JP4089630B2 - Refrigeration cycle for vehicles - Google Patents

Refrigeration cycle for vehicles Download PDF

Info

Publication number
JP4089630B2
JP4089630B2 JP2004022970A JP2004022970A JP4089630B2 JP 4089630 B2 JP4089630 B2 JP 4089630B2 JP 2004022970 A JP2004022970 A JP 2004022970A JP 2004022970 A JP2004022970 A JP 2004022970A JP 4089630 B2 JP4089630 B2 JP 4089630B2
Authority
JP
Japan
Prior art keywords
refrigerant
temperature
vehicle speed
compressor
refrigeration cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004022970A
Other languages
Japanese (ja)
Other versions
JP2005212652A (en
Inventor
宏已 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2004022970A priority Critical patent/JP4089630B2/en
Publication of JP2005212652A publication Critical patent/JP2005212652A/en
Application granted granted Critical
Publication of JP4089630B2 publication Critical patent/JP4089630B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide

Landscapes

  • Air-Conditioning For Vehicles (AREA)
  • Air Conditioning Control Device (AREA)

Description

本発明は、CO2冷媒等のように高圧圧力が臨界圧力以上(超臨界状態)となる冷媒を用いた車両用冷凍サイクルに関するもので、特に、内部熱交換器を有するサイクルに適用して好適なものである。 The present invention relates to a refrigeration cycle for a vehicle using a refrigerant having a high pressure equal to or higher than a critical pressure (supercritical state) such as a CO 2 refrigerant, and is particularly suitable for application to a cycle having an internal heat exchanger. Is something.

CO2冷媒はフロン系の冷媒(R134a等)によるオゾン層破壊という不具合を解消できるが、その一方、CO2冷媒を用いた超臨界冷凍サイクルでは、フロン系冷媒を用いた通常の冷凍サイクルに比較して冷媒の物性の違いにより理論効率が低い。そこで、効率向上のために内部熱交換器を設け、低圧側の圧縮機吸入冷媒と高圧側の放熱器出口冷媒との間で熱交換を行って、蒸発器の出入口間の冷媒エンタルピ差を増加させることが知られている(例えば、特許文献1参照)。
特開2003−2048号公報
CO 2 refrigerant can be solved a problem that the ozone layer destruction by refrigerants (R134a, etc.) fluorocarbon, but the other hand, in the supercritical refrigeration cycle using CO 2 refrigerant, compared to a normal refrigeration cycle using chlorofluorocarbon refrigerants Therefore, the theoretical efficiency is low due to the difference in the physical properties of the refrigerant. Therefore, an internal heat exchanger is installed to improve efficiency, and heat exchange is performed between the low-pressure compressor intake refrigerant and the high-pressure radiator outlet refrigerant, increasing the refrigerant enthalpy difference between the evaporator inlet and outlet. It is known to make (for example, refer to Patent Document 1).
Japanese Patent Laid-Open No. 2003-2048

ところで、超臨界冷凍サイクルに内部熱交換器を設けると、圧縮機吸入冷媒が放熱器出口冷媒により加熱され、過熱度を持つため、圧縮機吐出冷媒の温度が過度に上昇するという問題がある。   By the way, when an internal heat exchanger is provided in the supercritical refrigeration cycle, the compressor intake refrigerant is heated by the radiator outlet refrigerant and has a degree of superheat, so that the temperature of the compressor discharge refrigerant rises excessively.

そこで、吐出冷媒温度が圧縮機限界温度を超える場合には、この温度上昇を判定して圧縮機能力(具体的には可変容量圧縮機の容量等)を減少させるとか、減圧手段をなす電気式膨張弁の開度を増加させる等の制御を行って、圧縮機吐出圧力を低下させ、これにより、吐出冷媒温度を圧縮機限界温度以下に抑制することが必要となる。   Therefore, when the discharge refrigerant temperature exceeds the limit temperature of the compressor, this temperature rise is judged to reduce the compression function (specifically, the capacity of the variable capacity compressor, etc.) It is necessary to reduce the compressor discharge pressure by performing control such as increasing the opening of the expansion valve, thereby suppressing the discharge refrigerant temperature below the compressor limit temperature.

ここで、上記の吐出冷媒温度抑制のためのサイクル制御(以下、吐出冷媒温度制御と言う)を行うと、圧縮機吐出圧力の低下に伴って冷房能力の低下が発生するので、温度センサによる吐出冷媒温度の検出誤差が大きいと、冷房能力の低下割合が大きくなってしまう。   Here, when the cycle control for suppressing the discharge refrigerant temperature (hereinafter referred to as discharge refrigerant temperature control) is performed, the cooling capacity decreases with a decrease in the compressor discharge pressure. If the detection error of the refrigerant temperature is large, the rate of decrease in the cooling capacity increases.

吐出冷媒温度の検出は、配管シール部が不要となるメリットがあることから、通常は、圧縮機吐出側配管等の吐出冷媒通路の外表面に温度センサを密接配置する構成が用いられる。しかし、この温度検出構成であると、温度センサが吐出冷媒通路の外表面に配置されているので、温度センサの検出温度は冷媒温度以外に周囲の雰囲気温度や車両走行風の影響を受けてしまう。   Since the detection of the discharge refrigerant temperature has the advantage that a pipe seal portion is not required, a configuration in which a temperature sensor is closely arranged on the outer surface of the discharge refrigerant passage such as a compressor discharge side pipe is usually used. However, with this temperature detection configuration, since the temperature sensor is disposed on the outer surface of the discharge refrigerant passage, the temperature detected by the temperature sensor is influenced by the ambient temperature and the vehicle running wind in addition to the refrigerant temperature. .

このため、信号待ち等の停車時を含む低車速時は、所定車速以上の通常走行時に比較して温度センサの雰囲気温度が高く、かつ、温度センサ周囲の空気風速も低いので、温度センサの検出温度が高くなる。従って、通常走行時に比較して低車速時の方が、吐出冷媒通路内部の実際の吐出冷媒温度と温度センサ検出温度との温度差(検出誤差)が小さくなる。   For this reason, when the vehicle speed is low, including when the vehicle is stopped, such as when waiting for a signal, the ambient temperature of the temperature sensor is higher and the air wind speed around the temperature sensor is lower than when the vehicle is traveling normally above the specified vehicle speed. The temperature rises. Therefore, the temperature difference (detection error) between the actual discharged refrigerant temperature inside the discharged refrigerant passage and the temperature sensor detected temperature is smaller at the time of low vehicle speed than during normal traveling.

その結果、吐出冷媒温度の限界温度である目標値を圧縮機耐熱温度等に基づいて所定の固定値に設定すると、通常走行時に比較して低車速時の方が、実際の吐出冷媒温度が低い温度にて目標値(限界温度)に到達したと判定され、上記吐出冷媒温度制御が実行されるので、冷房能力の低下が早めに生じる。   As a result, when the target value, which is the limit temperature of the discharge refrigerant temperature, is set to a predetermined fixed value based on the compressor heat resistance temperature, etc., the actual discharge refrigerant temperature is lower at low vehicle speeds than during normal travel. Since it is determined that the target value (limit temperature) has been reached at the temperature, and the discharged refrigerant temperature control is executed, the cooling capacity is lowered early.

特に、圧縮機を車両エンジンにて駆動する場合は、停車時に車両エンジンのアイドル運転により圧縮機回転数が低下して冷房能力が低下するので、吐出冷媒温度制御が実行されると、冷房能力がより一層低下することになる。   In particular, when the compressor is driven by a vehicle engine, when the vehicle is stopped, the cooling speed is lowered due to the idling operation of the vehicle engine and the cooling capacity is lowered. It will be even lower.

なお、上記の不具合は、超臨界冷凍サイクルに内部熱交換器を設ける場合について説明したが、内部熱交換器を設けない超臨界冷凍サイクルにおいても、通常走行時と低車速時とにおける吐出冷媒温度の検出誤差の違いに起因する上記不具合はある程度発生する。   In addition, although the above-mentioned trouble was explained about the case where an internal heat exchanger is provided in the supercritical refrigeration cycle, the discharge refrigerant temperature during normal running and at low vehicle speed also in the supercritical refrigeration cycle without an internal heat exchanger. The above problems due to the difference in detection error occur to some extent.

本発明は、上記点に鑑み、低車速時に実際の吐出冷媒温度が通常走行時よりも低い温度にて吐出冷媒温度制御が実行されることを回避することを目的とする。   In view of the above-described points, an object of the present invention is to prevent the discharge refrigerant temperature control from being performed at a temperature at which the actual discharged refrigerant temperature is lower than that during normal traveling at a low vehicle speed.

上記目的を達成するため、請求項1に記載の発明では、車両走行用エンジンにより駆動され、CO 2 からなる冷媒を吸入圧縮する圧縮機(1)と、
圧縮機(1)の吐出冷媒を冷却する放熱器(2)と、
放熱器(2)の出口側冷媒を減圧する減圧手段(4)と、
減圧手段(4)により減圧された低圧冷媒を蒸発させる蒸発器(5)と、
放熱器(2)の出口側冷媒と圧縮機(1)の吸入側冷媒との間で熱交換を行う内部熱交換器(3)とを備え、
蒸発器(5)を通過した冷媒が内部熱交換器(3)を通過した後に圧縮機(1)に吸入されるようになっており、
更に、高圧側の冷媒圧力が冷媒の臨界圧力以上となる車両用冷凍サイクルにおいて、
圧縮機(1)の吐出冷媒通路の外表面に配置され、圧縮機(1)の吐出冷媒温度を検出する温度検出手段(11)と、
温度検出手段(11)の検出温度が所定の目標値を上回ると、冷凍サイクル運転条件を吐出冷媒温度の抑制側に制御する制御手段(S60、S80)と、
車速が所定値以上となる通常走行時には、前記目標値として通常走行時の目標値(Tb)を設定し、これに対し、車速が所定値未満となる低車速時であって、少なくとも車速が零となる停車時を包含する低車速時には、前記目標値として、通常走行時の目標値(Tb)よりも所定量高い低車速時の目標値(Tc)に切り替える目標値切替手段(S20〜S50)とを備えることを特徴としている。
In order to achieve the above object, according to the first aspect of the present invention, a compressor (1) that is driven by a vehicle travel engine and sucks and compresses a refrigerant composed of CO 2 ;
A radiator (2) for cooling the refrigerant discharged from the compressor (1);
Decompression means (4) for decompressing the outlet side refrigerant of the radiator (2);
An evaporator (5) for evaporating the low-pressure refrigerant decompressed by the decompression means (4);
An internal heat exchanger (3) for exchanging heat between the outlet side refrigerant of the radiator (2) and the suction side refrigerant of the compressor (1) ,
The refrigerant that has passed through the evaporator (5) is sucked into the compressor (1) after passing through the internal heat exchanger (3),
Furthermore, in the vehicle refrigeration cycle where the refrigerant pressure on the high pressure side is equal to or higher than the critical pressure of the refrigerant,
A temperature detection means (11) disposed on the outer surface of the discharge refrigerant passage of the compressor (1) for detecting the discharge refrigerant temperature of the compressor (1);
Control means (S60, S80) for controlling the refrigeration cycle operating condition to the side of suppressing the discharged refrigerant temperature when the detected temperature of the temperature detecting means (11) exceeds a predetermined target value;
During normal driving when the vehicle speed is equal to or higher than a predetermined value, the target value (Tb) during normal driving is set as the target value. On the other hand, at low vehicle speed when the vehicle speed is less than the predetermined value , at least the vehicle speed is zero. and at low speed it includes a time stop comprising, as the target value, the target value switching means for switching the target value of the normal running predetermined amount higher low-speed drive of the target value than (Tb) (Tc) (S20~ S50).

ところで、低車速時には前述のごとく通常走行時に比較して温度検出手段(11)の検出温度が高くなるので、通常走行時に比較して低車速時の方が、吐出冷媒通路内部の実際の吐出冷媒温度と温度検出手段(11)の検出温度との温度差(検出誤差)が小さくなる。   Incidentally, as described above, the temperature detected by the temperature detecting means (11) is higher at the low vehicle speed than at the normal travel time as described above. Therefore, the actual discharge refrigerant in the discharge refrigerant passage is at the low vehicle speed than at the normal travel time. The temperature difference (detection error) between the temperature and the temperature detected by the temperature detection means (11) is reduced.

請求項1ではこの点に着目して、低車速時における吐出冷媒温度制御の目標値(Tc)を通常走行時における吐出冷媒温度制御の目標値(Tb)よりも所定量高い温度に設定しているので、低車速時と通常走行時における吐出冷媒温度制御を開始するときの実際の吐出冷媒温度を同一温度にすることができる。   In claim 1, paying attention to this point, the target value (Tc) of the discharged refrigerant temperature control at the time of low vehicle speed is set to a temperature higher by a predetermined amount than the target value (Tb) of the discharged refrigerant temperature control at the time of normal traveling. Therefore, the actual discharged refrigerant temperature when starting the discharged refrigerant temperature control at the time of low vehicle speed and normal driving can be made the same temperature.

換言すると、低車速時に吐出冷媒温度制御を実行したときに、実際の吐出冷媒温度が走行時より低くなることを回避でき、これにより、低車速時に冷房能力が過度に低下することを防止できる。   In other words, when the discharge refrigerant temperature control is executed at the low vehicle speed, it is possible to avoid the actual discharge refrigerant temperature from becoming lower than that at the time of traveling, thereby preventing the cooling capacity from being excessively reduced at the low vehicle speed.

請求項2に記載の発明のように、請求項1に記載の車両用冷凍サイクルにおいて、前記所定量は、具体的には、通常走行時における温度検出手段(11)の検出温度誤差と低車速時における温度検出手段(11)の検出温度誤差との差に基づいて決定すればよい。   As in the invention described in claim 2, in the vehicle refrigeration cycle according to claim 1, specifically, the predetermined amount is the detected temperature error of the temperature detecting means (11) during normal traveling and the low vehicle speed. What is necessary is just to determine based on the difference with the detection temperature error of the temperature detection means (11) at the time.

請求項3に記載の発明のように、請求項1または2に記載の車両用冷凍サイクルにおいて、低車速時は、具体的には、車速が前記所定値未満となる低車速走行時と車速が零となる停車時の両方を包含している。   As in the third aspect of the invention, in the refrigeration cycle for the vehicle according to the first or second aspect, at low vehicle speeds, specifically, at low vehicle speeds when the vehicle speed is less than the predetermined value and the vehicle speed is low. It covers both when the vehicle stops at zero.

請求項4に記載の発明のように、請求項1または2に記載の車両用冷凍サイクルにおいて、低車速時は、具体的には、車速が零となる停車時のみであってもよい。   As in the fourth aspect of the invention, in the refrigeration cycle for the vehicle according to the first or second aspect, the low vehicle speed may specifically be only when the vehicle stops when the vehicle speed becomes zero.

請求項5に記載の発明のように、請求項1ないし4のいずれか1つに記載の車両用冷凍サイクルにおいて、前記冷凍サイクル運転条件の制御とは、圧縮機(1)の作動を吐出流量低下側に制御することである。   As in the invention described in claim 5, in the vehicle refrigeration cycle according to any one of claims 1 to 4, the control of the refrigeration cycle operating condition means that the operation of the compressor (1) is a discharge flow rate. It is to control to the decline side.

これによれば、吐出冷媒温度制御時に圧縮機(1)の吐出流量を低下させることで圧縮機吐出圧力を低下させ、吐出冷媒温度の上昇を抑制できる。   According to this, the compressor discharge pressure can be reduced by reducing the discharge flow rate of the compressor (1) during the discharge refrigerant temperature control, and the rise in the discharge refrigerant temperature can be suppressed.

請求項6に記載の発明のように、請求項1ないし4のいずれか1つに記載の車両用冷凍サイクルにおいて、前記冷凍サイクル運転条件の制御とは、減圧手段(4)の開度を増加側に制御することである。   As in the sixth aspect of the invention, in the refrigeration cycle for a vehicle according to any one of the first to fourth aspects, the control of the refrigeration cycle operating condition is to increase the opening of the decompression means (4). Is to control to the side.

これによれば、吐出冷媒温度制御時に減圧手段(4)の開度を増加することで高圧圧力(圧縮機吐出圧力)を低下させ、吐出冷媒温度の上昇を抑制できる。   According to this, the high pressure (compressor discharge pressure) can be reduced by increasing the opening of the decompression means (4) during discharge refrigerant temperature control, and the rise in discharge refrigerant temperature can be suppressed.

請求項7に記載の発明のように、請求項1ないし4のいずれか1つに記載の車両用冷凍サイクルにおいて蒸発器(5)の出口側冷媒が内部熱交換器(3)をバイパスして流れることを許容するバイパス弁(21)備え、
前記冷凍サイクル運転条件の制御とは、蒸発器(5)の出口側冷媒が内部熱交換器(3)をバイパスして流れる側にバイパス弁(21)を制御することである。
As in the invention according to claim 7, in the vehicle refrigeration cycle according to any one of claims 1 to 4, the outlet side refrigerant of the evaporator (5) bypasses the internal heat exchanger (3). A bypass valve (21) that allows the flow of
The control of the refrigeration cycle operating conditions means that the outlet side refrigerant of the evaporator (5) controls the bypass valve (21) to the side that flows by bypassing the internal heat exchanger (3).

これによれば、内部熱交換器(3)の作用にて蒸発器出入口間での冷媒エンタルピ差を増大して冷房能力を向上できる車両用超臨界冷凍サイクルにおいて、吐出冷媒温度制御時に蒸発器(5)の出口側冷媒が内部熱交換器(3)をバイパスして流れることにより、圧縮機吸入冷媒の過熱度を減少させ、それにより、吐出冷媒温度の上昇を抑制できる。   According to this, in the supercritical refrigeration cycle for a vehicle that can improve the cooling capacity by increasing the refrigerant enthalpy difference between the evaporator inlet and outlet by the action of the internal heat exchanger (3), the evaporator ( The outlet side refrigerant of 5) flows by bypassing the internal heat exchanger (3), thereby reducing the degree of superheat of the refrigerant sucked by the compressor, thereby suppressing the increase in the discharge refrigerant temperature.

なお、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。
In addition, the code | symbol in the bracket | parenthesis of each said means shows the correspondence with the specific means as described in embodiment mentioned later.

(第1実施形態)
図1は本発明の第1実施形態を示す車両空調用冷凍サイクルの構成図であって、この冷凍サイクルは、冷媒として高圧圧力が臨界圧力以上(超臨界状態)となるCO2を用いている。従って、この冷凍サイクルは超臨界冷凍サイクルを構成する。
(First embodiment)
FIG. 1 is a configuration diagram of a refrigeration cycle for vehicle air conditioning showing a first embodiment of the present invention, and this refrigeration cycle uses CO 2 whose high pressure is not less than a critical pressure (supercritical state) as a refrigerant. . Therefore, this refrigeration cycle constitutes a supercritical refrigeration cycle.

圧縮機1は図示しない車両走行用エンジンから駆動力を得て冷媒を吸入圧縮するものである。この圧縮機1は、駆動力を断続するクラッチ手段をなす電磁クラッチ1aを介して駆動力を得ている。   The compressor 1 obtains driving force from a vehicle travel engine (not shown) and sucks and compresses refrigerant. The compressor 1 obtains a driving force through an electromagnetic clutch 1a serving as a clutch means for intermittently driving the driving force.

本実施形態の圧縮機1は外部からの制御信号により容量を変化できる可変容量型圧縮機であり、電磁式の容量制御弁1bを備えている。この可変容量型圧縮機1は例えば斜板式圧縮機として周知のものであり、電磁式容量制御弁1bに加える制御電流値を変化させることにより、斜板室の制御圧力を変化させ、これにより、斜板の傾斜角度の変化→ピストンストロークの変化→容量の変化を行うようになっている。この圧縮機容量の変化によって、単位回転数当たりの吐出冷媒流量が変化する。   The compressor 1 of the present embodiment is a variable capacity compressor that can change its capacity by an external control signal, and includes an electromagnetic capacity control valve 1b. The variable capacity compressor 1 is known as, for example, a swash plate compressor, and by changing the control current value applied to the electromagnetic capacity control valve 1b, the control pressure of the swash plate chamber is changed. The change of the inclination angle of the plate → the change of the piston stroke → the change of the capacity is performed. The change in the compressor capacity changes the discharge refrigerant flow rate per unit rotation speed.

圧縮機1の吐出側には放熱器2が設けられている。この放熱器2は、圧縮機1から吐出された高温高圧の超臨界状態にある吐出冷媒と外気(室外空気)との間で熱交換して冷媒を冷却させる。放熱器2には電動式の冷却ファン2aによって外気が送風される。   A radiator 2 is provided on the discharge side of the compressor 1. The radiator 2 cools the refrigerant by exchanging heat between the discharged refrigerant in the supercritical state at high temperature and high pressure discharged from the compressor 1 and the outside air (outdoor air). Outside air is blown to the radiator 2 by an electric cooling fan 2a.

放熱器2の出口側には内部熱交換器3の高圧側流路3aが設けられ、この高圧側流路3aの出口側に減圧手段をなす電気式膨張弁4が設けられている。この電気式膨張弁4は、サイクルの高圧圧力が目標高圧となるように電気的に開度が制御される圧力制御弁としての役割を果たす。   A high-pressure side passage 3a of the internal heat exchanger 3 is provided on the outlet side of the radiator 2, and an electric expansion valve 4 serving as a decompression unit is provided on the outlet side of the high-pressure side passage 3a. The electric expansion valve 4 serves as a pressure control valve whose opening degree is electrically controlled so that the high pressure of the cycle becomes the target high pressure.

電気式膨張弁4の出口側には蒸発器5が設けられている。この蒸発器5は車両用空調装置の室内空調ユニット部の空気通路をなすケース6内に配置され、このケース6内の空気を冷却する冷却手段を構成する。蒸発器5の空気流れ上流側には電動式の送風機7が配置され、図示しない内外気切替箱を通して導入される内気または外気がケース6内に送風されるようになっている。   An evaporator 5 is provided on the outlet side of the electric expansion valve 4. The evaporator 5 is disposed in a case 6 that forms an air passage of an indoor air conditioning unit of the vehicle air conditioner, and constitutes a cooling means for cooling the air in the case 6. An electric blower 7 is arranged on the upstream side of the air flow of the evaporator 5 so that the inside air or the outside air introduced through an inside / outside air switching box (not shown) is blown into the case 6.

なお、ケース6内には、蒸発器5の空気流れ下流側に空気を加熱する加熱手段をなすヒータコア(図示せず)が配置され、このヒータコアの加熱度合いにより温度調整された空調風がケース6の空気流れ下流側端部の吹出口(図示せず)から車室内へ吹き出すようになっている。   Note that a heater core (not shown) serving as a heating means for heating air is disposed in the case 6 on the downstream side of the air flow of the evaporator 5, and conditioned air whose temperature is adjusted by the degree of heating of the heater core is provided in the case 6. The air flow is blown out from the outlet (not shown) at the downstream end of the air flow into the vehicle compartment.

蒸発器5の出口側にはアキュムレータ8が設けられている。このアキュムレータ8は、蒸発器5の出口冷媒の液冷媒とガス冷媒とを分離してサイクル内の余剰冷媒を蓄える気液分離手段であって、分離したガス冷媒を圧縮機1の吸入側に向けて導出する。   An accumulator 8 is provided on the outlet side of the evaporator 5. The accumulator 8 is a gas-liquid separation unit that separates the liquid refrigerant and gas refrigerant of the outlet refrigerant of the evaporator 5 and stores excess refrigerant in the cycle, and directs the separated gas refrigerant to the suction side of the compressor 1. To derive.

アキュムレータ8の出口側には内部熱交換器3の低圧側流路3bが設けられている。従って、アキュムレータ8の出口配管はこの低圧側流路3bを介して圧縮機1の吸入側に接続される。   On the outlet side of the accumulator 8, a low pressure side flow path 3 b of the internal heat exchanger 3 is provided. Accordingly, the outlet pipe of the accumulator 8 is connected to the suction side of the compressor 1 through the low pressure side flow path 3b.

内部熱交換器3はアキュムレータ8から流出する冷媒(圧縮機吸入冷媒)と放熱器2の出口側冷媒とを熱交換し、蒸発器5に流入する冷媒のエンタルピを低下させて蒸発器9の冷媒入口側と出口側における冷媒のエンタルピ差(冷凍能力)を増大させるとともに、圧縮機1に液冷媒が吸入されることを防止するものである。   The internal heat exchanger 3 exchanges heat between the refrigerant flowing out of the accumulator 8 (compressor suction refrigerant) and the outlet side refrigerant of the radiator 2 to reduce the enthalpy of the refrigerant flowing into the evaporator 5, thereby reducing the refrigerant of the evaporator 9. This increases the enthalpy difference (refrigeration capacity) of the refrigerant on the inlet side and the outlet side, and prevents the liquid refrigerant from being sucked into the compressor 1.

次に、本実施形態における電気制御部の概要を説明する。空調用制御装置10は、マイクロコンピュータおよびその周辺回路等から構成され、予め設定されたプログラムに従って所定の演算処理を行って、空調機器の作動を制御する。   Next, an outline of the electric control unit in the present embodiment will be described. The air-conditioning control device 10 is composed of a microcomputer and its peripheral circuits, etc., and performs predetermined arithmetic processing according to a preset program to control the operation of the air-conditioning equipment.

具体的には、空調用制御装置10の出力側に、圧縮機1の電磁クラッチ1a、容量制御弁1b、放熱器2の冷却ファン2a、電気式膨張弁4、電動送風機7等の空調機器が接続され、これらの空調機器の作動を制御する。   Specifically, air-conditioning equipment such as an electromagnetic clutch 1 a of the compressor 1, a capacity control valve 1 b, a cooling fan 2 a of the radiator 2, an electric expansion valve 4, and an electric blower 7 are provided on the output side of the air-conditioning control device 10. Connected and controls the operation of these air conditioners.

空調用制御装置10の入力側には圧縮機1の吐出冷媒温度センサ11、放熱器2の出口側の冷媒温度センサ12、放熱器2の出口側の冷媒圧力センサ13、蒸発器5の吹出空気温度センサ14等が接続される。なお、空調用制御装置10には周知の外気温度センサ、内気温度センサ、日射センサ等を包含するセンサ群15からも検出信号が入力される。また、空調用制御装置10には車室内の計器盤(インパネ)付近に配置される空調操作パネル16から種々な空調操作信号が入力される。   On the input side of the air-conditioning control device 10, the refrigerant temperature sensor 11 discharged from the compressor 1, the refrigerant temperature sensor 12 at the outlet side of the radiator 2, the refrigerant pressure sensor 13 at the outlet side of the radiator 2, and the air blown from the evaporator 5 A temperature sensor 14 or the like is connected. The air conditioning control device 10 also receives detection signals from a sensor group 15 including well-known outside air temperature sensors, inside air temperature sensors, solar radiation sensors, and the like. Various air conditioning operation signals are input to the air conditioning control device 10 from an air conditioning operation panel 16 disposed in the vicinity of an instrument panel in the vehicle interior.

具体的には、車室内の設定温度を設定する温度設定スイッチ、圧縮機1の作動指令信号を出すエアコンスイッチ、電動送風機7の風量切替スイッチ、室内空調ユニット部の吹出モード切替スイッチ、内外気切替箱の内外気導入モード切替スイッチ等の操作部材が空調操作パネル16に設けられる。   Specifically, a temperature setting switch for setting a set temperature in the vehicle interior, an air conditioner switch for issuing an operation command signal for the compressor 1, an air volume changeover switch for the electric blower 7, a blowout mode changeover switch for the indoor air conditioning unit, an inside / outside air changeover Operation members such as a box inside / outside air introduction mode changeover switch are provided on the air conditioning operation panel 16.

また、空調用制御装置10はエンジン制御装置17と電気接続され、エンジン制御装置17との間で電気信号の通信を行うようになっている。エンジン制御装置17から空調用制御装置10に対して、車速、エンジン回転数、エンジン水温等の車両側の検出信号が入力される。   The air-conditioning control device 10 is electrically connected to the engine control device 17 so as to communicate electric signals with the engine control device 17. Vehicle-side detection signals such as vehicle speed, engine speed, and engine water temperature are input from the engine control device 17 to the air conditioning control device 10.

次に、上記構成において本実施形態の作動を説明する。最初に、冷凍サイクルの基本的作動を説明する。空調操作パネル16のエアコンスイッチが投入されると、電磁クラッチ1aが空調用制御装置10により通電され接続状態になる。これにより、車両エンジンの駆動力が電磁クラッチ1aを介して圧縮機1に伝達され、圧縮機1が駆動される。   Next, the operation of this embodiment in the above configuration will be described. First, the basic operation of the refrigeration cycle will be described. When the air-conditioner switch of the air-conditioning operation panel 16 is turned on, the electromagnetic clutch 1a is energized by the air-conditioning control device 10 to enter a connected state. Thereby, the driving force of the vehicle engine is transmitted to the compressor 1 via the electromagnetic clutch 1a, and the compressor 1 is driven.

圧縮機1により圧縮された高温高圧の冷媒は、臨界圧力よりも圧力が高い超臨界状態にて放熱器2内に流入する。ここで、高温高圧の超臨界状態の冷媒は冷却ファン2aによって送風される外気と熱交換して外気中に放熱し、エンタルピを減少する。   The high-temperature and high-pressure refrigerant compressed by the compressor 1 flows into the radiator 2 in a supercritical state where the pressure is higher than the critical pressure. Here, the high-temperature and high-pressure supercritical refrigerant exchanges heat with the outside air blown by the cooling fan 2a to dissipate heat into the outside air, thereby reducing enthalpy.

そして、放熱器2の出口冷媒は、内部熱交換器3の高圧側流路3aを通過して膨張弁4へ向かう。ここで、放熱器2の出口冷媒は、内部熱交換器3の高圧側流路3aを通過する際に低圧側流路3bの低温低圧冷媒と熱交換して低圧冷媒側に放熱する。   And the exit refrigerant | coolant of the heat radiator 2 passes the high voltage | pressure side flow path 3a of the internal heat exchanger 3, and goes to the expansion valve 4. FIG. Here, the outlet refrigerant of the radiator 2 exchanges heat with the low-temperature and low-pressure refrigerant of the low-pressure side passage 3b when passing through the high-pressure side passage 3a of the internal heat exchanger 3, and radiates heat to the low-pressure refrigerant side.

内部熱交換器3の高圧側流路3aを通過して更に放熱した冷媒は次に、膨張弁4の絞り通路にて減圧され、低温低圧の気液2相状態となる。この低温低圧の気液2相冷媒は次に蒸発器5に流入し、ここで、電動送風機7の送風空気から吸熱して蒸発する。これにより、電動送風機7の送風空気を蒸発器5で冷却することができ、冷風を車室内へ吹き出すことができる。   The refrigerant that has further dissipated heat after passing through the high-pressure channel 3a of the internal heat exchanger 3 is then depressurized in the throttle passage of the expansion valve 4 to be in a low-temperature and low-pressure gas-liquid two-phase state. This low-temperature and low-pressure gas-liquid two-phase refrigerant then flows into the evaporator 5 where it absorbs heat from the blown air of the electric blower 7 and evaporates. Thereby, the blowing air of the electric blower 7 can be cooled by the evaporator 5, and the cool air can be blown out into the vehicle interior.

蒸発器5を通過した低圧冷媒は次にアキュムレータ8内に流入し、この低圧冷媒の液冷媒とガス冷媒とが分離され、アキュムレータ8の出口からガス冷媒が圧縮機1の吸入側に向けて導出される。   The low-pressure refrigerant that has passed through the evaporator 5 then flows into the accumulator 8, where the liquid refrigerant and gas refrigerant of the low-pressure refrigerant are separated, and the gas refrigerant is led out from the outlet of the accumulator 8 toward the suction side of the compressor 1. Is done.

アキュムレータ8出口の低圧ガス冷媒(圧縮機吸入冷媒)は、内部熱交換器3の低圧側流路3bにて放熱器2の出口冷媒から吸熱するので、放熱器2の出口冷媒が冷却され、そのエンタルピが減少する。内部熱交換器3にて吸熱した過熱ガス冷媒が圧縮機1に吸入され、再度、圧縮される。   The low-pressure gas refrigerant (compressor suction refrigerant) at the outlet of the accumulator 8 absorbs heat from the outlet refrigerant of the radiator 2 in the low-pressure side passage 3b of the internal heat exchanger 3, so that the outlet refrigerant of the radiator 2 is cooled, Enthalpy decreases. The superheated gas refrigerant that has absorbed heat in the internal heat exchanger 3 is sucked into the compressor 1 and compressed again.

次に、冷凍サイクル各部の冷媒状態の検出信号に基づく冷凍サイクル自動制御を図2により説明する。図2は空調用制御装置10により実行される制御ルーチンのフローチャートであり、この制御ルーチンは、空調操作パネル16のエアコンスイッチの投入によりスタートする。まず、ステップS10にて圧縮機吐出冷媒の吐出温度目標値として初期目標値Taを設定する。この初期目標値Taは圧縮機1の耐熱温度、圧縮機1吐出側配管のゴムホースの耐熱温度等を考慮して設定された固定値である。   Next, the refrigeration cycle automatic control based on the detection signal of the refrigerant state of each part of the refrigeration cycle will be described with reference to FIG. FIG. 2 is a flowchart of a control routine executed by the air conditioning control device 10, and this control routine starts when the air conditioner switch of the air conditioning operation panel 16 is turned on. First, in step S10, an initial target value Ta is set as the discharge temperature target value of the compressor discharge refrigerant. This initial target value Ta is a fixed value set in consideration of the heat resistant temperature of the compressor 1 and the heat resistant temperature of the rubber hose of the compressor 1 discharge side piping.

次に、ステップS20、S30にて車速が所定車速以下の低車速状態にあるか否か判定する。本実施形態では、車速が所定車速以下の低車速状態および完全な停車状態の両方を含めて低車速状態という。   Next, in steps S20 and S30, it is determined whether or not the vehicle speed is in a low vehicle speed state equal to or lower than a predetermined vehicle speed. In the present embodiment, the low vehicle speed state includes both a low vehicle speed state where the vehicle speed is equal to or lower than a predetermined vehicle speed and a complete stop state.

具体的には、ステップS20にて車速が第2所定車速例えば、20km/hより高いか判定する。車速が20km/hより高いときは通常走行時であり、ステップS40に進み、圧縮機吐出冷媒の吐出温度目標値として通常走行時の目標値Tbを設定する。この通常走行時の目標値Tbは、初期目標値Taと同じ値(Ta=Tb)である。   Specifically, it is determined in step S20 whether the vehicle speed is higher than a second predetermined vehicle speed, for example, 20 km / h. When the vehicle speed is higher than 20 km / h, it is during normal travel, and the process proceeds to step S40, where the target value Tb during normal travel is set as the discharge temperature target value of the refrigerant discharged from the compressor. The target value Tb during normal driving is the same value (Ta = Tb) as the initial target value Ta.

一方、車速が20km/hより低いときはステップS20からステップS30に進み、第2所定車速より所定量低い第1所定車速例えば、15km/hと車速とを比較する。車速が15km/hより低いときは低車速時であり、ステップS50に進み、圧縮機吐出冷媒の吐出温度目標値として低車速時の目標値Tcを設定する。   On the other hand, when the vehicle speed is lower than 20 km / h, the process proceeds from step S20 to step S30, and the first predetermined vehicle speed, for example, 15 km / h lower than the second predetermined vehicle speed is compared with the vehicle speed. When the vehicle speed is lower than 15 km / h, the vehicle speed is low, and the process proceeds to step S50, where the target value Tc at the low vehicle speed is set as the discharge temperature target value of the refrigerant discharged from the compressor.

この低車速時の目標値Tcは、通常走行時の目標値Tbに対して所定温度αだけ高温側に補正した温度である。つまり、低車速時は、吐出温度センサ11の雰囲気温度の上昇、吐出温度センサ11周囲の通過空気の風速低下等の影響を受けて、吐出温度センサ11の検出温度が通常走行時に比較して上昇するので、Tc=Tb+αとしている。   The target value Tc at the low vehicle speed is a temperature that is corrected to the high temperature side by a predetermined temperature α with respect to the target value Tb during normal traveling. That is, at low vehicle speeds, the temperature detected by the discharge temperature sensor 11 rises compared to that during normal driving due to an increase in the ambient temperature of the discharge temperature sensor 11 and a decrease in the wind speed of the passing air around the discharge temperature sensor 11. Therefore, Tc = Tb + α is set.

ここで、αは通常走行時と低車速時とで生じる、吐出温度センサ11の検出温度差に相当する値であって、具体的には、通常走行時における実際の吐出冷媒温度と吐出温度センサ11の検出温度との温度差Aと、低車速時における実際の吐出冷媒温度と吐出温度センサ11の検出温度との温度差Bの差(A−B)がαであり、この差(A−B)=α分だけ、低車速時の目標値Tcを通常走行時の目標値Tbより高くしている。   Here, α is a value corresponding to the detected temperature difference of the discharge temperature sensor 11 that occurs between the normal travel and the low vehicle speed. Specifically, the actual discharge refrigerant temperature and the discharge temperature sensor during the normal travel. The difference (A−B) between the temperature difference A between the detected temperature 11 and the detected refrigerant temperature at the low vehicle speed and the detected temperature of the discharged temperature sensor 11 is α, and this difference (A− B) The target value Tc at the time of low vehicle speed is made higher than the target value Tb at the time of normal driving by the amount of α.

なお、図2の制御ルーチンスタート後におけるステップS20、S30の最初の判定において、車速が15km/h以上で、かつ、20km/h未満であるときは、吐出温度目標値として初期目標値Taをそのまま用いる。   When the vehicle speed is 15 km / h or more and less than 20 km / h in the first determination in steps S20 and S30 after the start of the control routine in FIG. 2, the initial target value Ta is used as it is as the discharge temperature target value. Use.

次のステップS60では、上記のようにしてセットされた吐出温度目標値、すなわち、Ta、Tb、Tcのいずれか1つと、吐出温度センサ11により検出される吐出温度Tdとを比較し、吐出温度(センサ検出値)Tdが吐出温度目標値よりも高いか判定する。実際の吐出温度Tdが吐出温度目標値以下であるときはステップS70に進み、通常の冷凍サイクル制御を行う。   In the next step S60, the discharge temperature target value set as described above, that is, any one of Ta, Tb, and Tc is compared with the discharge temperature Td detected by the discharge temperature sensor 11, and the discharge temperature is compared. (Sensor detection value) It is determined whether Td is higher than the discharge temperature target value. When the actual discharge temperature Td is equal to or lower than the discharge temperature target value, the process proceeds to step S70, and normal refrigeration cycle control is performed.

この通常の冷凍サイクル制御は、具体的には、電気式膨張弁4の開度制御による高圧圧力Pdの制御と、圧縮機1の容量制御による蒸発器吹出温度Teの制御である。高圧圧力Pdの制御は、放熱器2出口側の冷媒温度センサ12により検出される放熱器出口側冷媒温度TfによりサイクルCOP(成績係数)が最大となる目標高圧Poを算出し、放熱器2出口側の冷媒圧力センサ13により検出される高圧圧力Pdが目標高圧Poとなるように電気式膨張弁4の開度を制御する。実際の高圧圧力Pdが目標高圧Poより高いときは電気式膨張弁4の開度を増加し、逆に、実際の高圧圧力Pdが目標高圧Poより低いときは電気式膨張弁4の開度を減少させる。   Specifically, the normal refrigeration cycle control includes control of the high pressure Pd by opening control of the electric expansion valve 4 and control of the evaporator outlet temperature Te by capacity control of the compressor 1. The high pressure Pd is controlled by calculating a target high pressure Po that maximizes the cycle COP (coefficient of performance) based on the radiator outlet side refrigerant temperature Tf detected by the refrigerant temperature sensor 12 on the radiator 2 outlet side, and the radiator 2 outlet The opening degree of the electric expansion valve 4 is controlled so that the high pressure Pd detected by the refrigerant pressure sensor 13 on the side becomes the target high pressure Po. When the actual high pressure Pd is higher than the target high pressure Po, the opening degree of the electric expansion valve 4 is increased. Conversely, when the actual high pressure Pd is lower than the target high pressure Po, the opening degree of the electric expansion valve 4 is increased. Decrease.

蒸発器吹出温度Teの制御は、車室内へ吹き出す空気の目標温度TAO、外気温度Tam等により蒸発器吹出空気の目標温度TEOを算出し、蒸発器5の吹出空気温度センサ14により検出される蒸発器吹出温度Teが蒸発器目標温度TEOとなるように圧縮機1の容量を制御する。   The evaporator blowout temperature Te is controlled by calculating the target temperature TEO of the evaporator blowout air from the target temperature TAO of the air blown into the vehicle interior, the outside air temperature Tam, etc., and the evaporation detected by the blowout air temperature sensor 14 of the evaporator 5. The capacity | capacitance of the compressor 1 is controlled so that the evaporator blowing temperature Te may become the evaporator target temperature TEO.

つまり、蒸発器吹出温度Teが蒸発器目標温度TEOより高いときは、圧縮機1の容量制御弁1bに出力される制御電流値を増加して圧縮機1の容量を増加し、これにより、蒸発器5への循環冷媒流量を増加して蒸発器5の冷却能力を増加する。逆に、蒸発器吹出温度Teが蒸発器目標温度TEOより低いときは、圧縮機1の容量制御弁1bに出力される制御電流値を減少して圧縮機1の容量を減少し、これにより、蒸発器5への循環冷媒流量を減少して蒸発器5の冷却能力を減少する。   That is, when the evaporator outlet temperature Te is higher than the evaporator target temperature TEO, the control current value output to the capacity control valve 1b of the compressor 1 is increased to increase the capacity of the compressor 1, thereby evaporating. The cooling capacity of the evaporator 5 is increased by increasing the circulating refrigerant flow rate to the evaporator 5. On the contrary, when the evaporator outlet temperature Te is lower than the evaporator target temperature TEO, the control current value output to the capacity control valve 1b of the compressor 1 is decreased to decrease the capacity of the compressor 1, thereby The flow rate of the circulating refrigerant to the evaporator 5 is reduced to reduce the cooling capacity of the evaporator 5.

なお、蒸発器目標温度TEOの最低温度は蒸発器5のフロスト防止のために0℃より若干高めの温度(1℃程度)に決定される。   The minimum temperature of the evaporator target temperature TEO is determined to be slightly higher than 0 ° C. (about 1 ° C.) in order to prevent the evaporator 5 from being frosted.

一方、ステップS60にて吐出温度(センサ検出値)Tdが吐出温度目標値より高いと判定されると、ステップS80に進み、吐出温度Tdを吐出温度目標値以下に低下するための制御を行う。具体的には、圧縮機1の容量を、吹出空気温度センサ14の検出値によらず、強制的に所定量減少させて吐出圧力を低下させ、これにより、吐出温度Tdを吐出温度目標値(耐熱性からの限界温度)に抑制する制御を行う。   On the other hand, if it is determined in step S60 that the discharge temperature (sensor detection value) Td is higher than the discharge temperature target value, the process proceeds to step S80, where control is performed to lower the discharge temperature Td to be equal to or lower than the discharge temperature target value. Specifically, the capacity of the compressor 1 is forcibly decreased by a predetermined amount regardless of the detection value of the blown air temperature sensor 14 to lower the discharge pressure, thereby reducing the discharge temperature Td to the discharge temperature target value ( Control to suppress to the limit temperature from heat resistance).

なお、ステップS80においても、電気式膨張弁4の開度制御によって、COPを最大化するように高圧圧力を制御することが実行される。   In step S80, the high pressure is controlled so as to maximize the COP by controlling the opening of the electric expansion valve 4.

ところで、本実施形態においては、低車速時は、吐出温度センサ11の雰囲気温度の上昇、吐出温度センサ11周囲の通過空気の風速低下等の影響を受けて、吐出温度センサ11の検出温度が通常走行時に比較して上昇することを考慮して、通常走行時における実際の吐出冷媒温度と吐出温度センサ11の検出温度との温度差Aと、低車速時における実際の吐出冷媒温度と吐出温度センサ11の検出温度との温度差Bの差分(A−B)=αだけ、低車速時の目標値Tcを通常走行時の目標値Tbより高くしている。   By the way, in this embodiment, at a low vehicle speed, the detection temperature of the discharge temperature sensor 11 is usually affected by an increase in the ambient temperature of the discharge temperature sensor 11 and a decrease in the wind speed of the passing air around the discharge temperature sensor 11. Considering that the temperature rises compared to when traveling, the temperature difference A between the actual discharged refrigerant temperature during normal traveling and the detected temperature of the discharge temperature sensor 11, and the actual discharged refrigerant temperature and discharged temperature sensor during low vehicle speed. The target value Tc at the low vehicle speed is made higher than the target value Tb at the time of normal traveling by the difference (A−B) = α of the temperature difference B from the detected temperature 11.

これにより、低車速時も吐出温度センサ11の検出温度が吐出温度目標値に到達したときの実際の吐出温度を通常走行時と同一温度にすることができる。   Thereby, even when the vehicle speed is low, the actual discharge temperature when the detected temperature of the discharge temperature sensor 11 reaches the discharge temperature target value can be set to the same temperature as during normal driving.

その結果、低車速時に吐出温度(センサ検出値)Tdが吐出温度目標値より高くなって、圧縮機1の容量制御による吐出温度制御が実行されても、実際の吐出温度が通常走行時より低くなることを防止できる。   As a result, even when the discharge temperature (sensor detection value) Td becomes higher than the discharge temperature target value at the low vehicle speed and the discharge temperature control by the capacity control of the compressor 1 is executed, the actual discharge temperature is lower than that during normal driving. Can be prevented.

換言すると、低車速時に吐出温度センサ11の雰囲気温度の上昇やセンサ周囲の通過空気の風速低下等の影響を受けて、圧縮機1の容量制御による吐出温度制御を必要以上に実行することを防止できる。よって、低車速時に冷房能力が過度に低下するという不具合を解消できる。   In other words, the discharge temperature control by the capacity control of the compressor 1 is prevented from being performed more than necessary due to the influence of an increase in the ambient temperature of the discharge temperature sensor 11 and a decrease in the wind speed of the passing air around the sensor at a low vehicle speed. it can. Therefore, it is possible to solve the problem that the cooling capacity is excessively lowered at a low vehicle speed.

なお、図2の制御ルーチンにおいて、ステップS20、S30において、車速の判定値として、20km/hと15km/hの差を設けているのは、吐出温度目標値が頻繁に変更されることを防止するためのヒステリシスを設定するためである。ステップS40において、吐出温度目標値として通常走行時の目標値Tbを一旦セットすると、車速が20km/h以下に低下しても15km/hより高い間は、吐出温度目標値として通常走行時の目標値Tbを維持する。   In the control routine of FIG. 2, the difference between 20 km / h and 15 km / h is provided as the vehicle speed determination value in steps S20 and S30, so that the discharge temperature target value is not frequently changed. This is because hysteresis is set. In step S40, once the target value Tb for normal driving is set as the discharge temperature target value, the target for normal driving is used as the discharge temperature target value as long as it is higher than 15 km / h even if the vehicle speed drops below 20 km / h. The value Tb is maintained.

また、ステップS50において、吐出温度目標値として低車速時の目標値Tcを一旦セットすると、車速が15km/h以上に上昇しても車速が20km/h以下である間は、吐出温度目標値として低車速時の目標値Tcを維持する。   In step S50, once the target value Tc at low vehicle speed is set as the discharge temperature target value, the discharge temperature target value is set as long as the vehicle speed is 20 km / h or less even if the vehicle speed increases to 15 km / h or more. The target value Tc at the time of low vehicle speed is maintained.

ところで、図2の制御ルーチンにおける各ステップは機能実現手段を構成するものであり、そのうち、ステップS60、S80は、吐出温度センサ11の検出温度が所定の目標値を上回ると、冷凍サイクル運転条件を吐出冷媒温度の抑制側に制御する、本発明の制御手段を構成する。   By the way, each step in the control routine of FIG. 2 constitutes a function realization means, and among these, steps S60 and S80, when the detected temperature of the discharge temperature sensor 11 exceeds a predetermined target value, The control means of the present invention is configured to control the discharge refrigerant temperature to be suppressed.

また、ステップS20〜S50は、車速が所定値以上となる通常走行時には、吐出温度制御の目標値として通常走行時の目標値Tbを設定し、車速が所定値未満となる低車速時には、吐出温度制御の目標値として、通常走行時の目標値Tbよりも所定量高い低車速時の目標値Tcを設定する、本発明の目標値切替手段を構成する。   In steps S20 to S50, the target value Tb for normal driving is set as the target value for discharge temperature control during normal driving when the vehicle speed is a predetermined value or higher, and the discharge temperature is set for low vehicle speeds when the vehicle speed is less than the predetermined value. The target value switching means of the present invention is configured to set a target value Tc at a low vehicle speed that is a predetermined amount higher than the target value Tb at the time of normal traveling as a target value for control.

(第2実施形態)
第1実施形態では、圧縮機1の容量制御(容量減少)により吐出温度制御を行うようにしているが、第2実施形態は、圧縮機1の容量制御や膨張弁4の開度制御によらない別の吐出温度制御を行うものである。
(Second Embodiment)
In the first embodiment, discharge temperature control is performed by capacity control (capacity reduction) of the compressor 1, but the second embodiment is based on capacity control of the compressor 1 and opening degree control of the expansion valve 4. Another discharge temperature control is performed.

図3は第2実施形態を示すもので、内部熱交換器3の低圧側流路3bと並列にバイパス通路20を設け、このバイパス通路20に電磁弁等にて構成されるバイパス弁21を設け、このバイパス弁21を空調用制御装置10により開閉制御するようになっている。   FIG. 3 shows a second embodiment, in which a bypass passage 20 is provided in parallel with the low-pressure side passage 3b of the internal heat exchanger 3, and a bypass valve 21 configured by an electromagnetic valve or the like is provided in the bypass passage 20. The bypass valve 21 is controlled to be opened and closed by the air conditioning controller 10.

具体的には、図2のステップS70による通常制御時にはバイパス弁21を閉弁状態に維持する。これにより、アキュムレータ8の出口冷媒は内部熱交換器3の低圧側流路3bを通過して流れるので、内部熱交換器3の作用にて放熱器2の出口冷媒を冷却してサイクル効率を向上できる。   Specifically, the bypass valve 21 is kept closed during normal control in step S70 of FIG. Thereby, since the outlet refrigerant of the accumulator 8 flows through the low-pressure side flow path 3b of the internal heat exchanger 3, the outlet refrigerant of the radiator 2 is cooled by the action of the internal heat exchanger 3, thereby improving cycle efficiency. it can.

これに反し、図2のステップS80による吐出温度制御時にはバイパス弁21を開弁状態に維持する。ここで、バイパス通路20の圧損は内部熱交換器3の低圧側流路3bに比較して十分小さいので、アキュムレータ8の出口冷媒の大部分はバイパス通路20を通過して流れ、内部熱交換器3をバイパスする。   On the other hand, the bypass valve 21 is maintained in the open state during the discharge temperature control in step S80 of FIG. Here, since the pressure loss of the bypass passage 20 is sufficiently small as compared with the low-pressure side flow path 3b of the internal heat exchanger 3, most of the outlet refrigerant of the accumulator 8 flows through the bypass passage 20 and flows into the internal heat exchanger. Bypass 3

その結果、圧縮機1には、内部熱交換器3の低圧側流路3bを通過して加熱された小流量の冷媒と、内部熱交換器3をバイパスする大流量の冷媒とが混合されて吸入されるので、アキュムレータ8の出口冷媒の全量が内部熱交換器3にて加熱される場合に比較して圧縮機吸入冷媒の過熱度SHを減少できる。これにより、圧縮機1の吐出温度を目標値以内に制御することができる。   As a result, the compressor 1 is mixed with a small flow rate refrigerant that has been heated by passing through the low pressure side passage 3b of the internal heat exchanger 3 and a large flow rate refrigerant that bypasses the internal heat exchanger 3. Since the refrigerant is sucked, the superheat degree SH of the refrigerant sucked from the compressor can be reduced as compared with the case where the entire amount of the outlet refrigerant of the accumulator 8 is heated by the internal heat exchanger 3. Thereby, the discharge temperature of the compressor 1 can be controlled within the target value.

なお、第2実施形態において、バイパス弁21を内部熱交換器3の低圧側流路3bへの冷媒流れとバイパス通路20への冷媒流れとを切り替える三方弁タイプに構成し、ステップS80による吐出温度制御時にはアキュムレータ8の出口冷媒の全量をバイパス通路20に流すようにしてもよい。   In the second embodiment, the bypass valve 21 is configured as a three-way valve type that switches between the refrigerant flow to the low pressure side flow path 3b of the internal heat exchanger 3 and the refrigerant flow to the bypass passage 20, and the discharge temperature in step S80. At the time of control, the entire amount of the outlet refrigerant of the accumulator 8 may be passed through the bypass passage 20.

(他の実施形態)
なお、第1実施形態では、ステップS80において、圧縮機1の容量制御(容量減少)により、吐出温度Tdを吐出温度目標値に抑制する制御を行うようにしているが、圧縮機1の容量制御の代わりに、膨張弁4の開度制御により吐出温度制御を行うようにしてもよい。
(Other embodiments)
In the first embodiment, in step S80, control for suppressing the discharge temperature Td to the discharge temperature target value is performed by capacity control (capacity reduction) of the compressor 1, but capacity control of the compressor 1 is performed. Instead of this, the discharge temperature control may be performed by controlling the opening degree of the expansion valve 4.

つまり、ステップS80において、膨張弁4の開度を、COP最大化のための高圧制御から切り離して強制的に所定量増加して、高圧圧力を下げるとともに低圧圧力を上げる。これにより、圧縮比を小さくして吐出温度を低下させるようにしてもよい。   That is, in step S80, the opening degree of the expansion valve 4 is forcibly increased by a predetermined amount, separated from the high pressure control for maximizing the COP, to lower the high pressure and raise the low pressure. Thereby, the compression ratio may be reduced to lower the discharge temperature.

また、吐出温度制御のために、第1実施形態による圧縮機1の容量制御と上記膨張弁4の開度制御とを同時に行うようにしてもよい。同様に、第2実施形態によるバイパス弁21の制御に、圧縮機1の容量制御や上記膨張弁4の開度制御等を組み合わせて同時に行うようにしてもよい。   Further, for the discharge temperature control, the capacity control of the compressor 1 according to the first embodiment and the opening degree control of the expansion valve 4 may be performed simultaneously. Similarly, the control of the bypass valve 21 according to the second embodiment may be combined with the capacity control of the compressor 1 and the opening degree control of the expansion valve 4 to be performed simultaneously.

また、上述の第1、第2実施形態では、本発明による冷凍サイクルを冷房運転専用のサイクルに適用する場合について説明したが、本発明はこれに限定されるものではなく、暖房運転又は除湿運転が可能なヒートポンプサイクルに適用してもよいことはもちろんである。   In the first and second embodiments described above, the case where the refrigeration cycle according to the present invention is applied to a cycle dedicated to cooling operation has been described. However, the present invention is not limited to this, and heating operation or dehumidification operation is performed. Of course, the heat pump cycle may be applicable.

また、上述の第1、第2実施形態では、可変容量型の圧縮機1を用いて、圧縮機1の容量制御により圧縮機1の吐出冷媒流量を変化させる冷凍サイクルについて説明したが、圧縮機1として回転数を連続的に制御可能な電動圧縮機を用い、この電動圧縮機1の回転数制御により吐出冷媒流量を変化させる冷凍サイクルに本発明を適用してもよい。   In the first and second embodiments described above, the refrigeration cycle has been described in which the variable capacity compressor 1 is used to change the discharge refrigerant flow rate of the compressor 1 by the capacity control of the compressor 1. The present invention may be applied to a refrigeration cycle in which an electric compressor capable of continuously controlling the rotational speed is used as 1 and the discharge refrigerant flow rate is changed by controlling the rotational speed of the electric compressor 1.

また、上述の第1、第2実施形態では、車速に基づいて低車速時を判定しているが、車速とエンジン回転数は相関があるので、エンジン回転数に基づいて低車速時を判定するようにしてもよい。   In the first and second embodiments described above, the low vehicle speed is determined based on the vehicle speed. However, since the vehicle speed and the engine speed are correlated, the low vehicle speed is determined based on the engine speed. You may do it.

また、本発明による低車速時とは、完全な停車時のみであってもよいので、自動変速機の操作レバーがニュートラル「N」位置にあることを判定して、低車速時であると判定してもよい。   Further, the low vehicle speed according to the present invention may be only when the vehicle is completely stopped. Therefore, it is determined that the operation lever of the automatic transmission is in the neutral “N” position, and the vehicle is determined to be at the low vehicle speed. May be.

また、上述の第1、第2実施形態では、放熱器2出口側に配置した冷媒圧力センサ13により高圧圧力を検出しているが、圧縮機1の吐出側から膨張弁4の入口側に至る高圧側流路では冷媒圧力が略一定となるので、放熱器2出口側に限定されることなく、この高圧側流路のどの場所に冷媒圧力センサ13を配置してもよい。   Further, in the first and second embodiments described above, the high pressure is detected by the refrigerant pressure sensor 13 disposed on the outlet side of the radiator 2, but the discharge side of the compressor 1 reaches the inlet side of the expansion valve 4. Since the refrigerant pressure is substantially constant in the high pressure side flow path, the refrigerant pressure sensor 13 may be disposed at any location in the high pressure side flow path without being limited to the outlet side of the radiator 2.

また、超臨界サイクルの冷媒として、CO2以外に、例えばエチレン、エタン、酸化窒素等の冷媒を用いてもよい。 In addition to CO 2 , for example, a refrigerant such as ethylene, ethane, or nitric oxide may be used as the supercritical cycle refrigerant.

本発明の第1実施形態による車両用冷凍サイクルを示す構成図である。It is a lineblock diagram showing the refrigeration cycle for vehicles by a 1st embodiment of the present invention. 本発明の第1実施形態による冷凍サイクルの作動制御を示すフローチャートである。It is a flowchart which shows the operation control of the refrigerating cycle by 1st Embodiment of this invention. 本発明の第2実施形態による車両用冷凍サイクルを示す構成図である。It is a block diagram which shows the refrigerating cycle for vehicles by 2nd Embodiment of this invention.

符号の説明Explanation of symbols

1…圧縮機、2…放熱器、3…内部熱交換器、4…膨張弁(減圧手段)、5…蒸発器、
11…吐出冷媒温度センサ(温度検出手段)。
DESCRIPTION OF SYMBOLS 1 ... Compressor, 2 ... Radiator, 3 ... Internal heat exchanger, 4 ... Expansion valve (pressure reduction means), 5 ... Evaporator,
11: Discharge refrigerant temperature sensor (temperature detection means).

Claims (7)

車両走行用エンジンにより駆動され、CO 2 からなる冷媒を吸入圧縮する圧縮機(1)と、
前記圧縮機(1)の吐出冷媒を冷却する放熱器(2)と、
前記放熱器(2)の出口側冷媒を減圧する減圧手段(4)と、
前記減圧手段(4)により減圧された低圧冷媒を蒸発させる蒸発器(5)と、
前記放熱器(2)の出口側冷媒と前記圧縮機(1)の吸入側冷媒との間で熱交換を行う内部熱交換器(3)とを備え、
前記蒸発器(5)を通過した冷媒が前記内部熱交換器(3)を通過した後に前記圧縮機(1)に吸入されるようになっており、
更に、高圧側の冷媒圧力が冷媒の臨界圧力以上となる車両用冷凍サイクルにおいて、
前記圧縮機(1)の吐出冷媒通路の外表面に配置され、前記圧縮機(1)の吐出冷媒温度を検出する温度検出手段(11)と、
前記温度検出手段(11)の検出温度が所定の目標値を上回ると、冷凍サイクル運転条件を前記吐出冷媒温度の抑制側に制御する制御手段(S60、S80)と、
車速が所定値以上となる通常走行時には、前記目標値として通常走行時の目標値(Tb)を設定し、これに対し、車速が前記所定値未満となる低車速時であって、少なくとも車速が零となる停車時を包含する低車速時には、前記目標値として、前記通常走行時の目標値(Tb)よりも所定量高い低車速時の目標値(Tc)に切り替える目標値切替手段(S20〜S50)とを備えることを特徴とする車両用冷凍サイクル。
A compressor (1) driven by a vehicle travel engine and sucking and compressing a refrigerant composed of CO 2 ;
A radiator (2) for cooling the refrigerant discharged from the compressor (1);
Decompression means (4) for decompressing the outlet side refrigerant of the radiator (2);
An evaporator (5) for evaporating the low-pressure refrigerant decompressed by the decompression means (4) ;
An internal heat exchanger (3) that performs heat exchange between the outlet side refrigerant of the radiator (2) and the suction side refrigerant of the compressor (1) ,
The refrigerant that has passed through the evaporator (5) is sucked into the compressor (1) after passing through the internal heat exchanger (3) ,
Furthermore, in the vehicle refrigeration cycle where the refrigerant pressure on the high pressure side is equal to or higher than the critical pressure of the refrigerant,
A temperature detecting means (11) disposed on the outer surface of the discharge refrigerant passage of the compressor (1) for detecting the discharge refrigerant temperature of the compressor (1);
Control means (S60, S80) for controlling the refrigeration cycle operating condition to the suppression side of the discharged refrigerant temperature when the detected temperature of the temperature detecting means (11) exceeds a predetermined target value;
During normal driving when the vehicle speed is equal to or higher than a predetermined value, a target value (Tb) for normal driving is set as the target value. On the other hand, at low vehicle speed when the vehicle speed is less than the predetermined value , at least the vehicle speed is Target value switching means for switching to a target value (Tc) at a low vehicle speed that is a predetermined amount higher than the target value (Tb) at the time of normal traveling as the target value at a low vehicle speed including when the vehicle stops at zero. S20 to S50). A vehicular refrigeration cycle.
前記所定量は、前記通常走行時における前記温度検出手段(11)の検出温度誤差と前記低車速時における前記温度検出手段(11)の検出温度誤差との差に基づいて決定されることを特徴とする請求項1に記載の車両用冷凍サイクル。 The predetermined amount is determined based on a difference between a detected temperature error of the temperature detecting means (11) during the normal running and a detected temperature error of the temperature detecting means (11) at the low vehicle speed. The refrigeration cycle for vehicles according to claim 1. 前記低車速時は、車速が前記所定値未満となる低車速走行時と車速が零となる停車時の両方を包含していることを特徴とする請求項1または2に記載の車両用冷凍サイクル。 3. The vehicle refrigeration cycle according to claim 1, wherein the low vehicle speed includes both a low vehicle speed traveling when the vehicle speed is less than the predetermined value and a stop when the vehicle speed is zero. 4. . 前記低車速時は、車速が零となる停車時のみであることを特徴とする請求項1または2に記載の車両用冷凍サイクル。 3. The vehicle refrigeration cycle according to claim 1, wherein the low vehicle speed is only when the vehicle is stopped when the vehicle speed is zero. 前記冷凍サイクル運転条件の制御とは、前記圧縮機(1)の作動を吐出流量低下側に制御することであることを特徴とする請求項1ないし4のいずれか1つに記載の車両用冷凍サイクル。 The vehicle refrigeration according to any one of claims 1 to 4, wherein the control of the refrigeration cycle operating condition is to control the operation of the compressor (1) to the discharge flow rate lowering side. cycle. 前記冷凍サイクル運転条件の制御とは、前記減圧手段(4)の開度を増加側に制御することであることを特徴とする請求項1ないし4のいずれか1つに記載の車両用冷凍サイクル。 The vehicle refrigeration cycle according to any one of claims 1 to 4, wherein the control of the refrigeration cycle operating condition is to control an opening degree of the decompression means (4) to an increase side. . 前記蒸発器(5)の出口側冷媒が前記内部熱交換器(3)をバイパスして流れることを許容するバイパス弁(21)備え、
前記冷凍サイクル運転条件の制御とは、前記蒸発器(5)の出口側冷媒が前記内部熱交換器(3)をバイパスして流れるように前記バイパス弁(21)を制御することであることを特徴とする請求項1ないし4のいずれか1つに記載の車両用冷凍サイクル。
A bypass valve (21) for allowing the outlet side refrigerant of the evaporator (5) to flow bypassing the internal heat exchanger (3);
The control of the refrigeration cycle operating condition is to control the bypass valve (21) so that the outlet side refrigerant of the evaporator (5) flows bypassing the internal heat exchanger (3). The vehicular refrigeration cycle according to any one of claims 1 to 4.
JP2004022970A 2004-01-30 2004-01-30 Refrigeration cycle for vehicles Expired - Fee Related JP4089630B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004022970A JP4089630B2 (en) 2004-01-30 2004-01-30 Refrigeration cycle for vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004022970A JP4089630B2 (en) 2004-01-30 2004-01-30 Refrigeration cycle for vehicles

Publications (2)

Publication Number Publication Date
JP2005212652A JP2005212652A (en) 2005-08-11
JP4089630B2 true JP4089630B2 (en) 2008-05-28

Family

ID=34906145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004022970A Expired - Fee Related JP4089630B2 (en) 2004-01-30 2004-01-30 Refrigeration cycle for vehicles

Country Status (1)

Country Link
JP (1) JP4089630B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007071529A (en) * 2006-09-08 2007-03-22 Denso Corp Refrigerating cycle device
JP2010048498A (en) * 2008-08-22 2010-03-04 Tgk Co Ltd Refrigerating cycle

Also Published As

Publication number Publication date
JP2005212652A (en) 2005-08-11

Similar Documents

Publication Publication Date Title
US10889163B2 (en) Heat pump system
JP5005122B2 (en) Air conditioner for vehicles
JP6332193B2 (en) Air conditioner for vehicles
US10166838B2 (en) Air conditioner for vehicle
WO2014188674A1 (en) Refrigeration cycle device
JP2011140291A (en) Air conditioner for vehicle
JP2007139269A (en) Supercritical refrigerating cycle
JP6669042B2 (en) Vehicle air conditioner
JP6711258B2 (en) Refrigeration cycle equipment
JP2012242000A (en) Refrigeration cycle device
JP5935625B2 (en) Refrigeration cycle controller
JP2018091536A (en) Refrigeration cycle device
WO2013145537A1 (en) Air conditioner device for vehicle
WO2014002441A1 (en) Heat pump cycle
JP2001063348A (en) Refrigerating cycle system
JP2008082637A (en) Supercritical refrigerating cycle
JP6167891B2 (en) Heat pump cycle device.
JP6544287B2 (en) Air conditioner
JP4089630B2 (en) Refrigeration cycle for vehicles
JP2012076589A (en) Air conditioner for vehicle
JP2006145170A (en) Refrigerating cycle
WO2020095638A1 (en) Refrigeration cycle device
JP6540881B2 (en) Air conditioning control device for controlling a vehicle air conditioner
JP5888126B2 (en) Air conditioner for vehicles
JP7331806B2 (en) refrigeration cycle equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080218

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees