxygen concentration set value 47. The flow rate is adjusted. Since the oxygen concentration in the atmosphere is constant, it is not necessary to control the inlet oxygen concentration 43 of the boiler body 1 at the start-up when the fuel is burned in the atmosphere.
[0020]
After the start-up is completed, both the switching device 60 and the switching device 64 are switched to the b side in the figure, the exhaust gas circulation damper 37 is opened, the air supply damper 36 and the exhaust gas damper 35 are closed, and the boiler body 1 is discharged. The exhaust gas to be discharged is circulated by the exhaust gas circulation line 34 and is not released from the chimney 33. At this time, the outlet oxygen concentration 45 of the boiler body 1 detected by the outlet oxygen concentration meter 46 is subtracted by the controller 51. The difference between the outlet oxygen concentration set value 47 of the boiler body 1 and the outlet oxygen concentration 45 of the boiler body 1 detected by the outlet oxygen concentration meter 46 is obtained in the subtractor 53 of the controller 51. The outlet oxygen concentration deviation 52 is output to the proportional integral controller 62, and the outlet oxygen concentration deviation 52 output from the subtractor 53 is proportional to the proportional product. The opening control command 61 of the oxygen introduction damper 42 for processing to eliminate the outlet oxygen concentration deviation 52 is output to the oxygen introduction damper 42 as the control command 49 via the switch 64, and the opening degree of the oxygen introduction damper 42 is The flow rate of oxygen supplied from the high-purity oxygen production apparatus 40 is adjusted so that the outlet oxygen concentration 45 of the boiler body 1 is equal to the outlet oxygen concentration set value 47, and the boiler body 1 is adjusted by the inlet oxygen concentration meter 44. The inlet oxygen concentration 43 of the boiler main body 1 detected by the inlet oxygen concentration meter 44 and the boiler detected by the inlet oxygen concentration meter 44 in the subtractor 57 of the controller 51 is detected. A difference from the inlet oxygen concentration setting value 50 of the main body 1 is obtained, and an inlet oxygen concentration deviation 56 is output to the proportional-plus-integral controller 59, where An exhaust gas circulation flow rate control command 58 for adjusting the moving blade opening degree of the fan 31 for eliminating the inlet oxygen concentration deviation 56 is controlled via the switch 60 by proportionally integrating the inlet oxygen concentration deviation 56 output from the condenser 57. Is output to the fan 31 as a command 48, the moving blade opening degree of the fan 31 is adjusted, and the exhaust gas circulation flow rate is adjusted so that the inlet oxygen concentration 43 of the boiler body 1 is equal to the inlet oxygen concentration set value 50. A reduction in oxygen concentration due to the circulation of exhaust gas is reliably suppressed and oxygen combustion of the fuel is stably performed. The concentration of carbon dioxide in the exhaust gas is increased, and by appropriately opening the carbon dioxide recovery damper 38, the carbon dioxide is recovered. A part of the exhaust gas with increased carbon concentration is extracted from the carbon dioxide recovery line 39, compressed by a compressor (not shown), and recovered. It will be disposed of.
[0021]
As a result, the exhaust gas oxygen concentration does not become unstable, the fuel combustion in the boiler body 1 becomes stable, and smooth operation can be continued.
[0022]
Thus, the exhaust gas oxygen concentration can be prevented from becoming unstable, the combustion of fuel in the boiler body 1 can be stabilized, and the operation can be performed smoothly.
[0023]
It should be noted that the exhaust gas oxygen concentration control method and apparatus for the oxyfuel boiler equipment of the present invention is not limited to the above illustrated example, and various modifications can be made without departing from the scope of the present invention. It is.
[0024]
【The invention's effect】
As described above, according to the exhaust gas oxygen concentration control method and apparatus for oxyfuel boiler equipment of the present invention, it is possible to prevent the exhaust gas oxygen concentration from becoming unstable, and to stabilize the combustion of fuel in the boiler body. It is possible to achieve an excellent effect that driving can be performed smoothly.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of an example of an embodiment of the present invention.
FIG. 2 is a schematic configuration diagram showing an example of a general boiler.
3 is a schematic configuration diagram showing a water supply / steam system of the boiler shown in FIG.
FIG. 4 is a schematic configuration diagram of an example of an oxyfuel boiler facility that is under development.
[Explanation of symbols]
1 Boiler body 31 Fan 34 Exhaust gas circulation line 39 Carbon dioxide recovery line 40 High purity oxygen production device 42 Oxygen introduction damper 43 Inlet oxygen concentration 44 Inlet oxygen concentration meter 45 Outlet oxygen concentration 46 Outlet oxygen concentration meter 47 Outlet oxygen concentration set value 48 Control Command 49 Control command 50 Inlet oxygen concentration set value 51 Controller 54 Atmospheric flow control command 58 Exhaust gas circulation flow control command 61 Opening control command

Claims (2)

起動時には、ボイラ本体に大気を導入して燃料の大気燃焼を行い、起動完了後には、ボイラ本体に高純度酸素製造装置から供給される酸素を導入しつつ排ガスを循環させて燃料の酸素燃焼を行い、二酸化炭素濃度を高めた排ガスの一部を圧縮して回収するようにした酸素燃焼ボイラ設備の排ガス酸素濃度制御方法であって、
起動時には、ボイラ本体の出口酸素濃度が出口酸素濃度設定値と等しくなるよう大気の流量を調節し、起動完了後には、ボイラ本体の出口酸素濃度が出口酸素濃度設定値と等しくなるよう高純度酸素製造装置から供給される酸素の流量を調節し、且つボイラ本体の入口酸素濃度が入口酸素濃度設定値と等しくなるよう排ガス循環流量を調節することを特徴とする酸素燃焼ボイラ設備の排ガス酸素濃度制御方法。
At startup, the atmosphere is introduced into the boiler body and the fuel is combusted in the atmosphere.After the startup is completed, oxygen supplied from the high-purity oxygen production system is introduced into the boiler body and the exhaust gas is circulated to oxidize the fuel. An exhaust gas oxygen concentration control method for an oxy-combustion boiler facility that compresses and recovers a part of the exhaust gas with increased carbon dioxide concentration,
At startup, the atmospheric flow rate is adjusted so that the outlet oxygen concentration of the boiler body is equal to the outlet oxygen concentration setting value.After the startup is completed, the high purity oxygen is set so that the outlet oxygen concentration of the boiler body is equal to the outlet oxygen concentration setting value. Exhaust gas oxygen concentration control for oxyfuel boiler equipment, characterized by adjusting the flow rate of oxygen supplied from the manufacturing equipment and adjusting the exhaust gas circulation flow rate so that the inlet oxygen concentration of the boiler body becomes equal to the inlet oxygen concentration setting value Method.
起動時には、ファンの作動によりボイラ本体に大気を導入して燃料の大気燃焼を行い、起動完了後には、ボイラ本体に高純度酸素製造装置から供給される酸素を酸素導入ダンパの開度調節により導入しつつ排ガスをファンの作動により循環させて燃料の酸素燃焼を行い、二酸化炭素濃度を高めた排ガスの一部を圧縮して回収するようにした酸素燃焼ボイラ設備の排ガス酸素濃度制御装置であって、
ボイラ本体の入口酸素濃度を検出する入口酸素濃度計と、
ボイラ本体の出口酸素濃度を検出する出口酸素濃度計と、
起動時には、出口酸素濃度計で検出されたボイラ本体の出口酸素濃度が出口酸素濃度設定値と等しくなるよう大気の流量を調節するための制御指令をファンへ出力し、起動完了後には、出口酸素濃度計で検出されたボイラ本体の出口酸素濃度が出口酸素濃度設定値と等しくなるよう高純度酸素製造装置から供給される酸素の流量を調節するための制御指令を酸素導入ダンパへ出力し、且つ入口酸素濃度計で検出されたボイラ本体の入口酸素濃度が入口酸素濃度設定値と等しくなるよう排ガス循環流量を調節するための制御指令をファンへ出力する制御器と
を備えたことを特徴とする酸素燃焼ボイラ設備の排ガス酸素濃度制御装置。
At startup, the air is introduced into the boiler body by operating the fan and the fuel is burned into the atmosphere. After startup is complete, oxygen supplied from the high-purity oxygen production system is introduced into the boiler body by adjusting the opening of the oxygen introduction damper. An exhaust gas oxygen concentration control device for an oxyfuel boiler facility that circulates exhaust gas by operating a fan while performing oxygen combustion of fuel and compresses and recovers a part of the exhaust gas with increased carbon dioxide concentration. ,
An inlet oximeter for detecting the inlet oxygen concentration of the boiler body;
An outlet oximeter for detecting the outlet oxygen concentration of the boiler body;
At startup, a control command for adjusting the air flow rate is output to the fan so that the outlet oxygen concentration of the boiler body detected by the outlet oximeter is equal to the outlet oxygen concentration setting value. A control command for adjusting the flow rate of oxygen supplied from the high-purity oxygen production apparatus so that the outlet oxygen concentration of the boiler body detected by the densitometer is equal to the outlet oxygen concentration set value is output to the oxygen introduction damper; and And a controller that outputs a control command for adjusting the exhaust gas circulation flow rate to the fan so that the inlet oxygen concentration of the boiler body detected by the inlet oxygen concentration meter is equal to the inlet oxygen concentration set value. Exhaust gas oxygen concentration control equipment for oxyfuel boiler facilities.
JP2000160163A 2000-05-30 2000-05-30 Exhaust gas oxygen concentration control method and apparatus for oxyfuel boiler equipment Expired - Lifetime JP4161515B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000160163A JP4161515B2 (en) 2000-05-30 2000-05-30 Exhaust gas oxygen concentration control method and apparatus for oxyfuel boiler equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000160163A JP4161515B2 (en) 2000-05-30 2000-05-30 Exhaust gas oxygen concentration control method and apparatus for oxyfuel boiler equipment

Publications (2)

Publication Number Publication Date
JP2001336736A JP2001336736A (en) 2001-12-07
JP4161515B2 true JP4161515B2 (en) 2008-10-08

Family

ID=18664393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000160163A Expired - Lifetime JP4161515B2 (en) 2000-05-30 2000-05-30 Exhaust gas oxygen concentration control method and apparatus for oxyfuel boiler equipment

Country Status (1)

Country Link
JP (1) JP4161515B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012145305A (en) * 2011-01-14 2012-08-02 Ihi Corp Oxygen combustion boiler system

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4731293B2 (en) 2005-11-28 2011-07-20 電源開発株式会社 Combustion control method and apparatus for oxyfuel boiler
PL2209920T3 (en) 2007-11-01 2017-01-31 Self-Screen B V NEW DETECTION METHOD FOR CERVICAL HPVs
WO2009110037A1 (en) 2008-03-06 2009-09-11 株式会社Ihi Method of controlling exhaust gas in oxygen combustion boiler and apparatus therefor
EP2267366B1 (en) * 2008-03-06 2015-06-03 IHI Corporation Method and apparatus of controlling combustion in oxyfuel combustion boiler
WO2009110032A1 (en) 2008-03-06 2009-09-11 株式会社Ihi Method of controlling oxygen supply in boiler and apparatus therefor
JP5094959B2 (en) 2008-03-06 2012-12-12 株式会社Ihi Carbon dioxide supply method and carbon dioxide supply equipment for oxyfuel boiler
US9810425B2 (en) 2008-03-06 2017-11-07 Ihi Corporation Pulverized coal burner for oxyfuel combustion boiler
JP5138028B2 (en) 2008-03-06 2013-02-06 株式会社Ihi Oxygen supply control method and apparatus for oxyfuel boiler
JP5107418B2 (en) 2008-03-06 2012-12-26 株式会社Ihi Primary recirculation exhaust gas flow controller for oxyfuel boiler
US8453585B2 (en) * 2008-04-14 2013-06-04 Babcock & Wilcox Power Generation Group, Inc. Oxy-combustion coal fired boiler and method of transitioning between air and oxygen firing
JP5130145B2 (en) * 2008-07-31 2013-01-30 株式会社日立製作所 Boiler plant, boiler plant control device and control method thereof
JP5178453B2 (en) * 2008-10-27 2013-04-10 株式会社日立製作所 Oxyfuel boiler and control method for oxygen fired boiler
JP4920051B2 (en) 2009-02-25 2012-04-18 株式会社日立製作所 Oxyfuel combustion boiler plant and operation method of oxygen combustion boiler plant
JP5417068B2 (en) * 2009-07-14 2014-02-12 株式会社日立製作所 Oxyfuel boiler and control method for oxygen fired boiler
JP5315203B2 (en) * 2009-10-19 2013-10-16 株式会社日立製作所 Oxyfuel boiler and control method thereof
JP5352548B2 (en) 2010-08-31 2013-11-27 株式会社日立製作所 Control device, control method, and display method for oxyfuel boiler plant
JP2012093002A (en) * 2010-10-25 2012-05-17 Babcock Hitachi Kk Boiler system and operation method therefor
US20120152362A1 (en) * 2010-12-17 2012-06-21 Fluor Technologies Corporation Devices and methods for reducing oxygen infiltration
JP5494836B2 (en) * 2011-01-17 2014-05-21 株式会社Ihi Operation control method and apparatus for oxyfuel boiler
KR101439883B1 (en) * 2012-09-20 2014-11-03 한국전력공사 Method for controlling oxy fuel combustion boiler
WO2024053250A1 (en) * 2022-09-09 2024-03-14 株式会社日本サーモエナー Boiler system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012145305A (en) * 2011-01-14 2012-08-02 Ihi Corp Oxygen combustion boiler system

Also Published As

Publication number Publication date
JP2001336736A (en) 2001-12-07

Similar Documents

Publication Publication Date Title
JP4161515B2 (en) Exhaust gas oxygen concentration control method and apparatus for oxyfuel boiler equipment
KR101378195B1 (en) Power plants that utilize gas turbines for power generation and processes for lowering co2 emissions
JP4920051B2 (en) Oxyfuel combustion boiler plant and operation method of oxygen combustion boiler plant
EP2431579B1 (en) Multipurpose thermal power plant system
KR20110010731A (en) Oxyfuel combusting boiler system and a method of generating power by using the boiler system
NO322002B1 (en) Method and apparatus for starting emission-free gas turbine power stations
US5878675A (en) Flue gas desulfurizer, boiler equipment and thermal electric power generation equipment
JP2011247553A (en) Oxygen combustion boiler
US9863281B2 (en) Carbon dioxide capture interface for power generation facilities
KR100447291B1 (en) Method and device for increasing the pressure of a gas
JP2012137269A (en) Coal fired power generation plant and method of controlling the same
JP2002129910A (en) Control equipment of integrated coal gasification combined cycle power generation plant
JP4186181B2 (en) Cogeneration method and cogeneration system
JP2006266085A (en) Regenerative cycle type gas turbine power generation system
JP2007285553A (en) Control method of combustion boiler
JPH08200601A (en) Fluidized bed power plant, controller thereof and controlling method therefor
JP7304023B1 (en) Exhaust gas treatment device and method of using water vapor in exhaust gas treatment device
JPH09236201A (en) Method and device for controlling forced-draft blower for boiler
JP3820636B2 (en) Method and apparatus for controlling feed water temperature in exhaust recombustion combined cycle plant
EP0648919A3 (en) Process and system for executing of gas production for operating a gas turbine in a combined power plant.
JPH11280413A (en) Nox concentration suppressing device for combined cycle power generation plant
JP2002138803A (en) Carbon dioxide recovering gas turbine power plant and operation method therefor
KR20240103628A (en) Incineration process system recirculating flue gas
JPS6372324A (en) Nitrogen oxide concentration control device for composite power plant
TW202012767A (en) Combined cycle power plant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080701

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080714

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4161515

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term