WO2009110037A1 - Method of controlling exhaust gas in oxygen combustion boiler and apparatus therefor - Google Patents

Method of controlling exhaust gas in oxygen combustion boiler and apparatus therefor Download PDF

Info

Publication number
WO2009110037A1
WO2009110037A1 PCT/JP2008/000475 JP2008000475W WO2009110037A1 WO 2009110037 A1 WO2009110037 A1 WO 2009110037A1 JP 2008000475 W JP2008000475 W JP 2008000475W WO 2009110037 A1 WO2009110037 A1 WO 2009110037A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
oxygen
boiler
stage combustion
combustion port
Prior art date
Application number
PCT/JP2008/000475
Other languages
French (fr)
Japanese (ja)
Inventor
照下修平
山田敏彦
渡辺修三
内田輝俊
Original Assignee
株式会社Ihi
電源開発株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi, 電源開発株式会社 filed Critical 株式会社Ihi
Priority to EP08720361.8A priority Critical patent/EP2251599B1/en
Priority to JP2010501689A priority patent/JP5208195B2/en
Priority to US12/920,738 priority patent/US8601960B2/en
Priority to PL08720361T priority patent/PL2251599T3/en
Priority to CN2008801291098A priority patent/CN102016419B/en
Priority to ES08720361.8T priority patent/ES2532503T3/en
Priority to AU2008352213A priority patent/AU2008352213B2/en
Priority to PCT/JP2008/000475 priority patent/WO2009110037A1/en
Publication of WO2009110037A1 publication Critical patent/WO2009110037A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C9/00Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber
    • F23C9/003Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber for pulverulent fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B35/00Control systems for steam boilers
    • F22B35/002Control by recirculating flue gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K3/00Feeding or distributing of lump or pulverulent fuel to combustion apparatus
    • F23K3/02Pneumatic feeding arrangements, i.e. by air blast
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L7/00Supplying non-combustible liquids or gases, other than air, to the fire, e.g. oxygen, steam
    • F23L7/007Supplying oxygen or oxygen-enriched air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • F23N1/022Regulating fuel supply conjointly with air supply using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2202/00Fluegas recirculation
    • F23C2202/10Premixing fluegas with fuel and combustion air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2202/00Fluegas recirculation
    • F23C2202/50Control of recirculation rate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L2900/00Special arrangements for supplying or treating air or oxidant for combustion; Injecting inert gas, water or steam into the combustion chamber
    • F23L2900/07001Injecting synthetic air, i.e. a combustion supporting mixture made of pure oxygen and an inert gas, e.g. nitrogen or recycled fumes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L2900/00Special arrangements for supplying or treating air or oxidant for combustion; Injecting inert gas, water or steam into the combustion chamber
    • F23L2900/07006Control of the oxygen supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2221/00Pretreatment or prehandling
    • F23N2221/12Recycling exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2237/00Controlling
    • F23N2237/24Controlling height of burner
    • F23N2237/28Controlling height of burner oxygen as pure oxydant
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/32Direct CO2 mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Definitions

  • the present invention relates to an exhaust gas control method and apparatus for an oxyfuel boiler.
  • Coal has a higher carbon content than natural gas and petroleum, and also contains other components such as hydrogen, nitrogen, and sulfur, and ash that is inorganic. Becomes nitrogen (about 70%), and other gases such as carbon dioxide CO 2 , sulfur oxide SOx, nitrogen oxide NOx, oxygen (about 4%), and fine particles such as unburned matter and ash. Become. Therefore, exhaust gas is subjected to exhaust gas treatment such as denitration, desulfurization, and dedusting, and NOx, SOx, and fine particles are discharged from the chimney to the atmosphere so as to be below the environmental emission standard value.
  • the NOx in the exhaust gas includes thermal NOx generated by oxidizing nitrogen in the air with oxygen and fuel NOx generated by oxidizing nitrogen in the fuel.
  • thermal NOx generated by oxidizing nitrogen in the air with oxygen
  • fuel NOx generated by oxidizing nitrogen in the fuel.
  • a combustion method for reducing the flame temperature has been adopted for reducing thermal NOx
  • a combustion method for forming an excess fuel region for reducing NOx in the combustor has been adopted for reducing fuel NOx.
  • Patent Documents 1 to 4 As an effective method for simultaneously achieving the problem of separation of carbon dioxide in exhaust gas and suppression of thermal NOx, a method of burning fuel with oxygen instead of air has been proposed (for example, Patent Documents 1 to 4). Etc.).
  • the present invention aims to provide an exhaust gas control method and apparatus for an oxyfuel boiler that controls the amount of NOx in exhaust gas discharged from the boiler and the amount of unburned exhaust gas. is there.
  • the present invention introduces a boiler having a burner and a two-stage combustion port, and a part of the exhaust gas discharged from the boiler and recirculated to the mill as a primary recirculation exhaust gas, and finely pulverized by the mill
  • a direct supply system for supplying a part of oxygen produced by the oxygen production apparatus directly to the burner, and a second supply system for supplying another part of the oxygen produced by the oxygen production apparatus to the secondary recirculation system.
  • the amount of recirculated exhaust gas to the two-stage combustion port is adjusted to increase.
  • the exhaust gas control method for the oxyfuel boiler it is preferable to supply a part of the exhaust gas supplied through the secondary recirculation system to the second stage combustion port of the boiler.
  • the present invention introduces a boiler having a burner and a two-stage combustion port, and a part of the exhaust gas discharged from the boiler and recirculated to the mill as a primary recirculation exhaust gas, and finely pulverized by the mill
  • a primary recirculation system for supplying charcoal to the boiler burner by the primary recirculation exhaust gas
  • a secondary recirculation system for supplying another part of the recirculated exhaust gas to the boiler wind box
  • an oxygen production device A direct supply system for supplying a part of the oxygen produced by the oxygen production apparatus directly to the burner, and a second supply system for supplying another part of the oxygen produced by the oxygen production apparatus to the secondary recirculation system.
  • An exhaust gas control device for an oxyfuel boiler having a secondary oxygen mixing system wherein the oxygen supply system is configured to supply oxygen to the two-stage combustion port of the boiler and the oxygen supply system to adjust the oxygen concentration Equipped with a flow regulator
  • Exhaust gas control apparatus of an oxyfuel combustion boiler which consists was, it relates to a.
  • the flow regulator adjusts the oxygen concentration to the two-stage combustion port. It is preferable that the oxygen concentration to the two-stage combustion port is increased by adjusting in a direction to reduce the amount of recirculated exhaust gas.
  • a plurality of two-stage combustion ports arranged in the boiler are provided, and a plurality of branch oxygen supply systems are provided so as to adjust the oxygen concentration for each of the two-stage combustion ports. It is preferable.
  • the exhaust gas control device for the oxyfuel boiler preferably includes a tertiary recirculation system for supplying a part of the exhaust gas supplied through the secondary recirculation system to the second combustion port of the boiler.
  • 1 to 4 show an example of an embodiment of the present invention, where 1 is a coal bunker that stores coal, 2 is a coal feeder that cuts out coal stored in the coal bunker 1, and 3 is supplied from the coal feeder 2.
  • 4 is an oxyfuel boiler
  • 5 is a wind box attached to the boiler 4
  • 6 is disposed in the wind box 5 and combusts pulverized coal supplied from the mill 3.
  • a burner 7 is a two-stage combustion port (so-called OAP (Over Air Port)) disposed at a required position above the burner 6 in the boiler 4, 8 is an exhaust gas line through which exhaust gas discharged from the boiler 4 flows, and 9 is an exhaust gas line 8 is an air preheater for exchanging heat between the exhaust gas flowing through the primary recirculation exhaust gas and the secondary recirculation exhaust gas, and 10 is a desulfurizer or dust collector for treating the exhaust gas that has passed through the air preheater 9.
  • OAP Over Air Port
  • Exhaust gas treatment device such as 11, 11 is a forced air blower (FDF) that pumps the exhaust gas purified by the exhaust gas treatment device 10 as a primary recirculation exhaust gas and a secondary recirculation exhaust gas, and 12 is the exhaust gas pressure fed by the forced air blower 11.
  • FDF forced air blower
  • a primary recirculation system that preheats a part of it as primary recirculated exhaust gas with the air preheater 9 and leads it to the mill 3
  • 13 is a first flow controller for adjusting the flow rate of the primary recirculated exhaust gas
  • 14 is a forced air blower
  • a secondary recirculation system 15 for preheating the other part of the exhaust gas pumped by 11 as a secondary recirculation exhaust gas by the air preheater 9 and leading it to the wind box 5; 15 adjusts the flow rate of the secondary recirculation exhaust gas second flow regulator for, 16 recovery apparatus for recovering the CO 2 or the like incorporating the exhaust gas is purified by a exhaust gas processing system 10, 17 to attract the exhaust gas provided downstream of the exhaust gas treatment apparatus 10 induction Ventilator (IDF), 18 is an exhaust gas is attracted by the induced draft fan 17 is purified by the exhaust gas treatment apparatus 10 is a stack of atmospheric discharge.
  • IDF induction Ventilator
  • the burners 6 of the boiler 4 are arranged in a plurality of rows (four rows in FIG. 2) in the furnace width direction and in a plurality of rows (two steps in FIG. 2) in the vertical direction.
  • the combustion port 7 is formed with a first port portion 7a, a second port portion 7b, a third port portion 7c, and a fourth port portion 7d at a required position above the burner 6 so as to correspond to the burners 6 in each row. Yes.
  • the secondary recirculation path 14 is provided with a tertiary recirculation path 19 that branches from between the second flow rate regulator 15 and the wind box 5 and supplies part of the exhaust gas to the second-stage combustion port 7.
  • the tertiary recirculation path 19 further includes a first branch recirculation path 19a, a second branch recirculation path 19b, a third branch recirculation path 19c, and a fourth branch recirculation from the midway position. It branches to the system path 19d and corresponds to the first port part 7a, the second port part 7b, the third port part 7c, and the fourth port part 7d.
  • the two-stage combustion port 7 is not limited to four rows, and may be another plurality of rows.
  • a branch recirculation system is provided. It is comprised so that it can respond
  • the branch recirculation paths 19a, 19b, 19c, 19d are denoted by reference numeral 19a.
  • the tertiary recirculation system 19 has a third flow rate controller 20 between the branch position from the secondary recirculation system 14 and the branch position to the branch recirculation paths 19a, 19b, 19c, 19d.
  • the first branch recirculation system path 19a, the second branch recirculation system path 19b, the third branch recirculation system path 19c, and the fourth branch recirculation system path 19d are respectively provided with flow rates.
  • Individual adjusters 21a, 21b, 21c, and 21d are provided, and individual oximeters 22a, 22b, 22c, and 22d are provided.
  • the individual flow rate controllers 21a, 21b, 21c, and 21d are indicated by reference numeral 21a, and the individual oxygen concentration meters 22a, 22b, 22c, and 22d are indicated by reference numeral 22a.
  • the overall configuration includes an oxygen production device 23 for producing oxygen by taking in air, and a secondary that supplies a part of the oxygen produced by the oxygen production device 23 to the secondary recirculation system 14 as secondary oxygen.
  • An oxygen mixing system path 24 is provided, and an oxygen flow rate controller (not shown) is disposed in the secondary oxygen mixing system path 24.
  • the secondary oxygen may be supplied to the upstream side of the air preheater 9.
  • the overall configuration is provided with a direct supply system path 25 for directly supplying other part of the oxygen produced by the oxygen production apparatus 23 to the burner 6 as direct supply oxygen.
  • a direct supply amount regulator (not shown).
  • the overall configuration includes a branching position to the secondary oxygen mixing system path 24 and the direct supply system path 25 so that the remaining oxygen produced by the oxygen production apparatus 23 is supplied to the two-stage combustion port 7 of the boiler 4.
  • the oxygen supply system path 26 branches from between the first branch oxygen supply system path 26a, the second branch oxygen supply system path 26b, and the third branch from the middle position. Branches into the oxygen supply system path 26c and the fourth branch oxygen supply system path 26d, the first branch recirculation system path 19a, the second branch recirculation system path 19b, the third branch recirculation system path 19c, The four branch recirculation paths 19d are connected.
  • the oxygen supply system path 26 is provided with an entire oxygen flow rate regulator 27 on the upstream side, and an entire oxygen concentration meter 28 is disposed on the downstream side, and the first branch oxygen supply system path 26a and the second oxygen supply system path 26a.
  • the branch oxygen supply system path 26b, the third branch oxygen supply system path 26c, and the fourth branch oxygen supply system path 26d are respectively provided with individual oxygen flow rate regulators 29a, 29b, 29c, and 29d.
  • the oxygen supply system path 26 is connected by A, the branched oxygen supply system paths 26a, 26b, 26c, and 26d are denoted by reference numeral 26a, and the oxygen flow rate individual controllers 29a, 29b, 29c, and 29d are This is indicated by reference numeral 29a.
  • the third flow regulator 20 of the tertiary recirculation system 19 the individual flow controller 21 a of the first branch recirculation system 19 a, the individual flow controller 21 b of the second branch recirculation system 19 b, The individual flow rate regulator 21c of the third branch recirculation path 19c, the individual flow rate regulator 21d of the fourth branch recirculation path 19d, and the overall oxygen flow rate regulator 27 of the oxygen supply path 26, the first An oxygen flow rate individual controller 29a of the branch oxygen supply system path 26a, an oxygen flow rate individual controller 29b of the second branch oxygen supply system path 26b, an oxygen flow rate individual controller 29c of the third branch oxygen supply system path 26c, a fourth The individual oxygen flow rate regulators 29d of the branched oxygen supply system 26d are all connected to the control unit 30, and the control unit 30 is connected to the NOx concentration between the boiler 4 and the air preheater 9 in the exhaust gas line 8.
  • the processing means Sa is controlled so as to control the respective regulators 20, 21a to 21d, 27, 29a to 29d on the basis of signals from the oxygen concentration meter 22c and the individual oxygen concentration meters 22d of the fourth branch recirculation system 19d. , Sb.
  • the signal input to the control unit 30 may be other data, and is particularly limited if each of the regulators 20, 21a to 21d, 27, 29a to 29d is controlled in accordance with the situation of the boiler 4. It is not something.
  • the coal stored in the coal bunker 1 is input to the mill 3 by the coal feeder 2, and the coal is pulverized and pulverized into the coal in the mill 3, and the exhaust gas treatment is performed by the forced air blower 11 (FDF).
  • the primary recirculated exhaust gas which is part of the exhaust gas taken out from the downstream of the apparatus 10, is introduced into the mill 3 through the primary recirculation system 12, and the coal fed into the mill 3 is dried by the primary recirculated exhaust gas.
  • the finely pulverized coal is conveyed to the burner 6 of the boiler 4.
  • the wind box 5 of the boiler 4 is supplied with another part of the exhaust gas from the forced air blower 11 as a secondary recirculation exhaust gas by the secondary recirculation system 14 and the two-stage combustion of the boiler 4.
  • a part of the secondary recirculation gas (exhaust gas) supplied through the secondary recirculation path 14 is supplied to the port 7 for the tertiary recirculation path 19 and the respective branch recirculation paths 19a, 19b, 19c, 19d.
  • a part of the oxygen produced by the oxygen production apparatus 23 is supplied to the secondary recirculation system 14 by the secondary oxygen mixing system 24, and another part of the oxygen from the oxygen production apparatus 23 is directly supplied.
  • the oxygen is supplied directly to the burner 6 by the supply system 25, and the remaining oxygen from the oxygen production apparatus 23 is further supplied via the oxygen supply system 26 and the respective branched oxygen supply systems 26a, 26b, 26c, 26d. Supplied by the respective branch recirculation paths 19a, 19b, 19c, 19d.
  • the oxygen supplied to the two-stage combustion port 7 via the oxygen supply system 26 or the like may be supplied together with the exhaust gas or may be supplied directly without being mixed with the exhaust gas.
  • the pulverized coal supplied from the mill 3 to the burner 6 by the primary recirculation exhaust gas is mixed with the secondary recirculation gas supplied to the wind box 5 after being mixed with oxygen, and the direct supply oxygen supplied directly to the burner 6.
  • the exhaust gas mixed with oxygen and supplied to the two-stage combustion port 7 is combusted.
  • the exhaust gas generated by combustion preheats the primary recirculation exhaust gas and the secondary recirculation exhaust gas by the air preheater 9, and further, after being processed by the exhaust gas treatment device 10, a part thereof is introduced to the forced draft fan 11 and the recovery device 16. The remainder is attracted by the induction fan 17 (IDF) and released from the chimney 18 to the atmosphere.
  • the exhaust gas taken into the recovery device 16 is recovered such as CO 2 .
  • the control unit 30 can adjust the NOx concentration, the unburned amount of the exhaust gas such as CO, and the furnace heat recovery, depending on the combustion state of the boiler 4.
  • the control means Sa data is obtained from the NOx concentration meter 31, the oxygen concentration meter 28 of the oxygen supply system 26, and the individual oxygen concentration meters 22a, 22b, 22c, 22d of the respective branch recirculation systems 19a, 19b, 19c, 19d.
  • the control means Sb of the control unit 30 controls the third flow rate regulator 20 of the tertiary recirculation system 19 to each branch recirculation system.
  • step Sa1 when the unburned amount of the exhaust gas is an allowable value and there is a request to reduce the total NOx concentration (step Sa1), the oxygen concentration meter 28 in the oxygen supply system path 26 is measured, and the third The flow rate regulator 20 and the oxygen flow rate regulator 27 are operated to reduce the oxygen supplied to the two-stage combustion port 7 (step Sb1), and the oxygen concentration is reduced to lower the overall NOx concentration.
  • step Sa3 when there is a request to increase the overall heat recovery of the boiler 4 (step Sa2) or when there is a request to reduce the amount of unburned components contained in the entire exhaust gas (step Sa3), the oxygen supply path While measuring the oxygen concentration meter 28 of 26, the third flow rate regulator 20 and the oxygen flow rate regulator 27 are operated to increase the oxygen supplied to the two-stage combustion port 7 (step Sb2), and the oxygen concentration is increased. Increase the overall heat recovery of the boiler 4 or reduce the amount of unburned emissions contained in the entire exhaust gas.
  • the respective branched oxygen supply lines 26a While measuring the oxygen concentration meters 22a, 22b, 22c, and 22d of 26b, 26c, and 26d, the corresponding individual flow rate controllers 21a, 21b, 21c, and 21d, and the respective oxygen flow rate individual controllers 29a, 29b, 29c, and 29d are provided.
  • step Sb3 the oxygen supplied to the port portion of the two-stage combustion port 7 is reduced (step Sb3), the oxygen concentration is reduced, and the NOx concentration is lowered in a part of the furnace of the boiler 4 (particularly in the furnace width direction). Furthermore, when there is a request to increase the heat collection in a part of the furnace of the boiler 4 (step Sa5), or when there is a request to reduce the amount of unburned components contained in the exhaust gas in a part of the furnace (step Sa6), While measuring the oxygen concentration meters 22a, 22b, 22c, and 22d of the respective branched oxygen supply lines 26a, 26b, 26c, and 26d, the corresponding individual flow rate controllers 21a, 21b, 21c, and 21d, and the respective oxygen flow rate individual adjustments The oxygen supplied to the two-stage combustion port 7 is increased by operating the vessels 29a, 29b, 29c, 29d (step Sb4), and the oxygen concentration is increased to increase the heat recovery in a part of the furnace of the boiler 4, or the boiler 4 The amount
  • the present inventors have obtained the test results shown in FIG. 4 when adjusting the oxygen concentration supplied to the two-stage combustion port 7 in the test boiler for oxygen combustion of pulverized coal.
  • the NOx concentration can be controlled so as to reduce the NOx concentration when the oxygen concentration to the two-stage combustion port 7 is lowered, and the oxygen concentration to the two-stage combustion port 7 is raised. Reveals that combustion with less unburned emissions in the exhaust gas becomes possible.
  • oxygen is supplied from the two-stage combustion port 7 to adjust the oxygen concentration, and the NOx concentration of the exhaust gas and the unburned content of the exhaust gas are adjusted. Emissions and furnace heat recovery can be controlled.
  • the amount of recirculated exhaust gas to the second stage combustion port 7 is adjusted to increase by the flow rate regulator.
  • the two-stage combustion port 7 is controlled by the flow controller. If the oxygen concentration to the second-stage combustion port 7 is increased by adjusting the amount of exhaust gas to be recycled to the second-stage combustion port, oxygen is supplied from the second-stage combustion port 7 to accurately adjust the oxygen concentration. Therefore, it is possible to suitably control the NOx concentration of the exhaust gas, the amount of unburned exhaust gas, and the heat recovery of the furnace.
  • a plurality of two-stage combustion ports 7 provided in the boiler 4 are provided, and a plurality of branch oxygen supply lines 26a, 26b are provided so as to adjust the oxygen concentration for each of the two-stage combustion ports 7. , 26c, 26d, when lowering the NOx concentration in a part of the furnace of the boiler 4, increasing the heat recovery in a part of the furnace of the boiler 4, lowering the amount of unburned emissions contained in the exhaust gas in a part of the furnace
  • oxygen can be supplied from the respective branched oxygen supply paths 26a, 26b, 26c, and 26d, and the respective oxygen concentrations can be adjusted accurately, so that the NOx concentration of exhaust gas and the unburned amount of exhaust gas are discharged. Further, the heat recovery of the furnace can be controlled more suitably.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)

Abstract

An exhaust gas control apparatus for an oxygen combustion boiler (4) including a boiler (4) provided with a burner (6) and a two-stage combustion port (7); a primary recirculation line (12) for feeding pulverized coal obtained by a mill (3) to the burner (6) of the boiler (4) by a primary recirculating exhaust gas; a secondary recirculation line (14) for feeding another portion of recirculating exhaust gas to a wind box (5) of the boiler (4); an oxygen production equipment (23); a direct supply line (25) for direct supply of a portion of oxygen produced by the oxygen production equipment (23) to the burner (6); and a secondary oxygen mixing line (24) for supply of another portion of oxygen produced by the oxygen production equipment (23) to the secondary recirculation line (14). The exhaust gas control apparatus comprises an oxygen supply line (26) for supply of oxygen to the two-stage combustion port (7) of the boiler (4) and flow rate regulators (20,27) for regulation of oxygen concentration provided along the oxygen supply line (26).

Description

酸素燃焼ボイラの排ガス制御方法及び装置Exhaust gas control method and apparatus for oxyfuel boiler
 本発明は、酸素燃焼ボイラの排ガス制御方法及び装置に関するものである。 The present invention relates to an exhaust gas control method and apparatus for an oxyfuel boiler.
 近年、地球規模の環境問題として大きく取り上げられている地球温暖化は、大気中の二酸化炭素(CO)の濃度の増加が主要因の一つであることが明らかにされており、火力発電所はこれらの物質の固定排出源として注目されているが、火力発電用燃料としては石油、天然ガス、石炭が使用されており、特に石炭は採掘可能埋蔵量が多く、今後需要が伸びることが予想されている。 In recent years, it has been clarified that the increase in the concentration of carbon dioxide (CO 2 ) in the atmosphere is one of the main causes of global warming, which has been widely taken up as a global environmental problem. Is attracting attention as a fixed emission source of these substances, but oil, natural gas, and coal are used as fuels for thermal power generation. Has been.
 石炭は、天然ガス及び石油と比較して炭素含有量が多く、その他、水素、窒素、硫黄等の成分、及び無機質である灰分を含んでおり、石炭を空気燃焼させると、排ガスの組成は殆どが窒素(約70%)となり、その他、二酸化炭素CO、硫黄酸化物SOx、窒素酸化物NOx、酸素(約4%)等のガス、及び未燃分、灰分等の微粒子を含んだものとなる。そこで、排ガスは脱硝、脱硫、脱塵等の排ガス処理を実施し、NOx、SOx、微粒子が環境排出基準値以下になるようにして煙突から大気に排出している。 Coal has a higher carbon content than natural gas and petroleum, and also contains other components such as hydrogen, nitrogen, and sulfur, and ash that is inorganic. Becomes nitrogen (about 70%), and other gases such as carbon dioxide CO 2 , sulfur oxide SOx, nitrogen oxide NOx, oxygen (about 4%), and fine particles such as unburned matter and ash. Become. Therefore, exhaust gas is subjected to exhaust gas treatment such as denitration, desulfurization, and dedusting, and NOx, SOx, and fine particles are discharged from the chimney to the atmosphere so as to be below the environmental emission standard value.
 前記排ガス中のNOxには、空気中の窒素が酸素で酸化されて生成するサーマルNOxと、燃料中の窒素が酸化されて生成するフューエルNOxとがある。従来、サーマルNOxの低減には火炎温度を低減する燃焼法が採られ、又、フューエルNOxの低減には、燃焼器内にNOxを還元する燃料過剰の領域を形成する燃焼法が採られてきた。 The NOx in the exhaust gas includes thermal NOx generated by oxidizing nitrogen in the air with oxygen and fuel NOx generated by oxidizing nitrogen in the fuel. Conventionally, a combustion method for reducing the flame temperature has been adopted for reducing thermal NOx, and a combustion method for forming an excess fuel region for reducing NOx in the combustor has been adopted for reducing fuel NOx. .
 又、石炭のような硫黄を含む燃料を使用した場合には、燃焼によって排ガス中にSOxが生じるため、湿式或いは乾式の脱硫装置を備えて除去している。 In addition, when a fuel containing sulfur such as coal is used, SOx is generated in the exhaust gas by combustion. Therefore, the fuel is removed with a wet or dry desulfurization device.
 一方、排ガス中に多量に発生する二酸化炭素は高効率で分離除去することが望まれており、排ガス中の二酸化炭素を回収する方法としては、従来よりアミン等の吸収液中に吸収させる手法や、固体吸着剤に吸着させる吸着法、或いは膜分離法等が検討されているが、いずれも変換効率が低く、石炭焚ボイラからのCO回収の実用化には至っていない。 On the other hand, carbon dioxide generated in a large amount in exhaust gas is desired to be separated and removed with high efficiency. As a method for recovering carbon dioxide in exhaust gas, a method of absorbing it in an absorbing solution such as an amine, However, although an adsorption method for adsorbing to a solid adsorbent, a membrane separation method, or the like has been studied, all have low conversion efficiency and have not yet been practically used for CO 2 recovery from a coal fired boiler.
 そこで、排ガス中の二酸化炭素の分離とサーマルNOxの抑制の問題を同時に達成する有効な手法としては、空気に代えて酸素で燃料を燃焼させる手法が提案されている(例えば、特許文献1~4等参照)。 Therefore, as an effective method for simultaneously achieving the problem of separation of carbon dioxide in exhaust gas and suppression of thermal NOx, a method of burning fuel with oxygen instead of air has been proposed (for example, Patent Documents 1 to 4). Etc.).
 石炭を酸素で燃焼すると、サーマルNOxの発生は無くなり、排ガスのほとんどは二酸化炭素となり、その他フューエルNOx、SOx、未燃分を含んだガスとなるため、排ガスを冷却することにより、前記二酸化炭素は液化して分離することが比較的容易になる。 When coal is burned with oxygen, the generation of thermal NOx disappears, and most of the exhaust gas becomes carbon dioxide, and other fuel NOx, SOx, and gas containing unburned matter, so by cooling the exhaust gas, the carbon dioxide becomes It becomes relatively easy to liquefy and separate.
 ここで、空気燃焼するボイラの構成を説明すると、ボイラには様々な構成のものがあり、このうち1つは、バーナを炉幅方向へ複数列ずつ且つ上下方向へ複数段ずつ配設すると共に、各列のバーナと対応させてそれぞれの上方所要位置に二段燃焼用ポート(いわゆるOAP(Over Air Port))を配設し、二段燃焼用ポートから吹き出される二段燃焼用空気によって二段燃焼を行わせるようになっている。
特開平5-231609号公報 特開2001-235103号公報 特開平5-168853号公報 特開2007-147162号公報
Here, the structure of the boiler that performs air combustion will be described. There are various types of boilers, and one of them is provided with a plurality of rows of burners arranged in the furnace width direction and a plurality of stages in the vertical direction. A two-stage combustion port (so-called OAP (Over Air Port)) is provided at each upper required position corresponding to each row of burners, and two-stage combustion air blown out from the two-stage combustion port Stage combustion is performed.
JP-A-5-231609 JP 2001-235103 A Japanese Patent Laid-Open No. 5-168883 JP 2007-147162 A
 しかしながら、通常のボイラ及び二段燃焼のボイラにおいては、ボイラから排出される排ガス中のNOxや、CO等の未燃分の量を制御することが困難であるという問題があった。また、従来は空気流量比率を変更して、排ガス中のNOxや、CO等の未燃分の量を制御することが検討されているが、好適に制御することができなかった。 However, ordinary boilers and two-stage combustion boilers have a problem in that it is difficult to control the amount of NOx, CO, and the like in the exhaust gas discharged from the boiler. Conventionally, it has been studied to control the amount of unburned components such as NOx and CO in the exhaust gas by changing the air flow rate ratio, but it has not been possible to control it appropriately.
 本発明は、斯かる実情に鑑み、ボイラから排出される排ガス中のNOxや、排ガスの未燃分の量を制御する酸素燃焼ボイラの排ガス制御方法及び装置を提供することを目的とするものである。 In view of such circumstances, the present invention aims to provide an exhaust gas control method and apparatus for an oxyfuel boiler that controls the amount of NOx in exhaust gas discharged from the boiler and the amount of unburned exhaust gas. is there.
 本発明は、バーナと二段燃焼用ポートとを配設したボイラと、該ボイラから排出されて再循環する排ガスの一部を一次再循環排ガスとしてミルへ導入し、該ミルで粉砕された微粉炭を前記一次再循環排ガスによりボイラのバーナへ供給する一次再循環系路と、再循環する排ガスの他の一部をボイラのウィンドボックスに供給する二次再循環系路と、酸素製造装置と、該酸素製造装置で製造した酸素の一部を前記バーナに直接供給するダイレクト供給系路と、該酸素製造装置で製造した酸素の他の一部を前記二次再循環系路に供給する二次酸素混合系路とを有する酸素燃焼ボイラの排ガス制御方法であって、前記ボイラの二段燃焼用ポートに対し、酸素を供給して酸素濃度を調整することからなる酸素燃焼ボイラの排ガス制御方法、に係るものである。 The present invention introduces a boiler having a burner and a two-stage combustion port, and a part of the exhaust gas discharged from the boiler and recirculated to the mill as a primary recirculation exhaust gas, and finely pulverized by the mill A primary recirculation system for supplying charcoal to the boiler burner by the primary recirculation exhaust gas, a secondary recirculation system for supplying another part of the recirculated exhaust gas to the boiler wind box, an oxygen production device, A direct supply system for supplying a part of oxygen produced by the oxygen production apparatus directly to the burner, and a second supply system for supplying another part of the oxygen produced by the oxygen production apparatus to the secondary recirculation system. An exhaust gas control method for an oxyfuel boiler having a secondary oxygen mixing system, the exhaust gas control method for an oxyfuel boiler comprising adjusting oxygen concentration by supplying oxygen to a two-stage combustion port of the boiler Also related to It is.
 上記酸素燃焼ボイラの排ガス制御方法において、排ガスの未燃分が許容値であって全体のNOx濃度を下げる場合には、二段燃焼用ポートへの再循環排ガス量を増やす方向に調整して二段燃焼用ポートへの酸素濃度を減少させ、ボイラの全体の収熱を上げる場合や全体の排ガスの未燃分を下げる場合には、二段燃焼用ポートへの再循環排ガス量を減らす方向に調整して二段燃焼用ポートへの酸素濃度を増加させることが好ましい。 In the oxyfuel boiler exhaust gas control method described above, when the unburned amount of exhaust gas is an allowable value and the overall NOx concentration is lowered, the amount of recirculated exhaust gas to the two-stage combustion port is adjusted to increase. When reducing the oxygen concentration at the stage combustion port and increasing the overall heat recovery of the boiler or lowering the unburned content of the entire exhaust gas, reduce the amount of recirculated exhaust gas to the second stage combustion port. It is preferable to adjust to increase the oxygen concentration to the two-stage combustion port.
 また、上記酸素燃焼ボイラの排ガス制御方法において、ボイラに配設された複数の二段燃焼用ポートに対し、二段燃焼用ポートごとに酸素濃度を調整することが好ましい。 In the exhaust gas control method for an oxyfuel boiler, it is preferable to adjust the oxygen concentration for each of the two-stage combustion ports with respect to the plurality of two-stage combustion ports arranged in the boiler.
 また、上記酸素燃焼ボイラの排ガス制御方法において、二次再循環系路で供給される排ガスの一部をボイラの二段燃焼用ポートに供給することが好ましい。 Further, in the exhaust gas control method for the oxyfuel boiler, it is preferable to supply a part of the exhaust gas supplied through the secondary recirculation system to the second stage combustion port of the boiler.
 本発明は、バーナと二段燃焼用ポートとを配設したボイラと、該ボイラから排出されて再循環する排ガスの一部を一次再循環排ガスとしてミルへ導入し、該ミルで粉砕された微粉炭を前記一次再循環排ガスによりボイラのバーナへ供給する一次再循環系路と、再循環する排ガスの他の一部をボイラのウィンドボックスに供給する二次再循環系路と、酸素製造装置と、該酸素製造装置で製造した酸素の一部を前記バーナに直接供給するダイレクト供給系路と、前記酸素製造装置で製造した酸素の他の一部を前記二次再循環系路に供給する二次酸素混合系路とを有する酸素燃焼ボイラの排ガス制御装置であって、前記ボイラの二段燃焼用ポートへ酸素を供給する酸素供給系路と、酸素供給系路に配置されて酸素濃度を調整する流量調節器とを備えたことからなる酸素燃焼ボイラの排ガス制御装置、に係るものである。 The present invention introduces a boiler having a burner and a two-stage combustion port, and a part of the exhaust gas discharged from the boiler and recirculated to the mill as a primary recirculation exhaust gas, and finely pulverized by the mill A primary recirculation system for supplying charcoal to the boiler burner by the primary recirculation exhaust gas, a secondary recirculation system for supplying another part of the recirculated exhaust gas to the boiler wind box, an oxygen production device, A direct supply system for supplying a part of the oxygen produced by the oxygen production apparatus directly to the burner, and a second supply system for supplying another part of the oxygen produced by the oxygen production apparatus to the secondary recirculation system. An exhaust gas control device for an oxyfuel boiler having a secondary oxygen mixing system, wherein the oxygen supply system is configured to supply oxygen to the two-stage combustion port of the boiler and the oxygen supply system to adjust the oxygen concentration Equipped with a flow regulator Exhaust gas control apparatus of an oxyfuel combustion boiler which consists was, it relates to a.
 上記酸素燃焼ボイラの排ガス制御装置において、排ガスの未燃分が許容値であって全体のNOx濃度を下げる場合には、流量調節器により二段燃焼用ポートへの再循環排ガス量を増やす方向に調整して二段燃焼用ポートへの酸素濃度を減少させ、ボイラの全体の収熱を上げる場合や全体の排ガスの未燃分を下げる場合には、流量調節器により二段燃焼用ポートへの再循環排ガス量を減らす方向に調整して二段燃焼用ポートへの酸素濃度を増加させるように構成することが好ましい。 In the above oxyfuel boiler exhaust gas control device, when the unburned amount of exhaust gas is an allowable value and the overall NOx concentration is lowered, the amount of recirculated exhaust gas to the two-stage combustion port is increased by the flow regulator. When adjusting to reduce the oxygen concentration to the two-stage combustion port and increase the overall heat recovery of the boiler or to reduce the unburned content of the entire exhaust gas, the flow regulator adjusts the oxygen concentration to the two-stage combustion port. It is preferable that the oxygen concentration to the two-stage combustion port is increased by adjusting in a direction to reduce the amount of recirculated exhaust gas.
 また、上記酸素燃焼ボイラの排ガス制御装置において、ボイラに配設された二段燃焼用ポートを複数にし、二段燃焼用ポートごとに酸素濃度を調整するように複数の分岐酸素供給系路を備えることが好ましい。 Further, in the exhaust gas control apparatus for an oxyfuel boiler, a plurality of two-stage combustion ports arranged in the boiler are provided, and a plurality of branch oxygen supply systems are provided so as to adjust the oxygen concentration for each of the two-stage combustion ports. It is preferable.
 また、上記酸素燃焼ボイラの排ガス制御装置において、二次再循環系路で供給される排ガスの一部をボイラの二段燃焼用ポートに供給する三次再循環系路を備えることが好ましい。 Also, the exhaust gas control device for the oxyfuel boiler preferably includes a tertiary recirculation system for supplying a part of the exhaust gas supplied through the secondary recirculation system to the second combustion port of the boiler.
 本発明の酸素燃焼ボイラの排ガス制御方法及び装置によれば、バーナと二段燃焼用ポートとを配設したボイラにおいて、二段燃焼用ポートから酸素を供給して酸素濃度を調整し、排ガスのNOx濃度、排ガスの未燃分を制御することができるという優れた効果を奏し得る。 According to the exhaust gas control method and apparatus for an oxyfuel boiler of the present invention, in a boiler provided with a burner and a two-stage combustion port, oxygen is supplied from the two-stage combustion port to adjust the oxygen concentration, An excellent effect that the NOx concentration and the unburned amount of the exhaust gas can be controlled can be obtained.
本発明を実施する形態例を示す全体概要構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a whole schematic block diagram which shows the embodiment which implements this invention. 酸素燃焼ボイラの二段燃焼用ポートに接続される三次再循環系路及び酸素供給系路を示す概念図である。It is a conceptual diagram which shows the tertiary recirculation system path and oxygen supply system path which are connected to the port for two-stage combustion of an oxyfuel boiler. 本発明を実施する形態例における制御の流れを示すフローチャートである。It is a flowchart which shows the flow of control in the example which implements this invention. 本発明を実施する形態例における運用範囲を示す線図である。It is a diagram which shows the operation | use range in the example which implements this invention.
符号の説明Explanation of symbols
  3   ミル
  4   ボイラ
  5   ウィンドボックス
  6   バーナ
  7   二段燃焼用ポート
  9   空気予熱器
 10   排ガス処理装置
 12   一次再循環系路
 14   二次再循環系路
 19   三次再循環系路
 20   第三流量調節器(流量調節器)
 23   酸素製造装置
 24   二次酸素混合系路
 25   ダイレクト供給系路
 26   酸素供給系路
 26a 第一の分岐酸素供給系路
 26b 第二の分岐酸素供給系路
 26c 第三の分岐酸素供給系路
 26d 第四の分岐酸素供給系路
 27   酸素流量調節器(流量調節器)
 28   酸素濃度計
3 Mil 4 Boiler 5 Wind Box 6 Burner 7 Port for Second Stage 9 Air Preheater 10 Exhaust Gas Treatment Device 12 Primary Recirculation System 14 Secondary Recirculation System 19 Tertiary Recirculation System 20 Third Flow Controller Regulator)
23 Oxygen production equipment 24 Secondary oxygen mixing system path 25 Direct supply system path 26 Oxygen supply system path 26a First branch oxygen supply system path 26b Second branch oxygen supply system path 26c Third branch oxygen supply system path 26d First Fourth branch oxygen supply system 27 Oxygen flow controller (flow controller)
28 Oxygen concentration meter
 以下、本発明の実施の形態を添付図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
 図1~図4は本発明を実施する形態の一例であって、1は石炭を貯留するコールバンカ、2はコールバンカ1に貯留された石炭を切り出す給炭機、3は給炭機2から供給される石炭を微粉砕し且つ乾燥させるミル、4は酸素燃焼ボイラ、5はボイラ4に取り付けられたウィンドボックス、6はウィンドボックス5内に配設され且つミル3から供給される微粉炭を燃焼させるバーナ、7はボイラ4でバーナ6の上方所要位置に配置される二段燃焼用ポート(いわゆるOAP(Over Air Port))、8はボイラ4から排出される排ガスが流れる排ガスライン、9は排ガスライン8を流れる排ガスと一次再循環排ガス並びに二次再循環排ガスとを熱交換させる空気予熱器、10は空気予熱器9を通過した排ガスを処理する脱硫装置や集塵機等の排ガス処理装置、11は排ガス処理装置10で浄化された排ガスを一次再循環排ガス並びに二次再循環排ガスとして圧送する押込通風機(FDF)、12は押込通風機11によって圧送される排ガスの一部を一次再循環排ガスとして空気予熱器9で予熱してミル3へ導く一次再循環系路、13は一次再循環排ガスの流量を調節するための第一流量調節器、14は押込通風機11によって圧送される排ガスの他の一部を二次再循環排ガスとして空気予熱器9で予熱してウィンドボックス5へ導く二次再循環系路、15は二次再循環排ガスの流量を調節するための第二流量調節器、16は排ガス処理装置10で浄化された排ガスを取り入れてCO等を回収する回収装置、17は排ガス処理装置10の下流側に設けられ排ガスを誘引する誘引通風機(IDF)、18は排ガス処理装置10で浄化され誘引通風機17で誘引される排ガスを大気放出する煙突である。 1 to 4 show an example of an embodiment of the present invention, where 1 is a coal bunker that stores coal, 2 is a coal feeder that cuts out coal stored in the coal bunker 1, and 3 is supplied from the coal feeder 2. 4 is an oxyfuel boiler, 5 is a wind box attached to the boiler 4, 6 is disposed in the wind box 5 and combusts pulverized coal supplied from the mill 3. A burner 7 is a two-stage combustion port (so-called OAP (Over Air Port)) disposed at a required position above the burner 6 in the boiler 4, 8 is an exhaust gas line through which exhaust gas discharged from the boiler 4 flows, and 9 is an exhaust gas line 8 is an air preheater for exchanging heat between the exhaust gas flowing through the primary recirculation exhaust gas and the secondary recirculation exhaust gas, and 10 is a desulfurizer or dust collector for treating the exhaust gas that has passed through the air preheater 9. Exhaust gas treatment device such as 11, 11 is a forced air blower (FDF) that pumps the exhaust gas purified by the exhaust gas treatment device 10 as a primary recirculation exhaust gas and a secondary recirculation exhaust gas, and 12 is the exhaust gas pressure fed by the forced air blower 11. A primary recirculation system that preheats a part of it as primary recirculated exhaust gas with the air preheater 9 and leads it to the mill 3, 13 is a first flow controller for adjusting the flow rate of the primary recirculated exhaust gas, and 14 is a forced air blower A secondary recirculation system 15 for preheating the other part of the exhaust gas pumped by 11 as a secondary recirculation exhaust gas by the air preheater 9 and leading it to the wind box 5; 15 adjusts the flow rate of the secondary recirculation exhaust gas second flow regulator for, 16 recovery apparatus for recovering the CO 2 or the like incorporating the exhaust gas is purified by a exhaust gas processing system 10, 17 to attract the exhaust gas provided downstream of the exhaust gas treatment apparatus 10 induction Ventilator (IDF), 18 is an exhaust gas is attracted by the induced draft fan 17 is purified by the exhaust gas treatment apparatus 10 is a stack of atmospheric discharge.
 ここで、ボイラ4のバーナ6は、炉幅方向へ複数列(図2では4列)ずつ且つ上下方向へ複数段(図2では2段)ずつで配設されており、ボイラ4の二段燃焼用ポート7は、各列のバーナ6と対応するようにバーナ6の上方所要位置に第一ポート部7a、第二ポート部7b、第三ポート部7c、第四ポート部7dを形成している。 Here, the burners 6 of the boiler 4 are arranged in a plurality of rows (four rows in FIG. 2) in the furnace width direction and in a plurality of rows (two steps in FIG. 2) in the vertical direction. The combustion port 7 is formed with a first port portion 7a, a second port portion 7b, a third port portion 7c, and a fourth port portion 7d at a required position above the burner 6 so as to correspond to the burners 6 in each row. Yes.
 二次再循環系路14には、第二流量調節器15とウィンドボックス5の間から分岐して二段燃焼用ポート7へ排ガスの一部を供給する三次再循環系路19が備えられており、三次再循環系路19は、中途位置から更に第一の分岐再循環系路19a、第二の分岐再循環系路19b、第三の分岐再循環系路19c、第四の分岐再循環系路19dに分岐し、第一ポート部7a、第二ポート部7b、第三ポート部7c、第四ポート部7dに対応するようになっている。ここで、二段燃焼用ポート7は4列に限定されるものでなく、他の複数列でも良く、同時に二段燃焼用ポート7が他の複数列の場合には、分岐再循環系路が複数列に対応し得るように構成されている。なお、図1中、分岐再循環系路19a,19b,19c,19dは符号19aで示している。 The secondary recirculation path 14 is provided with a tertiary recirculation path 19 that branches from between the second flow rate regulator 15 and the wind box 5 and supplies part of the exhaust gas to the second-stage combustion port 7. The tertiary recirculation path 19 further includes a first branch recirculation path 19a, a second branch recirculation path 19b, a third branch recirculation path 19c, and a fourth branch recirculation from the midway position. It branches to the system path 19d and corresponds to the first port part 7a, the second port part 7b, the third port part 7c, and the fourth port part 7d. Here, the two-stage combustion port 7 is not limited to four rows, and may be another plurality of rows. When the second-stage combustion port 7 is another plurality of rows at the same time, a branch recirculation system is provided. It is comprised so that it can respond | correspond to several rows. In FIG. 1, the branch recirculation paths 19a, 19b, 19c, 19d are denoted by reference numeral 19a.
 また、三次再循環系路19には、二次再循環系路14からの分岐位置と分岐再循環系路19a,19b,19c,19dへの分岐位置との間に第三流量調節器20が配置されており、第一の分岐再循環系路19a、第二の分岐再循環系路19b、第三の分岐再循環系路19c、第四の分岐再循環系路19dには、夫々、流量個別調節器21a,21b,21c,21dが備えられると共に個別の酸素濃度計22a,22b,22c,22dが備えられている。なお、図1中、流量個別調節器21a,21b,21c,21dは符号21aで示し、個別の酸素濃度計22a,22b,22c,22dは符号22aで示している。 The tertiary recirculation system 19 has a third flow rate controller 20 between the branch position from the secondary recirculation system 14 and the branch position to the branch recirculation paths 19a, 19b, 19c, 19d. The first branch recirculation system path 19a, the second branch recirculation system path 19b, the third branch recirculation system path 19c, and the fourth branch recirculation system path 19d are respectively provided with flow rates. Individual adjusters 21a, 21b, 21c, and 21d are provided, and individual oximeters 22a, 22b, 22c, and 22d are provided. In FIG. 1, the individual flow rate controllers 21a, 21b, 21c, and 21d are indicated by reference numeral 21a, and the individual oxygen concentration meters 22a, 22b, 22c, and 22d are indicated by reference numeral 22a.
 全体構成には、空気を取り入れて酸素を製造する酸素製造装置23が備えられると共に、酸素製造装置23で製造した酸素の一部を二次酸素として二次再循環系路14に供給する二次酸素混合系路24が設けられており、二次酸素混合系路24には、酸素の流量調節器(図示せず)が配置されている。ここで、図示例では二次酸素を空気予熱器9の下流側の二次再循環系路14に供給する場合について例示したが、空気予熱器9の上流側に供給するようにしてもよい。 The overall configuration includes an oxygen production device 23 for producing oxygen by taking in air, and a secondary that supplies a part of the oxygen produced by the oxygen production device 23 to the secondary recirculation system 14 as secondary oxygen. An oxygen mixing system path 24 is provided, and an oxygen flow rate controller (not shown) is disposed in the secondary oxygen mixing system path 24. Here, in the illustrated example, the case where the secondary oxygen is supplied to the secondary recirculation system 14 on the downstream side of the air preheater 9 is exemplified, but the secondary oxygen may be supplied to the upstream side of the air preheater 9.
 また、全体構成には、酸素製造装置23で製造した酸素の他の一部を、ダイレクト供給酸素としてバーナ6に直接供給するダイレクト供給系路25が設けられており、該ダイレクト供給系路25にはダイレクト供給量調節器(図示せず)が備えられている。 Further, the overall configuration is provided with a direct supply system path 25 for directly supplying other part of the oxygen produced by the oxygen production apparatus 23 to the burner 6 as direct supply oxygen. Is provided with a direct supply amount regulator (not shown).
 更に、全体構成には、酸素製造装置23で製造した酸素の残りをボイラ4の二段燃焼用ポート7に供給するよう、二次酸素混合系路24及びダイレクト供給系路25への分岐位置までの間から分岐する酸素供給系路26が備えられており、酸素供給系路26は、中途位置から第一の分岐酸素供給系路26a、第二の分岐酸素供給系路26b、第三の分岐酸素供給系路26c、第四の分岐酸素供給系路26dに分岐し、第一の分岐再循環系路19a、第二の分岐再循環系路19b、第三の分岐再循環系路19c、第四の分岐再循環系路19dに接続されている。また、酸素供給系路26には、上流側に全体の酸素流量調節器27が備えられると共に、下流側に全体の酸素濃度計28が配置され、第一の分岐酸素供給系路26a、第二の分岐酸素供給系路26b、第三の分岐酸素供給系路26c、第四の分岐酸素供給系路26dには、夫々、酸素流量個別調節器29a,29b,29c,29dが備えられている。なお、図1中、酸素供給系路26はAでつながることを示し、分岐酸素供給系路26a,26b,26c,26dは符号26aで示し、酸素流量個別調節器29a,29b,29c,29dは符号29aで示している。 Further, the overall configuration includes a branching position to the secondary oxygen mixing system path 24 and the direct supply system path 25 so that the remaining oxygen produced by the oxygen production apparatus 23 is supplied to the two-stage combustion port 7 of the boiler 4. The oxygen supply system path 26 branches from between the first branch oxygen supply system path 26a, the second branch oxygen supply system path 26b, and the third branch from the middle position. Branches into the oxygen supply system path 26c and the fourth branch oxygen supply system path 26d, the first branch recirculation system path 19a, the second branch recirculation system path 19b, the third branch recirculation system path 19c, The four branch recirculation paths 19d are connected. Further, the oxygen supply system path 26 is provided with an entire oxygen flow rate regulator 27 on the upstream side, and an entire oxygen concentration meter 28 is disposed on the downstream side, and the first branch oxygen supply system path 26a and the second oxygen supply system path 26a. The branch oxygen supply system path 26b, the third branch oxygen supply system path 26c, and the fourth branch oxygen supply system path 26d are respectively provided with individual oxygen flow rate regulators 29a, 29b, 29c, and 29d. In FIG. 1, the oxygen supply system path 26 is connected by A, the branched oxygen supply system paths 26a, 26b, 26c, and 26d are denoted by reference numeral 26a, and the oxygen flow rate individual controllers 29a, 29b, 29c, and 29d are This is indicated by reference numeral 29a.
 ここで、三次再循環系路19の第三流量調節器20、第一の分岐再循環系路19aの流量個別調節器21a、第二の分岐再循環系路19bの流量個別調節器21b、第三の分岐再循環系路19cの流量個別調節器21c、第四の分岐再循環系路19dの流量個別調節器21d、及び、酸素供給系路26の全体の酸素流量調節器27、第一の分岐酸素供給系路26aの酸素流量個別調節器29a、第二の分岐酸素供給系路26bの酸素流量個別調節器29b、第三の分岐酸素供給系路26cの酸素流量個別調節器29c、第四の分岐酸素供給系路26dの酸素流量個別調節器29dは、全て制御部30に接続されると共に、制御部30は、排ガスライン8でボイラ4と空気予熱器9の間に配置されるNOx濃度計31、酸素供給系路26の酸素濃度計28、第一の分岐再循環系路19aの個別の酸素濃度計22a、第二の分岐再循環系路19bの個別の酸素濃度計22b、第三の分岐再循環系路19cの個別の酸素濃度計22c、第四の分岐再循環系路19dの個別の酸素濃度計22d等の信号に基づいて夫々の調節器20,21a~21d,27,29a~29dを制御するように処理手段Sa、Sbを備えている。ここで、制御部30に入力される信号は、他のデータでも良く、ボイラ4の状況に対応して夫々の調節器20,21a~21d,27,29a~29dを制御するならば特に限定されるものではない。 Here, the third flow regulator 20 of the tertiary recirculation system 19, the individual flow controller 21 a of the first branch recirculation system 19 a, the individual flow controller 21 b of the second branch recirculation system 19 b, The individual flow rate regulator 21c of the third branch recirculation path 19c, the individual flow rate regulator 21d of the fourth branch recirculation path 19d, and the overall oxygen flow rate regulator 27 of the oxygen supply path 26, the first An oxygen flow rate individual controller 29a of the branch oxygen supply system path 26a, an oxygen flow rate individual controller 29b of the second branch oxygen supply system path 26b, an oxygen flow rate individual controller 29c of the third branch oxygen supply system path 26c, a fourth The individual oxygen flow rate regulators 29d of the branched oxygen supply system 26d are all connected to the control unit 30, and the control unit 30 is connected to the NOx concentration between the boiler 4 and the air preheater 9 in the exhaust gas line 8. 31 in total, oxygen in the oxygen supply line 26 The concentration meter 28, the individual oxygen concentration meter 22a of the first branch recirculation system 19a, the individual oxygen concentration meter 22b of the second branch recirculation system 19b, and the individual of the third branch recirculation system 19c The processing means Sa is controlled so as to control the respective regulators 20, 21a to 21d, 27, 29a to 29d on the basis of signals from the oxygen concentration meter 22c and the individual oxygen concentration meters 22d of the fourth branch recirculation system 19d. , Sb. Here, the signal input to the control unit 30 may be other data, and is particularly limited if each of the regulators 20, 21a to 21d, 27, 29a to 29d is controlled in accordance with the situation of the boiler 4. It is not something.
 次に、上記図示例の作用を説明する。 Next, the operation of the illustrated example will be described.
 ボイラ4においては、コールバンカ1に貯留された石炭が給炭機2によりミル3へ投入され、該ミル3において石炭が微粉砕され微粉炭にされると共に、押込通風機11(FDF)により排ガス処理装置10の下流から取り出した排ガスの一部である一次再循環排ガスが一次再循環系路12によりミル3内へ導入され、一次再循環排ガスによりミル3へ投入される石炭の乾燥が行われつつ、微粉砕された微粉炭がボイラ4のバーナ6へ搬送される。 In the boiler 4, the coal stored in the coal bunker 1 is input to the mill 3 by the coal feeder 2, and the coal is pulverized and pulverized into the coal in the mill 3, and the exhaust gas treatment is performed by the forced air blower 11 (FDF). The primary recirculated exhaust gas, which is part of the exhaust gas taken out from the downstream of the apparatus 10, is introduced into the mill 3 through the primary recirculation system 12, and the coal fed into the mill 3 is dried by the primary recirculated exhaust gas. The finely pulverized coal is conveyed to the burner 6 of the boiler 4.
 一方、ボイラ4のウィンドボックス5には、前記押込通風機11からの排ガスの他の一部が二次再循環排ガスとして二次再循環系路14によって供給されると共に、ボイラ4の二段燃焼用ポート7には、二次再循環系路14で供給される二次再循環ガス(排ガス)の一部が三次再循環系路19及び夫々の分岐再循環系路19a,19b,19c,19dによって供給される。 On the other hand, the wind box 5 of the boiler 4 is supplied with another part of the exhaust gas from the forced air blower 11 as a secondary recirculation exhaust gas by the secondary recirculation system 14 and the two-stage combustion of the boiler 4. A part of the secondary recirculation gas (exhaust gas) supplied through the secondary recirculation path 14 is supplied to the port 7 for the tertiary recirculation path 19 and the respective branch recirculation paths 19a, 19b, 19c, 19d. Supplied by
 また、酸素製造装置23で製造した酸素の一部が二次酸素混合系路24によって前記二次再循環系路14に供給されると共に、酸素製造装置23からの酸素の他の一部がダイレクト供給系路25によって前記バーナ6に直接供給され、更に、酸素製造装置23からの酸素の残りが酸素供給系路26及び夫々の分岐酸素供給系路26a,26b,26c,26dを介して対応の夫々の分岐再循環系路19a,19b,19c,19dによって供給される。ここで、酸素供給系路26等を介して二段燃焼用ポート7に供給する酸素は、排ガスと共に供給しても良いし、排ガスと混合することなく直接供給しても良い。 Further, a part of the oxygen produced by the oxygen production apparatus 23 is supplied to the secondary recirculation system 14 by the secondary oxygen mixing system 24, and another part of the oxygen from the oxygen production apparatus 23 is directly supplied. The oxygen is supplied directly to the burner 6 by the supply system 25, and the remaining oxygen from the oxygen production apparatus 23 is further supplied via the oxygen supply system 26 and the respective branched oxygen supply systems 26a, 26b, 26c, 26d. Supplied by the respective branch recirculation paths 19a, 19b, 19c, 19d. Here, the oxygen supplied to the two-stage combustion port 7 via the oxygen supply system 26 or the like may be supplied together with the exhaust gas or may be supplied directly without being mixed with the exhaust gas.
 従って、ミル3から一次再循環排ガスによってバーナ6に供給された微粉炭は、酸素が混合されてウィンドボックス5に供給される二次再循環ガスと、バーナ6に直接供給されるダイレクト供給酸素と、酸素が混合されて二段燃焼用ポート7に供給される排ガスとにより燃焼される。燃焼によって生じた排ガスは、空気予熱器9により一次再循環排ガス及び二次再循環排ガスを予熱し、更に排ガス処理装置10により処理された後、一部は押込通風機11と回収装置16に導かれ、残りは誘引通風機17(IDF)により誘引されて煙突18から大気放出される。前記回収装置16に取り入れられた排ガスはCO等の回収が行われる。 Accordingly, the pulverized coal supplied from the mill 3 to the burner 6 by the primary recirculation exhaust gas is mixed with the secondary recirculation gas supplied to the wind box 5 after being mixed with oxygen, and the direct supply oxygen supplied directly to the burner 6. And the exhaust gas mixed with oxygen and supplied to the two-stage combustion port 7 is combusted. The exhaust gas generated by combustion preheats the primary recirculation exhaust gas and the secondary recirculation exhaust gas by the air preheater 9, and further, after being processed by the exhaust gas treatment device 10, a part thereof is introduced to the forced draft fan 11 and the recovery device 16. The remainder is attracted by the induction fan 17 (IDF) and released from the chimney 18 to the atmosphere. The exhaust gas taken into the recovery device 16 is recovered such as CO 2 .
 ここで、ボイラ4の燃焼状態は、種々の条件によって変化するため、ボイラ4の燃焼状態によるNOxの濃度、排ガスのCO等の未燃分、火炉収熱を調整し得るよう、制御部30の制御手段Saにおいて、NOx濃度計31、酸素供給系路26の酸素濃度計28、夫々の分岐再循環系路19a,19b,19c,19dの個別の酸素濃度計22a,22b,22c,22dからデータを集めると共に、操作者の要求等を含めてボイラ4の燃焼状態を判断し、制御部30の制御手段Sbにより、三次再循環系路19の第三流量調節器20、夫々の分岐再循環系路の流量個別調節器21a,21b,21c,21d、酸素供給系路26の全体の酸素流量調節器27、夫々の分岐酸素供給系路26a,26b,26c,26dの酸素流量個別調節器29a,29b,29c,29dを調整して二段燃焼用ポート7への酸素の供給量を制御する。 Here, since the combustion state of the boiler 4 varies depending on various conditions, the control unit 30 can adjust the NOx concentration, the unburned amount of the exhaust gas such as CO, and the furnace heat recovery, depending on the combustion state of the boiler 4. In the control means Sa, data is obtained from the NOx concentration meter 31, the oxygen concentration meter 28 of the oxygen supply system 26, and the individual oxygen concentration meters 22a, 22b, 22c, 22d of the respective branch recirculation systems 19a, 19b, 19c, 19d. And determining the combustion state of the boiler 4 including the operator's request and the like, and the control means Sb of the control unit 30 controls the third flow rate regulator 20 of the tertiary recirculation system 19 to each branch recirculation system. Individual flow rate regulators 21a, 21b, 21c, 21d, oxygen flow rate regulator 27 for the entire oxygen supply system 26, and individual oxygen flow rate regulators 26a, 26b, 26c, 26d for each branch oxygen supply system 9a, 29b, 29c, and controls the supply amount of oxygen to adjust the 29d to the two-stage combustion port 7.
 具体的には、排ガスの未燃分が許容値であって全体のNOx濃度を下げる要求がある場合(ステップSa1)には、酸素供給系路26の酸素濃度計28を測定しつつ、第三流量調節器20、酸素流量調節器27を操作して二段燃焼用ポート7へ供給する酸素を減らし(ステップSb1)、酸素濃度を減少させて全体のNOx濃度を下げる。また、ボイラ4の全体の収熱を上げる要求がある場合(ステップSa2)や、全体の排ガスに含まれる未燃分の排出量を下げる要求がある場合(ステップSa3)には、酸素供給系路26の酸素濃度計28を測定しつつ、第三流量調節器20、酸素流量調節器27を操作して二段燃焼用ポート7へ供給する酸素を増やし(ステップSb2)、酸素濃度を増加させてボイラ4の全体の収熱を上げ、若しくは全体の排ガスに含まれる未燃分の排出量を下げる。 Specifically, when the unburned amount of the exhaust gas is an allowable value and there is a request to reduce the total NOx concentration (step Sa1), the oxygen concentration meter 28 in the oxygen supply system path 26 is measured, and the third The flow rate regulator 20 and the oxygen flow rate regulator 27 are operated to reduce the oxygen supplied to the two-stage combustion port 7 (step Sb1), and the oxygen concentration is reduced to lower the overall NOx concentration. Further, when there is a request to increase the overall heat recovery of the boiler 4 (step Sa2) or when there is a request to reduce the amount of unburned components contained in the entire exhaust gas (step Sa3), the oxygen supply path While measuring the oxygen concentration meter 28 of 26, the third flow rate regulator 20 and the oxygen flow rate regulator 27 are operated to increase the oxygen supplied to the two-stage combustion port 7 (step Sb2), and the oxygen concentration is increased. Increase the overall heat recovery of the boiler 4 or reduce the amount of unburned emissions contained in the entire exhaust gas.
 また、排ガスの未燃分が許容値であってボイラ4の火炉の一部分(特に炉幅方向)でNOx濃度を下げる要求がある場合(ステップSa4)には、夫々の分岐酸素供給系路26a,26b,26c,26dの酸素濃度計22a,22b,22c,22dを測定しつつ、対応の流量個別調節器21a,21b,21c,21d、夫々の酸素流量個別調節器29a,29b,29c,29dを操作して二段燃焼用ポート7のポート部へ供給する酸素を減らし(ステップSb3)、酸素濃度を減少させてボイラ4の火炉の一部分(特に炉幅方向)でNOx濃度を下げる。更に、ボイラ4の火炉の一部分で収熱を上げる要求がある場合(ステップSa5)や、火炉の一部分で排ガスに含まれる未燃分の排出量を下げる要求がある場合(ステップSa6)には、夫々の分岐酸素供給系路26a,26b,26c,26dの酸素濃度計22a,22b,22c,22dを測定しつつ、対応の流量個別調節器21a,21b,21c,21d、夫々の酸素流量個別調節器29a,29b,29c,29dを操作して二段燃焼用ポート7へ供給する酸素を増やし(ステップSb4)、酸素濃度を増加させてボイラ4の火炉の一部分で収熱を上げ、若しくはボイラ4の火炉の一部分で排ガスに含まれる未燃分の排出量を下げる。 Further, when the unburned amount of the exhaust gas is an allowable value and there is a request to reduce the NOx concentration in a part of the furnace of the boiler 4 (particularly in the furnace width direction) (step Sa4), the respective branched oxygen supply lines 26a, While measuring the oxygen concentration meters 22a, 22b, 22c, and 22d of 26b, 26c, and 26d, the corresponding individual flow rate controllers 21a, 21b, 21c, and 21d, and the respective oxygen flow rate individual controllers 29a, 29b, 29c, and 29d are provided. By operating, the oxygen supplied to the port portion of the two-stage combustion port 7 is reduced (step Sb3), the oxygen concentration is reduced, and the NOx concentration is lowered in a part of the furnace of the boiler 4 (particularly in the furnace width direction). Furthermore, when there is a request to increase the heat collection in a part of the furnace of the boiler 4 (step Sa5), or when there is a request to reduce the amount of unburned components contained in the exhaust gas in a part of the furnace (step Sa6), While measuring the oxygen concentration meters 22a, 22b, 22c, and 22d of the respective branched oxygen supply lines 26a, 26b, 26c, and 26d, the corresponding individual flow rate controllers 21a, 21b, 21c, and 21d, and the respective oxygen flow rate individual adjustments The oxygen supplied to the two-stage combustion port 7 is increased by operating the vessels 29a, 29b, 29c, 29d (step Sb4), and the oxygen concentration is increased to increase the heat recovery in a part of the furnace of the boiler 4, or the boiler 4 The amount of unburned matter contained in the exhaust gas is reduced in a part of the furnace.
 また、本発明者らは、微粉炭を酸素燃焼する試験ボイラにおいて、二段燃焼用ポート7へ供給する酸素濃度を調整した際には、図4に示す試験結果を得ており、図4に示す如く、二段燃焼用ポート7への酸素濃度を下げた場合にはNOx濃度を減らすようにNOx濃度の制御が可能となり、また、二段燃焼用ポート7への酸素濃度を上げた場合には排ガス中の未燃分の排出量を少なくした燃焼が可能となることを明らかにしている。 Further, the present inventors have obtained the test results shown in FIG. 4 when adjusting the oxygen concentration supplied to the two-stage combustion port 7 in the test boiler for oxygen combustion of pulverized coal. As shown, the NOx concentration can be controlled so as to reduce the NOx concentration when the oxygen concentration to the two-stage combustion port 7 is lowered, and the oxygen concentration to the two-stage combustion port 7 is raised. Reveals that combustion with less unburned emissions in the exhaust gas becomes possible.
 このように、バーナ6と二段燃焼用ポート7とを配設したボイラ4において、二段燃焼用ポート7から酸素を供給して酸素濃度を調整し、排ガスのNOx濃度、排ガスの未燃分の排出量、火炉の収熱を制御することができる。 Thus, in the boiler 4 in which the burner 6 and the two-stage combustion port 7 are arranged, oxygen is supplied from the two-stage combustion port 7 to adjust the oxygen concentration, and the NOx concentration of the exhaust gas and the unburned content of the exhaust gas are adjusted. Emissions and furnace heat recovery can be controlled.
 また、実施の形態例において、排ガスの未燃分が許容値であって全体のNOx濃度を下げる場合には、流量調節器により二段燃焼用ポート7への再循環排ガス量を増やす方向に調整して二段燃焼用ポート7への酸素濃度を減少させ、ボイラ4の全体の収熱を上げる場合や全体の排ガスの未燃分を下げる場合には、流量調節器により二段燃焼用ポート7への再循環排ガス量を減らす方向に調整して二段燃焼用ポート7への酸素濃度を増加させるように構成すると、二段燃焼用ポート7から酸素を供給して酸素濃度を的確に調整するので、排ガスのNOx濃度、排ガスの未燃分の排出量、火炉の収熱を好適に制御することができる。 Further, in the embodiment, when the unburned amount of the exhaust gas is an allowable value and the total NOx concentration is lowered, the amount of recirculated exhaust gas to the second stage combustion port 7 is adjusted to increase by the flow rate regulator. In the case where the oxygen concentration to the two-stage combustion port 7 is decreased to increase the overall heat recovery of the boiler 4 or to reduce the unburned portion of the entire exhaust gas, the two-stage combustion port 7 is controlled by the flow controller. If the oxygen concentration to the second-stage combustion port 7 is increased by adjusting the amount of exhaust gas to be recycled to the second-stage combustion port, oxygen is supplied from the second-stage combustion port 7 to accurately adjust the oxygen concentration. Therefore, it is possible to suitably control the NOx concentration of the exhaust gas, the amount of unburned exhaust gas, and the heat recovery of the furnace.
 更に、実施の形態例において、ボイラ4に配設された二段燃焼用ポート7を複数にし、二段燃焼用ポート7ごとに酸素濃度を調整するように複数の分岐酸素供給系路26a,26b,26c,26dを備えると、ボイラ4の火炉の一部分でNOx濃度を下げる場合、ボイラ4の火炉の一部分で収熱を上げる場合、火炉の一部分で排ガスに含まれる未燃分の排出量を下げる場合に対応して夫々の分岐酸素供給系路26a,26b,26c,26dから酸素を供給し、夫々の酸素濃度を的確に調整し得るので、排ガスのNOx濃度、排ガスの未燃分の排出量、火炉の収熱を一層好適に制御することができる。 Furthermore, in the embodiment, a plurality of two-stage combustion ports 7 provided in the boiler 4 are provided, and a plurality of branch oxygen supply lines 26a, 26b are provided so as to adjust the oxygen concentration for each of the two-stage combustion ports 7. , 26c, 26d, when lowering the NOx concentration in a part of the furnace of the boiler 4, increasing the heat recovery in a part of the furnace of the boiler 4, lowering the amount of unburned emissions contained in the exhaust gas in a part of the furnace Corresponding to the case, oxygen can be supplied from the respective branched oxygen supply paths 26a, 26b, 26c, and 26d, and the respective oxygen concentrations can be adjusted accurately, so that the NOx concentration of exhaust gas and the unburned amount of exhaust gas are discharged. Further, the heat recovery of the furnace can be controlled more suitably.
 また、二次再循環系路14で供給される排ガスの一部をボイラ4の二段燃焼用ポート7に供給する三次再循環系路19を備えると、二段燃焼用ポート7へ酸素を容易に制御して酸素濃度を調整するので、排ガスのNOx濃度、排ガスの未燃分の排出量、火炉の収熱を簡易且つ的確に制御することができる。 In addition, when a tertiary recirculation path 19 for supplying a part of the exhaust gas supplied from the secondary recirculation path 14 to the second stage combustion port 7 of the boiler 4 is provided, oxygen is easily supplied to the second stage combustion port 7. Therefore, the NOx concentration of the exhaust gas, the amount of unburned exhaust gas discharged, and the heat recovery of the furnace can be controlled easily and accurately.
 尚、本発明の酸素燃焼ボイラの排ガス制御方法及び装置は、上述の図示例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。 The exhaust gas control method and apparatus for an oxyfuel boiler according to the present invention are not limited to the illustrated examples described above, and various modifications may be made without departing from the scope of the present invention.

Claims (12)

  1.  バーナと二段燃焼用ポートとを配設したボイラと、該ボイラから排出されて再循環する排ガスの一部を一次再循環排ガスとしてミルへ導入し、該ミルで粉砕された微粉炭を前記一次再循環排ガスによりボイラのバーナへ供給する一次再循環系路と、再循環する排ガスの他の一部をボイラのウィンドボックスに供給する二次再循環系路と、酸素製造装置と、該酸素製造装置で製造した酸素の一部を前記バーナに直接供給するダイレクト供給系路と、該酸素製造装置で製造した酸素の他の一部を前記二次再循環系路に供給する二次酸素混合系路とを有する酸素燃焼ボイラの排ガス制御方法であって、前記ボイラの二段燃焼用ポートに対し、酸素を供給して酸素濃度を調整することからなる酸素燃焼ボイラの排ガス制御方法。 A boiler provided with a burner and a two-stage combustion port, a part of the exhaust gas discharged from the boiler and recirculated is introduced into the mill as a primary recirculation exhaust gas, and the pulverized coal pulverized in the mill is A primary recirculation system that supplies the boiler burner with recirculated exhaust gas, a secondary recirculation system that supplies another part of the recirculated exhaust gas to the boiler wind box, an oxygen production apparatus, and the oxygen production A direct supply system for directly supplying a part of oxygen produced by the apparatus to the burner, and a secondary oxygen mixed system for supplying another part of oxygen produced by the oxygen production apparatus to the secondary recirculation system An exhaust gas control method for an oxyfuel boiler having a passage, wherein the oxygen concentration is adjusted by supplying oxygen to a two-stage combustion port of the boiler.
  2.  排ガスの未燃分が許容値であって全体のNOx濃度を下げる場合には、二段燃焼用ポートへの再循環排ガス量を増やす方向に調整して二段燃焼用ポートへの酸素濃度を減少させ、ボイラの全体の収熱を上げる場合や全体の排ガスの未燃分を下げる場合には、二段燃焼用ポートへの再循環排ガス量を減らす方向に調整して二段燃焼用ポートへの酸素濃度を増加させる請求項1に記載の酸素燃焼ボイラの排ガス制御方法。 When the unburned amount of exhaust gas is an allowable value and the overall NOx concentration is lowered, the oxygen concentration at the two-stage combustion port is decreased by adjusting the direction to increase the amount of recirculated exhaust gas to the two-stage combustion port. When increasing the overall heat recovery of the boiler or decreasing the unburned content of the entire exhaust gas, adjust the direction to reduce the amount of exhaust gas recirculated to the two-stage combustion port and adjust the amount to the two-stage combustion port. The exhaust gas control method for an oxyfuel boiler according to claim 1, wherein the oxygen concentration is increased.
  3.  ボイラに配設された複数の二段燃焼用ポートに対し、二段燃焼用ポートごとに酸素濃度を調整する請求項1又は2に記載の酸素燃焼ボイラの排ガス制御方法。 3. The exhaust gas control method for an oxyfuel boiler according to claim 1, wherein the oxygen concentration is adjusted for each of the two-stage combustion ports with respect to the plurality of two-stage combustion ports arranged in the boiler.
  4.  二次再循環系路で供給される排ガスの一部をボイラの二段燃焼用ポートに供給する請求項1に記載の酸素燃焼ボイラの排ガス制御方法。 2. The exhaust gas control method for an oxyfuel boiler according to claim 1, wherein a part of the exhaust gas supplied through the secondary recirculation system is supplied to a two-stage combustion port of the boiler.
  5.  二次再循環系路で供給される排ガスの一部をボイラの二段燃焼用ポートに供給する請求項2に記載の酸素燃焼ボイラの排ガス制御方法。 3. The exhaust gas control method for an oxyfuel boiler according to claim 2, wherein a part of the exhaust gas supplied through the secondary recirculation system is supplied to a two-stage combustion port of the boiler.
  6.  二次再循環系路で供給される排ガスの一部をボイラの二段燃焼用ポートに供給する請求項3に記載の酸素燃焼ボイラの排ガス制御方法。 4. The exhaust gas control method for an oxyfuel boiler according to claim 3, wherein a part of the exhaust gas supplied through the secondary recirculation system is supplied to a two-stage combustion port of the boiler.
  7.  バーナと二段燃焼用ポートとを配設したボイラと、該ボイラから排出されて再循環する排ガスの一部を一次再循環排ガスとしてミルへ導入し、該ミルで粉砕された微粉炭を前記一次再循環排ガスによりボイラのバーナへ供給する一次再循環系路と、再循環する排ガスの他の一部をボイラのウィンドボックスに供給する二次再循環系路と、酸素製造装置と、該酸素製造装置で製造した酸素の一部を前記バーナに直接供給するダイレクト供給系路と、前記酸素製造装置で製造した酸素の他の一部を前記二次再循環系路に供給する二次酸素混合系路とを有する酸素燃焼ボイラの排ガス制御装置であって、前記ボイラの二段燃焼用ポートへ酸素を供給する酸素供給系路と、酸素供給系路に配置されて酸素濃度を調整する流量調節器とを備えたことを特徴とする酸素燃焼ボイラの排ガス制御装置。 A boiler provided with a burner and a two-stage combustion port, a part of the exhaust gas discharged from the boiler and recirculated is introduced into the mill as a primary recirculation exhaust gas, and the pulverized coal pulverized in the mill is A primary recirculation system that supplies the boiler burner with recirculated exhaust gas, a secondary recirculation system that supplies another part of the recirculated exhaust gas to the boiler wind box, an oxygen production apparatus, and the oxygen production A direct supply system for directly supplying a part of oxygen produced by the apparatus to the burner, and a secondary oxygen mixed system for supplying another part of oxygen produced by the oxygen production apparatus to the secondary recirculation system And an oxygen supply system for supplying oxygen to the two-stage combustion port of the boiler, and a flow controller for adjusting the oxygen concentration disposed in the oxygen supply system And provided that Exhaust gas control apparatus of an oxyfuel combustion boiler to symptoms.
  8.  排ガスの未燃分が許容値であって全体のNOx濃度を下げる場合には、流量調節器により二段燃焼用ポートへの再循環排ガス量を増やす方向に調整して二段燃焼用ポートへの酸素濃度を減少させ、ボイラの全体の収熱を上げる場合や全体の排ガスの未燃分を下げる場合には、流量調節器により二段燃焼用ポートへの再循環排ガス量を減らす方向に調整して二段燃焼用ポートへの酸素濃度を増加させるように構成した請求項7に記載の酸素燃焼ボイラの排ガス制御装置。 If the unburned amount of exhaust gas is an acceptable value and the overall NOx concentration is to be lowered, adjust the flow rate regulator to increase the amount of recirculated exhaust gas to the second-stage combustion port and adjust the amount to the second-stage combustion port. When decreasing the oxygen concentration and increasing the overall heat recovery of the boiler or reducing the unburned content of the entire exhaust gas, adjust the flow controller to reduce the amount of recirculated exhaust gas to the two-stage combustion port. The exhaust gas control device for an oxyfuel boiler according to claim 7, wherein the exhaust gas control device is configured to increase the oxygen concentration to the two-stage combustion port.
  9.  ボイラに配設された二段燃焼用ポートを複数にし、二段燃焼用ポートごとに酸素濃度を調整するように複数の分岐酸素供給系路を備えた請求項7又は8に記載の酸素燃焼ボイラの排ガス制御装置。 9. The oxyfuel boiler according to claim 7 or 8, further comprising a plurality of two-stage combustion ports arranged in the boiler and a plurality of branch oxygen supply systems so as to adjust the oxygen concentration for each of the two-stage combustion ports. Exhaust gas control device.
  10.  二次再循環系路で供給される排ガスの一部をボイラの二段燃焼用ポートに供給する三次再循環系路を備えた請求項7に記載の酸素燃焼ボイラの排ガス制御装置。 The exhaust gas control device for an oxyfuel boiler according to claim 7, further comprising a tertiary recirculation system for supplying a part of the exhaust gas supplied through the secondary recirculation system to the second stage combustion port of the boiler.
  11.  二次再循環系路で供給される排ガスの一部をボイラの二段燃焼用ポートに供給する三次再循環系路を備えた請求項8に記載の酸素燃焼ボイラの排ガス制御装置。 The exhaust gas control device for an oxyfuel boiler according to claim 8, further comprising a tertiary recirculation system for supplying a part of the exhaust gas supplied through the secondary recirculation system to a second-stage combustion port of the boiler.
  12.  二次再循環系路で供給される排ガスの一部をボイラの二段燃焼用ポートに供給する三次再循環系路を備えた請求項9に記載の酸素燃焼ボイラの排ガス制御装置。 The exhaust gas control apparatus for an oxyfuel boiler according to claim 9, further comprising a tertiary recirculation system for supplying a part of the exhaust gas supplied through the secondary recirculation system to the second stage combustion port of the boiler.
PCT/JP2008/000475 2008-03-06 2008-03-06 Method of controlling exhaust gas in oxygen combustion boiler and apparatus therefor WO2009110037A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP08720361.8A EP2251599B1 (en) 2008-03-06 2008-03-06 Method and apparatus of controlling exhaust gas in oxyfuel combustion boiler
JP2010501689A JP5208195B2 (en) 2008-03-06 2008-03-06 Exhaust gas control method and apparatus for oxyfuel boiler
US12/920,738 US8601960B2 (en) 2008-03-06 2008-03-06 Method and apparatus of controlling exhaust gas in oxyfuel combustion boiler
PL08720361T PL2251599T3 (en) 2008-03-06 2008-03-06 Method and apparatus of controlling exhaust gas in oxyfuel combustion boiler
CN2008801291098A CN102016419B (en) 2008-03-06 2008-03-06 Method of controlling exhaust gas in oxygen combustion boiler and apparatus therefor
ES08720361.8T ES2532503T3 (en) 2008-03-06 2008-03-06 Method and apparatus for the control of exhaust gas in an oxy-combustion boiler
AU2008352213A AU2008352213B2 (en) 2008-03-06 2008-03-06 Method and apparatus of controlling exhaust gas in oxyfuel combustion boiler
PCT/JP2008/000475 WO2009110037A1 (en) 2008-03-06 2008-03-06 Method of controlling exhaust gas in oxygen combustion boiler and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/000475 WO2009110037A1 (en) 2008-03-06 2008-03-06 Method of controlling exhaust gas in oxygen combustion boiler and apparatus therefor

Publications (1)

Publication Number Publication Date
WO2009110037A1 true WO2009110037A1 (en) 2009-09-11

Family

ID=41055619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/000475 WO2009110037A1 (en) 2008-03-06 2008-03-06 Method of controlling exhaust gas in oxygen combustion boiler and apparatus therefor

Country Status (8)

Country Link
US (1) US8601960B2 (en)
EP (1) EP2251599B1 (en)
JP (1) JP5208195B2 (en)
CN (1) CN102016419B (en)
AU (1) AU2008352213B2 (en)
ES (1) ES2532503T3 (en)
PL (1) PL2251599T3 (en)
WO (1) WO2009110037A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010107129A (en) * 2008-10-31 2010-05-13 Hitachi Ltd Oxygen burning boiler system and method of controlling the same
KR101175768B1 (en) 2010-09-16 2012-08-21 한국생산기술연구원 A pulverized coal pure oxygen burning system
CN103429956A (en) * 2010-11-16 2013-12-04 阿尔斯通技术有限公司 Apparatus and method of controlling thermal performance of oxygen-fired boiler
CN109690188A (en) * 2016-09-09 2019-04-26 Geesco有限公司 Boiler installations and its operating method

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009014223A1 (en) * 2009-03-25 2010-09-30 Hitachi Power Europe Gmbh Firing system of a designed for the oxyfuel operation steam generator
JP2012088016A (en) * 2010-10-22 2012-05-10 Babcock Hitachi Kk Oxygen combustion type boiler and method of operating the same
US9217338B2 (en) * 2010-12-23 2015-12-22 Cummins Intellectual Property, Inc. System and method for regulating EGR cooling using a rankine cycle
US20120244479A1 (en) * 2011-03-22 2012-09-27 General Electric Company Combustion System Using Recycled Flue Gas to Boost Overfire Air
JP5789146B2 (en) * 2011-07-13 2015-10-07 株式会社神戸製鋼所 Operation method of pulverized coal fired boiler facility and pulverized coal fired boiler facility
MX352998B (en) * 2012-03-14 2017-12-15 Ihi Corp Oxygen combustion boiler system.
CN103148504A (en) * 2013-04-11 2013-06-12 安徽华丰节能科技有限公司 Self-adaptive economic combustion control system
CN105546517A (en) * 2016-01-29 2016-05-04 董龙标 Low-oxygen low-nitrogen combustion system for coal-fired chain grate boiler
CN105546522A (en) * 2016-01-29 2016-05-04 广东工业大学 Energy-saving and environment-friendly combustion system of layer-burning boiler
CN105546523B (en) * 2016-02-02 2018-08-14 王立臣 The system of pulverized coal boiler pure oxygen burning minimum discharge
CN105509036B (en) * 2016-02-02 2018-08-14 王立臣 Pulverized coal boiler pure oxygen burning system of the nitrogen-free without CO2 emission
CN105509033B (en) * 2016-02-02 2018-06-29 王立臣 Pulverized-coal fired boiler polyoxy combustion product gases recirculating system
JP6225217B1 (en) * 2016-05-13 2017-11-01 三菱日立パワーシステムズ株式会社 Coal crusher, control device and control method thereof, and coal-fired thermal power plant

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5942452U (en) * 1982-09-11 1984-03-19 バブコツク日立株式会社 Denitrification combustion equipment
JPS62192044U (en) * 1986-05-20 1987-12-07
JPH0526409A (en) * 1991-07-16 1993-02-02 Babcock Hitachi Kk Carbon dioxide recoverying boiler
JPH05168853A (en) 1991-12-20 1993-07-02 Electric Power Dev Co Ltd Device for recovering carbon dioxide of boiler
JPH05231609A (en) 1991-05-28 1993-09-07 Hitachi Ltd Combustion device and operating method thereof
JPH06101809A (en) * 1992-09-21 1994-04-12 Ishikawajima Harima Heavy Ind Co Ltd Boiler facility
JP2001235103A (en) 2000-02-21 2001-08-31 Babcock Hitachi Kk Oxygen burning boiler and its operating method
JP2007147162A (en) 2005-11-28 2007-06-14 Electric Power Dev Co Ltd Combustion control method and device for oxygen burning boiler

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5942452A (en) 1982-09-02 1984-03-09 Sekisui Chem Co Ltd Manufacture of reagent carrier for immunochemical measurement
JPS62192044A (en) 1986-02-18 1987-08-22 Hitachi Chem Co Ltd Substrate for optical disk recording medium
JPH04244504A (en) 1991-01-30 1992-09-01 Central Res Inst Of Electric Power Ind Carbon dioxide recovery type coal thermal power system
JP3038073B2 (en) 1991-12-20 2000-05-08 電源開発株式会社 How to reduce N2O in fluidized bed boilers
JP3338555B2 (en) 1994-05-24 2002-10-28 電源開発株式会社 Combustion burner for carbon dioxide recovery type exhaust gas recirculation boiler equipment
US6029588A (en) * 1998-04-06 2000-02-29 Minergy Corp. Closed cycle waste combustion
JP4161515B2 (en) 2000-05-30 2008-10-08 株式会社Ihi Exhaust gas oxygen concentration control method and apparatus for oxyfuel boiler equipment
US6935251B2 (en) 2002-02-15 2005-08-30 American Air Liquide, Inc. Steam-generating combustion system and method for emission control using oxygen enhancement
EP1537362B1 (en) * 2002-05-15 2016-03-16 Praxair Technology, Inc. Low nox combustion
WO2004042276A2 (en) * 2002-10-30 2004-05-21 Krebs & Sisler Lp A method and apparatus to conduct oxygen-enriched combustion
DE102005009957B4 (en) 2005-03-04 2007-02-01 Martin GmbH für Umwelt- und Energietechnik Process for burning fuels, in particular waste
JP2007147161A (en) 2005-11-28 2007-06-14 Electric Power Dev Co Ltd Exhaust gas disposal method and device for combustion apparatus
US9651253B2 (en) * 2007-05-15 2017-05-16 Doosan Power Systems Americas, Llc Combustion apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5942452U (en) * 1982-09-11 1984-03-19 バブコツク日立株式会社 Denitrification combustion equipment
JPS62192044U (en) * 1986-05-20 1987-12-07
JPH05231609A (en) 1991-05-28 1993-09-07 Hitachi Ltd Combustion device and operating method thereof
JPH0526409A (en) * 1991-07-16 1993-02-02 Babcock Hitachi Kk Carbon dioxide recoverying boiler
JPH05168853A (en) 1991-12-20 1993-07-02 Electric Power Dev Co Ltd Device for recovering carbon dioxide of boiler
JPH06101809A (en) * 1992-09-21 1994-04-12 Ishikawajima Harima Heavy Ind Co Ltd Boiler facility
JP2001235103A (en) 2000-02-21 2001-08-31 Babcock Hitachi Kk Oxygen burning boiler and its operating method
JP2007147162A (en) 2005-11-28 2007-06-14 Electric Power Dev Co Ltd Combustion control method and device for oxygen burning boiler

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2251599A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010107129A (en) * 2008-10-31 2010-05-13 Hitachi Ltd Oxygen burning boiler system and method of controlling the same
KR101175768B1 (en) 2010-09-16 2012-08-21 한국생산기술연구원 A pulverized coal pure oxygen burning system
CN103429956A (en) * 2010-11-16 2013-12-04 阿尔斯通技术有限公司 Apparatus and method of controlling thermal performance of oxygen-fired boiler
CN103429956B (en) * 2010-11-16 2016-02-10 阿尔斯通技术有限公司 Control equipment and the method for the hot property of combustion oxygen boiler
CN109690188A (en) * 2016-09-09 2019-04-26 Geesco有限公司 Boiler installations and its operating method
CN109690188B (en) * 2016-09-09 2020-03-31 Geesco有限公司 Boiler plant and method of operating the same

Also Published As

Publication number Publication date
AU2008352213B2 (en) 2012-06-21
EP2251599B1 (en) 2014-12-24
JP5208195B2 (en) 2013-06-12
PL2251599T3 (en) 2015-05-29
AU2008352213A1 (en) 2009-09-11
ES2532503T3 (en) 2015-03-27
JPWO2009110037A1 (en) 2011-07-14
US8601960B2 (en) 2013-12-10
CN102016419A (en) 2011-04-13
EP2251599A1 (en) 2010-11-17
CN102016419B (en) 2013-02-06
EP2251599A4 (en) 2012-06-13
US20110132243A1 (en) 2011-06-09

Similar Documents

Publication Publication Date Title
JP5208195B2 (en) Exhaust gas control method and apparatus for oxyfuel boiler
JP5270661B2 (en) Exhaust gas control method and apparatus for oxyfuel boiler
JP5138028B2 (en) Oxygen supply control method and apparatus for oxyfuel boiler
JP4731293B2 (en) Combustion control method and apparatus for oxyfuel boiler
JP5107418B2 (en) Primary recirculation exhaust gas flow controller for oxyfuel boiler
EP2623861A1 (en) Combustion system and method for operating same
KR101249713B1 (en) Method and apparatus of controlling combustion in oxyfuel combustion boiler
JPWO2008143074A1 (en) Pulverized coal boiler, pulverized coal combustion method, pulverized coal fired thermal power generation system, and exhaust gas purification system of pulverized coal boiler
AU2011315008B2 (en) Boiler combustion system and operation method therefor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880129109.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08720361

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008352213

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2008720361

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010501689

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2008352213

Country of ref document: AU

Date of ref document: 20080306

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12920738

Country of ref document: US