JP4160415B2 - Method of detecting frost formation in refrigeration cycle using supercritical refrigerant and defrosting method using the method - Google Patents

Method of detecting frost formation in refrigeration cycle using supercritical refrigerant and defrosting method using the method Download PDF

Info

Publication number
JP4160415B2
JP4160415B2 JP2003034816A JP2003034816A JP4160415B2 JP 4160415 B2 JP4160415 B2 JP 4160415B2 JP 2003034816 A JP2003034816 A JP 2003034816A JP 2003034816 A JP2003034816 A JP 2003034816A JP 4160415 B2 JP4160415 B2 JP 4160415B2
Authority
JP
Japan
Prior art keywords
refrigerant
refrigeration cycle
compressor
expansion valve
radiator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003034816A
Other languages
Japanese (ja)
Other versions
JP2004245479A (en
Inventor
正博 井口
忠 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Calsonic Kansei Corp
Original Assignee
Calsonic Kansei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Kansei Corp filed Critical Calsonic Kansei Corp
Priority to JP2003034816A priority Critical patent/JP4160415B2/en
Publication of JP2004245479A publication Critical patent/JP2004245479A/en
Application granted granted Critical
Publication of JP4160415B2 publication Critical patent/JP4160415B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H2001/00961Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices comprising means for defrosting outside heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/11Sensor to detect if defrost is necessary
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide

Description

【0001】
【発明の属する技術分野】
本発明は、超臨界冷媒を用いて暖・冷房を行う冷凍サイクルの着霜検出方法およびその方法を利用した除霜方法。
【0002】
【従来の技術】
近年の車両用空調装置では、気液臨界温度・圧力以上に保持された超臨界流体である炭酸ガスを冷媒とした冷凍サイクルを用いて暖・冷房を行い、環境への影響を少なくする対策が採られるようになっている。
【0003】
冷凍サイクルは、一般的に超臨界冷媒を加圧するコンプレッサと、加圧した冷媒と外気とを熱交換する放熱器(凝縮器)と、放熱器で冷却した冷媒を断熱膨張させる膨張弁と、断熱膨張した冷媒を蒸発させる吸熱器(蒸発器)とを備え、特に炭酸ガスを冷媒とした場合に放熱器下流側の高圧冷媒と吸熱器下流側の低圧冷媒との間で熱交換する内部熱交換器を設けて構成される。
【0004】
ところで、このような冷凍サイクルでは、吸熱器は膨張弁で断熱膨張した低温冷媒が導入される関係上、吸熱器と熱交換する外気温度や外気湿度等によって吸熱器に着霜する場合があり、この着霜によって吸熱機能の低下が来される。
【0005】
従って、吸熱器が着霜した場合には、冷凍サイクルを除霜モードで運転して吸熱器を除霜することにより吸熱機能の回復が図られるが、この場合、吸熱器に着霜した状態を検出する必要がある。
【0006】
着霜状態の検出方法としては、冷凍サイクルの低圧圧力(蒸発圧力)を読み込み、この低圧圧力が予め決定された設定圧力よりも低下しているかどうかで判定するようになっている(例えば、特許文献1参照。)。
【0007】
【特許文献1】
特開平8−197937号公報(第22頁、第44,45図)
【0008】
【発明が解決しようとする課題】
しかしながら、かかる従来の冷凍サイクルの着霜検出方法では、単に冷凍サイクルの低圧圧力のみから着霜を検出するため、着霜の正確な着霜判断に乏しいものとなる。
【0009】
また、着霜現象は外気中に含まれる水分量(湿度)に大きく起因しており、湿度検出を合わせて着霜現象を検出する装置を構築しようとすると、湿度を正確に検出するためのセンサーが高価となるため、この湿度検出方式を採用することは望めない。
【0010】
そこで、本発明はかかる従来の課題に鑑みて、吸熱器が着霜するとコンプレッサの吐出冷媒温度が上昇し、かつ、吐出圧力が下がるという特異な現象に着目して、簡単かつ正確に着霜現象を検出するようにした冷凍サイクルの着霜検出方法およびその方法を利用した除霜方法を提供することを目的とする。
【0011】
【課題を解決するための手段】
かかる目的を達成するために本発明は、冷媒として超臨界流体を用い、この超臨界冷媒を加圧するコンプレッサと、加圧した冷媒と外気とを熱交換する放熱器と、放熱器で冷却した冷媒を断熱膨張させる膨張弁と、断熱膨張した冷媒を蒸発させる吸熱器とを備え、膨張弁の絞り弁を放熱器出口の冷媒温度の上昇に伴って絞り方向に制御する冷凍サイクルであって、それぞれ同時に検出するコンプレッサの吐出冷媒温度の上昇率と、コンプレッサの吐出圧力の低下率と、を用いて吸熱器の着霜状態を推定することを特徴としている。
【0012】
【発明の効果】
かかる構成になる本発明によれば、コンプレッサの吐出冷媒温度の上昇率と、コンプレッサの吐出圧力の低下率と、を同時に検出して吸熱器の着霜状態を推定するが、これら吐出冷媒温度の所定値を越える上昇と吐出圧力の所定値以下への低下は、吸熱器に着霜した場合に放熱器出口の冷媒温度の上昇に伴って膨張弁が絞り方向に制御されることにより発生する特有の現象であり、その特有の現象を利用することにより吸熱器の着霜を簡単かつ正確に検知することができる。
【0013】
【発明の実施の形態】
以下、本発明の実施形態を図面と共に詳述する。
【0014】
図1〜図5は本発明にかかる超臨界冷媒を用いた冷凍サイクルの着霜検出方法およびその方法を利用した除霜方法を示し、図1は冷凍サイクルの冷房モードでの運転状態を示す模式図、図2は冷凍サイクルの暖房モードでの運転状態を示す模式図、図3は冷凍サイクルの除湿モードでの運転状態を示す模式図、図4は冷凍サイクルの除霜モードでの運転状態を示す模式図、図5は除霜モードを実行するフローチャートを示す説明図である。
【0015】
本実施形態の冷凍サイクルは車両用空調装置に適用した場合を示し、かつ、冷媒として超臨界流体の炭酸ガス(CO)を用いてあり、図1〜図4に示すように冷凍サイクル1は、冷媒を加圧するコンプレッサ2と、加圧した冷媒と外気とを熱交換する副放熱器として機能するサブガスクーラ3および放熱器としての外部熱交換器4と、これらサブガスクーラ3および外部熱交換器4で冷却した冷媒を断熱膨張させる第1膨張弁5と、断熱膨張した冷媒を蒸発させる吸熱器としてのエバポレータ6と、外部熱交換器4下流側の高圧冷媒とエバポレータ6下流側の低圧冷媒との間で熱交換する内部熱交換器7と、を備えている。
【0016】
前記サブガスクーラ3は、空調ダクト8内に収納してコンプレッサ2の加圧冷媒を通路P1を介して導入し、この加圧冷媒の発生熱を暖房熱源として空調ダクト8内の空調風と熱交換するとともに、切換ドア9によって空調風がサブガスクーラ3を通過する加温通路8aと、サブガスクーラ3を迂回するバイパス通路8bとを切換えるようになっている。
【0017】
前記外部熱交換器4は、前記サブガスクーラ3を通過した冷媒を通路P2を介して導入するとともに、図外のエンジンルーム前方に配置して図外のラジエータファンによる外気風と熱交換するようになっている。
【0018】
前記第1膨張弁5は、外部熱交換器4を通過した冷媒を通路P3を介して導入するとともに、図外の絞り弁による可変絞り機能を備えて絞り量の制御が可能となっており、外部熱交換器4の出口温度の上昇に伴って絞り弁を絞る方向に制御するようになっているが、この出口温度が通常の制御範囲を超えて上昇した場合(後述の着霜状態)には、強制的に絞り弁を開ける方向に制御するようになっている。
【0019】
前記エバポレータ6は、前記第1膨張弁5の下流側の低圧通路P4に設けられ、第1膨張弁5で断熱膨張した冷媒を導入するとともに、空調ダクト8内の前記サブガスクーラ3の上流側に収納し、この空調ダクト8とこれを通過する空調風との間で熱交換することにより冷房熱源となっている。
【0020】
前記内部熱交換器7は、外部熱交換器4下流側の高温状態にある高圧冷媒と、エバポレータ6を通過した冷温化した低圧冷媒とで熱交換することにより、第1膨張弁5に流入する冷媒を低温化するとともに、コンプレッサ2に吸入される冷媒を温めることができる。
【0021】
前記低圧通路P4には、エバポレータ6と内部熱交換器7との間にアキュムレータ10を設け、このアキュムレータ10によってエバポレータ6を通過した冷媒を気液分離し、気相冷媒のみを内部熱交換7に通過させてコンプレッサ2に吸入させるようになっている。
【0022】
前記サブガスクーラ3と外部熱交換器4とを繋ぐ通路P2には三方弁11を設け、この三方弁11の切換えにより、外部熱交換器4を通路P2に連通する経路(第1切換位置)と、外部熱交換器4をエバポレータ6の下流側でアキュムレータ10の上流側に連通するリターン通路P5に連通する経路(第2切換位置)と、に切換えるようになっている。
【0023】
また、前記通路P2の三方弁11よりも上流側と前記通路P3とを、電磁弁12を設けた第1バイパス通路P6を介して連通するとともに、内部熱交換器7よりも下流側で第1膨張弁5よりも上流側と外部熱交換器4の出口側とを、第2膨張弁13を設けた第2バイパス通路P7を介して連通してある。
【0024】
前記通路P3には、外部熱交換器4と第1バイパス通路P6の連通部との間に、外部熱交換器4から内部熱交換器7方向への冷媒通過を許容する第1逆止弁14を設けるとともに、前記第2バイパス通路P7の第2膨張弁13よりも下流側に、大分熱交換器4方向への冷媒通過を許容する第2逆止弁15を設け、かつ、リターン通路P5には外部熱交換器4からコンプレッサ2への戻り方向の冷媒通過を許容する第3逆止弁16を設けてある。
【0025】
そして、このように構成した冷凍サイクル1は、図1〜図3に示すように冷房モード、暖房モード、除湿モードで運転するようになっており、更には、エバポレータ6に着霜した場合には、図4に示すように除霜モードで運転するようになっている。尚、図1〜図4の模式図では、冷媒が流通する経路を実線で示し、冷媒が供給されない経路を破線で示してある。
【0026】
<冷房モード>
冷凍サイクル1の冷房モードでの運転は、図1に示すように三方弁11を第1切換位置に切換えるとともに、電磁弁12を遮断状態に設定した状態で、コンプレッサ2の加圧冷媒を、サブガスクーラ3→(三方弁11)→外部熱交換器4→内部熱交換器7→第1膨張弁5→エバポレータ6→アキュムレータ10→内部熱交換器7の順に通過させた後、コンプレッサ2に吸引にさせるという循環経路を構成する。
【0027】
そして、空調ダクト8内では、サブガスクーラ3の空調風の流入側を切換ドア9によって遮断し、エバポレータ6を通過した冷房風のみがバイパス通路8aを通過して図外の車室内に吹き出すようになっている。
【0028】
<暖房モード>
冷凍サイクル1の暖房モードでの運転は、図2に示すように第1膨張弁5を遮断するとともに、三方弁11を第2切換位置に切換え、かつ、電磁弁12を連通状態に設定した状態で、コンプレッサ2の加圧冷媒を、サブガスクーラ3→(電磁弁12)→内部熱交換器7→第2膨張弁13→外部熱交換器4→(三方弁11)→アキュムレータ10→内部熱交換器7の順に通過させた後、コンプレッサ2に吸引させるという循環経路を構成する。
【0029】
そして、空調ダクト8内では、切換ドア9によってバイパス通路8bを開度調節し、空調風がサブガスクーラ3の加温通路8aと絞られたバイパス通路8bとを通過して、温度調節した暖房風として図外の車室内に吹き出すようになっている。この場合、エバポレータ6は機能していない。
【0030】
<除湿モード>
冷凍サイクル1の除湿モードでの運転は、図3に示すように第1膨張弁5を開通するとともに、電磁弁12を連通状態に設定した状態で、コンプレッサ2の加圧冷媒を、サブガスクーラ3→(電磁弁12)→内部熱交換器7→第1膨張弁5→エバポレータ6→アキュムレータ10→内部熱交換器7の順に通過させた後、コンプレッサ2に吸引させるという循環経路を構成する。
【0031】
そして、空調ダクト8内では、切換ドア9によってバイパス通路8bを開度調節し、エバポレータ6を通過した冷房風がサブガスクーラ3の加温通路8aを通過して冷暖混合風(温度調和風)とし、この冷暖混合風が図外の車室内に吹き出すようになっている。
【0032】
<除霜モード>
冷凍サイクル1の除霜モードでの運転は、外部熱交換器4に着霜した場合に、この着霜状態を検出して除霜する際に実行され、図4に示すように三方弁11を第1切換位置に切換えるとともに、電磁弁12を遮断状態に設定した状態で、コンプレッサ2の加圧冷媒を、サブガスクーラ3→(三方弁11)→外部熱交換器4→内部熱交換器7→第1膨張弁5→エバポレータ6→アキュムレータ10→内部熱交換器7の順に通過させた後、コンプレッサ2に吸引にさせるという循環経路を構成する。
【0033】
つまり、この除霜モードでの冷媒循環経路は冷房モードと同じであり、空調ダクト8内の切換ドア9の切換位置が異なっており、この切換ドア9は除湿モードと同様にバイパス通路8bを遮断し、エバポレータ6を通過した冷房風がサブガスクーラ3の加温通路8aを通過して冷暖混合風(温度調和風)とし、この温度調和風が図外の車室内に吹き出すようになっている。勿論、この場合にあっても切換ドア9でバイパス通路8bの開度調節することができる。
【0034】
従って、本実施形態では除霜モードを自動運転するためには外部熱交換器4の着霜を自動検出する必要があり、この着霜検出方法としては、それぞれ同時に検出したコンプレッサ2の吐出冷媒温度(Td)の上昇率と、コンプレッサ2の吐出圧力(Pd)の低下率と、を用いて着霜状態を推定するようになっており、これら吐出冷媒温度(Td)の上昇率と吐出圧力(Pd)の低下率とが所定値を越えた場合に除湿モードでの運転を実行するようになっている。
【0035】
即ち、本実施形態の冷凍サイクル1を実際に運転するにあたって、外部熱交換器4に着霜すると、以下の▲1▼〜▲6▼に述べる現象を経て除霜することになる。
【0036】
▲1▼外部熱交換器4を通過する低圧冷媒の吸熱量が減少するため、冷凍サイクル1内の冷媒循環流量が低下する。
【0037】
▲2▼これにより内部熱交換器7による低圧側の吸熱性能が低下するため、コンプレッサ2に吸引される冷媒加熱度が上昇し、これに伴ってコンプレッサ2の吐出冷媒温度(Td)が上昇する。
【0038】
▲3▼これにより、サブガスクーラ3の出口冷媒温度が上昇するため、第2膨張弁13の絞り弁を圧力が上昇する方向、つまり、絞り方向に制御することになる。
【0039】
▲4▼この第2膨張弁13の絞り量が大きくなることにより冷媒循環量が更に減少し、これに伴ってコンプレッサ2の冷媒吐出量が減少するため吐出圧力(Pd)が低下する。
【0040】
▲5▼従って、冷凍サイクル1では前記▲1▼〜▲4▼の動作が繰り返されることになり、コンプレッサ2の吐出冷媒温度(Td)は上昇を続ける一方、コンプレッサ2の吐出圧力(Pd)は低下を続けることになる。
【0041】
▲6▼そして、コンプレッサ2の吐出冷媒温度(Td)が予め設定した所定値、つまり、着霜時に現れる所定値を越え、かつ、これに伴ってコンプレッサ2の吐出圧力(Pd)が所定値以下となった場合に、サブガスクーラ3の出口温度の上昇に関わらず暖房モードから除霜モードへ切り換える。
【0042】
かかる冷凍サイクル1による除霜制御の一例を図5のフローチャートに従って説明すると、先ず、ステップS1によって空調装置(A/CON)をONして、ステップS2によって図外のコントロールパネルでモード選択(例えば、乗員による任意設定値、外気温度、室内温度、日射等の読み込み)し、冷房時はステップS3によって冷房制御(冷房モード)するとともに、暖房時はステップS4によって、DEF・SW(除湿スイッチ)、ワイパーSW、外気温等を読み込んで除湿運転(除湿モード)を行うかどうかを判断し、YESの場合はステップS5によって除湿モードでの運転を実行する。
【0043】
ステップS4でNOと判断した場合は、ステップS6によって乗員設定値、外気温度、室内温度、日射等を読み込んで暖房モードでの運転を実行し、この暖房モードでの運転状態でステップS7は、コンプレッサ2の吐出圧力Pdおよび吐出冷媒温度Tdを読み込んで保護作動を実行するかどうかを判断し、NOの場合はステップS6にリターンするとともに、YESの場合はステップS8によって図外の空調ファンの作動状態が正常かどうかを判断する。
【0044】
空調ファンが異常作動していると判断した場合はステップS9によって保護制御に移行するとともに、空調ファンが正常である場合はステップS10によって、前記コンプレッサ2の吐出圧力Pdと吐出冷媒温度Tdとの関係を判断し、予め設定した正常な演算範囲内である場合はステップS9に進んで保護制御に移行するとともに、吐出圧力Pdが所定値以下および吐出冷媒温度Tdが所定値を越えた演算範囲外である場合はステップS11に進んで、ステップS6で読み込んだ外気温度が設定値以内にあるかどうを判断する。
【0045】
そして、外気温度が設定値以上である場合は、吐出圧力Pdと吐出冷媒温度Tdが異常である場合にも、これが外気温の異常性に起因することであるとしてステップS9によって保護制御に移行するとともに、外気温度が設定値以下である場合は、吐出圧力Pdと吐出冷媒温度Tdが真に異常であるとしてステップS12に進み、冷凍サイクル1を除霜モードに切り換えてステップS13によって除霜モードでの運転を実行する。
【0046】
このとき、ステップS13による除霜モード運転は、タイマーによって除霜に必要な時間を予め設定しておき、この設定時間だけ除霜モードが実行されることになり、この設定時間が経過することによりステップS4にリターンされる。
【0047】
以上の構成により本実施形態の冷凍サイクル1の着霜検出方法にあっては、コンプレッサ2の吐出冷媒温度Tdの上昇率と、コンプレッサ2の吐出圧力Pdの低下率と、を同時に検出して外部熱交換器4の着霜状態を推定するようになっており、これら吐出冷媒温度Tdの所定値を越える上昇と吐出圧力Pdの所定値以下への低下は、外部熱交換器4に着霜した場合にサブガスクーラ3出口の冷媒温度の上昇に伴って第2膨張弁13が絞り方向に制御されることにより発生する特有の現象であり、その特有の現象を利用することにより、外部熱交換器4の着霜を簡単かつ正確に検知することができる。
【0048】
また、本実施形態の着霜検出方法を実行するにあたって、コンプレッサ2の出口に温度センサーや圧力センサーを設置することになるが、これら温度センサーや圧力センサーは比較的安価であるため、新たに設置する場合若しくは特に既存センサーを利用する場合には装置のコストアップを抑えることができる。
【0049】
更に、本実施形態の冷凍サイクル1の除霜方法では、前記着霜検出方法を利用してコンプレッサ2の吐出冷媒温度Tdおよび吐出圧力Pdを同時に検出し、この吐出冷媒温度Tdが着霜時に現れる所定値を越え、かつ、この吐出冷媒温度Tdの上昇に伴って吐出圧力Pdが所定値以下になった場合に、暖房モードから除霜モードに切り替わる。
【0050】
ところで、本発明の超臨界冷媒を用いた冷凍サイクルの着霜検出方法およびその方法を利用した除霜方法を、前記実施形態に例をとって説明したが、この実施形態に限ることなく本発明の要旨を逸脱しない範囲で各種他の実施形態を採ることができる。
【図面の簡単な説明】
【図1】本発明の一実施形態における冷凍サイクルの冷房モードでの運転状態を示す模式図。
【図2】本発明の一実施形態における冷凍サイクルの暖房モードでの運転状態を示す模式図。
【図3】本発明の一実施形態における冷凍サイクルの除湿モードでの運転状態を示す模式図。
【図4】本発明の一実施形態における冷凍サイクルの除霜モードでの運転状態を示す模式図。
【図5】本発明の一実施形態における除霜モードを実行するフローチャートを示す説明図。
【符号の説明】
1 冷凍サイクル
2 コンプレッサ
3 サブガスクーラ
4 外部熱交換器(放熱器)
5 第1膨張弁(膨張弁)
6 エバポレータ(吸熱器)
7 内部熱交換器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for detecting frost formation in a refrigeration cycle in which heating and cooling are performed using a supercritical refrigerant, and a defrosting method using the method.
[0002]
[Prior art]
In recent air conditioners for vehicles, measures are taken to reduce the impact on the environment by heating and cooling using a refrigeration cycle using carbon dioxide, which is a supercritical fluid maintained above the gas-liquid critical temperature and pressure, as a refrigerant. It has been adopted.
[0003]
The refrigeration cycle generally includes a compressor that pressurizes supercritical refrigerant, a radiator (condenser) that exchanges heat between the pressurized refrigerant and outside air, an expansion valve that adiabatically expands the refrigerant cooled by the radiator, An internal heat exchanger that exchanges heat between the high-pressure refrigerant on the downstream side of the radiator and the low-pressure refrigerant on the downstream side of the heat absorber, particularly when carbon dioxide is used as the refrigerant. A device is provided.
[0004]
By the way, in such a refrigeration cycle, the heat absorber may be frosted on the heat absorber due to the outside air temperature or the outside air humidity to be heat exchanged with the heat absorber due to the introduction of the low-temperature refrigerant adiabatically expanded by the expansion valve. This frosting causes a decrease in the endothermic function.
[0005]
Therefore, when the heat absorber is frosted, the heat absorption function can be recovered by operating the refrigeration cycle in the defrost mode and defrosting the heat absorber. It needs to be detected.
[0006]
As a method for detecting the frosting state, the low pressure (evaporation pressure) of the refrigeration cycle is read, and it is determined whether or not the low pressure is lower than a preset pressure (for example, patent) Reference 1).
[0007]
[Patent Document 1]
JP-A-8-197937 (page 22, FIGS. 44 and 45)
[0008]
[Problems to be solved by the invention]
However, in such a conventional refrigeration cycle frost detection method, frost formation is detected only from the low pressure of the refrigeration cycle.
[0009]
In addition, the frost phenomenon is largely attributed to the amount of moisture (humidity) contained in the outside air, and when trying to construct a device that detects the frost phenomenon in combination with humidity detection, a sensor for accurately detecting the humidity. However, this humidity detection method cannot be expected.
[0010]
Therefore, in view of such conventional problems, the present invention pays attention to a unique phenomenon in which the discharge refrigerant temperature of the compressor rises and the discharge pressure decreases when the heat absorber frosts, and the frost formation phenomenon is simple and accurate. An object of the present invention is to provide a method for detecting frost formation in a refrigeration cycle and a defrost method using the method.
[0011]
[Means for Solving the Problems]
In order to achieve this object, the present invention uses a supercritical fluid as a refrigerant, a compressor that pressurizes the supercritical refrigerant, a radiator that exchanges heat between the pressurized refrigerant and the outside air, and a refrigerant that is cooled by the radiator. An expansion valve that adiabatically expands and a heat absorber that evaporates the refrigerant adiabatically expanded, and controls the throttle valve of the expansion valve in the throttle direction as the refrigerant temperature rises at the radiator outlet, It is characterized in that the frost formation state of the heat absorber is estimated using the rise rate of the refrigerant discharge refrigerant temperature and the drop rate of the compressor discharge pressure detected simultaneously.
[0012]
【The invention's effect】
According to the present invention having such a configuration, the rate of increase in the refrigerant discharge refrigerant temperature and the rate of decrease in the compressor discharge pressure are detected simultaneously to estimate the frost formation state of the heat absorber. The rise exceeding the predetermined value and the decrease of the discharge pressure below the predetermined value are caused by the expansion valve being controlled in the throttle direction as the refrigerant temperature rises when the heat sink is frosted. By utilizing the peculiar phenomenon, frost formation of the heat absorber can be detected easily and accurately.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0014]
1 to 5 show a method for detecting frost formation in a refrigeration cycle using a supercritical refrigerant according to the present invention and a defrost method using the method, and FIG. 1 is a schematic diagram showing an operation state in a cooling mode of the refrigeration cycle. FIG. 2, FIG. 2 is a schematic diagram showing the operating state of the refrigeration cycle in the heating mode, FIG. 3 is a schematic diagram showing the operating state of the refrigeration cycle in the dehumidifying mode, and FIG. 4 shows the operating state of the refrigeration cycle in the defrosting mode. FIG. 5 is an explanatory diagram showing a flowchart for executing the defrosting mode.
[0015]
The refrigeration cycle of this embodiment shows a case where it is applied to a vehicle air conditioner, and uses carbon dioxide gas (CO 2 ) as a supercritical fluid as a refrigerant. As shown in FIGS. , The compressor 2 for pressurizing the refrigerant, the sub-gas cooler 3 functioning as a sub-radiator for exchanging heat between the pressurized refrigerant and the outside air, the external heat exchanger 4 as a radiator, and the sub-gas cooler 3 and the external heat exchanger A first expansion valve 5 for adiabatic expansion of the refrigerant cooled at 4, an evaporator 6 as a heat absorber for evaporating the adiabatic expansion refrigerant, a high-pressure refrigerant downstream of the external heat exchanger 4, and a low-pressure refrigerant downstream of the evaporator 6 And an internal heat exchanger 7 for exchanging heat between them.
[0016]
The sub-gas cooler 3 is housed in the air conditioning duct 8 and introduces the pressurized refrigerant of the compressor 2 through the passage P1, and uses heat generated by the pressurized refrigerant as a heating heat source to exchange heat with the conditioned air in the air conditioning duct 8. At the same time, the switching door 9 switches between the heating passage 8 a through which the conditioned air passes through the sub gas cooler 3 and the bypass passage 8 b that bypasses the sub gas cooler 3.
[0017]
The external heat exchanger 4 introduces the refrigerant that has passed through the sub-gas cooler 3 through the passage P2, and is arranged in front of the engine room (not shown) so as to exchange heat with the outside air by a radiator fan (not shown). It has become.
[0018]
The first expansion valve 5 introduces the refrigerant that has passed through the external heat exchanger 4 through the passage P3, and has a variable throttle function by a throttle valve (not shown) to control the throttle amount. Control is performed so that the throttle valve is throttled as the outlet temperature of the external heat exchanger 4 rises, but when the outlet temperature rises beyond the normal control range (frosting state described later). Is forcibly controlled to open the throttle valve.
[0019]
The evaporator 6 is provided in the low-pressure passage P4 on the downstream side of the first expansion valve 5 and introduces the refrigerant adiabatically expanded by the first expansion valve 5 and on the upstream side of the sub-gas cooler 3 in the air conditioning duct 8. It is housed and becomes a cooling heat source by exchanging heat between the air-conditioning duct 8 and the conditioned air passing therethrough.
[0020]
The internal heat exchanger 7 flows into the first expansion valve 5 by exchanging heat between the high-pressure refrigerant in the high temperature state downstream of the external heat exchanger 4 and the cooled low-pressure refrigerant that has passed through the evaporator 6. The temperature of the refrigerant can be lowered and the refrigerant sucked into the compressor 2 can be warmed.
[0021]
In the low-pressure passage P4, an accumulator 10 is provided between the evaporator 6 and the internal heat exchanger 7, and the refrigerant passing through the evaporator 6 is gas-liquid separated by this accumulator 10, and only the gas-phase refrigerant is converted into the internal heat exchanger 7. It is allowed to pass through and be sucked into the compressor 2.
[0022]
A passage P2 connecting the sub-gas cooler 3 and the external heat exchanger 4 is provided with a three-way valve 11. By switching the three-way valve 11, a path (first switching position) for connecting the external heat exchanger 4 to the passage P2 is provided. The external heat exchanger 4 is switched to a path (second switching position) communicating with the return path P5 communicating with the upstream side of the accumulator 10 on the downstream side of the evaporator 6.
[0023]
In addition, the upstream side of the passage P2 with respect to the three-way valve 11 and the passage P3 communicate with each other via the first bypass passage P6 provided with the electromagnetic valve 12, and the first side of the passage P2 downstream of the internal heat exchanger 7. The upstream side of the expansion valve 5 and the outlet side of the external heat exchanger 4 are communicated with each other via a second bypass passage P7 provided with a second expansion valve 13.
[0024]
In the passage P3, a first check valve 14 that allows refrigerant to pass from the external heat exchanger 4 toward the internal heat exchanger 7 between the external heat exchanger 4 and the communication portion of the first bypass passage P6. And a second check valve 15 that allows passage of refrigerant in the direction of the heat exchanger 4 in the downstream of the second expansion valve 13 in the second bypass passage P7, and in the return passage P5 Is provided with a third check valve 16 that allows passage of refrigerant in the return direction from the external heat exchanger 4 to the compressor 2.
[0025]
And the refrigerating cycle 1 comprised in this way is operate | moving in air_conditioning | cooling mode, heating mode, and dehumidification mode as shown in FIGS. 1-3, Furthermore, when the evaporator 6 is frosted, As shown in FIG. 4, the operation is performed in the defrosting mode. In the schematic diagrams of FIGS. 1 to 4, a path through which the refrigerant flows is shown by a solid line, and a path through which the refrigerant is not supplied is shown by a broken line.
[0026]
<Cooling mode>
The operation of the refrigeration cycle 1 in the cooling mode is performed by switching the three-way valve 11 to the first switching position as shown in FIG. Gas cooler 3 → (three-way valve 11) → external heat exchanger 4 → internal heat exchanger 7 → first expansion valve 5 → evaporator 6 → accumulator 10 → internal heat exchanger 7 This constitutes a circulation path.
[0027]
In the air conditioning duct 8, the inflow side of the conditioned air of the sub gas cooler 3 is blocked by the switching door 9, so that only the cooling air that has passed through the evaporator 6 passes through the bypass passage 8 a and blows out into the vehicle interior (not shown). It has become.
[0028]
<Heating mode>
The operation in the heating mode of the refrigeration cycle 1 is a state in which the first expansion valve 5 is shut off as shown in FIG. 2, the three-way valve 11 is switched to the second switching position, and the electromagnetic valve 12 is set in the communication state. Then, the pressurized refrigerant of the compressor 2 is changed to the sub gas cooler 3 → (electromagnetic valve 12) → internal heat exchanger 7 → second expansion valve 13 → external heat exchanger 4 → (three-way valve 11) → accumulator 10 → internal heat exchange. A circulation path is formed in which the compressor 2 sucks after passing through the container 7 in this order.
[0029]
In the air conditioning duct 8, the opening degree of the bypass passage 8 b is adjusted by the switching door 9, and the conditioned air passes through the heating passage 8 a of the subgas cooler 3 and the throttled bypass passage 8 b to adjust the temperature of the heating air. It is designed to blow out into the vehicle compartment outside the figure. In this case, the evaporator 6 is not functioning.
[0030]
<Dehumidification mode>
The operation of the refrigeration cycle 1 in the dehumidifying mode is performed by opening the first expansion valve 5 as shown in FIG. 3 and supplying the pressurized refrigerant of the compressor 2 to the sub-gas cooler 3 with the electromagnetic valve 12 set to the communication state. → (Electromagnetic valve 12) → Internal heat exchanger 7 → First expansion valve 5 → Evaporator 6 → Accumulator 10 → Internal heat exchanger 7 In this order, a circulation path is formed in which the compressor 2 sucks the refrigerant.
[0031]
In the air conditioning duct 8, the opening degree of the bypass passage 8 b is adjusted by the switching door 9, and the cooling air that has passed through the evaporator 6 passes through the heating passage 8 a of the sub-gas cooler 3 to form a cooling / heating mixed air (temperature-conditioned air). This air-cooled mixed air is blown out into the passenger compartment outside the figure.
[0032]
<Defrost mode>
The operation in the defrosting mode of the refrigeration cycle 1 is executed when the external heat exchanger 4 is defrosted to detect the defrosting state and defrost, and the three-way valve 11 is turned on as shown in FIG. While switching to the first switching position and with the solenoid valve 12 set to the shut-off state, the pressurized refrigerant of the compressor 2 is sub-gas cooler 3 → (three-way valve 11) → external heat exchanger 4 → internal heat exchanger 7 → After passing through the first expansion valve 5 → the evaporator 6 → the accumulator 10 → the internal heat exchanger 7 in this order, a circulation path is formed in which the compressor 2 is made to suck.
[0033]
That is, the refrigerant circulation path in the defrost mode is the same as that in the cooling mode, and the switching position of the switching door 9 in the air conditioning duct 8 is different. This switching door 9 blocks the bypass passage 8b as in the dehumidification mode. Then, the cooling air that has passed through the evaporator 6 passes through the heating passage 8a of the sub-gas cooler 3 to form a cooling / heating mixed air (temperature-conditioned air), and this temperature-conditioned air is blown out into the vehicle interior (not shown). Of course, even in this case, the opening degree of the bypass passage 8b can be adjusted by the switching door 9.
[0034]
Therefore, in this embodiment, in order to automatically operate the defrost mode, it is necessary to automatically detect the frost formation of the external heat exchanger 4, and as this frost detection method, the discharge refrigerant temperature of the compressor 2 detected simultaneously. The increase rate of (Td) and the decrease rate of the discharge pressure (Pd) of the compressor 2 are used to estimate the frost formation state. The increase rate of the discharge refrigerant temperature (Td) and the discharge pressure ( When the reduction rate of Pd) exceeds a predetermined value, the operation in the dehumidifying mode is executed.
[0035]
That is, when the refrigeration cycle 1 of the present embodiment is actually operated, when the external heat exchanger 4 is frosted, the frost is defrosted through the following phenomena (1) to (6).
[0036]
(1) Since the heat absorption amount of the low-pressure refrigerant passing through the external heat exchanger 4 decreases, the refrigerant circulation flow rate in the refrigeration cycle 1 decreases.
[0037]
(2) As a result, the heat absorption performance on the low-pressure side by the internal heat exchanger 7 is lowered, so that the degree of heating of the refrigerant sucked by the compressor 2 is increased, and the discharge refrigerant temperature (Td) of the compressor 2 is increased accordingly. .
[0038]
(3) As a result, the outlet refrigerant temperature of the sub gas cooler 3 rises, so that the throttle valve of the second expansion valve 13 is controlled in the direction in which the pressure rises, that is, the throttle direction.
[0039]
(4) As the throttle amount of the second expansion valve 13 is increased, the refrigerant circulation amount is further reduced, and accordingly, the refrigerant discharge amount of the compressor 2 is reduced, so that the discharge pressure (Pd) is lowered.
[0040]
(5) Accordingly, in the refrigeration cycle 1, the operations (1) to (4) are repeated, and the discharge refrigerant temperature (Td) of the compressor 2 continues to rise, while the discharge pressure (Pd) of the compressor 2 increases. It will continue to decline.
[0041]
(6) Then, the refrigerant discharge temperature (Td) of the compressor 2 exceeds a predetermined value set in advance, that is, a predetermined value appearing at the time of frost formation, and accordingly, the discharge pressure (Pd) of the compressor 2 is below a predetermined value. In this case, the heating mode is switched to the defrosting mode regardless of the rise in the outlet temperature of the sub gas cooler 3.
[0042]
An example of the defrost control by the refrigeration cycle 1 will be described with reference to the flowchart of FIG. (Reading optional set values, outside air temperature, indoor temperature, solar radiation, etc.) by the occupant and cooling control (cooling mode) in step S3 during cooling, and DEF / SW (dehumidification switch), wiper in step S4 during heating It is determined whether or not the dehumidifying operation (dehumidifying mode) is performed by reading the SW, outside air temperature, and the like.
[0043]
If NO is determined in step S4, the occupant set value, the outside air temperature, the room temperature, the solar radiation, etc. are read in step S6, and the operation in the heating mode is executed. In the operation state in this heating mode, step S7 is 2 is read to determine whether or not the protection operation is to be executed. If NO, the process returns to step S6. If YES, the operation state of the air conditioning fan (not shown) is determined by step S8. Determine if is normal.
[0044]
If it is determined that the air conditioning fan is operating abnormally, the process proceeds to protection control in step S9. If the air conditioning fan is normal, the relationship between the discharge pressure Pd of the compressor 2 and the discharge refrigerant temperature Td is determined in step S10. If it is within the normal calculation range set in advance, the process proceeds to step S9 to shift to protection control, and outside the calculation range where the discharge pressure Pd is equal to or lower than the predetermined value and the discharge refrigerant temperature Td exceeds the predetermined value. If yes, the process proceeds to step S11 to determine whether or not the outside air temperature read in step S6 is within a set value.
[0045]
If the outside air temperature is equal to or higher than the set value, even if the discharge pressure Pd and the discharge refrigerant temperature Td are abnormal, the process proceeds to protection control in step S9 because it is caused by the abnormality of the outside air temperature. At the same time, if the outside air temperature is equal to or lower than the set value, it is determined that the discharge pressure Pd and the discharge refrigerant temperature Td are truly abnormal, and the process proceeds to step S12. The refrigeration cycle 1 is switched to the defrost mode and the defrost mode is performed in step S13. Execute the operation.
[0046]
At this time, in the defrosting mode operation in step S13, a time necessary for defrosting is set in advance by a timer, and the defrosting mode is executed only for this set time, and when this set time elapses. It returns to step S4.
[0047]
In the frost formation detection method of the refrigeration cycle 1 of the present embodiment with the above configuration, the rate of increase in the discharge refrigerant temperature Td of the compressor 2 and the rate of decrease in the discharge pressure Pd of the compressor 2 are detected simultaneously. The frosting state of the heat exchanger 4 is estimated, and the increase of the discharge refrigerant temperature Td exceeding a predetermined value and the decrease of the discharge pressure Pd to a predetermined value or less are frosted on the external heat exchanger 4. This is a unique phenomenon that occurs when the second expansion valve 13 is controlled in the throttle direction as the refrigerant temperature at the outlet of the sub gas cooler 3 rises. By utilizing this unique phenomenon, the external heat exchanger 4 frost formation can be detected easily and accurately.
[0048]
In addition, when executing the frost detection method according to the present embodiment, a temperature sensor and a pressure sensor are installed at the outlet of the compressor 2. However, these temperature sensors and pressure sensors are relatively inexpensive, so that they are newly installed. When doing this, or particularly when using an existing sensor, it is possible to reduce the cost of the apparatus.
[0049]
Furthermore, in the defrosting method of the refrigeration cycle 1 of the present embodiment, the discharge refrigerant temperature Td and the discharge pressure Pd of the compressor 2 are simultaneously detected using the frost detection method, and the discharge refrigerant temperature Td appears at the time of frost formation. The heating mode is switched to the defrosting mode when the predetermined value is exceeded and the discharge pressure Pd becomes a predetermined value or less as the discharge refrigerant temperature Td rises.
[0050]
By the way, although the frost formation detection method of the refrigerating cycle using the supercritical refrigerant of the present invention and the defrost method using the method have been described by taking the above embodiment as an example, the present invention is not limited to this embodiment. Various other embodiments can be adopted without departing from the scope of the present invention.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing an operation state in a cooling mode of a refrigeration cycle in one embodiment of the present invention.
FIG. 2 is a schematic diagram showing an operation state in a heating mode of a refrigeration cycle in one embodiment of the present invention.
FIG. 3 is a schematic diagram showing an operation state in a dehumidifying mode of a refrigeration cycle in one embodiment of the present invention.
FIG. 4 is a schematic diagram showing an operation state in a defrosting mode of a refrigeration cycle in one embodiment of the present invention.
FIG. 5 is an explanatory diagram showing a flowchart for executing a defrosting mode in one embodiment of the present invention.
[Explanation of symbols]
1 Refrigeration cycle 2 Compressor 3 Subgas cooler 4 External heat exchanger (heat radiator)
5 First expansion valve (expansion valve)
6 Evaporator (heat absorber)
7 Internal heat exchanger

Claims (2)

冷媒として超臨界流体を用い、この超臨界冷媒を加圧するコンプレッサ(2)と、加圧した冷媒と外気とを熱交換する放熱器(4)と、放熱器(4)で冷却した冷媒を断熱膨張させる膨張弁(5)と、断熱膨張した冷媒を蒸発させる吸熱器(6)とを備え、膨張弁(5)の絞り弁を放熱器(4)出口の冷媒温度の上昇に伴って絞り方向に制御する冷凍サイクル(1)であって、
それぞれ同時に検出するコンプレッサ(2)の吐出冷媒温度の上昇率と、コンプレッサ(2)の吐出圧力の低下率と、を用いて吸熱器(6)の着霜状態を推定することを特徴とする超臨界冷媒を用いた冷凍サイクルの着霜検出方法。
Using a supercritical fluid as the refrigerant, the compressor (2) for pressurizing the supercritical refrigerant, the radiator (4) for exchanging heat between the pressurized refrigerant and the outside air, and the refrigerant cooled by the radiator (4) are insulated. An expansion valve (5) that expands and a heat absorber (6) that evaporates the adiabatically expanded refrigerant, and the throttle valve of the expansion valve (5) is throttled as the refrigerant temperature rises at the radiator (4) outlet. A refrigeration cycle (1) for controlling
The frosting state of the heat absorber (6) is estimated by using the rate of increase in the refrigerant temperature discharged from the compressor (2) and the rate of decrease in the discharge pressure of the compressor (2) detected simultaneously. A method for detecting frost formation in a refrigeration cycle using a critical refrigerant.
冷媒として超臨界流体を用い、この超臨界冷媒を加圧するコンプレッサ(2)と、加圧した冷媒と外気とを熱交換する放熱器(4)と、放熱器(4)で冷却した冷媒を断熱膨張させる膨張弁(5)と、断熱膨張した冷媒を蒸発させる吸熱器(6)とを備え、膨張弁(5)の絞り弁を放熱器(4)出口の冷媒温度の上昇に伴って絞り方向に制御する冷凍サイクル(1)であって、
コンプレッサ(2)の吐出冷媒温度および吐出圧力を同時に検出し、この吐出冷媒温度が着霜時に現れる所定値を越え、かつ、この吐出冷媒温度の上昇に伴って吐出圧力が所定値以下になった場合に、前記膨張弁(5)の絞り弁を開ける方向に制御することを特徴とする超臨界冷媒を用いた冷凍サイクルの除霜方法。
Using a supercritical fluid as the refrigerant, the compressor (2) for pressurizing the supercritical refrigerant, the radiator (4) for exchanging heat between the pressurized refrigerant and the outside air, and the refrigerant cooled by the radiator (4) are insulated. An expansion valve (5) that expands and a heat absorber (6) that evaporates the adiabatically expanded refrigerant, and the throttle valve of the expansion valve (5) is throttled as the refrigerant temperature rises at the radiator (4) outlet. A refrigeration cycle (1) for controlling
The discharge refrigerant temperature and discharge pressure of the compressor (2) are detected at the same time, the discharge refrigerant temperature exceeds a predetermined value appearing at the time of frost formation, and the discharge pressure becomes lower than the predetermined value as the discharge refrigerant temperature increases. In this case, the defrosting method for a refrigeration cycle using a supercritical refrigerant is controlled such that the throttle valve of the expansion valve (5) is opened.
JP2003034816A 2003-02-13 2003-02-13 Method of detecting frost formation in refrigeration cycle using supercritical refrigerant and defrosting method using the method Expired - Fee Related JP4160415B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003034816A JP4160415B2 (en) 2003-02-13 2003-02-13 Method of detecting frost formation in refrigeration cycle using supercritical refrigerant and defrosting method using the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003034816A JP4160415B2 (en) 2003-02-13 2003-02-13 Method of detecting frost formation in refrigeration cycle using supercritical refrigerant and defrosting method using the method

Publications (2)

Publication Number Publication Date
JP2004245479A JP2004245479A (en) 2004-09-02
JP4160415B2 true JP4160415B2 (en) 2008-10-01

Family

ID=33020402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003034816A Expired - Fee Related JP4160415B2 (en) 2003-02-13 2003-02-13 Method of detecting frost formation in refrigeration cycle using supercritical refrigerant and defrosting method using the method

Country Status (1)

Country Link
JP (1) JP4160415B2 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006250492A (en) * 2005-03-14 2006-09-21 Calsonic Kansei Corp Vehicular air conditioning system
WO2006101567A1 (en) * 2005-03-18 2006-09-28 Carrier Commercial Refrigeration, Inc. Bottle cooler defroster and methods
CN100460772C (en) * 2005-11-25 2009-02-11 珠海格力电器股份有限公司 Control method for intelligent defrosting of air conditioner
JP5082865B2 (en) * 2008-01-11 2012-11-28 株式会社デンソー Heat pump device, hot water supply device including the same, and control device therefor
JP2013241097A (en) * 2012-05-21 2013-12-05 Honda Motor Co Ltd Vehicle air conditioning device
US9494360B2 (en) 2012-05-21 2016-11-15 Honda Motor Co., Ltd. Air conditioner for vehicle
JP2014034371A (en) * 2012-08-10 2014-02-24 Honda Motor Co Ltd Vehicle air conditioner
JP5999349B2 (en) * 2012-10-31 2016-09-28 三菱自動車工業株式会社 Air conditioner for vehicles
JP6108067B2 (en) * 2012-10-31 2017-04-05 三菱自動車工業株式会社 Air conditioner for vehicles
CN104422064B (en) * 2013-08-22 2017-07-18 广东美的制冷设备有限公司 The defrosting control method and device of air-conditioner
CN104930638A (en) * 2014-03-21 2015-09-23 海尔集团公司 Heat pump air-conditioning defrosting control method and heat pump air-conditioning system
CN105318492B (en) * 2014-07-30 2017-06-06 广东美的集团芜湖制冷设备有限公司 The defrosting control method and device of air-conditioner
CN104729171B (en) * 2015-03-27 2017-01-25 珠海格力电器股份有限公司 Cold-hot water unit anti-freezing protection device and method
CN108266898B (en) * 2016-12-30 2020-12-22 青岛海尔新能源电器有限公司 Defrosting control method and system for air energy water heater
JP2019043423A (en) * 2017-09-05 2019-03-22 サンデン・オートモーティブクライメイトシステム株式会社 Vehicular air conditioner
CN108469098A (en) * 2018-03-06 2018-08-31 广东美的制冷设备有限公司 Defrosting control method, device, air conditioner and computer readable storage medium
CZ308293B6 (en) * 2018-12-27 2020-04-22 Mirai Intex Sagl Dehumidifier, in particular for air cooling or air-conditioning machines
CN112050431A (en) * 2019-06-05 2020-12-08 青岛海尔空调器有限总公司 Control method and device for fixed-frequency air conditioner and fixed-frequency air conditioner

Also Published As

Publication number Publication date
JP2004245479A (en) 2004-09-02

Similar Documents

Publication Publication Date Title
JP4160415B2 (en) Method of detecting frost formation in refrigeration cycle using supercritical refrigerant and defrosting method using the method
JP3939445B2 (en) Air conditioner for automobile
JP5532095B2 (en) Air conditioner for vehicles
JP5423181B2 (en) Air conditioner for vehicles
JP3596345B2 (en) Refrigeration cycle device and vehicle air conditioner
JP2003291635A (en) Air-conditioner
CN109689404A (en) Air conditioner for vehicles
JP5316264B2 (en) Air conditioner for vehicles
JP6708170B2 (en) Vehicle air conditioner
JP2001050572A (en) Air conditioner for automobile
JP4274886B2 (en) Heat pump air conditioner
JP4400533B2 (en) Ejector refrigeration cycle
JP2011225174A (en) Vehicular air conditioner
JP5849885B2 (en) Air conditioner
JP2006145170A (en) Refrigerating cycle
JP3160430B2 (en) Heat pump type air conditioner for vehicles
JP2012076589A (en) Air conditioner for vehicle
JP2003211947A (en) Air conditioner for vehicle
JP2007269217A (en) Refrigeration cycle device
JPH07132729A (en) Air conditioner
JP3830242B2 (en) Heat pump type automotive air conditioner
JP7331806B2 (en) refrigeration cycle equipment
JP4089630B2 (en) Refrigeration cycle for vehicles
JP6897185B2 (en) Air conditioner
JP3858352B2 (en) Air conditioner for vehicles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080717

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees