JP4161344B2 - Steel shell joint structure - Google Patents

Steel shell joint structure Download PDF

Info

Publication number
JP4161344B2
JP4161344B2 JP2003186796A JP2003186796A JP4161344B2 JP 4161344 B2 JP4161344 B2 JP 4161344B2 JP 2003186796 A JP2003186796 A JP 2003186796A JP 2003186796 A JP2003186796 A JP 2003186796A JP 4161344 B2 JP4161344 B2 JP 4161344B2
Authority
JP
Japan
Prior art keywords
steel
steel shell
joint structure
end plate
concrete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003186796A
Other languages
Japanese (ja)
Other versions
JP2005023523A (en
Inventor
清数 久保田
充夫 田中
健太郎 森
吉生 安部
唯堅 趙
佳文 服部
篤敬 川畑
和臣 市川
秀昭 長山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
JFE Engineering Corp
Metropolitan Expressway Co Ltd
Original Assignee
Taisei Corp
JFE Engineering Corp
Metropolitan Expressway Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp, JFE Engineering Corp, Metropolitan Expressway Co Ltd filed Critical Taisei Corp
Priority to JP2003186796A priority Critical patent/JP4161344B2/en
Publication of JP2005023523A publication Critical patent/JP2005023523A/en
Application granted granted Critical
Publication of JP4161344B2 publication Critical patent/JP4161344B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Lining And Supports For Tunnels (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、隣接する鋼殻どうしを接合する鋼殻の接合部構造に関する。
【0002】
【従来の技術】
大断面のトンネルを構築する工法として、トンネル外殻部を複数のシールドマシンにより先行掘削し、次に、掘削した単体トンネル間を相互に連結してトンネル外殻部躯体を構築し、その後、トンネル外殻躯体内の土砂を掘削して大断面のトンネルを構築する工法がある。
この工法を、図8により説明する。まず、立坑の構築後、シールドマシンを掘進し、トンネル躯体となる外殻部を構成する単体トンネル31を構築する(図8(a))。次に、隣接する単体トンネル31の施工完了後、単体トンネルを構成する鋼殻の一部を撤去して単体トンネル間接続部32を施工する(図8(b))。
そして、鋼殻内にコンクリート33を打設して外殻部の躯体34を構築する(図8(c))。最後に掘削機械により、内部の土砂35を掘削して大断面トンネルを構築する(図8(d))。
【0003】
上記のように構築される大断面のトンネルにおいては、各単体トンネル31はその断面が鋼殻とコンクリート、または鋼殻と鉄筋コンクリートという合成構造であり、十分な強度を保持している。これに対して、各単体トンネル間接続部32は、鋼殻等がないのでそのままでは強度が小さい断面になってしまう。
また、単体トンネル間接続部32においては、各単体トンネルの掘進時における掘進誤差が組み合わさって三次元的な相対誤差を生ずる。このため、通常用いられている溶接接合や添接板を使用した摩擦接合などの接合方法では、施工的に困難であったり、要求強度が不足するという問題点がある。
【0004】
かかる問題点を解決するものとして、例えば特許文献1に示されるセグメントの接合部構造がある。図9はこの特許文献1に開示されたセグメントの接合部構造の断面図、図10はその要部の拡大図である。図9、図10に基づいて特許文献1に示されたセグメントの接合部構造を説明する。
【0005】
特許文献1に開示されたものは、大断面トンネルの周方向に隣接する鋼製セグメント41の端部間をセグメント接合金具42で接合するものである。
そして、セグメント接合金具42は、鋼製セグメント41,41の端部間に架け渡してあって、端部が鋼製セグメント41の周方向の端部に位置する横桁41bに形成された接合孔43にそれぞれ挿通してある長ボルト42aと、この長ボルト42aの両端部にそれぞれ順に取り付けてあって、かつ互いに協働して長ボルト42aの端部を横桁41bに対して任意の方向に自由に回転できるようにしている受け座金42bおよび当接座金42cと、長ボルト42aの両端部に当接座金42cの後から螺合してあって、長ボルト42aの端部を横桁41bに固定している固定ナット42dとを有して構成されている。
【0006】
そして、受け座金42bと当接座金42cとの当接部には凹曲面状の凹曲面部が形成されている。一方、当接座金42cの受け座金42bとの当接部には凹曲面部内を自由にスライドできるように凸曲面部が形成されている。
【0007】
鋼製セグメント41,41どうしが、セグメント接合金具42によって上記のように接合されていることにより、鋼製セグメント41どうしの三次元的な相対誤差を容易に吸収できて鋼製セグメント41どうしを容易に接合することができるとしている。
【0008】
【特許文献1】
特開平09−296693号公報
【0009】
【発明が解決しようとする課題】
従来技術では、セグメント或いは鋼製セグメントと呼称しているが、本発明では以降、鋼殻と呼称する。上記のように構成された特許文献1においては、各単体トンネル間の接合部の引っ張り力は主として各単体トンネルを構成する鋼殻(鋼製セグメント)間に亘って設置される長ボルト42aが負担することになる。そのため、長ボルト42aに作用する引張力を鋼殻41に確実に伝達する必要があり、鋼殻41と長ボルト42aをしっかりと締結する必要がある。
一方、鋼殻41どうしの三次元的な相対誤差を吸収できる構造でなければならない。
このように、長ボルト42aと鋼殻41とをしっかりと締結すると共に三次元的な相対誤差を吸収するという2つの要請を満たす必要があるのである。
そして、上記特許文献1においては、この要請を満たす構造として、凹曲面部を有する受け座金42b、凹曲面部内を自由にスライドする凸曲面部を有する当接座金42c、固定ナット42dを用いて、機械的に締結するという構成を採用したものである。
【0010】
しかしながら、特許文献1に開示された鋼殻の接合部構造では、機械的に締結するという構成であるため、凹曲面部を有する受け座金42b、凹曲面部内を自由にスライドする凸曲面部を有する当接座金42cを必要としており、これらを製作するためには特別な加工を必要とするため、製作コストがかさむという問題点があった。
【0011】
本発明はかかる課題を解決するためになされたものであり、特別な加工部材を必要とせずに、3次元的な施工誤差を吸収して、鋼殻どうしを確実にかつ容易に接合できる鋼殻の接合部構造を提供することを目的とする。
【0012】
【課題を解決するための手段】
本発明に係る鋼殻の接合部構造は、トンネル周方向に隣接する鋼殻間に鋼棒材を渡してその間にコンクリートを打設して鋼殻どうしを接合する鋼殻の接合部構造において、
隣接する鋼殻の端板に設けられた挿通孔と、両端部が前記挿通孔にそれぞれ3次元的に移動可能に挿通された鋼棒材と、該鋼棒材の挿通側の端部に固定されて鋼棒材に作用する引張力をコンクリートを介して端板に伝達する支圧板とを備え
前記挿通孔は複数の鋼棒材を挿通可能な長孔であることを特徴とするものである。
【0013】
また、トンネル周方向に隣接する鋼殻間に鋼棒材を渡してその間にコンクリートを打設して鋼殻どうしを接合する鋼殻の接合部構造において、
隣接する鋼殻を形成する主桁の端部に、溶接された補強板と、
該補強板によって端部側に移動不能に支持された端板と、
該端板に設けられた挿通孔と、
両端部が前記挿通孔にそれぞれ3次元的に移動可能に挿通された鋼棒材と、
該鋼棒材の挿通側の端部に固定されて鋼棒材に作用する引張力をコンクリートを介して前記端板に伝達する支圧板と、を備えたことを特徴とするものである。
さらに、挿通孔は複数の鋼棒材を挿通可能な長孔であることを特徴とするものである。
【0014】
また、各鋼棒材は、2本の鋼棒材を隣接する鋼殻の端板にそれぞれ挿通後に接合したものである。
【0015】
【発明の実施の形態】
図1は本発明の一実施の形態に係る鋼殻接合部構造の平面図、図2は図1の一部平断面図、図3は図2における矢視A−A断面図、図4は図2における矢視B−B断面図、図5は図2における矢視C−C断面図である。
【0016】
図1〜図5に基づいて本実施の形態の構成を説明する。図1において、1は所定の間隔を離して隣接する鋼殻の一部を示しており、これら隣接する鋼殻1が、継手構造3によって接合されている。
まず、単体トンネルを構成する鋼殻1について説明する。鋼殻1は、トンネル周方向に所定間隔を離して配置された板状の主桁5、主桁5と直角方向に所定間隔を離して複数配置された縦リブ7、主桁5と縦リブ7により構成された枠の底面に固着されスキンプレート9、隣接する鋼殻1の対向する各端部に設置された端板11を備えている。
【0017】
端板11には後述のネジ鉄筋15が挿通できると共に、挿通したネジ鉄筋15が3次元的に移動できる程度の余裕のある開口部11aが設けられている(図4参照)。
ここで、端板11の取付構造について説明する。主桁5の端部には複数の補強板12が溶接されており、これら補強板12の端面に端板11の片面側の周縁部を当接させている。つまり、端板11は、主桁5に固着されているのではなく、補強板12に当接することで鋼殻1の端部側に移動できないようにすることで、主桁5に取り付けられている。
【0018】
次に、所定間隔を離して設置された各鋼殻を接合する継手構造3について説明する。
本実施の形態における継手構造3は、隣り合う鋼殻1の対向する端板11に設けた開口部11aに挿通された複数本のネジ鉄筋15と、各ネジ鉄筋15の挿通端にダブル定着ナット17によって固定された支圧板19と、端板11と、補強板12と、フープ筋14を備え、各鋼殻1内にコンクリート16を充填してネジ鉄筋15と鋼殻1とを充填コンクリートを介して支圧接合したものである。
【0019】
上記のような構造であれば、開口部11aにネジ鉄筋15を挿通した状態で3次元的に移動できるので、単体トンネルを接合する場合において各単体トンネル間に3次元的な誤差があったとしても、隣接する鋼殻1を連結することができる。そして、ネジ鉄筋15と鋼殻1とは充填したコンクリート16によって確実に支圧接合される。
【0020】
なお、支圧板19と端板11間にあるコンクリート16は、ネジ鉄筋15への引張力載荷時に局部的な強圧縮力を受け、この圧縮力の作用方向と直交する方向に引張応力が働く場合がある。そこで、本実施の形態においては、支圧板19と端板11間にフープ筋14を配置して、引張力に対してフープ筋14で抵抗する構造にしているので、コンクリート16にひび割れが生ずるのを防止できる。
【0021】
なお、上記の例のネジ鉄筋15は接合する鋼殻1の両方に跨ったものを示したが、本発明はこれに限られるものではなく、2本に分割されたものを途中で連結するものであってもよい。
また、上記の例では、ネジ鉄筋15を2段にして配置した例を示したが、図6に示すように、開口部11aを長孔にして1段にしてもよい。
【0022】
図7は図6に示した1段タイプの接合構造のついての接合手順の説明図であり、側面断面方向(図3と同じ方向)から鋼殻1を見た状態を示している。なお、図7に示したものは、2本のネジ鉄筋を途中で連結するタイプのものである。以下、図7に基づいて鋼殻1の接合方法を説明する。
【0023】
まず、隣接する鋼殻1間に型枠プレート21を設置し、各鋼殻1間の土砂を取り除く。そして、各鋼殻1の端板11に設けた開口部11aにネジ鉄筋15をそれぞれ挿通する(図7(a))。
ネジ鉄筋15を挿通した後、各ネジ鉄筋15の一端部を接合部材23を用いて連結する。このとき、各ネジ鉄筋15は開口部11a内で3次元的に移動できるので、各鋼殻1に3次元的な位置の誤差があったとしても両者を接合することができる。
各ネジ鉄筋15を連結した後、各ネジ鉄筋15の露出長さ(端板11からネジ鉄筋15の挿通側端部までの長さ)Lを調節して、この露出長さLがコンクリート打設時に変化するのを防止するために、端板11の一方または両方に、ネジ鉄筋15仮付け溶接等で固定する(図7(b))。
【0024】
この後、ネジ鉄筋15の両端部分に所定の大きさの支圧板19を、ダブル定着ナット17で両側から挾持して固定し(図7(c))、鋼殻1内と単体トンネル間接続部25にコンクリート27を打設する(図7(d))。
ここで、所定の大きさの支圧板とは、ネジ鉄筋15に引張り力が作用したときに、この引張り力を端板11に確実に伝達するのに必要な大きさを有する支圧板をいう。
【0025】
コンクリート27が硬化すれば、鋼殻1どうしは一体化し、十分な強度を保持する。すなわち、引張力に対しては引張力に強いネジ鉄筋15が抵抗し、圧縮力に対しては圧縮力に強いコンクリート27が抵抗する鉄筋コンクリート構造が実現できる。
なお、引張力が作用したときに、ネジ鉄筋15が抵抗するためには、ネジ鉄筋15から鋼殻1に力を確実に伝達する必要があるが、この点、本実施の形態では、ネジ鉄筋15の力は支圧板19と端板11との間に挟まれたコンクリートの支圧力を介して端板11上に均等に載荷される。そして、端板11が主桁5に溶接した補強板20で支持されているので、ネジ鉄筋15からの力は鋼殻1の主桁5に確実に伝達されることになる。
なお、端板11は主桁5と縁が切られており、主桁5に曲げを伝達しない構造になっている。
【0026】
以上のように、本実施の形態によれば、従来技術で必要とした複雑な加工物が不要でありながら、隣接する鋼殻1間の3次元的な誤差を吸収できると共に隣接する鋼殻1を確実に接合することができる。
また、本実施の形態では、ネジ鉄筋15を挿通する挿通孔として、矩形状又は長孔状の開口部11aを設けたので、ネジ鉄筋15を容易に挿通でき作業性がよい。
さらに、ネジ鉄筋15を端板11に設けた開口部11aに挿通するようにしたことにより、ネジ鉄筋がトンネル断面外側付近に位置できることから、トンネル断面に作用する曲げモーメントに対して有効に機能する。
【0027】
もっとも、本発明における挿通孔は矩形状又は長孔状のものに限られず、ネジ鉄筋15を挿通したときに、ネジ鉄筋15を前後左右に移動して各鋼殻間の3次元的な位置の誤差を吸収できる程度の余裕のあるものであればよい。
【0028】
また、本実施の形態では、2本のネジ鉄筋15を隣接する各鋼殻1に挿通して、これを接合する構成を採用したので、鋼殻1内の縦リブ7が邪魔になりネジ鉄筋15を片方の鋼殻1内に深く挿通できない場合でも適用できる。
【0029】
なお、上記の実施の形態においては、鋼棒材の例としてネジ鉄筋を例に挙げたが、これに限らず通常の鉄筋、その他引張り力を負担できる鋼棒材であればよい。
【0030】
【発明の効果】
本発明においては、隣接する鋼殻の端板に設けられた挿通孔と、両端部が挿通孔にそれぞれ3次元的に移動可能に挿通された鋼棒材と、該鋼棒材の挿通側の端部に固定されて鋼棒材に作用する引張力をコンクリートを介して端板に伝達する支圧板とを備えたことにより、複雑な加工物が不要でありながら、隣接する鋼殻間の三次元的な誤差を吸収できると共に隣接する鋼殻どうしを確実に接合することができる。
【図面の簡単な説明】
【図1】 本発明の一実施の形態の平面図である。
【図2】 図1の一部平断面図である。
【図3】 図2の矢視A−A断面図である。
【図4】 図2の矢視B−B断面図である。
【図5】 図2の矢視C−C断面図である。
【図6】 本発明の一実施の形態における開口部の他の態様の説明図である。
【図7】 本発明の一実施の形態に係る接合部構造の施工手順の説明図である。
【図8】 大断面トンネルを構築する工程の説明図である。
【図9】 従来例の平面図である。
【図10】 従来例の要部の説明図である。
【符号の説明】
1 鋼殻
3 継手構造
11 端板
11a 開口部
15 ネジ鉄筋
19 支圧板
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a steel shell joint structure for joining adjacent steel shells.
[0002]
[Prior art]
As a method of constructing a tunnel with a large cross-section, the tunnel outer shell is pre-excavated with multiple shield machines, and then the tunnel outer shell is built by connecting the excavated single tunnels together. There is a method of constructing a tunnel with a large section by excavating the earth and sand in the outer shell.
This construction method will be described with reference to FIG. First, after the construction of the shaft, a shield machine is dug to construct a single tunnel 31 that constitutes an outer shell portion that becomes a tunnel housing (FIG. 8A). Next, after the construction of the adjacent single tunnel 31 is completed, a part of the steel shell constituting the single tunnel is removed, and the single tunnel connection portion 32 is constructed (FIG. 8B).
Then, the concrete 33 is placed in the steel shell to construct the outer shell housing 34 (FIG. 8C). Finally, a large cross-section tunnel is constructed by excavating the inner earth and sand 35 with an excavating machine (FIG. 8D).
[0003]
In the tunnel having a large cross section constructed as described above, each single tunnel 31 has a combined structure of a steel shell and concrete, or a steel shell and reinforced concrete, and has sufficient strength. On the other hand, since each single tunnel connection part 32 does not have a steel shell or the like, the cross-section has a low strength as it is.
Further, in the single tunnel connecting portion 32, the excavation error at the time of excavation of each single tunnel is combined to generate a three-dimensional relative error. For this reason, in the joining method such as the commonly used welding joining and friction joining using the attachment plate, there are problems that it is difficult in construction and the required strength is insufficient.
[0004]
As a solution to this problem, for example, there is a segment joint structure disclosed in Patent Document 1. FIG. 9 is a cross-sectional view of the segment joint structure disclosed in Patent Document 1, and FIG. 10 is an enlarged view of the main part thereof. The segment joint structure shown in Patent Document 1 will be described with reference to FIGS.
[0005]
What was disclosed by patent document 1 joins between the edge parts of the steel segments 41 adjacent to the circumferential direction of a large section tunnel with the segment joining metal fitting 42. FIG.
And the segment joining metal fitting 42 is spanned between the edge part of steel segments 41 and 41, Comprising: The edge part is formed in the cross beam 41b located in the edge part of the circumferential direction of the steel segment 41 43 are respectively attached to both ends of the long bolt 42a in order, and in cooperation with each other, the end of the long bolt 42a is arranged in an arbitrary direction with respect to the cross beam 41b. A receiving washer 42b and an abutting washer 42c that can be freely rotated are screwed into both ends of the long bolt 42a from the rear of the abutting washer 42c, and the end of the long bolt 42a is joined to the cross beam 41b. The fixing nut 42d is fixed.
[0006]
A concave curved surface portion is formed at the contact portion between the receiving washer 42b and the contact washer 42c. On the other hand, a convex curved surface portion is formed at the abutting portion of the abutting washer 42c with the receiving washer 42b so that it can slide freely within the concave curved surface portion.
[0007]
Since the steel segments 41 and 41 are joined together by the segment joint fitting 42 as described above, the three-dimensional relative error between the steel segments 41 can be easily absorbed and the steel segments 41 can be easily joined. It can be joined to.
[0008]
[Patent Document 1]
Japanese Patent Laid-Open No. 09-296693
[Problems to be solved by the invention]
In the prior art, it is called a segment or a steel segment, but in the present invention, it is hereinafter called a steel shell. In Patent Document 1 configured as described above, the pulling force of the joint portion between each single tunnel is mainly borne by the long bolt 42a installed across the steel shells (steel segments) constituting each single tunnel. Will do. Therefore, it is necessary to reliably transmit the tensile force acting on the long bolt 42a to the steel shell 41, and it is necessary to firmly fasten the steel shell 41 and the long bolt 42a.
On the other hand, the structure must be able to absorb the three-dimensional relative error between the steel shells 41.
Thus, it is necessary to satisfy the two requirements of firmly fastening the long bolt 42a and the steel shell 41 and absorbing a three-dimensional relative error.
And in the said patent document 1, as a structure which satisfy | fills this request | requirement, using the receiving washer 42b which has a concave curved surface part, the contact washer 42c which has the convex curved surface part which slides the inside of a concave curved surface part freely, and the fixing nut 42d, The structure of mechanically fastening is adopted.
[0010]
However, the steel shell joint structure disclosed in Patent Document 1 is configured to be mechanically fastened, and thus has a receiving washer 42b having a concave curved surface portion and a convex curved surface portion that slides freely within the concave curved surface portion. Since the contact washer 42c is required and special processing is required to manufacture these, there is a problem that the manufacturing cost is increased.
[0011]
The present invention has been made in order to solve such a problem, and does not require a special processing member, and absorbs a three-dimensional construction error so that the steel shells can be securely and easily joined to each other. An object of the present invention is to provide a joint structure.
[0012]
[Means for Solving the Problems]
The steel shell joint structure according to the present invention is a steel shell joint structure in which steel bars are placed between steel shells adjacent in the circumferential direction of the tunnel and concrete is placed between them to join the steel shells together.
Fixed to the insertion hole provided in the end plate of the adjacent steel shell, the steel bar inserted into the insertion hole so as to be movable in three dimensions, and the end on the insertion side of the steel bar And a bearing plate that transmits the tensile force acting on the steel bar to the end plate through the concrete ,
The insertion hole is a long hole through which a plurality of steel bars can be inserted.
[0013]
In addition, in the steel shell joint structure where steel rods are passed between steel shells adjacent in the tunnel circumferential direction and concrete is placed between them to join the steel shells together,
At the end of the main girder forming the adjacent steel shell,
An end plate supported immovably on the end side by the reinforcing plate;
An insertion hole provided in the end plate;
Steel bars each having both ends inserted through the insertion holes so as to be three-dimensionally movable,
And a bearing plate that is fixed to the end of the steel bar on the insertion side and transmits a tensile force acting on the steel bar through the concrete to the end plate.
Furthermore, the insertion hole is a long hole into which a plurality of steel bars can be inserted.
[0014]
In addition, each steel bar is obtained by joining two steel bars after passing through the end plates of adjacent steel shells.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
1 is a plan view of a steel shell joint structure according to an embodiment of the present invention, FIG. 2 is a partial cross-sectional view of FIG. 1, FIG. 3 is a cross-sectional view taken along line AA in FIG. 2 is a sectional view taken along the line BB in FIG. 2, and FIG. 5 is a sectional view taken along the line CC in FIG.
[0016]
The configuration of the present embodiment will be described with reference to FIGS. In FIG. 1, reference numeral 1 denotes a part of adjacent steel shells separated by a predetermined interval, and these adjacent steel shells 1 are joined by a joint structure 3.
First, the steel shell 1 constituting the single tunnel will be described. The steel shell 1 includes a plate-like main girder 5 arranged at a predetermined interval in the circumferential direction of the tunnel, a plurality of vertical ribs 7 arranged at a predetermined interval in the direction perpendicular to the main girder 5, and a main girder 5 and a vertical rib. 7 is provided with a skin plate 9 fixed to the bottom surface of the frame constituted by 7 and an end plate 11 installed at each opposing end of the adjacent steel shell 1.
[0017]
The end plate 11 is provided with a later-described screw rebar 15 and an opening 11a having a margin that allows the inserted screw rebar 15 to move three-dimensionally (see FIG. 4).
Here, the attachment structure of the end plate 11 will be described. A plurality of reinforcing plates 12 are welded to the end portions of the main girder 5, and a peripheral edge portion on one side of the end plate 11 is brought into contact with the end surfaces of the reinforcing plates 12. In other words, the end plate 11 is not fixed to the main beam 5 but is attached to the main beam 5 by preventing the end plate 11 from moving toward the end of the steel shell 1 by contacting the reinforcing plate 12. Yes.
[0018]
Next, the joint structure 3 for joining the steel shells installed at a predetermined interval will be described.
The joint structure 3 according to the present embodiment includes a plurality of screw rebars 15 inserted into opening portions 11 a provided in opposing end plates 11 of adjacent steel shells 1, and a double fixing nut at the insertion end of each screw rebar 15. The bearing plate 19 fixed by 17, the end plate 11, the reinforcing plate 12, and the hoop bars 14, each steel shell 1 is filled with concrete 16, and the screw rebar 15 and the steel shell 1 are filled with concrete. Via pressure bearing.
[0019]
With the structure as described above, since the screw rebar 15 is inserted through the opening 11a and can be moved three-dimensionally, it is assumed that there is a three-dimensional error between the individual tunnels when joining the single tunnels. Also, adjacent steel shells 1 can be connected. The screw rebar 15 and the steel shell 1 are securely supported and joined by the filled concrete 16.
[0020]
The concrete 16 between the bearing plate 19 and the end plate 11 receives a local strong compressive force when a tensile force is applied to the screw rebar 15, and a tensile stress acts in a direction perpendicular to the direction in which the compressive force acts. There is. Therefore, in the present embodiment, the hoop bar 14 is disposed between the bearing plate 19 and the end plate 11 so as to resist the tensile force by the hoop bar 14, so that the concrete 16 is cracked. Can be prevented.
[0021]
In addition, although the screw rebar 15 of said example showed what straddled both the steel shells 1 to join, this invention is not restricted to this, What connects in the middle what was divided | segmented into two It may be.
In the above example, the screw rebar 15 is arranged in two stages. However, as shown in FIG. 6, the opening 11a may be a long hole and may be arranged in one stage.
[0022]
FIG. 7 is an explanatory view of a joining procedure for the one-stage type joining structure shown in FIG. 6, and shows a state in which the steel shell 1 is viewed from the side cross-sectional direction (the same direction as FIG. 3). In addition, what was shown in FIG. 7 is a type which connects two screw rebars on the way. Hereinafter, the joining method of the steel shell 1 will be described with reference to FIG.
[0023]
First, the formwork plate 21 is installed between the adjacent steel shells 1, and the earth and sand between the steel shells 1 are removed. And the screw rebar 15 is each inserted in the opening part 11a provided in the end plate 11 of each steel shell 1 (Fig.7 (a)).
After inserting the screw rebar 15, one end of each screw rebar 15 is connected using the joining member 23. At this time, since each screw rebar 15 can be moved three-dimensionally within the opening 11a, even if each steel shell 1 has a three-dimensional positional error, both can be joined.
After connecting each screw rebar 15, the exposed length L of each screw rebar 15 (the length from the end plate 11 to the insertion-side end of the screw rebar 15) L is adjusted, and this exposed length L is placed in the concrete placement. In order to prevent the change from time to time, the end plate 11 is fixed to one or both of the end plates 11 by means of, for example, screw reinforcement 15 tack welding (FIG. 7B).
[0024]
After that, a bearing plate 19 of a predetermined size is fixed to both ends of the screw rebar 15 by holding it from both sides with a double fixing nut 17 (FIG. 7C), and the connection portion between the steel shell 1 and the single tunnel. Concrete 27 is placed on 25 (FIG. 7D).
Here, the pressure bearing plate having a predetermined size is a pressure bearing plate having a size necessary for reliably transmitting the tensile force to the end plate 11 when a tensile force acts on the screw rebar 15.
[0025]
If the concrete 27 hardens | cures, the steel shells 1 will be integrated and the sufficient intensity | strength will be hold | maintained. That is, it is possible to realize a reinforced concrete structure in which the screw rebar 15 that resists tensile force resists tensile force and the concrete 27 that resists compressive force resists compressive force.
In order to resist the screw rebar 15 when a tensile force is applied, it is necessary to reliably transmit the force from the screw rebar 15 to the steel shell 1. In this respect, in this embodiment, the screw rebar is used. The force 15 is loaded evenly on the end plate 11 through the support pressure of the concrete sandwiched between the support plate 19 and the end plate 11. Since the end plate 11 is supported by the reinforcing plate 20 welded to the main girder 5, the force from the screw rebar 15 is reliably transmitted to the main girder 5 of the steel shell 1.
The end plate 11 is cut off from the main girder 5 and has a structure that does not transmit bending to the main girder 5.
[0026]
As described above, according to the present embodiment, the three-dimensional error between the adjacent steel shells 1 can be absorbed while the complicated workpiece required in the prior art is unnecessary, and the adjacent steel shells 1 are absorbed. Can be reliably joined.
Moreover, in this Embodiment, since the rectangular or elongate opening part 11a was provided as an insertion hole which penetrates the screw rebar 15, the screw rebar 15 can be inserted easily and workability | operativity is good.
Further, since the screw rebar 15 is inserted through the opening 11a provided in the end plate 11, the screw rebar can be positioned in the vicinity of the outer side of the tunnel cross section, so that it effectively functions against a bending moment acting on the tunnel cross section. .
[0027]
However, the insertion hole in the present invention is not limited to a rectangular shape or a long hole shape, and when the screw rebar 15 is inserted, the screw rebar 15 is moved back and forth and left and right, and the three-dimensional position between the steel shells is changed. Any device that can afford to absorb the error may be used.
[0028]
Moreover, in this Embodiment, since the structure which inserts the two screw rebars 15 in each adjacent steel shell 1, and joins this was employ | adopted, the vertical rib 7 in the steel shell 1 becomes obstructive, and a screw rebar. 15 can be applied even when it cannot be inserted deeply into one steel shell 1.
[0029]
In the above-described embodiment, the screw rebar is taken as an example of the steel bar. However, the present invention is not limited to this, and any steel bar that can bear a tensile force may be used.
[0030]
【The invention's effect】
In the present invention, an insertion hole provided in an end plate of an adjacent steel shell, a steel bar member whose both ends are inserted into the insertion hole so as to be three-dimensionally movable, and an insertion side of the steel bar member It is equipped with a bearing plate that is fixed to the end and transmits the tensile force acting on the steel bar to the end plate via concrete, so that no complicated work is required, but the tertiary between adjacent steel shells. The original error can be absorbed and adjacent steel shells can be reliably joined together.
[Brief description of the drawings]
FIG. 1 is a plan view of an embodiment of the present invention.
FIG. 2 is a partial plan sectional view of FIG. 1;
3 is a cross-sectional view taken along the line AA in FIG. 2;
4 is a cross-sectional view taken along the line BB in FIG.
5 is a cross-sectional view taken along the line CC in FIG.
FIG. 6 is an explanatory diagram of another aspect of the opening in one embodiment of the present invention.
FIG. 7 is an explanatory diagram of a construction procedure for a joint structure according to an embodiment of the present invention.
FIG. 8 is an explanatory diagram of a process for constructing a large-section tunnel.
FIG. 9 is a plan view of a conventional example.
FIG. 10 is an explanatory diagram of a main part of a conventional example.
[Explanation of symbols]
1 Steel Shell 3 Joint Structure 11 End Plate 11a Opening 15 Screw Reinforcement 19 Bearing Plate

Claims (4)

トンネル周方向に隣接する鋼殻間に鋼棒材を渡してその間にコンクリートを打設して鋼殻どうしを接合する鋼殻の接合部構造において、
隣接する鋼殻の端板に設けられた挿通孔と、両端部が前記挿通孔にそれぞれ3次元的に移動可能に挿通された鋼棒材と、該鋼棒材の挿通側の端部に固定されて鋼棒材に作用する引張力をコンクリートを介して端板に伝達する支圧板とを備え
前記挿通孔は複数の鋼棒材を挿通可能な長孔であることを特徴とする鋼殻の接合部構造。
In the steel shell joint structure where steel rods are passed between steel shells adjacent in the circumferential direction of the tunnel and concrete is placed between them to join the steel shells together.
Fixed to the insertion hole provided in the end plate of the adjacent steel shell, the steel bar inserted into the insertion hole so as to be movable in three dimensions, and the end on the insertion side of the steel bar And a bearing plate that transmits the tensile force acting on the steel bar to the end plate through the concrete ,
A steel shell joint structure, wherein the insertion hole is a long hole into which a plurality of steel bars can be inserted .
トンネル周方向に隣接する鋼殻間に鋼棒材を渡してその間にコンクリートを打設して鋼殻どうしを接合する鋼殻の接合部構造において、
隣接する鋼殻を形成する主桁の端部に、溶接された補強板と、
該補強板によって端部側に移動不能に支持された端板と、
該端板に設けられた挿通孔と、
両端部が前記挿通孔にそれぞれ3次元的に移動可能に挿通された鋼棒材と、
該鋼棒材の挿通側の端部に固定されて鋼棒材に作用する引張力をコンクリートを介して前記端板に伝達する支圧板と、を備えたことを特徴とする鋼殻の接合部構造。
In the steel shell joint structure where steel rods are passed between steel shells adjacent in the circumferential direction of the tunnel and concrete is placed between them to join the steel shells together.
At the end of the main girder forming the adjacent steel shell,
An end plate supported immovably on the end side by the reinforcing plate;
An insertion hole provided in the end plate;
Steel bars each having both ends inserted through the insertion holes so as to be three-dimensionally movable,
A steel shell joint comprising: a support plate that is fixed to an end of the steel bar on the insertion side and transmits a tensile force acting on the steel bar to the end plate via concrete. Construction.
前記挿通孔は複数の鋼棒材を挿通可能な長孔であることを特徴とする請求項2記載の鋼殻の接合部構造。  The steel shell joint structure according to claim 2, wherein the insertion hole is a long hole through which a plurality of steel bars can be inserted. 各鋼棒材は、2本の鋼棒材を隣接する鋼殻の端板にそれぞれ挿通後に接合したものであることを特徴とする請求項1乃至3の何れかに記載の鋼殻の接合部構造。4. The steel shell joint according to claim 1 , wherein each steel bar is obtained by joining two steel bars after being inserted into end plates of adjacent steel shells, respectively. Construction.
JP2003186796A 2003-06-30 2003-06-30 Steel shell joint structure Expired - Lifetime JP4161344B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003186796A JP4161344B2 (en) 2003-06-30 2003-06-30 Steel shell joint structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003186796A JP4161344B2 (en) 2003-06-30 2003-06-30 Steel shell joint structure

Publications (2)

Publication Number Publication Date
JP2005023523A JP2005023523A (en) 2005-01-27
JP4161344B2 true JP4161344B2 (en) 2008-10-08

Family

ID=34185833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003186796A Expired - Lifetime JP4161344B2 (en) 2003-06-30 2003-06-30 Steel shell joint structure

Country Status (1)

Country Link
JP (1) JP4161344B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4801453B2 (en) * 2006-01-20 2011-10-26 株式会社フジタ Hollow element for underground earth pressure wall
JP2011080242A (en) * 2009-10-07 2011-04-21 Nishimatsu Constr Co Ltd Construction method of tunnel
JP7134069B2 (en) * 2018-11-12 2022-09-09 清水建設株式会社 Lining frame structure and construction method for lining frame structure
JP7214445B2 (en) * 2018-11-12 2023-01-30 清水建設株式会社 Joint structure of panel structure

Also Published As

Publication number Publication date
JP2005023523A (en) 2005-01-27

Similar Documents

Publication Publication Date Title
JP2012077471A (en) Joint structure of precast members and concrete precast members
JP4566914B2 (en) Method of constructing rejoined segments and connected tunnels
JP4161344B2 (en) Steel shell joint structure
JP2009249982A (en) Reinforcing structure and reinforcing construction method of existing concrete skeleton
JP2010133112A (en) Segment
JP6489356B2 (en) Shield segment joint structure
JP2008063802A (en) Method and structure for joining precast reinforced concrete beam members to each other
JP2007162341A (en) Precast floor slab and its joint structure
JP3031191B2 (en) Construction method of large section tunnel
JP4326885B2 (en) Steel shell for segment, concrete filling segment, and manufacturing method thereof
JP4455702B2 (en) Fitting and its connection method
JP3570351B2 (en) How to fix the segment joint
JPH10115197A (en) Joint structure of steel material and reinforcing plate used therein
JP2012172490A (en) Junction structure of brace
JP3310389B2 (en) Segment for tunnel lining
JP3901672B2 (en) Segment piece joint structure
JP3958153B2 (en) Support structure and method for widening tunnel
JP4920626B2 (en) Synthetic segment
JP4494585B2 (en) Shield tunnel segment and its manufacturing method
JP5271212B2 (en) Construction method of large section tunnel and large section tunnel
JP7005953B2 (en) Segments and their manufacturing methods
JP3765719B2 (en) Closure adjustment element and underground structure construction method
JPH1068295A (en) Concrete segment
JP2001107678A (en) Structure and method for connecting steel element to cast-in-place reinforced concrete, and method for constructing underground structure
KR101399607B1 (en) The coupler for an iron reinforcing rod

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080321

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080711

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4161344

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term