JP5094959B2 - Carbon dioxide supply method and carbon dioxide supply equipment for oxyfuel boiler - Google Patents

Carbon dioxide supply method and carbon dioxide supply equipment for oxyfuel boiler Download PDF

Info

Publication number
JP5094959B2
JP5094959B2 JP2010501683A JP2010501683A JP5094959B2 JP 5094959 B2 JP5094959 B2 JP 5094959B2 JP 2010501683 A JP2010501683 A JP 2010501683A JP 2010501683 A JP2010501683 A JP 2010501683A JP 5094959 B2 JP5094959 B2 JP 5094959B2
Authority
JP
Japan
Prior art keywords
carbon dioxide
gas
exhaust gas
combustion exhaust
dioxide gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010501683A
Other languages
Japanese (ja)
Other versions
JPWO2009110031A1 (en
Inventor
敏彦 山田
輝俊 内田
真次 渡辺
修三 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Development Co Ltd
IHI Corp
Original Assignee
Electric Power Development Co Ltd
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Development Co Ltd, IHI Corp filed Critical Electric Power Development Co Ltd
Publication of JPWO2009110031A1 publication Critical patent/JPWO2009110031A1/en
Application granted granted Critical
Publication of JP5094959B2 publication Critical patent/JP5094959B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L7/00Supplying non-combustible liquids or gases, other than air, to the fire, e.g. oxygen, steam
    • F23L7/007Supplying oxygen or oxygen-enriched air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C9/00Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/02Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material
    • F23J15/022Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material for removing solid particulate material from the gasflow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/09001Cooling flue gas before returning them to flame or combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L2900/00Special arrangements for supplying or treating air or oxidant for combustion; Injecting inert gas, water or steam into the combustion chamber
    • F23L2900/07001Injecting synthetic air, i.e. a combustion supporting mixture made of pure oxygen and an inert gas, e.g. nitrogen or recycled fumes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/32Direct CO2 mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Combustion Of Fluid Fuel (AREA)
  • Treating Waste Gases (AREA)
  • Chimneys And Flues (AREA)
  • Air Supply (AREA)

Description

本発明は、酸素燃焼ボイラの二酸化炭素供給方法及び二酸化炭素供給設備に関するものである。   The present invention relates to a carbon dioxide supply method and a carbon dioxide supply facility for an oxyfuel boiler.

近年、地球温暖化防止のために、二酸化炭素等の温室効果ガス排出量を削減することが望まれており、酸素燃焼ボイラから排出される燃焼排ガス中の二酸化炭素を回収して海洋や地中に貯留する技術の開発が進められている。   In recent years, in order to prevent global warming, it has been desired to reduce the amount of greenhouse gas emissions such as carbon dioxide. Development of technology for storage is ongoing.

このような酸素燃焼ボイラを備えた設備は、燃料である石炭を粉砕して微粉炭とする燃料供給手段のミルと、酸素と他の窒素主体ガスとに分離する酸素分離装置と、外気から内部へ空気を押し込み得る空気供給手段の押込通風機(FDF)と、ミルからの燃料と酸素分離装置からの酸素または押込通風機からの空気を導入ラインにより導入して燃焼する燃焼炉(ボイラ)と、燃焼炉で燃焼した燃焼排ガスを外部に導く燃焼排ガスラインと、燃焼排ガスラインの中途位置に配置した空気予熱器と、燃焼排ガスラインで空気予熱器の下流側に位置する燃焼排ガス処理手段の集塵機と、燃焼排ガスラインから分岐し且つ空気予熱器を介して導入ラインに接続される再循環ラインとを備えている。   The equipment equipped with such an oxyfuel boiler is composed of a fuel supply means mill for pulverizing coal as fuel, an oxygen separator for separating oxygen and other nitrogen-based gas, A forced air blower (FDF) of air supply means that can push air into the combustion chamber, and a combustion furnace (boiler) that burns by introducing fuel from the mill and oxygen from the oxygen separator or air from the forced air blower through an introduction line , A combustion exhaust gas line for guiding the combustion exhaust gas burned in the combustion furnace to the outside, an air preheater arranged in the middle of the combustion exhaust gas line, and a dust collector of the combustion exhaust gas treatment means located downstream of the air preheater in the combustion exhaust gas line And a recirculation line branched from the combustion exhaust gas line and connected to the introduction line via an air preheater.

ここで、燃焼炉は、入側のウインドボックスに、押込通風機からの空気、酸素分離装置からの酸素が導入されると共に、ウインドボックス内に配置されたバーナに、ミルからの微粉炭が導入されるようになっている。   Here, in the combustion furnace, air from the forced air blower and oxygen from the oxygen separation device are introduced into the wind box on the inlet side, and pulverized coal from the mill is introduced into the burner disposed in the wind box. It has come to be.

酸素燃焼ボイラを備えた設備を起動する際には、導入ライン等により空気をバーナに供給して通常の空気による燃焼を行い、燃焼排ガスがすべて燃焼排ガスラインに導かれるようにする。この時、空気で燃焼を行うと燃焼排ガスの組成は約70%が窒素となり、残りは二酸化炭素、SOx、水蒸気等になり、また、この燃焼排ガスは集塵装置等で燃焼排ガス処理されることにより各成分が環境排出基準値以下に保持されて大気中に排出される。続いて、燃焼炉の収熱が所定値に到達した際には、集塵装置等で燃焼排ガス処理された燃焼排ガスの一部を、再循環ラインにより再循環ガスとして再循環させると共に、酸素分離装置から供給される酸素を、再循環ガスと混合させてウインドボックスに供給し、バーナで燃焼を行う。   When starting up a facility equipped with an oxyfuel boiler, air is supplied to the burner through an introduction line or the like, and combustion is performed with normal air so that all combustion exhaust gas is led to the combustion exhaust gas line. At this time, if combustion is performed with air, the composition of the flue gas becomes about 70% nitrogen, and the remainder becomes carbon dioxide, SOx, water vapor, etc., and this flue gas is treated with flue gas by a dust collector or the like. As a result, each component is kept below the environmental emission standard value and discharged into the atmosphere. Subsequently, when the heat recovery of the combustion furnace reaches a predetermined value, a part of the combustion exhaust gas treated by the combustion exhaust gas by the dust collector or the like is recirculated as a recirculation gas by the recirculation line, and oxygen separation is performed. The oxygen supplied from the apparatus is mixed with the recirculation gas and supplied to the wind box, and combustion is performed in the burner.

これにより、空気に含まれていた窒素が供給されなくなり、燃焼炉からの燃焼排ガス中の窒素の濃度は徐々に減少すると共に二酸化炭素の濃度は高まる。その後、二酸化炭素の濃度が略一定になった際に外気への排出を停止し、燃焼排ガスが再循環ラインで再循環される状態で定常運転に入り、適宜、冷却器を介して二酸化炭素を回収するようにしている。   As a result, nitrogen contained in the air is not supplied, and the concentration of nitrogen in the combustion exhaust gas from the combustion furnace gradually decreases and the concentration of carbon dioxide increases. After that, when the concentration of carbon dioxide becomes substantially constant, the discharge to the outside air is stopped, and steady operation is started with the combustion exhaust gas being recirculated in the recirculation line. It tries to collect.

また、ボイラを使用する設備には、細部構造において燃焼炉の天井壁にシール構造を備えて燃焼灰等の浸入を防ぐようにしているものがある(例えば、特許文献1,2)。
特開平11−118102号公報 特開2001−153303号公報
In addition, some facilities using a boiler include a seal structure on the ceiling wall of the combustion furnace in a detailed structure to prevent intrusion of combustion ash and the like (for example, Patent Documents 1 and 2).
Japanese Patent Laid-Open No. 11-118102 JP 2001-153303 A

しかしながら、このようなボイラ設備では、運転時に燃焼炉、集塵機及び再循環ライン等が負圧になるため、ボイラ設備の機器に存在する隙間に対して外部から内部へ空気が流入し、再循環する二酸化炭素の濃度が低下するという問題があった。   However, in such boiler equipment, the combustion furnace, the dust collector, the recirculation line, and the like become negative pressure during operation, so that air flows from the outside into the gap existing in the boiler equipment and recirculates. There was a problem that the concentration of carbon dioxide decreased.

本発明は、斯かる実情に鑑み、ボイラ設備の機器に対して外部から内部への空気の流入を抑制する酸素燃焼ボイラの二酸化炭素供給方法及び二酸化炭素供給設備を提供しようとするものである。   In view of such circumstances, the present invention intends to provide a carbon dioxide supply method and a carbon dioxide supply facility for an oxyfuel boiler that suppress the inflow of air from the outside to the inside of the equipment of the boiler facility.

本発明は、酸素分離装置により空気を酸素と他の窒素主体ガスとに分離し、前記酸素分離装置で得た酸素と燃料とを燃焼炉のバーナで燃焼し、燃焼炉からの燃焼排ガスを少なくとも脱塵処理した後、燃焼排ガスの一部を再循環ガスとして前記燃焼炉に再循環すると共に、再循環しない残りの燃焼排ガスを排出するようにしている酸素燃焼ボイラの二酸化炭素供給方法であって、前記再循環しない残りの燃焼排ガスから二酸化炭素ガスを取り出し、酸素燃焼ボイラ設備の機器に対し、前記二酸化炭素ガスを導入してパージすると共に、前記再循環する再循環ガスから一部を分岐させて二酸化炭素ガスとし、酸素燃焼ボイラ設備の他の機器に対し、パージよりも低い圧力で二酸化炭素ガスを導入してシールすることからなる酸素燃焼ボイラの二酸化炭素供給方法、にかかるものである。 The present invention separates air into oxygen and other nitrogen-based gas by an oxygen separator, burns oxygen and fuel obtained by the oxygen separator with a burner of a combustion furnace, and at least combusted exhaust gas from the combustion furnace A method for supplying carbon dioxide to an oxyfuel boiler, wherein a part of combustion exhaust gas is recirculated to the combustion furnace as a recirculation gas after dedusting, and the remaining combustion exhaust gas that is not recirculated is discharged. , Removing carbon dioxide gas from the remaining non-recirculated combustion exhaust gas, introducing and purging the carbon dioxide gas to the equipment of the oxyfuel boiler facility, and branching a part from the recirculated recirculated gas and carbon dioxide gas Te, oxyfuel to boiler facilities other equipment, diacids oxyfuel combustion boiler which comprises sealing by introducing carbon dioxide gas at a pressure lower than the purge Carbon supply method is according things.

本発明の酸素燃焼ボイラの二酸化炭素供給方法において、前記再循環しない残りの燃焼排ガスを、冷却により、不純物を含まない高濃度の二酸化炭素ガスと、不純物を含む二酸化炭素ガスとに分離し、不純物を含まない高濃度の二酸化炭素ガスを、燃焼炉の炎感知器へのパージに使用すると共に、不純物を含む二酸化炭素ガスを、電気集塵機の碍子へのパージまたは集塵機のフィルタへの逆洗に使用することが好ましい。   In the carbon dioxide supply method for an oxyfuel boiler according to the present invention, the remaining combustion exhaust gas that is not recirculated is separated into high-concentration carbon dioxide gas not containing impurities and carbon dioxide gas containing impurities by cooling, and impurities High concentration carbon dioxide gas not containing oxygen is used to purge the flame detector of the combustion furnace, and carbon dioxide gas containing impurities is used to purge the dust collector insulator or backwash the dust collector filter. It is preferable to do.

本発明の酸素燃焼ボイラの二酸化炭素供給方法において、前記再循環する再循環ガスから分岐させた二酸化炭素ガスを、燃焼炉の貫通孔、機器の空気流入部の少なくとも1つへ導入することが好ましい。   In the carbon dioxide supply method for an oxyfuel boiler according to the present invention, it is preferable to introduce the carbon dioxide gas branched from the recirculated gas into at least one of the through hole of the combustion furnace and the air inflow portion of the equipment. .

本発明は、燃料供給手段と、空気を酸素と窒素主体ガスとに分離する酸素分離装置と、空気供給手段と、前記燃料供給手段からの燃料と前記酸素分離装置からの酸素または空気供給手段からの空気を導入ラインにより導入してバーナで燃焼する燃焼炉と、該燃焼炉で燃焼した燃焼排ガスを該燃焼炉の外部に導く燃焼排ガスラインと、該燃焼排ガスラインに備えた燃焼排ガス処理手段と、該燃焼排ガス処理手段で少なくとも脱塵処理した燃焼排ガスの一部を前記バーナに再循環させる再循環ラインとを有する酸素燃焼ボイラの二酸化炭素供給設備であって、
前記再循環しない残りの燃焼排ガスから二酸化炭素ガスを取り出す燃焼排ガス回収手段と、
酸素燃焼ボイラ設備の機器に対して前記二酸化炭素ガスを導入してパージする二酸化炭素ガス供給手段と、
前記再循環する再循環ガスから一部を分岐させて二酸化炭素ガスとし、酸素燃焼ボイラ設備の他の機器に対し、パージよりも低い圧力で二酸化炭素ガスを導入する再循環側の二酸化炭素ガス供給手段と、
を備えたことからなる酸素燃焼ボイラの二酸化炭素供給設備、にかかるものである。
The present invention relates to a fuel supply means, an oxygen separator for separating air into oxygen and nitrogen-based gas, an air supply means, a fuel from the fuel supply means, and an oxygen or air supply means from the oxygen separator. A combustion furnace that introduces the air through the introduction line and burns it with a burner, a combustion exhaust line that guides the combustion exhaust gas burned in the combustion furnace to the outside of the combustion furnace, and a combustion exhaust gas treatment means provided in the combustion exhaust line A carbon dioxide supply facility for an oxyfuel boiler having a recirculation line for recirculating at least part of the combustion exhaust gas dedusted by the combustion exhaust gas treatment means to the burner,
Combustion exhaust gas recovery means for extracting carbon dioxide gas from the remaining combustion exhaust gas that is not recirculated,
Carbon dioxide gas supply means for introducing and purging the carbon dioxide gas to the equipment of the oxyfuel boiler facility;
A part of the recirculated recirculated gas is branched into carbon dioxide gas, and the carbon dioxide gas supplied on the recirculation side is introduced to other equipment of the oxyfuel boiler equipment at a lower pressure than the purge. Means,
This relates to a carbon dioxide supply facility for an oxyfuel boiler.

本発明の酸素燃焼ボイラの二酸化炭素供給設備において、前記燃焼排ガス回収手段は、再循環しない残りの燃焼排ガスを、不純物を含まない高濃度の二酸化炭素ガスと、不純物を含む二酸化炭素ガスとに分離する冷却手段を備え、
前記二酸化炭素ガス供給手段は、不純物を含まない高濃度の二酸化炭素ガスを、燃焼炉の炎感知器へのパージに使用するラインと、不純物を含む二酸化炭素ガスを電気集塵機の碍子へのパージまたは集塵機のフィルタへの逆洗に使用するラインとを備えることが好ましい。
In the carbon dioxide supply facility for an oxyfuel boiler according to the present invention, the combustion exhaust gas recovery means separates the remaining combustion exhaust gas that is not recirculated into a high-concentration carbon dioxide gas that does not contain impurities and a carbon dioxide gas that contains impurities. Cooling means to
The carbon dioxide gas supply means includes a line that uses high-concentration carbon dioxide gas that does not contain impurities to purge the flame detector of the combustion furnace, and purges carbon dioxide gas that contains impurities to the insulator of the electric dust collector or And a line used for backwashing the filter of the dust collector.

本発明の酸素燃焼ボイラの二酸化炭素供給設備において、前記再循環側の二酸化炭素ガス供給手段は、再循環する再循環ガスから分岐させた二酸化炭素ガスを、燃焼炉の貫通孔、機器の空気流入部の少なくとも1つへ導入するラインを備えることが好ましい。   In the carbon dioxide supply facility for an oxyfuel boiler according to the present invention, the carbon dioxide gas supply means on the recirculation side supplies carbon dioxide gas branched from the recirculation gas to be recirculated, through the through hole of the combustion furnace, and the air inflow of the equipment Preferably, a line is provided for introduction into at least one of the parts.

本発明の酸素燃焼ボイラの二酸化炭素供給方法及び二酸化炭素供給設備によれば、再循環しない残りの燃焼排ガスから二酸化炭素を取り出し、酸素燃焼ボイラ設備の機器に対して二酸化炭素を導入するので、ボイラ設備の機器に対して外部から内部への空気の流入を抑制し、再循環する燃焼排ガス中の二酸化炭素の濃度が低下することを防止できるという優れた効果を奏し得る。   According to the carbon dioxide supply method and the carbon dioxide supply facility of the oxyfuel boiler of the present invention, the carbon dioxide is taken out from the remaining combustion exhaust gas that is not recirculated and introduced into the equipment of the oxyfuel boiler facility. An excellent effect of suppressing the inflow of air from the outside to the inside of the equipment of the facility and preventing the concentration of carbon dioxide in the recirculated combustion exhaust gas from being lowered can be obtained.

本発明を実施する形態例の構成を示すブロック図である。It is a block diagram which shows the structure of the example which implements this invention. 炎感知器をパージするための構造を示す概念図である。It is a conceptual diagram which shows the structure for purging a flame detector. 電気集塵器をパージするための構造を示す概念図である。It is a conceptual diagram which shows the structure for purging an electric dust collector. 集塵機をパージするための構造を示す概念図である。It is a conceptual diagram which shows the structure for purging a dust collector. 燃焼炉の貫通孔をシールするための構造を示す概念図である。It is a conceptual diagram which shows the structure for sealing the through-hole of a combustion furnace. 機器の空気流入部をシールするための構造を示す概念図である。It is a conceptual diagram which shows the structure for sealing the air inflow part of an apparatus. 本発明を実施する形態例において二酸化炭素ガスの供給の制御を示すフローである。It is a flow which shows control of the supply of a carbon dioxide gas in the embodiment which implements this invention.

符号の説明Explanation of symbols

2 微粉炭
3 ミル(燃料供給手段)
4 空気
5 酸素
6 酸素分離装置
7 押込通風機(空気供給手段、機器)
9 バーナ
10 炎感知器(機器)
11 燃焼炉
12 微粉炭側の導入ライン
13 酸素側の導入ライン
14 燃焼排ガスライン
15 再循環ライン
16 空気取込ライン(空気供給手段)
18 燃焼排ガス回収ライン(燃焼排ガス回収手段)
20a 電気集塵機(燃焼排ガス処理手段、機器)
20b 集塵機(燃焼排ガス処理手段、機器)
21 誘引通風機(機器)
27 一次通風機(機器)
29 第一冷却器(冷却手段)
31 第二冷却器(冷却手段)
33 第一の供給ライン(二酸化炭素ガス供給手段)
40 第二の供給ライン(二酸化炭素ガス供給手段)
46 第三の供給ライン(二酸化炭素ガス供給手段)
49 貫通孔
50 空気流入部
51 再循環側の供給ライン(再循環側の二酸化炭素ガス供給手段)
58 支持用碍子(碍子)
2 pulverized coal 3 mil (fuel supply means)
4 Air 5 Oxygen 6 Oxygen Separation Device 7 Intruder
9 Burner 10 Flame detector (equipment)
DESCRIPTION OF SYMBOLS 11 Combustion furnace 12 Pulverized coal side introduction line 13 Oxygen side introduction line 14 Combustion exhaust gas line 15 Recirculation line 16 Air intake line (air supply means)
18 Combustion exhaust gas recovery line (combustion exhaust gas recovery means)
20a Electric dust collector (combustion exhaust gas treatment means, equipment)
20b Dust collector (combustion exhaust gas treatment means, equipment)
21 Induction fan (equipment)
27 Primary ventilator (equipment)
29 First cooler (cooling means)
31 Second cooler (cooling means)
33 First supply line (carbon dioxide gas supply means)
40 Second supply line (carbon dioxide gas supply means)
46 Third supply line (carbon dioxide gas supply means)
49 Through hole 50 Air inlet 51 Recirculation side supply line (recirculation side carbon dioxide gas supply means)
58 Supporting insulators (lions)

以下、本発明を実施する形態例を添付図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

図1は本発明を実施する形態の一例を示すブロック図であり、本発明の酸素燃焼ボイラの二酸化炭素供給設備は、燃料である石炭1を粉砕して微粉炭2とする燃料供給手段のミル3と、空気4を酸素5と他の窒素主体ガスとに分離する酸素分離装置6と、空気4又は再循環ガスを押し込み得る空気供給手段の押込通風機7(FDF)と、ウインドボックス8にバーナ9及び炎感知器10を配置する燃焼炉11とを備えている。   FIG. 1 is a block diagram showing an example of an embodiment of the present invention. A carbon dioxide supply facility for an oxyfuel boiler according to the present invention is a mill of fuel supply means for pulverizing coal 1 to pulverize coal 1 as fuel. 3, an oxygen separator 6 that separates the air 4 into oxygen 5 and other nitrogen-based gas, an air blower 7 (FDF) as an air supply means that can push the air 4 or the recirculated gas, and a wind box 8 And a combustion furnace 11 in which a burner 9 and a flame detector 10 are arranged.

燃焼炉11は、入側に、ミル3からバーナ9へ微粉炭2を導入する微粉炭側の導入ライン12が配置されていると共に、酸素分離装置6からウインドボックス8へ酸素5を導入する酸素側の導入ライン13が配置されており、また、燃焼炉11は、出側に、燃焼で生じた燃焼排ガスを外部へ導く燃焼排ガスライン14が配置されている。更に、酸素側の導入ライン13には、燃焼排ガスライン14から分岐して押込通風機7により燃焼排ガスを戻す再循環ライン15が配置されており、再循環ライン15には、外気から空気4を取り込む空気取込ライン16が配置されると共に、ミル3へ接続する分岐ライン17が配置されている。また、燃焼排ガスライン14には、燃焼排ガスから二酸化炭素ガスを取り出す燃焼排ガス回収手段の燃焼排ガス回収ライン18が設置されている。   The combustion furnace 11 is provided with an introduction line 12 on the pulverized coal side for introducing the pulverized coal 2 from the mill 3 to the burner 9 on the inlet side, and oxygen for introducing oxygen 5 from the oxygen separator 6 to the wind box 8. The side introduction line 13 is disposed, and the combustion furnace 11 is disposed on the outlet side with a combustion exhaust gas line 14 for guiding the combustion exhaust gas generated by the combustion to the outside. Further, a recirculation line 15 that branches from the combustion exhaust gas line 14 and returns the combustion exhaust gas by the forced air blower 7 is disposed in the oxygen-side introduction line 13. The recirculation line 15 receives air 4 from outside air. An air intake line 16 to be taken in is arranged, and a branch line 17 connected to the mill 3 is arranged. The combustion exhaust gas line 14 is provided with a combustion exhaust gas recovery line 18 as a combustion exhaust gas recovery means for extracting carbon dioxide gas from the combustion exhaust gas.

燃焼排ガスライン14には、再循環ライン15の再循環ガスを加熱する空気予熱器19と、空気予熱器19の下流側に位置する燃焼排ガス処理手段の電気集塵機20aまたは集塵機20b(バグフィルタ)と、燃焼排ガス処理手段の下流側に位置する誘引通風機21(IDF)と、誘引通風機21の下流側に位置する燃焼排ガス側の切換器22とが備えられ、更に下流側には、燃焼排ガスを外気へ排出する煙突23が設置されている。また、燃焼排ガスライン14には、誘引通風機21と切換器22の間で、燃焼排ガス中の二酸化炭素の濃度を検出する二酸化炭素濃度計24が配置されると共に、再循環ライン15の始点となる分岐点が形成されている。ここで、二酸化炭素濃度計24は、再循環ライン15への分岐点より上流側に配置されても良く、燃焼排ガス処理手段の下流側に位置するならば配置場所が特に制限されるものではない。また、燃焼排ガス処理手段は、電気集塵機20a等の下流側に脱硝装置、脱硫装置等(図示せず)を備えても良い。   The combustion exhaust gas line 14 includes an air preheater 19 that heats the recirculation gas in the recirculation line 15, and an electric dust collector 20 a or a dust collector 20 b (bag filter) that is a combustion exhaust gas treatment means located downstream of the air preheater 19. , An induction fan 21 (IDF) located on the downstream side of the combustion exhaust gas processing means and a combustion exhaust gas side switch 22 located on the downstream side of the induction fan 21 are provided, and further on the downstream side, the combustion exhaust gas A chimney 23 for discharging the air to the outside air is installed. The combustion exhaust gas line 14 is provided with a carbon dioxide concentration meter 24 for detecting the concentration of carbon dioxide in the combustion exhaust gas between the induction fan 21 and the switching device 22, and the starting point of the recirculation line 15. A branch point is formed. Here, the carbon dioxide concentration meter 24 may be disposed upstream from the branch point to the recirculation line 15, and the placement location is not particularly limited as long as it is located downstream of the combustion exhaust gas treatment means. . The combustion exhaust gas treatment means may include a denitration device, a desulfurization device, etc. (not shown) on the downstream side of the electrostatic precipitator 20a and the like.

再循環ライン15には、押込通風機7の上流側に位置する再循環側の切換器25が備えられると共に、空気取込ライン16を切換器25と押込通風機7の間に接続しており、空気取込ライン16には、空気取込側の切換器26が備えられている。また、再循環ライン15には、分岐ライン17が空気予熱器19の下流側で分岐しており、分岐ライン17には、空気4又は再循環ガスを圧送する一次通風機27(PAF)が配置されている。   The recirculation line 15 is provided with a recirculation side switch 25 located upstream of the forced air blower 7, and an air intake line 16 is connected between the switch 25 and the forced air blower 7. The air intake line 16 is provided with a switch 26 on the air intake side. In addition, a branch line 17 is branched downstream of the air preheater 19 in the recirculation line 15, and a primary ventilator 27 (PAF) that pumps the air 4 or the recirculation gas is disposed in the branch line 17. Has been.

燃焼排ガスライン14には、燃焼排ガス回収ライン18が誘引通風機21と切換器22の間から分岐しており、燃焼排ガス回収ライン18には、回収側の切換器28と、切換器28の下流側に位置する冷却手段の第一冷却器29と、第一冷却器29の下流側に位置する圧縮器30と、圧縮器30の下流側に位置する冷却手段の第二冷却器31と、第二冷却器31の下流側に位置する貯蔵容器32とが備えられている。   The combustion exhaust gas line 14 has a combustion exhaust gas recovery line 18 branched from between the induction fan 21 and the switch 22. The combustion exhaust gas recovery line 18 includes a recovery-side switch 28 and a downstream of the switch 28. A first cooler 29 of the cooling means located on the side, a compressor 30 located on the downstream side of the first cooler 29, a second cooler 31 of the cooling means located on the downstream side of the compressor 30, and The storage container 32 located in the downstream of the two cooler 31 is provided.

貯蔵容器32には、燃焼炉11の炎感知器10へ接続される二酸化炭素ガス供給手段の第一の供給ライン33が備えられており、第一の供給ライン33には、貯蔵容器32の下流側に位置する第一の流量調整器34と、第一の流量調整器34の下流側に位置する気化器35と、気化器35の下流側に位置する二酸化炭素ガス側の切換器36とが備えられている。また、第一の供給ライン33で切換器36と炎感知器10との間には、外気から空気4を導入し得る第一の空気導入ライン37が備えられており、第一の空気導入ライン37には、外気側に位置するコンプレッサ38と、コンプレッサ38の下流側に位置する空気側の切換器39とが備えられている。なお、図1中、第一の供給ライン33は、符合Aを介して気化器35から切換器36へ通じることを示している。   The storage container 32 is provided with a first supply line 33 of carbon dioxide gas supply means connected to the flame detector 10 of the combustion furnace 11, and the first supply line 33 is provided downstream of the storage container 32. A first flow rate regulator 34 located on the side, a vaporizer 35 located downstream of the first flow rate regulator 34, and a carbon dioxide gas side switch 36 located downstream of the vaporizer 35. Is provided. Further, a first air introduction line 37 through which air 4 can be introduced from outside air is provided between the switch 36 and the flame detector 10 in the first supply line 33, and the first air introduction line is provided. 37 includes a compressor 38 located on the outside air side and an air-side switch 39 located on the downstream side of the compressor 38. In FIG. 1, the first supply line 33 indicates that the vaporizer 35 leads to the switch 36 via the symbol A.

燃焼排ガス回収ライン18の圧縮器30の出側には、電気集塵機20aまたは集塵機20bへ接続される二酸化炭素ガス供給手段の第二の供給ライン40が備えられており、第二の供給ライン40には、圧縮器側に位置する第二の流量調整器41と、第二の流量調整器41の下流側に位置する集塵機側の切換器42とが備えられている。また、第二の供給ライン40で切換器42と電気集塵機20aまたは集塵機20bとの間には、外気から空気4を導入し得る第二の空気導入ライン43が備えられており、第二の空気導入ライン43には、外気側に位置するコンプレッサ44と、コンプレッサ44の下流側に位置する空気側の切換器45とが備えられている。なお、図1中、第二の供給ライン40は、符合Bを介して第二の流量調整器41から切換器42へ通じることを示している。   A second supply line 40 of carbon dioxide gas supply means connected to the electric dust collector 20 a or the dust collector 20 b is provided on the outlet side of the compressor 30 of the combustion exhaust gas recovery line 18. Is provided with a second flow rate regulator 41 located on the compressor side and a dust collector-side switch 42 located on the downstream side of the second flow rate regulator 41. Further, a second air introduction line 43 through which air 4 can be introduced from outside air is provided between the switch 42 and the electric dust collector 20a or the dust collector 20b in the second supply line 40, and the second air The introduction line 43 is provided with a compressor 44 located on the outside air side and an air side switch 45 located on the downstream side of the compressor 44. In FIG. 1, the second supply line 40 indicates that the second flow rate regulator 41 is connected to the switch 42 via the symbol B.

燃焼排ガス回収ライン18で圧縮器30と第一冷却器29の間には、第二の供給ライン40に対して集塵機側の切換器42の手前で合流する二酸化炭素ガス供給手段の第三の供給ライン46が備えられており、第三の供給ライン46には、第一冷却器側に位置する第三の流量調整器47と、第三の流量調整器47の下流に位置する小型のコンプレッサ48とが備えられている。なお、図1中、第三の供給ライン46は、符合Cを介してコンプレッサ48から集塵機側の切換器42へ通じることを示している。   A third supply of carbon dioxide gas supply means that joins between the compressor 30 and the first cooler 29 in the combustion exhaust gas recovery line 18 before the switch 42 on the dust collector side with respect to the second supply line 40. The third supply line 46 includes a third flow rate regulator 47 located on the first cooler side, and a small compressor 48 located downstream of the third flow rate regulator 47. And are provided. In FIG. 1, the third supply line 46 indicates that the compressor 48 leads to the dust collector-side switch 42 via the symbol C.

再循環ライン15で押込通風機7と空気予熱器19の間には、燃焼炉11の貫通孔49、機器の空気流入部50(図6参照)の少なくとも1つへ接続される再循環側の二酸化炭素ガス供給手段の供給ライン51が備えられており、再循環側の供給ライン51には、第四の流量調整器52が備えられている。なお、図1中、再循環側の供給ライン51は、符合Dを介して第四の流量調整器52から燃焼炉11の貫通孔49、機器の空気流入部50等へ夫々通じることを示している。   In the recirculation line 15, the recirculation side connected to at least one of the through-hole 49 of the combustion furnace 11 and the air inflow part 50 (see FIG. 6) of the apparatus is interposed between the forced air blower 7 and the air preheater 19. A supply line 51 for carbon dioxide gas supply means is provided, and a supply line 51 on the recirculation side is provided with a fourth flow rate regulator 52. In FIG. 1, the supply line 51 on the recirculation side is connected to the through-hole 49 of the combustion furnace 11, the air inflow portion 50 of the equipment, and the like via the symbol D, respectively. Yes.

また、第一の供給ライン33、第二の供給ライン40、第三の供給ライン46、再循環側の供給ライン51には、ラインの開閉等を制御し得るように制御器53が接続されており、制御器53は、二酸化炭素濃度計24からの濃度信号24aを受けて処理するようになっている。また、制御器53は、第一の供給ライン33について、第一の流量調整器34に調整信号34aを、気化器35に駆動信号35aを、炎感知器側の切換器36に切換信号36aを、空気側の切換器39に切換信号39aを夫々送るようになっている。更に、制御器53は、第二の供給ライン40及び第三の供給ライン46について、第二の流量調整器41に調整信号41aを、第三の流量調整器47に調整信号47aを、集塵機側の切換器42に切換信号42aを、空気側の切換器45に切換信号45aを夫々送るようになっている。更にまた、制御器53は、再循環側の供給ライン51について、第四の流量調整器52に調整信号52aを送るようになっている。   Also, a controller 53 is connected to the first supply line 33, the second supply line 40, the third supply line 46, and the supply line 51 on the recirculation side so as to control the opening and closing of the lines. The controller 53 receives and processes the concentration signal 24a from the carbon dioxide concentration meter 24. Further, the controller 53 sends an adjustment signal 34a to the first flow rate regulator 34, a drive signal 35a to the vaporizer 35, and a switching signal 36a to the switch 36 on the flame detector side for the first supply line 33. The switching signal 39a is sent to the air side switching device 39, respectively. Further, the controller 53 sends an adjustment signal 41a to the second flow rate regulator 41, an adjustment signal 47a to the third flow rate regulator 47, and a dust collector side for the second supply line 40 and the third supply line 46. The switching signal 42a is sent to the switching device 42 and the switching signal 45a is sent to the switching device 45 on the air side. Furthermore, the controller 53 sends an adjustment signal 52a to the fourth flow rate regulator 52 for the supply line 51 on the recirculation side.

ここで、第一の供給ライン33が接続される炎感知器10は、図2に示す如く、バーナ9の炎に向かって配置される接眼部10aと、接眼部10aに配置される二酸化炭素ガスの導入部10bと、導入部10bから燃焼炉11の炉壁11aを貫通してバーナ9の先端近傍まで延在する筒状のガイド部10cとを備え、導入部10bには、第一の供給ライン33及び第一の空気導入ライン37が接続され、接眼部10aの前面からバーナ9の炎までの間を二酸化炭素ガスまたは空気によりパージしており、これにより炎感知器10の接眼部10aでバーナ9の炎を感知するようになっている。   Here, as shown in FIG. 2, the flame detector 10 to which the first supply line 33 is connected has an eyepiece 10a disposed toward the flame of the burner 9, and a dioxide dioxide disposed on the eyepiece 10a. A carbon gas introduction part 10b and a cylindrical guide part 10c extending from the introduction part 10b through the furnace wall 11a of the combustion furnace 11 to the vicinity of the tip of the burner 9 are provided. The supply line 33 and the first air introduction line 37 are connected, and the space between the front surface of the eyepiece 10a and the flame of the burner 9 is purged with carbon dioxide gas or air. The flame of the burner 9 is detected by the eye 10a.

第二の供給ライン40または第三の供給ライン46が接続される電気集塵機20aは、図3に示す如く、燃焼排ガスを取り込むケーシング54と、ケーシング54内部に配置される複数の放電極55と、ケーシング54内部で放電極55と交互に配置される集塵板56とを備え、放電極55からのコロナ放電により燃焼排ガスの塵埃に電荷を与え、塵埃を集塵板56に引き寄せて捕集するようになっている。また、放電極55は放電極支持板57により支持されると共に、放電極支持板57には、絶縁体の支持用碍子58が配置されており、支持用碍子58の近傍の側壁59には、開口60を介して第二の供給ライン40及び第二の空気導入ライン43が接続され、支持用碍子58に向けて二酸化炭素ガスまたは空気を導入するようになっている。   As shown in FIG. 3, the electrostatic precipitator 20 a to which the second supply line 40 or the third supply line 46 is connected includes a casing 54 for taking in combustion exhaust gas, a plurality of discharge electrodes 55 arranged inside the casing 54, A dust collecting plate 56 arranged alternately with the discharge electrodes 55 inside the casing 54 is provided. The corona discharge from the discharge electrodes 55 charges the dust of the combustion exhaust gas, and the dust is attracted to the dust collection plate 56 and collected. It is like that. The discharge electrode 55 is supported by a discharge electrode support plate 57, and an insulator support insulator 58 is disposed on the discharge electrode support plate 57. A side wall 59 in the vicinity of the support insulator 58 has The second supply line 40 and the second air introduction line 43 are connected through the opening 60 to introduce carbon dioxide gas or air toward the support insulator 58.

また、第二の供給ライン40または第三の供給ライン46が接続される供給先は、電気集塵機20aの代わりに、集塵機20b(バグフィルタ)でも良く、集塵機20bは、図4に示す如く、排ガスを取り込むケーシング61と、ケーシング61内部に配置されて塵埃を捕捉する複数のフィルタ62と、フィルタ62の上部に供給口63を配置する複数のフィルタ逆洗用供給配管64と、フィルタ逆洗用供給配管64に配置されて流路を定期的に開閉するパルス弁65と、複数のフィルタ逆洗用供給配管64が接続され且つ第二の供給ライン40または第二の空気導入ライン43から二酸化炭素または空気が導入される集合配管66とを備え、フィルタ逆洗用供給配管64に二酸化炭素ガスまたは空気を導入し、パルス弁65によって定期的に二酸化炭素ガスまたは空気を噴射し、フィルタ62を逆洗するようになっている。   Further, the supply destination to which the second supply line 40 or the third supply line 46 is connected may be a dust collector 20b (bag filter) instead of the electric dust collector 20a, and the dust collector 20b is an exhaust gas as shown in FIG. , A plurality of filters 62 disposed inside the casing 61 for capturing dust, a plurality of filter backwash supply pipes 64 having a supply port 63 disposed above the filter 62, and a filter backwash supply A pulse valve 65 that is arranged in the pipe 64 and periodically opens and closes the flow path and a plurality of filter backwash supply pipes 64 are connected, and carbon dioxide or carbon dioxide from the second supply line 40 or the second air introduction line 43. And a collective pipe 66 through which air is introduced. Carbon dioxide gas or air is introduced into the filter backwash supply pipe 64 and is periodically supplied by a pulse valve 65. Injecting carbon dioxide gas or air, it adapted to backwash the filter 62.

再循環側の供給ライン51が接続される燃焼炉11の貫通孔49は、一例として、図5に示す如く、燃焼炉11の炉壁11aとスートブロワ67との間に形成されるものがあり、貫通孔49の外方には、炉壁11aの外面及びスートブロワ67に接続されるシール部68を備え、再循環側の供給ライン51によりシール部68内へ二酸化炭素ガスを導入して貫通孔49をシールするようになっている。ここで、燃焼炉11の貫通孔49は、燃焼炉11の炉壁11aとスートブロワ67との間の貫通孔に限定されるものでなく、燃焼炉11の天井壁(図示せず)と配管等の挿入物(図示せず)との間に形成される貫通孔でも良く、燃焼炉11に形成されるものならば特に制限されるものではない。また、再循環側の供給ライン51が接続される機器の空気流入部50は、一例として、図6に示す如く、押込通風機7、誘引通風機21、一次通風機27等に配置される回転軸69と側壁70の間の隙間があり、隙間の外方には、回転軸69の軸受部69aを覆うように側壁70に配置されるシール構造体71を備え、再循環側の供給ライン51によりシール構造体71内へ二酸化炭素ガスを導入して隙間をシールするようになっている。ここで、機器の空気流入部50は、押込通風機7、誘引通風機21、一次通風機27に限定されるものでなく、燃焼排ガスライン14、再循環ライン15、分岐ライン17等で内部が負圧となる状態で外気から空気を吸い込み得る機器の構成部分ならば特に制限されるものではない。   As an example, the through-hole 49 of the combustion furnace 11 to which the recirculation-side supply line 51 is connected is formed between the furnace wall 11a of the combustion furnace 11 and the soot blower 67, as shown in FIG. A seal part 68 connected to the outer surface of the furnace wall 11 a and the soot blower 67 is provided outside the through hole 49, and carbon dioxide gas is introduced into the seal part 68 by the supply line 51 on the recirculation side, and the through hole 49 is provided. It is designed to seal. Here, the through-hole 49 of the combustion furnace 11 is not limited to the through-hole between the furnace wall 11a of the combustion furnace 11 and the soot blower 67, but a ceiling wall (not shown) of the combustion furnace 11 and piping, etc. It may be a through hole formed between the insert (not shown) and is not particularly limited as long as it is formed in the combustion furnace 11. Further, as an example, the air inflow portion 50 of the equipment to which the recirculation-side supply line 51 is connected, as shown in FIG. 6, is a rotation disposed in the pushing ventilator 7, the induction ventilator 21, the primary ventilator 27, and the like. There is a gap between the shaft 69 and the side wall 70, and a seal structure 71 disposed on the side wall 70 is provided outside the gap so as to cover the bearing portion 69 a of the rotating shaft 69, and the supply line 51 on the recirculation side. Thus, carbon dioxide gas is introduced into the seal structure 71 to seal the gap. Here, the air inflow portion 50 of the device is not limited to the forced air blower 7, the induction ventilator 21, and the primary ventilator 27, but the inside is composed of the combustion exhaust gas line 14, the recirculation line 15, the branch line 17, and the like. It is not particularly limited as long as it is a component part of a device capable of sucking air from outside air in a negative pressure state.

次に、本発明を実施する形態例の作用を説明する。   Next, the operation of the embodiment for carrying out the present invention will be described.

酸素燃焼ボイラを備えた設備を起動する際には、再循環側の切換器25を閉止した状態で空気取込側の切換器26及び燃焼排ガス側の切換器22を開放し、空気取込ライン16から導入ライン13等を介して空気4をバーナ9に供給し通常の空気4による燃焼を行い、燃焼排ガスをすべて燃焼排ガスライン14に導き、空気予熱器19、電気集塵機20a等を介して煙突23より外部に排出する。この時、燃焼排ガス中の二酸化炭素の濃度は、燃焼排ガスを再循環させることができない所定の濃度未満(例えば燃焼排ガス中50%未満)になっている。   When starting up a facility equipped with an oxyfuel boiler, the air intake side switch 26 and the combustion exhaust gas side switch 22 are opened with the recirculation side switch 25 closed, and the air intake line. The air 4 is supplied from 16 to the burner 9 through the introduction line 13 and the like, and is combusted by the normal air 4, and all the combustion exhaust gas is led to the combustion exhaust gas line 14, and the chimney is passed through the air preheater 19 and the electric dust collector 20a. 23 to the outside. At this time, the concentration of carbon dioxide in the combustion exhaust gas is less than a predetermined concentration at which the combustion exhaust gas cannot be recirculated (for example, less than 50% in the combustion exhaust gas).

続いて、燃焼排ガスライン14の二酸化炭素濃度計24は、二酸化炭素の濃度を検出して制御器53に濃度信号24aを送り、制御器53は、二酸化炭素の濃度が再循環可能な濃度か否か判断し(図7のステップS1)、二酸化炭素の濃度が所定の濃度未満であることを判断した場合には(図7のステップS1のNO)、第一の供給ライン33及び第一の空気導入ライン37において、二酸化炭素ガス側の切換器36を閉止した状態で空気側の切換器39を開放し、炎感知器10の導入部10bに空気4を第一の空気導入ライン37から導入し、炎感知器10をパージする(図7のステップS2)。また、第二の供給ライン40、第三の供給ライン46及び第二の空気導入ライン43において、二酸化炭素ガス側の切換器42を閉止した状態で空気側の切換器45を開放し、電気集塵機20aに空気4を第二の空気導入ライン43から導入し、電気集塵機20aの支持用碍子58をパージする(図7のステップS2)。ここで、電気集塵機20aの代わりに集塵機20bが配置されている場合には、同様に、空気4を第二の空気導入ライン43から導入し、集塵機20bのフィルタ62を逆洗する。更に、再循環側の供給ライン51では、第四の流量調整器52を閉止し、燃焼炉11の貫通孔49、機器の空気流入部50へ何も導入しない状態にする(図7のステップS2)。ここで、燃焼炉11の貫通孔49、機器の空気流入部50には、外気から内部へ空気4が流入するが、燃焼排ガスを再循環させる状態となっていないため、空気4の流入に伴う燃焼排ガス中の二酸化炭素の濃度低下が問題となることはない。   Subsequently, the carbon dioxide concentration meter 24 of the combustion exhaust gas line 14 detects the concentration of carbon dioxide and sends a concentration signal 24a to the controller 53. The controller 53 determines whether or not the concentration of carbon dioxide is a recyclable concentration. (Step S1 in FIG. 7), and when it is determined that the concentration of carbon dioxide is less than the predetermined concentration (NO in step S1 in FIG. 7), the first supply line 33 and the first air In the introduction line 37, the air-side switch 39 is opened with the carbon dioxide gas-side switch 36 closed, and the air 4 is introduced from the first air introduction line 37 into the introduction part 10 b of the flame detector 10. The flame detector 10 is purged (step S2 in FIG. 7). In the second supply line 40, the third supply line 46, and the second air introduction line 43, the air-side switch 45 is opened with the carbon dioxide gas-side switch 42 closed, and the electric dust collector Air 4 is introduced into 20a from the second air introduction line 43, and the support insulator 58 of the electrostatic precipitator 20a is purged (step S2 in FIG. 7). Here, when the dust collector 20b is arranged instead of the electric dust collector 20a, the air 4 is similarly introduced from the second air introduction line 43, and the filter 62 of the dust collector 20b is backwashed. Further, in the supply line 51 on the recirculation side, the fourth flow rate regulator 52 is closed, and nothing is introduced into the through hole 49 of the combustion furnace 11 and the air inflow portion 50 of the equipment (step S2 in FIG. 7). ). Here, the air 4 flows from the outside air into the through hole 49 of the combustion furnace 11 and the air inflow portion 50 of the equipment, but the combustion exhaust gas is not recirculated, so that the air 4 flows in. A decrease in the concentration of carbon dioxide in the combustion exhaust gas does not become a problem.

次に、燃焼炉11の収熱が所定値に到達し、空気燃焼から酸素燃焼(二酸化炭素回収運転)に切り換える際には、再循環側の切換器25を開放すると共に空気取込側の切換器26を閉止し、燃焼排ガスの一部を再循環ライン15により再循環ガスとして導入ラインに再循環させると共に、酸素分離装置6から供給される酸素5を、再循環ガスと混合させてウインドボックス8に供給し、バーナ9で燃焼を行う。更に、酸素5を供給することによって、燃焼炉11からの燃焼排ガス中の窒素の濃度を徐々に減少させると共に二酸化炭素の濃度を高め、二酸化炭素の濃度が略一定になった時点で、燃焼排ガス側の切換器22を閉止して外気への排出を停止し、燃焼排ガスを再循環ライン15で再循環する状態で二酸化炭素回収運転に入る。   Next, when the heat recovery of the combustion furnace 11 reaches a predetermined value and switches from air combustion to oxyfuel combustion (carbon dioxide recovery operation), the recirculation side switch 25 is opened and the air intake side is switched. The reactor 26 is closed, and a part of the combustion exhaust gas is recirculated to the introduction line as a recirculation gas by the recirculation line 15, and the oxygen 5 supplied from the oxygen separation device 6 is mixed with the recirculation gas to the wind box. 8 is supplied and burned by the burner 9. Further, by supplying oxygen 5, the concentration of nitrogen in the combustion exhaust gas from the combustion furnace 11 is gradually decreased and the concentration of carbon dioxide is increased. When the concentration of carbon dioxide becomes substantially constant, the combustion exhaust gas The side changer 22 is closed to stop the discharge to the outside air, and the carbon dioxide recovery operation is started in a state where the combustion exhaust gas is recirculated in the recirculation line 15.

酸素燃焼ボイラを備えた設備を二酸化炭素回収運転する際には、回収側の切換器28を開放して燃焼排ガス回収ライン18を稼動し、燃焼排ガスを第一冷却器29により冷却して二酸化炭素ガスとし且つ圧縮器30で圧縮して水分等の不純物を取り除き、更に第二冷却器31により冷却して二酸化炭素ガスを液化し、O、NOx、Ar、SOx、N等の不純物を取り除いて貯蔵容器32に貯留する。When a facility equipped with an oxyfuel boiler is operated for carbon dioxide recovery, the recovery-side switch 28 is opened and the combustion exhaust gas recovery line 18 is operated, and the combustion exhaust gas is cooled by the first cooler 29 and carbon dioxide. Gas and compressed by the compressor 30 to remove impurities such as moisture, and further cooled by the second cooler 31 to liquefy carbon dioxide gas to remove impurities such as O 2 , NOx, Ar, SOx, and N 2 And stored in the storage container 32.

次に、制御器53は、二酸化炭素濃度計24を介して、二酸化炭素の濃度が所定の濃度以上(例えば燃焼排ガス中50%以上)であると判断した場合には(図7のステップS1のYES)、第一の供給ライン33及び第一の空気導入ライン37において、空気側の切換器39を閉止し且つ二酸化炭素ガス側の切換器36、第一の流量調整器34を開放し、第一の空気導入ライン37から第一の供給ライン33に切り換え(図7のステップS3)、気化器35の作動により貯蔵容器32の液化二酸化炭素の一部を気化して、不純物を含まない高濃度の二酸化炭素ガスを発生させ、当該二酸化炭素ガスを第一の供給ライン33により炎感知器10に導入して炎感知器10をパージする(図7のステップS4)。ここで、二酸化炭素ガスは、二酸化炭素の濃度が99%以上であって、水分を全く含むものでなく、また圧力(全圧)が0.1MPa以上1.0MPa未満、好ましくは0.5MPa以上0.8MPa未満となっている。更に、貯蔵容器32には、燃焼排ガス回収ライン18の稼動前に液化二酸化炭素を予め充填しても良く、この場合には、燃焼排ガス回収ライン18の稼動によって二酸化炭素を液化する前であっても、貯蔵容器32の液化二酸化炭素を気化して二酸化炭素ガスの供給が可能となる。   Next, when the controller 53 determines via the carbon dioxide concentration meter 24 that the concentration of carbon dioxide is a predetermined concentration or more (for example, 50% or more in the combustion exhaust gas) (in step S1 of FIG. 7). YES), in the first supply line 33 and the first air introduction line 37, the air-side switch 39 is closed and the carbon dioxide gas-side switch 36 and the first flow regulator 34 are opened. Switching from one air introduction line 37 to the first supply line 33 (step S3 in FIG. 7), the operation of the vaporizer 35 vaporizes a part of the liquefied carbon dioxide in the storage container 32, so that it does not contain impurities. The carbon dioxide gas is generated, and the carbon dioxide gas is introduced into the flame detector 10 through the first supply line 33 to purge the flame detector 10 (step S4 in FIG. 7). Here, the carbon dioxide gas has a carbon dioxide concentration of 99% or more, does not contain any water, and has a pressure (total pressure) of 0.1 MPa or more and less than 1.0 MPa, preferably 0.5 MPa or more. It is less than 0.8 MPa. Further, the storage container 32 may be pre-filled with liquefied carbon dioxide before the combustion exhaust gas recovery line 18 is operated. In this case, before the carbon dioxide is liquefied by the operation of the combustion exhaust gas recovery line 18. In addition, the liquefied carbon dioxide in the storage container 32 can be vaporized to supply carbon dioxide gas.

また、制御器53は、第二の供給ライン40、第三の供給ライン46及び第二の空気導入ライン43において、圧縮器30が稼動している場合には、空気側の切換器45、第三の流量調整器47を閉止し且つ二酸化炭素ガス側の切換器42、第二の流量調整器41を開放し、第二の空気導入ライン43から第二の供給ライン40に切り換え(図7のステップS3)、圧縮器30により二酸化炭素ガスを圧送し、不純物を含む二酸化炭素ガスを第二の供給ライン40により電気集塵機20aに導入して電気集塵機20aの支持用碍子58をパージする(図7のステップS4)。また、電気集塵機20aの代わりに集塵機20bが配置されている場合には、同様に、二酸化炭素ガスを第二の供給ライン40から集塵機20bに導入し、集塵機20bのフィルタ62を逆洗する。ここで、第二の供給ライン40からの二酸化炭素ガスは、二酸化炭素の濃度が90%以上99%未満であって、水分を含まず、また圧力(全圧)が0.1MPa以上1.0MPa未満、好ましくは0.5MPa以上0.8MPa未満となっている。また、電気集塵機20aまたは集塵機20bには、第一の供給ライン33から不純物を含まない高濃度の二酸化炭素ガスを供給しても良い。   In addition, the controller 53 is configured such that when the compressor 30 is operating in the second supply line 40, the third supply line 46, and the second air introduction line 43, the air-side switch 45, The third flow rate regulator 47 is closed and the carbon dioxide gas side switch 42 and the second flow rate regulator 41 are opened to switch from the second air introduction line 43 to the second supply line 40 (see FIG. 7). Step S3), carbon dioxide gas is pumped by the compressor 30, carbon dioxide gas containing impurities is introduced into the electric dust collector 20a by the second supply line 40, and the support insulator 58 of the electric dust collector 20a is purged (FIG. 7). Step S4). When the dust collector 20b is arranged instead of the electric dust collector 20a, similarly, carbon dioxide gas is introduced into the dust collector 20b from the second supply line 40, and the filter 62 of the dust collector 20b is back-washed. Here, the carbon dioxide gas from the second supply line 40 has a carbon dioxide concentration of 90% or more and less than 99%, does not contain moisture, and has a pressure (total pressure) of 0.1 MPa or more and 1.0 MPa. Less than, preferably 0.5 MPa or more and less than 0.8 MPa. Moreover, you may supply the high concentration carbon dioxide gas which does not contain an impurity from the 1st supply line 33 to the electric dust collector 20a or the dust collector 20b.

一方、二酸化炭素ガスの圧縮が不要で圧縮器30が稼動していない場合には、空気側の切換器45、第二の流量調整器41を閉止し且つ二酸化炭素ガス側の切換器42、第三の流量調整器47を開放し、第二の空気導入ライン43から第三の供給ライン46に切り換え(図7のステップS3)、同時に小型のコンプレッサの作動により二酸化炭素ガスを昇圧し、不純物を含む二酸化炭素ガスを第三の供給ライン46により電気集塵機20aに導入して電気集塵機20aの支持用碍子58をパージする(図7のステップS4)。また、電気集塵機20aの代わりに集塵機20bが配置されている場合には、同様に、二酸化炭素ガスを第三の供給ライン46から集塵機20bに導入し、集塵機20bのフィルタ62を逆洗する。ここで、第三の供給ライン46からの二酸化炭素ガスは、二酸化炭素の濃度が50%以上90%未満であって、水分、NOx等の不純物を含み、また圧力(全圧)がコンプレッサの昇圧により0.1MPa以上1.0MPa未満、好ましくは0.5MPa以上0.8MPa未満となっている。また、電気集塵機20aまたは集塵機20bには、第二の供給ライン40の場合と同様に、第一の供給ライン33から不純物を含まない高濃度の二酸化炭素ガスを供給しても良い。   On the other hand, when the compression of carbon dioxide gas is unnecessary and the compressor 30 is not operating, the air side switch 45 and the second flow rate regulator 41 are closed and the carbon dioxide gas side switch 42, The third flow regulator 47 is opened and switched from the second air introduction line 43 to the third supply line 46 (step S3 in FIG. 7). At the same time, the pressure of carbon dioxide gas is increased by the operation of a small compressor, and impurities are removed. The contained carbon dioxide gas is introduced into the electric dust collector 20a through the third supply line 46, and the supporting insulator 58 of the electric dust collector 20a is purged (step S4 in FIG. 7). When the dust collector 20b is arranged instead of the electric dust collector 20a, similarly, carbon dioxide gas is introduced into the dust collector 20b from the third supply line 46, and the filter 62 of the dust collector 20b is back-washed. Here, the carbon dioxide gas from the third supply line 46 has a carbon dioxide concentration of 50% or more and less than 90%, contains impurities such as moisture and NOx, and the pressure (total pressure) is increased by the compressor. Therefore, the pressure is 0.1 MPa or more and less than 1.0 MPa, preferably 0.5 MPa or more and less than 0.8 MPa. Further, as in the case of the second supply line 40, the electric dust collector 20a or the dust collector 20b may be supplied with high-concentration carbon dioxide gas not containing impurities from the first supply line 33.

更に、制御器53は、再循環側の供給ライン51において、第四の流量調整器52を開放し、燃焼炉11の貫通孔49、機器の空気流入部50へ低圧の二酸化炭素ガスを導入してシールする(図7のステップS4)。ここで、再循環側の供給ライン51からの二酸化炭素ガスは、二酸化炭素の濃度が再循環する燃焼排ガスと略同じ50%以上80%未満であって、水分、NOx等の不純物を含み、また圧力(全圧)が押込通風機7等により1kPa以上30kPa以下、好ましくは3kPa以上10kPa以下となっている。また、燃焼炉11の貫通孔49、機器の空気流入部50等には、第一の供給ライン33から不純物を含まない高濃度の二酸化炭素ガスを供給しても良いし、第二の供給ライン40、第三の供給ライン46から不純物を含む高濃度の二酸化炭素ガスを供給しても良い。更に、二酸化炭素ガスを、燃焼炉11の貫通孔49、機器の空気流入部50の全てに導入しも良いし、燃焼炉11の貫通孔49、機器の空気流入部50のいずれか1つに導入しても良いし、少なくとも1つ以上であれば良い。   Further, the controller 53 opens the fourth flow rate regulator 52 in the supply line 51 on the recirculation side, and introduces low-pressure carbon dioxide gas into the through hole 49 of the combustion furnace 11 and the air inlet 50 of the equipment. (Step S4 in FIG. 7). Here, the carbon dioxide gas from the supply line 51 on the recirculation side is substantially equal to or higher than 50% and less than 80% of the combustion exhaust gas whose carbon dioxide concentration is recirculated, and contains impurities such as moisture and NOx. The pressure (total pressure) is 1 kPa or more and 30 kPa or less, preferably 3 kPa or more and 10 kPa or less by the forced draft fan 7 or the like. Further, high-concentration carbon dioxide gas not containing impurities may be supplied from the first supply line 33 to the through-hole 49 of the combustion furnace 11, the air inflow portion 50 of the equipment, or the like. 40, high-concentration carbon dioxide gas containing impurities may be supplied from the third supply line 46. Further, the carbon dioxide gas may be introduced into all of the through hole 49 of the combustion furnace 11 and the air inflow portion 50 of the equipment, or into any one of the through hole 49 of the combustion furnace 11 and the air inflow portion 50 of the equipment. It may be introduced, or at least one or more.

このように、実施の形態例によれば、二酸化炭素ガスが再循環する定常運転の状態において、燃焼排ガス回収ライン18により再循環しない残りの燃焼排ガスから二酸化炭素を取り出し、酸素燃焼ボイラ設備の機器に対して第一の供給ライン33、第二の供給ライン40、第三の供給ライン46により二酸化炭素ガスを導入してパージするので、ボイラ設備の機器に対して外部から内部への空気の流入を抑制し、再循環する燃焼排ガス中の二酸化炭素の濃度が低下することを防止できる。   As described above, according to the embodiment, in the state of steady operation in which carbon dioxide gas is recirculated, carbon dioxide is taken out from the remaining combustion exhaust gas that is not recirculated by the combustion exhaust gas recovery line 18, and equipment for the oxyfuel boiler facility is obtained. On the other hand, since the carbon dioxide gas is introduced and purged by the first supply line 33, the second supply line 40, and the third supply line 46, the inflow of air from the outside to the inside of the boiler equipment And the concentration of carbon dioxide in the recirculated combustion exhaust gas can be prevented from decreasing.

また、実施の形態例によれば、二酸化炭素ガスが再循環する定常運転の状態において、再循環側の供給ライン51により循環する再循環ガスから一部を分岐させて二酸化炭素ガスとし、酸素燃焼ボイラ設備の機器に対し、二酸化炭素ガスを導入してシールするので、ボイラ設備の機器に対して外部から内部への空気の流入を抑制し、再循環する燃焼排ガス中の二酸化炭素の濃度が低下することを防止できる。   Further, according to the embodiment, in the state of steady operation in which carbon dioxide gas is recirculated, a part of the recirculation gas circulated by the recirculation-side supply line 51 is branched into carbon dioxide gas, and oxyfuel combustion Since carbon dioxide gas is introduced into the boiler equipment and sealed, the inflow of air from the outside to the boiler equipment is suppressed and the concentration of carbon dioxide in the recirculated combustion exhaust gas is reduced. Can be prevented.

実施の形態例において、燃焼排ガス回収ライン18により第一冷却器29、第二冷却器31及び圧縮器30を介して、再循環しない残りの燃焼排ガスから、水分を全く含まない高濃度の二酸化炭素ガスを分離し、水分を含まない高濃度の二酸化炭素ガスを燃焼炉11の炎感知器10へのパージに使用すると、再循環する燃焼排ガス中の二酸化炭素の濃度が低下することを防止すると共に、水分の非存在により炎感知器10が腐食することを防止し、同時に炎感知器10の接眼部10aからバーナ9の炎までの間を不純物のない状態に維持し、バーナ9の炎を適切に感知することができる。更に、二酸化炭素ガスは、ガス中に水分を全く含むものでなく、ガス中の二酸化炭素の濃度が99%以上であるので、不純物による影響がなく、また、二酸化炭素ガスの圧力(全圧)は、0.1MPa以上1.0MPa以下、好ましくは0.5MPa以上0.8MPa以下であるので、炎感知器10に対して適切にパージすることができる。ここで、二酸化炭素の濃度が99%未満の場合には、水分等の不純物により炎感知器10の腐食等を生じる可能性があり、二酸化炭素の圧力(全圧)が0.1MPa未満の場合には、圧力が弱く、炎感知器10をパージできないという問題があり、二酸化炭素の圧力(全圧)が1.0MPaより大きい場合には、炎感知器10の耐圧限界を超え、炎感知器10に悪影響を与えるという問題がある。また、二酸化炭素ガスの圧力(全圧)は、0.5MPa以上0.8MPa以下の場合に、感知器に対して最も好適にパージすることができる。   In the embodiment, high-concentration carbon dioxide containing no moisture from the remaining combustion exhaust gas that is not recirculated via the first cooler 29, the second cooler 31, and the compressor 30 by the combustion exhaust gas recovery line 18. When the gas is separated and a high concentration carbon dioxide gas not containing moisture is used for purging the flame detector 10 of the combustion furnace 11, the concentration of carbon dioxide in the recirculated flue gas is prevented from being lowered. The flame detector 10 is prevented from corroding due to the absence of moisture, and at the same time, the space between the eyepiece 10a of the flame detector 10 and the flame of the burner 9 is maintained in an impurity-free state, and the flame of the burner 9 is suppressed. It can be sensed properly. Furthermore, carbon dioxide gas does not contain any moisture in the gas, and since the concentration of carbon dioxide in the gas is 99% or more, there is no influence of impurities, and the pressure of carbon dioxide gas (total pressure) Is 0.1 MPa or more and 1.0 MPa or less, preferably 0.5 MPa or more and 0.8 MPa or less, so that the flame detector 10 can be appropriately purged. Here, when the concentration of carbon dioxide is less than 99%, the flame detector 10 may be corroded by impurities such as moisture, and the pressure (total pressure) of carbon dioxide is less than 0.1 MPa. Has a problem that the pressure is weak and the flame detector 10 cannot be purged. When the pressure (total pressure) of carbon dioxide is larger than 1.0 MPa, the pressure limit of the flame detector 10 is exceeded, and the flame detector 10 10 is adversely affected. Further, when the pressure (total pressure) of the carbon dioxide gas is 0.5 MPa or more and 0.8 MPa or less, the sensor can be most suitably purged.

実施の形態例において、燃焼排ガス回収ライン18により第一冷却器29等を介して、再循環しない残りの燃焼排ガスから、不純物を含む二酸化炭素ガスを分離し、不純物を含む二酸化炭素ガスを電気集塵機20aの支持用碍子58へのパージまたは集塵機20bのフィルタ62への逆洗に使用すると、電気集塵機20aをパージする場合には、支持用碍子58への塵埃の混入付着による漏電を抑制し、漏電による支持用碍子58の破損を防止することができる。また、集塵機20bの逆洗に使用する場合には、逆洗に対して空気4の使用を低減し、二酸化炭素の濃度が低下することを防止できる。更に、第二の供給ライン40と第三の供給ライン46を切換可能に配置するので、圧縮器30をコスト低減により使用しない場合であっても、二酸化炭素ガスを電気集塵機20aの支持用碍子58へのパージまたは集塵機20bのフィルタ62への逆洗に使用することができる。更に、二酸化炭素ガスは、ガス中の二酸化炭素の濃度が、再循環する二酸化炭素ガスの濃度以上の50%以上であり、二酸化炭素ガスの圧力(全圧)は、0.1MPa以上1.0MPa以下、好ましくは0.5MPa以上0.8MPa以下であるので、電気集塵機20aの碍子へのパージまたは集塵機20bのフィルタ62への逆洗に適切に使用することができる。ここで、二酸化炭素の濃度が50%未満の場合には、循環する二酸化炭素の濃度が低下し、定常運転に悪影響を与え、二酸化炭素の圧力(全圧)が0.1MPa未満の場合には、圧力が弱く、電気集塵機20aの碍子へのパージまたは集塵機20bのフィルタ62への逆洗に使用することができないという問題があり、二酸化炭素の圧力(全圧)が1.0MPaより大きい場合には、電気集塵機20aまたは集塵機20bの耐圧限界を超え、悪影響を与えるという問題がある。また、二酸化炭素ガスの圧力(全圧)は、0.5MPa以上0.8MPa以下の場合に、電気集塵機20aの碍子へのパージまたは集塵機20bのフィルタ62への逆洗に最も好適に使用することができる。   In the embodiment, the carbon dioxide gas containing impurities is separated from the remaining combustion exhaust gas not recirculated by the combustion exhaust gas recovery line 18 via the first cooler 29 and the like, and the carbon dioxide gas containing impurities is separated into an electric dust collector. When used for purging the support insulator 58 of 20a or backwashing the filter 62 of the dust collector 20b, when the electric dust collector 20a is purged, the leakage due to the adhering dust adhering to the support insulator 58 is suppressed. It is possible to prevent the support insulator 58 from being damaged. Moreover, when using for backwashing of the dust collector 20b, use of the air 4 can be reduced with respect to backwashing, and it can prevent that the density | concentration of a carbon dioxide falls. Further, since the second supply line 40 and the third supply line 46 are arranged to be switchable, even if the compressor 30 is not used for cost reduction, carbon dioxide gas is used as a support insulator 58 for the electric dust collector 20a. It can be used for purging or backwashing the filter 62 of the dust collector 20b. Further, the carbon dioxide gas has a concentration of carbon dioxide in the gas of 50% or more of the concentration of carbon dioxide gas to be recycled, and the pressure (total pressure) of the carbon dioxide gas is 0.1 MPa or more and 1.0 MPa. Hereinafter, since it is preferably 0.5 MPa or more and 0.8 MPa or less, it can be appropriately used for purging the insulator of the electric dust collector 20a or backwashing the filter 62 of the dust collector 20b. Here, when the concentration of carbon dioxide is less than 50%, the concentration of circulating carbon dioxide decreases, adversely affecting steady operation, and when the pressure of carbon dioxide (total pressure) is less than 0.1 MPa. When the pressure is weak and cannot be used for purging the insulator of the electric dust collector 20a or backwashing the filter 62 of the dust collector 20b, the pressure of carbon dioxide (total pressure) is greater than 1.0 MPa. Has a problem that it exceeds the pressure limit of the electric dust collector 20a or the dust collector 20b and has an adverse effect. Further, when the pressure (total pressure) of carbon dioxide gas is 0.5 MPa or more and 0.8 MPa or less, it is most preferably used for purging the insulator of the electric dust collector 20a or backwashing the filter 62 of the dust collector 20b. Can do.

実施の形態例において、再循環側の供給ライン51で再循環する再循環ガスから分岐させた二酸化炭素ガスを、スートブロワ等の燃焼炉11の貫通孔49や、押込通風機7、誘引通風機21、一次通風機27等等の機器の空気流入部50の少なくとも1つへ導入すると、ボイラ設備の機器に対して外部から内部への空気の流入を抑制し、再循環する燃焼排ガスの二酸化炭素の濃度が低下することを防止できる。また、二酸化炭素ガスは、ガス中の二酸化炭素の濃度が、再循環する二酸化炭素ガスと略同じ濃度であると共に、圧力(全圧)が押込通風機7等により1kPa以上30kPa以下、好ましくは3kPa以上10kPa以下であるので、再循環する燃焼排ガスの二酸化炭素の濃度が低下することを適切に防止できる。ここで、二酸化炭素の濃度が、再循環する二酸化炭素ガスと略同じ濃度未満である場合には、循環する二酸化炭素の濃度が低下し、定常運転に悪影響を与えるという問題があり、二酸化炭素の圧力(全圧)が1kPa未満の場合には、圧力が弱く、二酸化炭素ガスを燃焼炉11の貫通孔49、機器の空気流入部50に対してシールすることができないという問題があり、二酸化炭素の圧力(全圧)が30kPaより大きい場合には、再循環ライン15等に他のコンプレッサ等が必要になるため、コストが大幅に増加するという問題がある。また、二酸化炭素ガスの圧力(全圧)は、3kPa以上10kPa以下の場合に、再循環する燃焼排ガスの二酸化炭素の濃度が低下することを好適に防止できる。なお、再循環側の供給ライン51は、二酸化炭素ガスをパージに使用するものでなく、機器のシールに使用するものであるため、1kPa以上30kPa以下の低圧で十分に適用できる。   In the embodiment, the carbon dioxide gas branched from the recirculation gas recirculated in the supply line 51 on the recirculation side is passed through the through-hole 49 of the combustion furnace 11 such as a soot blower, the forced air blower 7, and the induction blower 21. When introduced into at least one of the air inflow portions 50 of the equipment such as the primary ventilator 27, etc., the inflow of air from the outside to the inside of the boiler equipment is suppressed and the carbon dioxide of the combustion exhaust gas to be recirculated is suppressed. It is possible to prevent the concentration from decreasing. The carbon dioxide gas has a carbon dioxide concentration in the gas that is substantially the same as that of the recirculated carbon dioxide gas, and the pressure (total pressure) is 1 kPa or more and 30 kPa or less, preferably 3 kPa, by the forced air blower 7 or the like. Since it is 10 kPa or less, it can prevent appropriately that the density | concentration of the carbon dioxide of the combustion exhaust gas to recirculate falls. Here, when the concentration of carbon dioxide is less than substantially the same concentration as the carbon dioxide gas to be recycled, there is a problem that the concentration of the circulating carbon dioxide is lowered, which adversely affects steady operation. When the pressure (total pressure) is less than 1 kPa, there is a problem that the pressure is weak and the carbon dioxide gas cannot be sealed against the through hole 49 of the combustion furnace 11 and the air inflow portion 50 of the equipment. When the pressure (total pressure) is higher than 30 kPa, another compressor or the like is required for the recirculation line 15 or the like, which causes a problem that the cost is significantly increased. Moreover, when the pressure (total pressure) of carbon dioxide gas is 3 kPa or more and 10 kPa or less, it is possible to suitably prevent the concentration of carbon dioxide in the recirculated combustion exhaust gas from being lowered. Note that the supply line 51 on the recirculation side is not used for purging carbon dioxide gas but is used for sealing equipment, and thus can be sufficiently applied at a low pressure of 1 kPa to 30 kPa.

実施の形態例において、ボイラ設備の定常運転前は、炎感知器10に対し、第一の空気導入ライン37により空気4を導入してパージし、電気集塵機20aに対し、第二の空気導入ライン43により空気4を導入してパージし、集塵機20bに対し、第二の空気導入ライン43により空気4を導入して逆洗し、更に、二酸化炭素ガスが再循環するボイラ設備の定常運転後は、切換器36,39,42,45で空気導入ライン37,43と供給ライン33,40,46とを切り換えることにより、第一の供給ライン33により二酸化炭素ガスを導入して炎感知器10をパージし、または第二の供給ライン40または第三の供給ライン46により二酸化炭素ガスを導入して電気集塵機20aをパージし、更に第二の供給ライン40または第三の供給ライン46により二酸化炭素ガスを導入して集塵機20bを逆洗する。これにより、炎感知器10及び電気集塵機20aでは、ボイラ設備の定常運転前から定常運転後まで連続してパージすることができる。また、集塵機20bでは、ボイラ設備の定常運転前から定常運転後まで連続してフィルタ62を逆洗することができる。   In the embodiment, before the boiler facility is in steady operation, the flame detector 10 is purged by introducing the air 4 by the first air introduction line 37, and the second air introduction line for the electric dust collector 20a. 43, air 4 is introduced and purged, air is introduced into the dust collector 20b through the second air introduction line 43, and backwashing is performed. By switching the air introduction lines 37, 43 and the supply lines 33, 40, 46 with the switching devices 36, 39, 42, 45, the carbon dioxide gas is introduced through the first supply line 33 and the flame detector 10 is turned on. Purging or introducing carbon dioxide gas through the second supply line 40 or the third supply line 46 to purge the electrostatic precipitator 20a, and further, the second supply line 40 or the third supply line. Backwashing the dust collector 20b by introducing carbon dioxide gas by line 46. Thereby, in the flame detector 10 and the electric dust collector 20a, it is possible to continuously purge from before the steady operation of the boiler equipment to after the steady operation. Further, in the dust collector 20b, the filter 62 can be backwashed continuously from before the steady operation of the boiler facility to after the steady operation.

尚、本発明の酸素燃焼ボイラの二酸化炭素供給方法及び二酸化炭素供給設備は、上述の図示例にのみ限定されるものではなく、制御器の代わりに手動で操作しても良いこと、その他、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   The carbon dioxide supply method and the carbon dioxide supply equipment for the oxyfuel boiler of the present invention are not limited to the above illustrated examples, and may be operated manually instead of the controller. Of course, various modifications can be made without departing from the scope of the invention.

Claims (6)

酸素分離装置により空気を酸素と他の窒素主体ガスとに分離し、前記酸素分離装置で得た酸素と燃料とを燃焼炉のバーナで燃焼し、燃焼炉からの燃焼排ガスを少なくとも脱塵処理した後、燃焼排ガスの一部を再循環ガスとして前記燃焼炉に再循環すると共に、再循環しない残りの燃焼排ガスを排出するようにしている酸素燃焼ボイラの二酸化炭素供給方法であって、前記再循環しない残りの燃焼排ガスから二酸化炭素ガスを取り出し、酸素燃焼ボイラ設備の機器に対し、前記二酸化炭素ガスを導入してパージすると共に、前記再循環する再循環ガスから一部を分岐させて二酸化炭素ガスとし、酸素燃焼ボイラ設備の他の機器に対し、パージよりも低い圧力で二酸化炭素ガスを導入してシールすることからなる酸素燃焼ボイラの二酸化炭素供給方法。Air is separated into oxygen and other nitrogen-based gas by an oxygen separator, and the oxygen and fuel obtained by the oxygen separator are burned by a burner of a combustion furnace, and at least the dust discharged from the combustion furnace is dedusted. A method for supplying carbon dioxide to an oxyfuel boiler, wherein a part of the combustion exhaust gas is recirculated as a recirculation gas to the combustion furnace and the remaining combustion exhaust gas that is not recirculated is discharged. The carbon dioxide gas is taken out from the remaining combustion exhaust gas and purged by introducing the carbon dioxide gas into the equipment of the oxyfuel boiler facility, and partially diverting the carbon dioxide gas from the recirculated recirculated gas. and then, the oxygen combustion to boiler facilities other equipment, carbon dioxide supply of oxygen combustion boiler which comprises sealing by introducing carbon dioxide gas at a pressure lower than the purge Law. 前記再循環しない残りの燃焼排ガスを、冷却により、不純物を含まない高濃度の二酸化酸素ガスと、不純物を含む二酸化炭素ガスとに分離し、不純物を含まない高濃度の二酸化酸素ガスを、燃焼炉の炎感知器へのパージに使用すると共に、不純物を含む二酸化炭素ガスを、電気集塵機の碍子へのパージまたは集塵機のフィルタへの逆洗に使用することからなる請求項1に記載の酸素燃焼ボイラの二酸化炭素供給方法。  The remaining combustion exhaust gas not recirculated is separated by cooling into a high-concentration oxygen dioxide gas containing no impurities and a carbon dioxide gas containing impurities, and the high-concentration oxygen dioxide gas containing no impurities is converted into a combustion furnace. 2. The oxygen combustion boiler according to claim 1, wherein the carbon dioxide gas containing impurities is used for purging the insulator of the electrostatic precipitator or backwashing the filter of the precipitator. Carbon dioxide supply method. 前記再循環する再循環ガスから分岐させた二酸化炭素ガスを、燃焼炉の貫通孔、機器の空気流入部の少なくとも1つへ導入することからなる請求項1に記載の酸素燃焼ボイラの二酸化炭素供給方法。  2. The carbon dioxide supply of an oxyfuel boiler according to claim 1, wherein the carbon dioxide gas branched from the recirculated recirculated gas is introduced into at least one of a through hole of a combustion furnace and an air inflow portion of an apparatus. Method. 燃料供給手段と、空気を酸素と窒素主体ガスとに分離する酸素分離装置と、空気供給手段と、前記燃料供給手段からの燃料と前記酸素分離装置からの酸素または空気供給手段からの空気を導入ラインにより導入してバーナで燃焼する燃焼炉と、該燃焼炉で燃焼した燃焼排ガスを該燃焼炉の外部に導く燃焼排ガスラインと、該燃焼排ガスラインに備えた燃焼排ガス処理手段と、該燃焼排ガス処理手段で少なくとも脱塵処理した燃焼排ガスの一部を前記バーナに再循環させる再循環ラインとを有する酸素燃焼ボイラの二酸化炭素供給設備であって、
前記再循環しない残りの燃焼排ガスから二酸化炭素ガスを取り出す燃焼排ガス回収手段と、
酸素燃焼ボイラ設備の機器に対して前記二酸化炭素ガスを導入してパージする二酸化炭素ガス供給手段と、
前記再循環する再循環ガスから一部を分岐させて二酸化炭素ガスとし、酸素燃焼ボイラ設備の他の機器に対し、パージよりも低い圧力で二酸化炭素ガスを導入する再循環側の二酸化炭素ガス供給手段と、
を備えたことからなる酸素燃焼ボイラの二酸化炭素供給設備。
Fuel supply means, oxygen separator for separating air into oxygen and nitrogen-based gas, air supply means, fuel from the fuel supply means, oxygen from the oxygen separator, or air from the air supply means A combustion furnace that is introduced by a line and burns in a burner, a combustion exhaust gas line that guides the combustion exhaust gas burned in the combustion furnace to the outside of the combustion furnace, a combustion exhaust gas treatment means provided in the combustion exhaust gas line, and the combustion exhaust gas A carbon dioxide supply facility for an oxyfuel boiler having a recirculation line for recirculating at least part of the combustion exhaust gas dedusted by the treatment means to the burner,
Combustion exhaust gas recovery means for extracting carbon dioxide gas from the remaining combustion exhaust gas that is not recirculated,
Carbon dioxide gas supply means for introducing and purging the carbon dioxide gas to the equipment of the oxyfuel boiler facility;
A part of the recirculated recirculated gas is branched into carbon dioxide gas, and the carbon dioxide gas supplied on the recirculation side is introduced to other equipment of the oxyfuel boiler equipment at a lower pressure than the purge. Means,
Carbon dioxide supply equipment for oxyfuel boilers.
前記燃焼排ガス回収手段は、再循環しない残りの燃焼排ガスを、不純物を含まない高濃度の二酸化酸素ガスと、不純物を含む二酸化炭素ガスとに分離する冷却手段を備え、
前記二酸化炭素ガス供給手段は、不純物を含まない高濃度の二酸化酸素ガスを、燃焼炉の炎感知器へのパージに使用するラインと、不純物を含む二酸化炭素ガスを電気集塵機の碍子へのパージまたは集塵機のフィルタへの逆洗に使用するラインとを備えたことからなる請求項4に記載の酸素燃焼ボイラの二酸化炭素供給設備。
The combustion exhaust gas recovery means includes a cooling means for separating the remaining combustion exhaust gas that is not recirculated into high-concentration oxygen dioxide gas not containing impurities and carbon dioxide gas containing impurities,
The carbon dioxide gas supply means includes a line that uses high-concentration oxygen dioxide gas that does not contain impurities to purge the flame detector of the combustion furnace, and purges carbon dioxide gas that contains impurities to the insulator of the electric dust collector or The carbon dioxide supply facility for an oxyfuel boiler according to claim 4, further comprising a line used for backwashing the filter of the dust collector.
前記再循環側の二酸化炭素ガス供給手段は、再循環する再循環ガスから分岐させた二酸化炭素ガスを、燃焼炉の貫通孔、機器の空気流入部の少なくとも1つへ導入するラインを備えたことからなる請求項4に記載の酸素燃焼ボイラの二酸化炭素供給設備。  The carbon dioxide gas supply means on the recirculation side includes a line for introducing carbon dioxide gas branched from the recirculation gas to be recirculated into at least one of the through hole of the combustion furnace and the air inflow portion of the equipment. The carbon dioxide supply facility for an oxyfuel boiler according to claim 4.
JP2010501683A 2008-03-06 2008-03-06 Carbon dioxide supply method and carbon dioxide supply equipment for oxyfuel boiler Active JP5094959B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/000469 WO2009110031A1 (en) 2008-03-06 2008-03-06 Method of supplying carbon dioxide to oxygen combustion boiler and apparatus for supplying carbon dioxide

Publications (2)

Publication Number Publication Date
JPWO2009110031A1 JPWO2009110031A1 (en) 2011-07-14
JP5094959B2 true JP5094959B2 (en) 2012-12-12

Family

ID=41055613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010501683A Active JP5094959B2 (en) 2008-03-06 2008-03-06 Carbon dioxide supply method and carbon dioxide supply equipment for oxyfuel boiler

Country Status (8)

Country Link
US (1) US8490556B2 (en)
EP (1) EP2251596B1 (en)
JP (1) JP5094959B2 (en)
CN (1) CN102016415B (en)
AU (1) AU2008352262B2 (en)
ES (1) ES2601514T3 (en)
PL (1) PL2251596T3 (en)
WO (1) WO2009110031A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105066113A (en) * 2015-07-27 2015-11-18 四川川锅锅炉有限责任公司 Coal-powder boiler oxygen-enriched combustion smoke near-zero emission and power generation system
KR20190111686A (en) * 2018-03-23 2019-10-02 두산중공업 주식회사 Soot removing system and method using carbon dioxide
KR102105036B1 (en) * 2018-11-05 2020-04-28 한국에너지기술연구원 Oxyfuel combustion device using high concentration carbon dioxide and method for oxyfuel combustion using the same

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4896195B2 (en) * 2009-09-30 2012-03-14 株式会社日立製作所 Oxyfuel combustion boiler plant and operation method of oxygen combustion boiler plant
US20110139046A1 (en) * 2009-12-16 2011-06-16 Foster Wheeler Energy Corporation Emissionless Oxyfuel Combustion Process and a Combustion System Using Such a Process
WO2012035777A1 (en) * 2010-09-16 2012-03-22 バブコック日立株式会社 Combustion plant
CA2811446A1 (en) * 2010-09-29 2012-04-05 Babcock-Hitachi Kabushiki Kaisha Oxygen combustion system and method for operating same
JP2012093002A (en) * 2010-10-25 2012-05-17 Babcock Hitachi Kk Boiler system and operation method therefor
EP2990094A1 (en) * 2010-11-24 2016-03-02 Alstom Technology Ltd Method of cleaning a carbon dioxide rich flue gas and a boiler system
WO2012098839A1 (en) * 2011-01-17 2012-07-26 株式会社Ihi Method and device for controlling operation of oxygen combustion boiler
US20120244479A1 (en) * 2011-03-22 2012-09-27 General Electric Company Combustion System Using Recycled Flue Gas to Boost Overfire Air
US20130152595A1 (en) * 2011-12-20 2013-06-20 Alexander Alekseev Process for the enhancement of power plant with co2 capture and system for realization of the process
NL2009899A (en) * 2011-12-20 2013-06-24 Asml Netherlands Bv A pump system, a carbon dioxide supply system, an extraction system, a lithographic apparatus and a device manufacturing method.
FI123832B (en) * 2012-06-28 2013-11-15 Metso Power Oy Arrangement and method in an electric filter
JP6471485B2 (en) * 2014-12-16 2019-02-20 株式会社Ihi Dedusting device inlet temperature control method and apparatus for oxyfuel boiler equipment
CN104930527B (en) * 2015-06-24 2017-04-12 华北电力科学研究院有限责任公司 Soot blowing steam source determining method
CN105042575A (en) * 2015-07-27 2015-11-11 四川川锅锅炉有限责任公司 Fuel and gas-fired boiler oxygen-enriched combustion smoke nearly-zero-emission power generation system
US20180119952A1 (en) * 2016-10-31 2018-05-03 General Electric Technology Gmbh System and method for removing ash deposits within a boiler
AU2019395286B2 (en) 2018-12-15 2022-11-24 Harper Biotech Llc D/B/A Simbuka Energy, Llc Method for co-production of hyper-efficient electric power and a methane sidestream from high CO2 natural gas sources

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0526409A (en) * 1991-07-16 1993-02-02 Babcock Hitachi Kk Carbon dioxide recoverying boiler
JP2001153303A (en) * 1999-11-26 2001-06-08 Babcock Hitachi Kk Boiler penthouse seal device
JP2007147161A (en) * 2005-11-28 2007-06-14 Electric Power Dev Co Ltd Exhaust gas disposal method and device for combustion apparatus

Family Cites Families (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB702865A (en) * 1952-01-03 1954-01-27 Richard Fritz Heinrich Method of purging or heating high tension insulators of electro-static precipitators
US3043525A (en) * 1960-03-10 1962-07-10 Bailey Meter Co Pulverizer control
US3519254A (en) * 1968-11-05 1970-07-07 Westinghouse Electric Corp Method and apparatus for the control of burner heat distribution
US3818873A (en) 1972-06-20 1974-06-25 Babcock & Wilcox Ltd Pressure seal
US4441435A (en) * 1981-10-21 1984-04-10 Hitachi, Ltd. Fluidizing gas control system in fluidized-bed incinerator
US4411204A (en) * 1981-12-07 1983-10-25 Combustion Engineering, Inc. Method of firing a pulverized fuel-fired steam generator
JPS59195012A (en) * 1983-04-20 1984-11-06 Hitachi Ltd Combustion control method
US4781576A (en) * 1986-08-28 1988-11-01 Shell Oil Company Retractable burner for coal gasification plants
JPH04244504A (en) 1991-01-30 1992-09-01 Central Res Inst Of Electric Power Ind Carbon dioxide recovery type coal thermal power system
US5179903A (en) * 1991-06-24 1993-01-19 Abboud Harry I Closed loop incineration process
JP3181649B2 (en) 1991-12-20 2001-07-03 電源開発株式会社 Boiler carbon dioxide capture device
JP3038073B2 (en) 1991-12-20 2000-05-08 電源開発株式会社 How to reduce N2O in fluidized bed boilers
US5353719A (en) * 1992-12-09 1994-10-11 Eshleman Roger D Apparatus and method for controlled processing of materials
US5406786A (en) * 1993-07-16 1995-04-18 Air Products And Chemicals, Inc. Integrated air separation - gas turbine electrical generation process
US5450801A (en) * 1993-10-29 1995-09-19 Abboud; Harry I. Fuel gas from incineration process
JP3338555B2 (en) 1994-05-24 2002-10-28 電源開発株式会社 Combustion burner for carbon dioxide recovery type exhaust gas recirculation boiler equipment
US5626085A (en) * 1995-12-26 1997-05-06 Combustion Engineering, Inc. Control of staged combustion, low NOx firing systems with single or multiple levels of overfire air
US5906806A (en) * 1996-10-16 1999-05-25 Clark; Steve L. Reduced emission combustion process with resource conservation and recovery options "ZEROS" zero-emission energy recycling oxidation system
WO1998025078A1 (en) * 1996-12-06 1998-06-11 Nkk Corporation Burning apparatus and method for restricting the occurrence of dioxins
JPH11118102A (en) 1997-10-16 1999-04-30 Babcock Hitachi Kk Seal structure of boiler ceiling wall through part
US6029588A (en) * 1998-04-06 2000-02-29 Minergy Corp. Closed cycle waste combustion
US6401633B2 (en) * 1998-04-06 2002-06-11 Minergy Corporation Closed cycle waste combustion
FR2781039B1 (en) * 1998-07-08 2000-09-22 Air Liquide PROCESS FOR COMBUSTING FUEL WITH OXYGEN-RICH FUEL
JP2001235103A (en) 2000-02-21 2001-08-31 Babcock Hitachi Kk Oxygen burning boiler and its operating method
JP4161515B2 (en) 2000-05-30 2008-10-08 株式会社Ihi Exhaust gas oxygen concentration control method and apparatus for oxyfuel boiler equipment
US6622645B2 (en) * 2001-06-15 2003-09-23 Honeywell International Inc. Combustion optimization with inferential sensor
US6935251B2 (en) * 2002-02-15 2005-08-30 American Air Liquide, Inc. Steam-generating combustion system and method for emission control using oxygen enhancement
WO2004042276A2 (en) * 2002-10-30 2004-05-21 Krebs & Sisler Lp A method and apparatus to conduct oxygen-enriched combustion
JP2004205161A (en) * 2002-12-26 2004-07-22 Hitachi Ltd Solid fuel boiler and boiler combustion method
US6928937B2 (en) * 2002-12-26 2005-08-16 Diamond Power International, Inc. Sootblowing control based on boiler thermal efficiency optimization
US8246343B2 (en) * 2003-01-21 2012-08-21 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Device and method for efficient mixing of two streams
US7028622B2 (en) * 2003-04-04 2006-04-18 Maxon Corporation Apparatus for burning pulverized solid fuels with oxygen
US7261046B1 (en) * 2003-06-10 2007-08-28 Aptech Engineering Services, Inc. System and method of reducing pulverizer flammability hazard and boiler nitrous oxide output
US6843185B1 (en) * 2003-06-27 2005-01-18 Maxon Corporation Burner with oxygen and fuel mixing apparatus
US7484956B2 (en) * 2003-09-16 2009-02-03 Praxair Technology, Inc. Low NOx combustion using cogenerated oxygen and nitrogen streams
US7500437B2 (en) * 2004-08-27 2009-03-10 Neuco, Inc. Method and system for SCR optimization
CA2603529A1 (en) * 2005-04-05 2006-10-12 Sargas As Low co2 thermal powerplant
JPWO2007020715A1 (en) * 2005-08-12 2009-02-19 阿部 俊廣 Carbon dioxide recovery and combustion equipment
JP4731293B2 (en) 2005-11-28 2011-07-20 電源開発株式会社 Combustion control method and apparatus for oxyfuel boiler
US7475646B2 (en) * 2005-11-30 2009-01-13 General Electric Company System and method for decreasing a rate of slag formation at predetermined locations in a boiler system
CN101371077B (en) * 2006-01-11 2014-05-07 巴布考克日立株式会社 Pulverized coal-fired boiler and pulverized coal combustion method
US7756591B2 (en) * 2006-04-25 2010-07-13 Pegasus Technologies, Inc. System for optimizing oxygen in a boiler
DE102006031900A1 (en) * 2006-07-07 2008-01-10 Rwe Power Ag Method for regulating the supply of combustion air to a steam generator fueled by fossil fuels
US7833296B2 (en) * 2006-10-02 2010-11-16 Clark Steve L Reduced-emission gasification and oxidation of hydrocarbon materials for power generation
EP2083216A4 (en) * 2006-11-08 2013-03-06 Babcock Hitachi Kk Pulverized coal boiler
US8209040B2 (en) * 2007-01-10 2012-06-26 Hitachi, Ltd. Plant control apparatus
US8038746B2 (en) * 2007-05-04 2011-10-18 Clark Steve L Reduced-emission gasification and oxidation of hydrocarbon materials for liquid fuel production
US9651253B2 (en) * 2007-05-15 2017-05-16 Doosan Power Systems Americas, Llc Combustion apparatus
EP2153132B1 (en) * 2007-05-18 2015-11-04 Her Majesty the Queen in Right of Canada as Represented by The Minister of Natural Resources Method for burning coal using oxygen in a recycled flue gas stream for carbon dioxide capture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0526409A (en) * 1991-07-16 1993-02-02 Babcock Hitachi Kk Carbon dioxide recoverying boiler
JP2001153303A (en) * 1999-11-26 2001-06-08 Babcock Hitachi Kk Boiler penthouse seal device
JP2007147161A (en) * 2005-11-28 2007-06-14 Electric Power Dev Co Ltd Exhaust gas disposal method and device for combustion apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105066113A (en) * 2015-07-27 2015-11-18 四川川锅锅炉有限责任公司 Coal-powder boiler oxygen-enriched combustion smoke near-zero emission and power generation system
KR20190111686A (en) * 2018-03-23 2019-10-02 두산중공업 주식회사 Soot removing system and method using carbon dioxide
KR102030816B1 (en) * 2018-03-23 2019-11-08 두산중공업 주식회사 Soot removing system and method using carbon dioxide
KR102105036B1 (en) * 2018-11-05 2020-04-28 한국에너지기술연구원 Oxyfuel combustion device using high concentration carbon dioxide and method for oxyfuel combustion using the same

Also Published As

Publication number Publication date
EP2251596A1 (en) 2010-11-17
ES2601514T3 (en) 2017-02-15
AU2008352262A1 (en) 2009-09-11
CN102016415A (en) 2011-04-13
PL2251596T3 (en) 2017-01-31
US8490556B2 (en) 2013-07-23
EP2251596A4 (en) 2012-05-09
CN102016415B (en) 2012-08-15
EP2251596B1 (en) 2016-08-03
US20110048295A1 (en) 2011-03-03
JPWO2009110031A1 (en) 2011-07-14
WO2009110031A1 (en) 2009-09-11
AU2008352262B2 (en) 2012-06-21

Similar Documents

Publication Publication Date Title
JP5094959B2 (en) Carbon dioxide supply method and carbon dioxide supply equipment for oxyfuel boiler
AU2006316952B2 (en) Disposal method and equipment for exhaust gas from combustion system
KR101534589B1 (en) Method of operating regenerative heaters in blast furnace plant
US10302301B2 (en) Method and apparatus for controlling inlet temperature of dedusting apparatus in oxygen combustion boiler equipment
JP2015157253A (en) Exhaust gas treatment system and exhaust gas treatment method
KR101435422B1 (en) Gas leakage reduction system
WO2012035777A1 (en) Combustion plant
US9726375B2 (en) Oxy fuel boiler system and a method of operating the same
JP2010054144A (en) Oxygen combustion boiler system and combustion method
JP4822849B2 (en) Exhaust gas treatment equipment for ash melting furnace
EP3839074B1 (en) Blast furnace plant and shutdown process
CN219640714U (en) Treatment equipment and treatment system for furnace gas discharged from furnace
CN116673126B (en) Explosion-proof dry electrostatic precipitator and filter cartridge precipitator combined dust removal system and method
WO2023223591A1 (en) Waste incineration facility
JP2013057437A (en) Oxygen combustion system and oxygen combustion method
JPH0329843B2 (en)
JP2006326514A (en) Exhaust gas treating method and apparatus
JP2004181320A (en) Recovery equipment for particles of soot

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120918

R150 Certificate of patent or registration of utility model

Ref document number: 5094959

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250