JP4159220B2 - Absorption refrigerator hydrogen gas removal device - Google Patents

Absorption refrigerator hydrogen gas removal device Download PDF

Info

Publication number
JP4159220B2
JP4159220B2 JP2000018680A JP2000018680A JP4159220B2 JP 4159220 B2 JP4159220 B2 JP 4159220B2 JP 2000018680 A JP2000018680 A JP 2000018680A JP 2000018680 A JP2000018680 A JP 2000018680A JP 4159220 B2 JP4159220 B2 JP 4159220B2
Authority
JP
Japan
Prior art keywords
hydrogen
gas removal
hydrogen gas
oxygen
partial pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000018680A
Other languages
Japanese (ja)
Other versions
JP2001208453A (en
Inventor
正道 一本松
知男 団栗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2000018680A priority Critical patent/JP4159220B2/en
Publication of JP2001208453A publication Critical patent/JP2001208453A/en
Application granted granted Critical
Publication of JP4159220B2 publication Critical patent/JP4159220B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、吸収式冷凍機の水素ガス除去装置に関する。
【0002】
【従来の技術】
吸収式冷凍機では、機内の動作流体系(冷媒や吸収液の循環系)において金属機体の腐食などにより水素ガスH2 が発生しそれが蓄積すると、吸収器や蒸発器の器内圧力が上昇して冷凍性能が低下することから、この発生水素ガスH2 を除去する必要があるが、従来、この発生水素ガスH2 を除去して吸収器や蒸発器の器内圧力を低く保つには、次の(a)〜(d)の如き手段が採られていた。
【0003】
(a)定期メンテナンスで真空ポンプを用いて吸収式冷凍機の動作流体系を再度真空引きする。
(b)吸収式冷凍機の動作流体系に開閉弁を介して真空化タンクを接続しておき、動作流体に対する気液分離処理で集めた水素ガスH2 を開閉弁操作により真空化タンクに逐次収容する。
(c)動作流体系における水素ガスH2 を水素吸蔵合金に吸蔵させる。
(d)水素ガスH2 の透過を許すパラジウムセルを通じて水素分圧差により吸収式冷凍機おける動作流体系の水素ガスH2 を系外に排出する。
【0004】
【発明が解決しようとする課題】
しかし、上記(a)〜(d)の手段では夫々、次の如き問題があった。
【0005】
(a)の手段では、メンテナンス作業の負担が大きく、また、吸収式冷凍機が古くなるとメンテナンスの必要頻度が増大して負担が一層大きくなる。
(b)の手段では、真空化タンクの水素ガス収容量に限界があることから、やはり定期的に真空化タンクを真空引きするメンテナンスが必要であり、また、真空化タンクを大型にして水素ガス収容量を大きくすると、吸収式冷凍機の機体構成が大型化する。
(c)の手段では、水素吸蔵合金の水素ガス吸蔵量に限界があることから、やはり定期的に水素吸蔵合金を交換するメンテナンスが必要であり、また、水素吸蔵合金は大気に触れると酸化して水素吸蔵機能がなくなることから、その取り扱いが難しい。
(d)の手段では、パラジウムセルにおける水素ガス透過がパラジウムの格子定数変化(すなわち、結晶構造のひずみ)を伴う形態で行なわれることから、パラジウムセルが疲労破損し易く(一般的には2〜5年の寿命)、また、パラジウムが高価で装置コスト及びセルの交換コストが嵩む。
【0006】
この実情に鑑み、本発明の主たる課題は、合理的な水素ガス除去方式を採るととにより従来手段における上記の如き問題を効果的に解消し得る吸収式冷凍機の水素ガス除去装置を提供する点にある。
【0007】
【課題を解決するための手段】
〔1〕請求項1に係る発明では、
多孔質の水素側電極と多孔質の酸素側電極との間に酸素イオン伝導体を挟んでセルを形成し、
このセルを、吸収式冷凍機における動作流体系側の水素ガス除去対象空間に前記水素側電極を臨ませ、かつ、大気空間に前記酸素側電極を臨ませる状態に配置し、
前記水素側電極と前記酸素側電極とを結ぶ導電回路に、前記水素側電極の方を負極として両電極に電圧を印加するイオン伝導制御用の直流電源を介装する構成を採る。
【0008】
つまり、この構成によれば、上記直流電源により両電極に適当な電圧を印加することで、大気空間から多孔質の酸素側電極を通じて固体電解質としての酸素イオン伝導体の内部を移動する酸素イオンO2-(酸化物イオン)と、水素ガス除去対象空間における水素ガスH2 とを、水素側電極において次の(ハ)式の如く反応させ、
2 +O2-→H2 O+2e- ……(ハ)
これにより、吸収式冷凍機における動作流体系側の水素ガス除去対象空間から、その空間内に存在する水素ガスH2 を水分子H2 Oの形にして効率的に除去することができる。
【0009】
そして、この方式で水素ガスH2 を除去することにより、先述した従来の(a)〜(c)の手段の如き再度の真空引きや水素吸蔵合金の交換といった負担の大きいメンテナンスを不要にし、また、従来の(b)の手段の如き大型な真空化タンクの装備による機体の大型化や、水素吸蔵合金を用いる従来の(c)の手段の如き取り扱い上の難しさを回避しながら、吸収式冷凍機における動作流体系での水素ガス発生に原因する吸収器や蒸発器の器内圧力上昇を効果的に防止して、吸収式冷凍機の冷凍能力を永続的に高く維持することができる。
【0010】
また、酸素イオン伝導体(例えば、安定化ジルコニア)では、格子定数の変化を伴わずに酸素イオンO2-を移動させ得るから、格子定数の変化を伴う形でパラジウムに水素ガスH2 を透過させる従来の(d)の手段に比べ、装置耐久性の面ではるかに優れたものとなり、しかも、一般的にパラジウムに比べ酸素イオン伝導体は安価に入手できることから装置コスト面でも有利になる。
【0011】
なお、使用する酸素イオン伝導体の酸素イオン通過抵抗が大きい場合、その酸素イオン伝導体を加熱して酸素イオンO2-の通過抵抗を軽減する加熱手段を付加装備するのが望ましいが、膜状のものなど酸素イオン通過抵抗の比較的小さい酸素イオン伝導体を用いる場合、このような加熱手段の付加装備は必ずしも必要ではない。
【0012】
〔2〕請求項2に係る発明では、請求項1に係る発明の実施にあたり、
前記直流電源による印加電圧を、前記水素ガス除去対象空間における水素分圧及び酸素分圧がともに各々の許容上限値以下に保たれる値にする。
【0013】
つまり、前記直流電源による印加電圧は、酸素イオン伝導体における酸素イオン通過量を適量に制限する側に機能するものであることから、その印加電圧を小さくするほど、水素ガス除去対象空間に対する水素ガス除去能力を高めて水素ガス除去対象空間における水素分圧を低くし得るが、反面、その印加電圧が過度に小さいと、水素側電極で次の(ニ)式の反応が目立つようになって、
2O2-→O2 +4e- ……(ニ)
水素側電極での酸素ガス発生量が大きくなり、水素ガス除去対象空間における酸素分圧が上昇する傾向となる。
【0014】
そして、この酸素分圧の上昇は、吸収式冷凍機における動作流体系での水素ガス発生による水素分圧の上昇と同様、吸収器や蒸発器の器内圧力を上昇させる原因となる。
【0015】
このことから、上記の如く、前記直流電源による印加電圧として、水素ガス除去対象空間における水素分圧及び酸素分圧がともに各々の許容上限値以下に保たれる電圧値(すなわち、酸素分圧がその許容上限値となる電圧値以上で水素分圧がその許容上限値となる電圧値以下の電圧値)を採用すれば、水素側電極での酸素ガス発生で却って吸収器や蒸発器の器内圧力が上昇する不都合を回避しながら、吸収式冷凍機における動作流体系での水素ガス発生に原因する吸収器や蒸発器の器内圧力上昇を防止でき、これにより、吸収式冷凍機の冷凍能力を高く維持するという所期目的をより確実に達成することができる。
【0016】
〔3〕請求項3に係る発明では、請求項2に係る発明の実施にあたり、
前記直流電源による印加電圧Eを、次の(イ)式及び(ロ)式をともに満足する値にする。
E≦Eo+(RT/2F)ln〔Ps/(Poo1/2 ・Ph)〕……(イ)
E≧(RT/4F)ln(Poo/Poi)……(ロ)
ここで、Eo:酸素と水素とから水が生成される反応の標準電位
R:気体定数
T:絶対温度
F:ファラデー定数
Ps:水素ガス除去対象空間の水蒸気分圧
Poo:大気空間の酸素分圧
Ph:水素ガス除去対象空間における水素分圧の許容上限値
Poi:水素ガス除去対象空間における酸素分圧の許容上限値
【0017】
つまり、上記(イ)式は、酸素側電極を臨ませた大気空間の酸素分圧がPooで、かつ、水素側電極を臨ませた水素ガス除去対象空間の水蒸気分圧がPsである条件下での平衡状態として、水素ガス除去対象空間における水素分圧を、前記(ハ)式で示される反応により、その許容上限値Ph以下に保つ印加電圧値Eを与えるものである。
【0018】
また、上記(ロ)式は、酸素側電極を臨ませた大気空間の酸素分圧がPooである条件下での平衡状態として、水素ガス除去対象空間における酸素分圧を、前記(ニ)式で示される反応の抑止により、その許容上限値Poi以下に保つ印加電圧値Eを与えるものである。
【0019】
したがって、上記の如く、前記直流電源による印加電圧Eとして、(イ)式及び(ロ)式をともに満足する電圧値を採用すれば、酸素側電極を臨ませた大気空間の酸素分圧がPooで、かつ、水素側電極を臨ませた水素ガス除去対象空間の水蒸気分圧がPsである条件下での平衡状態として、水素ガス除去対象空間における水素分圧及び酸素分圧をともに各々の許容上限値Ph,Poi以下に保つことができ、これにより、前記した請求項2に係る発明を的確に実施することができる。
【0020】
なお、平衡式である上記(イ)式からも判るように、印加電圧Eが一定の状態では、水素ガス除去対象空間の水蒸気分圧Psが小さくなると、水素ガス除去対象空間における水素分圧も小さくなる方向に変化することから、水素ガス除去対象空間の水蒸気分圧Psが例えば吸収式冷凍機の運転時と運転停止とで変化するような場合、その変化における高い方の水蒸気分圧を上記(イ)式による印加電圧決定での採用値Psとしておけば、水素ガス除去対象空間における実際の水蒸気分圧がその採用値Psより小さくなったとしても、水素ガス除去対象空間における水素分圧を確実にその許容上限値Phよりも小さい値(すなわち、安全側の値)に維持することができる。
【0021】
〔4〕請求項4に係る発明では、請求項1〜3のいずれか1項に係る発明の実施にあたり、前記酸素イオン伝導体に安定化ジルコニアを用いる。
【0022】
つまり、安定化ジルコニアは種々の酸素イオン伝導体のなかでも化学的安定性に優れるものであり、このことから、前記の酸素イオン伝導体として安定化ジルコニアを採用すれば、請求項1〜3に係る発明の実施において所期の機能をより確実かつ安定的に得ることができる。
【0023】
〔5〕請求項5に係る発明では、請求項4に係る発明の実施にあたり、前記酸素イオン伝導体に部分安定化ジルコニアを用いる。
【0024】
つまり、安定化ジルコニアのなかでも部分安定化ジルコニアは、完全安定化ジルコニアに比べ酸素イオン通過抵抗が大きく、また、1000℃以上での安定性に劣るものの、強度面(特にじん性)で優れるともに安価であることから、また一般に吸収式冷凍機での水素ガス除去では、水素ガスH2 の必要除去量が小さくてそれほど大きな酸素イオン伝導性が要求されるものではなく、1000℃以上での使用もないことから、前記の酸素イオン伝導体として部分安定化ジルコニアを採用すれば、完全安定化ジルコニアを用いるに比べ、より高い耐久性を確保し、また、装置コスト面で有利にしながら、請求項1〜3に係る発明の実施において所期の機能を確実かつ安定的に得ることができる。
【0025】
【発明の実施の形態】
〔第1実施形態〕
図1は、冷媒に水を用い吸収液に臭化リチウム溶液を用いた二重効用型の吸収式冷凍機を示し、吸収器1の底部(後述する蒸発器10との共通底部)から溶液ポンプ2及び溶液熱交換器3を通じて高温再生器4に戻される低濃度の吸収液La(希吸収液)をバーナ5により加熱することで、その希吸収液Laから冷媒蒸気Rsを発生させ、続いて、この冷媒蒸気Rsの発生で中濃度となった吸収液Lbを、溶液熱交換器3の高温側熱交換部3aにおいて希吸収液Laと熱交換させた上で低温再生器6に導入して、高温再生器4での発生冷媒蒸気Rsと伝熱筒7を介し熱交換させることにより、その中濃度の吸収液Lbから更に冷媒蒸気Rs′を発生させる。
【0026】
そして、伝熱筒7を介しての中濃度吸収液Lbとの熱交換で一部ないし全部が凝縮した冷媒R、及び、低温再生器6で発生した冷媒蒸気Rs′を凝縮器8に導入して凝縮器コイル9における通過冷却水Wにより冷却し、この冷却により完全に凝縮させた冷媒Rを蒸発器10の内部に散布して、蒸発器コイル11における通過冷水Cからの気化熱奪取で蒸発させることにより、冷却対象である蒸発器コイル11の通過冷水Cを冷却する。
【0027】
一方、低温再生器6での冷媒蒸気Rs′の発生で高濃度となった吸収液Lc(濃吸収液)は、溶液熱交換器3の低温側熱交換部3bにおいて希吸収液Laと熱交換させた上で吸収器1の内部に散布し、この吸収器1において吸収器コイル12の通過冷却水Wによる冷却下で散布濃吸収液Lcに蒸発器10での蒸発冷媒を吸収させることにより、蒸発器10の内部を冷媒蒸発に適した低圧状態に維持する。そして、この冷媒吸収により再び低濃度となった吸収液La(希吸収液)を溶液ポンプ2により高温再生器4に送ることで、動作流体である冷媒R及び吸収液Lを繰り返し機内循環させて、吸収式冷凍機の運転を継続する。
【0028】
なお、13は温水発生運転用の切替弁であり、温水発生運転では、この切替弁13を開いて高温再生器4での発生冷媒蒸気Rsを短絡的に蒸発器10へ送ることで、その冷媒蒸気Rsにより加熱対象である蒸発器コイル11の通過温水Hを加熱する。
【0029】
吸収式冷凍機では、冷媒及び吸収液の循環系(すなわち動作流体系)において金属機体の腐食などにより水素ガスH2 が発生(特に高温部である高温再生器4において発生)するが、これに対し、本第1実施形態の吸収式冷凍機では、連通路14を通じて動作流体系の低圧部(蒸発器10ないし吸収器1)に常時連通させたガス除去室15を設け、また図2に示す如く、一方を水素側電極16とし、かつ、他方を酸素側電極17とする2枚の多孔質白金(Pt)電極16,17の間に酸素イオン伝導体である部分安定化ジルコニア18(本第1実施形態では6%イットリア安定化ジルコニア(Zr0.940.062-α))を挟んだ有底筒状の水素ガス除去セル19を形成し、このセル19を、水素ガス除去対象空間としてのガス除去室15の内部に水素側電極16を臨ませ、かつ、ガス除去室15の外部における大気空間Aに酸素側電極17を臨ませる状態で、ガス除去室15の室壁20に装着してある。
【0030】
そして、そのセル19を加熱して所定温度に保つ電気ヒータ21を設けるとともに、水素側電極16と酸素側電極17とを結ぶ導電回路22に、水素側電極16の方を負極として両電極16,17に所定の電圧Eを印加するイオン伝導制御用の定電圧直流電源23を介装し、この直流電源23による印加電圧Eを下記(イ)式及び(ロ)式をともに満足する値(本第1実施形態では特に下記(イ′)式を満足する値)に設定してある。
【0031】
E≦Eo+(RT/2F)ln〔Ps/(Poo1/2 ・Ph)〕……(イ)
E≧(RT/4F)ln(Poo/Poi)……(ロ)
E=Eo+(RT/2F)ln〔Ps/(Poo1/2 ・Ph)〕……(イ′)
【0032】
ここで、
Eo:酸素と水素とから水が生成される反応の標準電位
R:気体定数
T:絶対温度(本第1実施形態では、電気ヒータ21により保つセル温度)
F:ファラデー定数
Ps:ガス除去室15の水蒸気分圧(本第1実施形態では、吸収式冷凍機の運転時における蒸発器10や吸収器1での標準的な水蒸気分圧を採用)
Poo:大気空間Aの標準的な酸素分圧
Ph:ガス除去室15における水素分圧の許容上限値(本第1実施形態では、蒸発器10や吸収器1における水素分圧の許容上限値に等しい値を採用)
Poi:ガス除去室15における酸素分圧の許容上限値(本第1実施形態では、蒸発器10や吸収器1における酸素分圧の許容上限値に等しい値を採用)
【0033】
つまり、この構成により、大気空間Aから多孔質の酸素側電極17を通じて固体電解質としての部分安定化ジルコニア18の内部を移動する酸素イオンO2-と、ガス除去室15における水素ガスH2 (すなわち、吸収式冷凍機の動作流体系で発生した水素ガス)とを、水素側電極16において次の(ハ)式の如く反応させ、
2 +O2-→H2 O+2e- ……(ハ)
これにより、吸収式冷凍機における動作流体系での発生水素ガスH2 を水分子H2 O(水蒸気)の形に変える形態で効率的に除去して、動作流体系での水素ガス発生に原因する吸収器1や蒸発器10の器内圧力上昇、及び、それによる冷凍能力の低下を防止する。
【0034】
また、直流電源23による印加電圧Eとして、上記(イ′)式を満足する電圧値(上記(イ)式及び(ロ)式をともに満足する値)を採用することにより、水素側電極16で次の(ニ)式の反応が生じて水素側電極16での酸素ガス発生量が大きくなるのを抑制し、
2O2-→O2 +4e- ……(ニ)
これにより、吸収器1や蒸発器10における水素分圧及び酸素分圧がともに各々の許容上限値以下に保たれるようにしてある。
【0035】
図中24はセル19を固定するネジ具、25は金(Au)製ないし銅(Cu)製のパッキングであり、セル19は必要な水素ガス除去量に応じて1個ないし複数個をガス除去室15に装備する。
【0036】
なお、セル19を装備した水素ガス除去対象空間としてのガス除去室15を連通路14を通じて直接的に動作流体系の低圧部(蒸発器10や吸収器1)に連通させた本第1実施形態の吸収式冷凍機では、
例えば、 Ps=0.04×101.325(kPa)
Poo=0.21×101.325(kPa)
Ph=0.001×101.325(kPa)
Eo=1.11(V)
T=600(K)
の条件の下で、前記(イ′)式を満足する電圧値として両電極16,17への印加電圧をE=0.995(V)に設定すれば、
ガス除去室15における水素分圧を目標の0.001×101.325(kPa)以下に維持するとともに、
ガス除去室15における酸素分圧を10-32 (kPa)オーダの値(実質的に無視できる値)に維持することができて、
吸収器1及び蒸発器10の器内を極めて良好な低圧状態に維持し得る。
【0037】
〔第2実施形態〕
図3は、第1実施形態で示した二重効用型の吸収式冷凍機において、装置構成を一部変更した例を示し、その変更点は、ガス除去室15を動作流体系の低圧部に直接的に連通させるに代え、先述の図2に示す如くセル19を装備した水素ガス除去対象空間としてのガス除去室26を、ガス抽気手段27を介して動作流体系の低圧部(蒸発器10ないし吸収器1)に接続した点にある。
【0038】
このガス抽気手段27は、エゼクタ29を用いて動作流体系の低圧部(蒸発器10ないし吸収器1)から吸入路30を通じて動作流体系での発生水素ガスH2 を吸入するものであり、溶液ポンプ2から送出される希吸収液Laの一部La′を分岐路28を通じ誘引用流体としてエゼクタ29に導き、このエゼクタ29での希吸収液La′の高速流動により生じる誘引作用で吸入路30を通じてガス吸入を行なう構成にしてある。
【0039】
そして、誘引用流体として機能させた希吸収液La′と吸入水素ガスH2 との混合流体を、エゼクタ29の下流側に接続した内部噴出管31の先端から噴出させることで、この噴出部において希吸収液La′と吸入水素ガスH2 とを気液分離し、この分離水素ガスH2 をガス除去室26に送り込むことで、ガス除去室26において、装備のセル19により前述の第1実施形態と同様、酸素ガスO2 の発生を抑止しながら水素ガスH2 を水分子H2 O(水蒸気)の形に変える形態で効率的に除去して、動作流体系での水素ガス発生に原因する吸収器1や蒸発器10の器内圧力上昇、及び、それによる冷凍能力の低下を防止する。
【0040】
また、本第2実施形態では、直流電源23によりセル19の両電極16,17に印加する電圧Eを、第1実施形態と同様、下記(イ)式及び(ロ)式をともに満足する値である下記(イ′)式を満足する値に設定してある。
【0041】
E≦Eo+(RT/2F)ln〔Ps/(Poo1/2 ・Ph)〕……(イ)
E≧(RT/4F)ln(Poo/Poi)……(ロ)
E=Eo+(RT/2F)ln〔Ps/(Poo1/2 ・Ph)〕……(イ′)
【0042】
ここで、
Eo:酸素と水素とから水が生成される反応の標準電位
R:気体定数
T:絶対温度(電気ヒータ21により保つセル温度)
F:ファラデー定数
Ps:ガス除去室26の水蒸気分圧(本第2実施形態では、吸収式冷凍機の運転時における蒸発器10や吸収器1での標準的な水蒸気分圧よりも所定値だけ大きい値を採用)
Poo:大気空間Aの標準的な酸素分圧
Ph:ガス除去室26における水素分圧の許容上限値(本第2実施形態では、蒸発器10や吸収器1における水素分圧の許容上限値よりも所定値だけ大きい値を採用)
Poi:ガス除去室26における酸素分圧の許容上限値(本第2実施形態では、蒸発器10や吸収器1における酸素分圧の許容上限値よりも所定値だけ大きい値を採用)
【0043】
図中32は、内部噴出管31からの噴出で水素ガスH2 と分離した希吸収液La′を圧力差により吸収器1及び蒸発器10の共通底部に戻す還流路である。
【0044】
なお、セル19を装備した水素ガス除去対象空間としてのガス除去室26を上記ガス抽気手段27を介して動作流体系の低圧部(蒸発器10や吸収器1)に接続した本第2実施形態の吸収式冷凍機では、
前述の第1実施形態で挙げた例において印加電圧をE=0.995(V)にしたのに対し、その印加電圧をE=0.8(V)程度に設定すれば、吸収器1及び蒸発器10の器内を第1実施形態で挙げた例の場合と同等の良好な低圧状態に維持することができる。
【0045】
また、本第2実施形態では、図中破線で示す如くガス除去室26の入口部に開閉弁33を設け、そして、この開閉弁33を自動的に間欠開閉させることにより、開閉弁33の開き状態で分離水素ガスH2 をガス除去室26に導入して、この開閉弁33を閉じた状態で内部の水素ガスH2 をセル19により除去する形式を採るようにしてもよい。
【0046】
〔別実施形態〕
次に別実施例を列記する。
セル19において水素側電極16と酸素側電極17との間に挟む酸素イオン伝導体18には、ジルコニアに限らず、例えばセリウムオキサイトやハフニュームオキサイトなど種々のものを採用でき、また、その安定化剤も、イットリウムに限らず、例えばカルシウム、スカンジューム、イッテリビューム、マグネシウムなど種々のものを採用できる。
【0047】
セル19における多孔質の水素側電極16及び多孔質の酸素側電極17には夫々、白金に限らず、十分な耐食性を有するものであれば種々の電極材を採用できる。
【0048】
セル19の形状は、前述の実施形態で示した如き有底筒状に限られるものではなく、例えば平板状や波板状のセル形状にしてもよい。
【0049】
前述の実施形態では、セル19の水素側電極16を臨ませる水素ガス除去対象空間としてガス除去室15,26を付加的に設け、これらガス除去室15,26を吸収式冷凍機における動作流体系の低圧部に接続する構造にしたが、場合によっては、セル19を吸収器1や蒸発器10、あるいは、動作流体系の他部に対し直接的に付設する構造を採用してもよく、水素側電極16を臨ませる水素ガス除去対象空間は、吸収式冷凍機における動作流体系での発生水素ガスH2 が導通される気密空間であれば、どのような空間であってもよい。
【0050】
また、前述の第2実施形態では、吸収式冷凍機の動作流体系で発生した水素ガスH2 をエゼクタ29を用いてその動作流体系からガス除去室26へ送り込む例を示したが、本発明の実施にあたり、このようなエゼクタは必ずしも必要なものではなく、第1実施形態で示したようなエゼクタを用いない構成においても所期の機能は十分に得ることができる。
【0051】
前述の実施形態では、直流電源23による印加電圧Eとして、前述の(イ′)式を満足する電圧値を採用したが、これ以外の電圧値で前述の(イ)式及び(ロ)式をともに満足する電圧値を採用してもよく、また、各種の検出情報に基づいて直流電源23による印加電圧Eを状況に応じた適値に自動調整する形式を採用してもよい。
【0052】
本発明は、二重効用型の吸収式冷凍機に限らず、単効用型や三重効用型の吸収式冷凍機にも適用でき、また、水以外の冷媒や臭化リチウム以外の吸収液を使用する吸収式冷凍機にも適用できる。
【図面の簡単な説明】
【図1】第1実施形態を示す吸収式冷凍機の構成図
【図2】セル構造及びセルの装備構造を示す拡大図
【図3】第2実施形態を示す吸収式冷凍機の構成図
【符号の説明】
15,26 水素ガス除去対象空間
16 水素側電極
17 酸素側電極
18 酸素イオン伝導体(活性化ジルコニア)
19 セル
22 導電回路
23 直流電源
A 大気空間
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hydrogen gas removing device for an absorption refrigerator.
[0002]
[Prior art]
In absorption refrigerators, when hydrogen gas H 2 is generated due to corrosion of metal bodies in the working fluid system (refrigerant and absorption liquid circulation system) and accumulates, the internal pressure of the absorber and evaporator rises. since the refrigerating performance is reduced by, it is necessary to remove the generated hydrogen gas H 2, conventionally, the vessel inside pressure of the absorber and the evaporator to remove the generated hydrogen gas H 2 to keep low The following means (a) to (d) were taken.
[0003]
(A) The working fluid system of the absorption refrigerator is evacuated again using a vacuum pump during regular maintenance.
(B) A vacuum tank is connected to the working fluid system of the absorption refrigeration machine via an on-off valve, and the hydrogen gas H 2 collected by the gas-liquid separation process for the working fluid is sequentially supplied to the vacuum tank by the on-off valve operation. Accommodate.
(C) The hydrogen storage alloy stores the hydrogen gas H 2 in the working fluid system.
(D) The hydrogen gas H 2 of the working fluid system in the absorption refrigerator is discharged out of the system by a hydrogen partial pressure difference through a palladium cell that allows permeation of the hydrogen gas H 2 .
[0004]
[Problems to be solved by the invention]
However, each of the means (a) to (d) has the following problems.
[0005]
With the means (a), the burden of maintenance work is large, and when the absorption refrigerator becomes old, the necessary frequency of maintenance increases and the burden is further increased.
In the means (b), since there is a limit to the amount of hydrogen gas contained in the evacuated tank, maintenance for evacuating the evacuated tank regularly is also necessary. Increasing the capacity increases the size of the absorption refrigerator.
With the means (c), since the hydrogen storage capacity of the hydrogen storage alloy is limited, maintenance is required to periodically replace the hydrogen storage alloy, and the hydrogen storage alloy is oxidized when exposed to the atmosphere. The hydrogen storage function is lost, making it difficult to handle.
In the means (d), hydrogen gas permeation in the palladium cell is performed in a form accompanied by a change in the lattice constant of palladium (that is, distortion of the crystal structure), so that the palladium cell is easily damaged by fatigue (generally 2 to 2). (5 year life), and palladium is expensive, increasing the cost of equipment and replacement of cells.
[0006]
In view of this situation, the main problem of the present invention is to provide a hydrogen gas removal device for an absorption refrigeration machine that can effectively solve the above-described problems in the conventional means by adopting a rational hydrogen gas removal method. In the point.
[0007]
[Means for Solving the Problems]
[1] In the invention according to claim 1,
A cell is formed by sandwiching an oxygen ion conductor between the porous hydrogen side electrode and the porous oxygen side electrode,
This cell is placed in a state where the hydrogen side electrode faces the hydrogen gas removal target space on the working fluid system side in the absorption refrigerator and the oxygen side electrode faces the atmospheric space,
The conductive circuit connecting the hydrogen side electrode and the oxygen side electrode has a configuration in which a direct current power source for controlling ion conduction is applied to apply a voltage to both electrodes with the hydrogen side electrode serving as a negative electrode.
[0008]
In other words, according to this configuration, by applying an appropriate voltage to both electrodes from the DC power source, oxygen ions O moving inside the oxygen ion conductor as a solid electrolyte from the atmospheric space through the porous oxygen side electrode. 2- (oxide ion) and hydrogen gas H 2 in the hydrogen gas removal target space are reacted at the hydrogen side electrode as shown in the following formula (c),
H 2 + O 2− → H 2 O + 2e (c)
Thereby, hydrogen gas H 2 existing in the space can be efficiently removed from the hydrogen gas removal target space on the working fluid system side in the absorption refrigerator in the form of water molecules H 2 O.
[0009]
Then, by removing the hydrogen gas H 2 by this method, it is not necessary to perform heavy maintenance such as evacuation again or replacement of the hydrogen storage alloy as in the conventional means (a) to (c) described above. While avoiding the enlargement of the airframe by the equipment of a large vacuum tank as in the conventional means (b) and the difficulty in handling as in the conventional means (c) using a hydrogen storage alloy, the absorption type It is possible to effectively prevent an increase in the internal pressure of the absorber and the evaporator due to the generation of hydrogen gas in the working fluid system in the refrigerator, so that the refrigeration capacity of the absorption refrigerator can be maintained permanently high.
[0010]
In addition, oxygen ion conductors (eg, stabilized zirconia) can move oxygen ions O 2− without changing the lattice constant, so that hydrogen gas H 2 permeates palladium through changes in the lattice constant. Compared with the conventional means (d), the device durability is far superior, and since oxygen ion conductors are generally available at a lower cost than palladium, the device cost is also advantageous.
[0011]
In addition, when the oxygen ion passage resistance of the oxygen ion conductor to be used is large, it is desirable to additionally provide a heating means for heating the oxygen ion conductor to reduce the passage resistance of oxygen ions O 2− , In the case of using an oxygen ion conductor having a relatively small oxygen ion passage resistance, such as the one described above, such additional equipment of the heating means is not necessarily required.
[0012]
[2] In the invention according to claim 2, in carrying out the invention according to claim 1,
The voltage applied by the DC power supply is set to a value at which both the hydrogen partial pressure and the oxygen partial pressure in the hydrogen gas removal target space are kept below their allowable upper limit values.
[0013]
In other words, the voltage applied by the DC power source functions to limit the amount of oxygen ion passing through the oxygen ion conductor to an appropriate amount. Therefore, as the applied voltage is reduced, the hydrogen gas to the hydrogen gas removal target space is reduced. Although the hydrogen partial pressure in the hydrogen gas removal target space can be lowered by increasing the removal capability, on the other hand, if the applied voltage is excessively small, the reaction of the following formula (D) becomes noticeable at the hydrogen side electrode,
2O 2- → O 2 + 4e - ...... ( d)
The amount of oxygen gas generated at the hydrogen side electrode increases, and the oxygen partial pressure in the hydrogen gas removal target space tends to increase.
[0014]
This increase in the oxygen partial pressure causes the internal pressure of the absorber and the evaporator to increase as in the case of the increase in the hydrogen partial pressure due to the generation of hydrogen gas in the working fluid system in the absorption refrigerator.
[0015]
From this, as described above, as the voltage applied by the DC power source, the voltage value that maintains both the hydrogen partial pressure and the oxygen partial pressure in the hydrogen gas removal target space below the allowable upper limit values (that is, the oxygen partial pressure is If a voltage value that is equal to or higher than the allowable upper limit value and the hydrogen partial pressure is equal to or lower than the allowable upper limit value) is adopted, the oxygen gas generation at the hydrogen side electrode is reversed. While avoiding the inconvenience of rising pressure, it is possible to prevent the rise in the internal pressure of the absorber and evaporator due to the generation of hydrogen gas in the working fluid system in the absorption refrigeration machine. It is possible to achieve the intended purpose of maintaining a high level of energy more reliably.
[0016]
[3] In carrying out the invention according to claim 2, in the invention according to claim 3,
The applied voltage E by the DC power source is set to a value satisfying both the following formulas (a) and (b).
E ≦ Eo + (RT / 2F) ln [Ps / (Poo 1/2 · Ph)] …… (I)
E ≧ (RT / 4F) ln (Poo / Poi) (b)
Here, Eo: standard potential of reaction in which water is generated from oxygen and hydrogen R: gas constant T: absolute temperature F: Faraday constant Ps: partial pressure of water vapor in hydrogen gas removal target Poo: partial pressure of oxygen in atmospheric space Ph: allowable upper limit value of hydrogen partial pressure in hydrogen gas removal target space Poi: allowable upper limit value of oxygen partial pressure in hydrogen gas removal target space
That is, the above equation (a) is obtained under the condition that the oxygen partial pressure in the atmospheric space facing the oxygen side electrode is Poo and the water vapor partial pressure in the hydrogen gas removal target space facing the hydrogen side electrode is Ps. As an equilibrium state, an applied voltage value E that keeps the hydrogen partial pressure in the hydrogen gas removal target space below the allowable upper limit Ph by the reaction shown by the above equation (c) is given.
[0018]
In addition, the above equation (b) represents the oxygen partial pressure in the hydrogen gas removal target space as an equilibrium state under the condition that the oxygen partial pressure in the atmospheric space facing the oxygen side electrode is Poo. The applied voltage value E which is kept below the allowable upper limit value Poi is given by the inhibition of the reaction indicated by.
[0019]
Therefore, as described above, if the voltage value satisfying both the expressions (A) and (B) is adopted as the applied voltage E by the DC power source, the oxygen partial pressure in the atmospheric space facing the oxygen side electrode is Poo. In addition, as an equilibrium state under the condition that the water vapor partial pressure in the hydrogen gas removal target space facing the hydrogen side electrode is Ps, both the hydrogen partial pressure and the oxygen partial pressure in the hydrogen gas removal target space are allowed. It can be kept below the upper limit values Ph and Poi, whereby the invention according to claim 2 can be implemented accurately.
[0020]
As can be seen from the equation (a), which is an equilibrium equation, when the applied voltage E is constant, if the water vapor partial pressure Ps in the hydrogen gas removal target space decreases, the hydrogen partial pressure in the hydrogen gas removal target space also decreases. Since the water vapor partial pressure Ps in the hydrogen gas removal target space changes, for example, between when the absorption chiller is operated and when the operation is stopped, the higher water vapor partial pressure in the change is set to the above. If the adopted value Ps in the determination of the applied voltage by the equation (a) is used, even if the actual water vapor partial pressure in the hydrogen gas removal target space becomes smaller than the adopted value Ps, the hydrogen partial pressure in the hydrogen gas removal target space is It is possible to reliably maintain a value smaller than the allowable upper limit Ph (that is, a value on the safe side).
[0021]
[4] In the invention according to claim 4, when the invention according to any one of claims 1 to 3 is carried out, stabilized zirconia is used for the oxygen ion conductor.
[0022]
That is, stabilized zirconia is excellent in chemical stability among various oxygen ion conductors. Therefore, if stabilized zirconia is adopted as the oxygen ion conductor, claims 1 to 3 are used. In carrying out the invention, the intended function can be obtained more reliably and stably.
[0023]
[5] In carrying out the invention according to claim 4, in the invention according to claim 5, partially stabilized zirconia is used for the oxygen ion conductor.
[0024]
In other words, among the stabilized zirconia, partially stabilized zirconia has higher oxygen ion passage resistance than fully stabilized zirconia, and is inferior in stability at 1000 ° C. or higher, but has excellent strength (particularly toughness). Because of its low cost, the removal of hydrogen gas in an absorption refrigerator generally does not require a large amount of oxygen ion conductivity because the required removal amount of hydrogen gas H 2 is small, and it is used at 1000 ° C. or higher. Therefore, if partially stabilized zirconia is used as the oxygen ion conductor, the durability is higher than that of using fully stabilized zirconia, and the device cost is advantageous. In the implementation of the invention according to 1 to 3, the desired function can be obtained reliably and stably.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
[First Embodiment]
FIG. 1 shows a double-effect absorption refrigerator using water as a refrigerant and a lithium bromide solution as an absorption liquid, and a solution pump from the bottom of the absorber 1 (common bottom with an evaporator 10 described later). 2 and the low-temperature absorbent La (diluted absorbent) returned to the high-temperature regenerator 4 through the solution heat exchanger 3 is heated by the burner 5 to generate refrigerant vapor Rs from the diluted absorbent La, The absorption liquid Lb having a medium concentration due to the generation of the refrigerant vapor Rs is introduced into the low temperature regenerator 6 after heat exchange with the diluted absorption liquid La in the high temperature side heat exchange section 3a of the solution heat exchanger 3. The refrigerant vapor Rs generated in the high-temperature regenerator 4 is exchanged with the heat transfer cylinder 7 to generate further refrigerant vapor Rs ′ from the medium concentration absorbent Lb.
[0026]
Then, the refrigerant R partially or wholly condensed by heat exchange with the medium concentration absorbent Lb through the heat transfer cylinder 7 and the refrigerant vapor Rs ′ generated in the low temperature regenerator 6 are introduced into the condenser 8. The refrigerant R is cooled by the passing cooling water W in the condenser coil 9, and the refrigerant R completely condensed by this cooling is dispersed inside the evaporator 10, and is evaporated by taking the heat of vaporization from the passing cold water C in the evaporator coil 11. By doing so, the passing cold water C of the evaporator coil 11 to be cooled is cooled.
[0027]
On the other hand, the absorption liquid Lc (concentrated absorption liquid) having a high concentration due to the generation of the refrigerant vapor Rs ′ in the low-temperature regenerator 6 exchanges heat with the dilute absorption liquid La in the low-temperature side heat exchange section 3b of the solution heat exchanger 3. After being dispersed inside the absorber 1, in this absorber 1, the evaporated refrigerant in the evaporator 10 is absorbed by the sprayed concentrated absorbent Lc under cooling by the passing cooling water W of the absorber coil 12. The inside of the evaporator 10 is maintained at a low pressure state suitable for refrigerant evaporation. Then, the absorption liquid La (diluted absorption liquid) having a low concentration again due to the absorption of the refrigerant is sent to the high-temperature regenerator 4 by the solution pump 2 so that the refrigerant R and the absorption liquid L, which are working fluids, are repeatedly circulated in the apparatus. Continue the operation of the absorption refrigerator.
[0028]
Reference numeral 13 denotes a switching valve for the hot water generation operation. In the hot water generation operation, the switching valve 13 is opened and the refrigerant vapor Rs generated in the high temperature regenerator 4 is sent to the evaporator 10 in a short-circuit manner. The hot water H passing through the evaporator coil 11 to be heated is heated by the steam Rs.
[0029]
In the absorption refrigerator, hydrogen gas H 2 is generated due to corrosion of the metal body in the circulation system (that is, the working fluid system) of the refrigerant and the absorption liquid (particularly in the high temperature regenerator 4 which is a high temperature part). In contrast, the absorption refrigerator of the first embodiment is provided with a gas removal chamber 15 that is always in communication with the low pressure portion (evaporator 10 or absorber 1) of the working fluid system through the communication path 14, and is shown in FIG. Thus, a partially stabilized zirconia 18 (this first electrode) is an oxygen ion conductor between two porous platinum (Pt) electrodes 16, 17, one of which is a hydrogen side electrode 16 and the other is an oxygen side electrode 17. In one embodiment, a bottomed cylindrical hydrogen gas removal cell 19 sandwiching 6% yttria-stabilized zirconia (Zr 0.94 Y 0.06 O 2− α)) is formed, and this cell 19 is used as a hydrogen gas removal target space. Inside the gas removal chamber 15 To face the hydrogen-side electrode 16, and, in a state for exposing the oxygen-side electrode 17 to the air space A in the external gas removal chamber 15, it is attached to the chamber wall 20 of the gas removal chamber 15.
[0030]
And while providing the electric heater 21 which heats the cell 19 and maintains it at a predetermined temperature, the conductive circuit 22 connecting the hydrogen side electrode 16 and the oxygen side electrode 17 is connected to both electrodes 16 with the hydrogen side electrode 16 as a negative electrode. 17 is provided with a constant voltage DC power source 23 for controlling ion conduction for applying a predetermined voltage E, and the applied voltage E by the DC power source 23 is a value satisfying both the following formulas (A) and (B) (this In the first embodiment, a value satisfying the following expression (A ') is set.
[0031]
E ≦ Eo + (RT / 2F) ln [Ps / (Poo 1/2 · Ph)] …… (I)
E ≧ (RT / 4F) ln (Poo / Poi) (b)
E = Eo + (RT / 2F) ln [Ps / (Poo 1/2 · Ph)] (b)
[0032]
here,
Eo: standard potential of reaction in which water is generated from oxygen and hydrogen R: gas constant T: absolute temperature (in the first embodiment, the cell temperature maintained by the electric heater 21)
F: Faraday constant Ps: water vapor partial pressure in the gas removal chamber 15 (in the first embodiment, a standard water vapor partial pressure in the evaporator 10 and the absorber 1 is adopted during operation of the absorption chiller)
Poo: standard oxygen partial pressure in the atmospheric space A Ph: allowable upper limit value of hydrogen partial pressure in the gas removal chamber 15 (in the first embodiment, the allowable upper limit value of hydrogen partial pressure in the evaporator 10 and the absorber 1 Adopt equal value)
Poi: an allowable upper limit value of the oxygen partial pressure in the gas removal chamber 15 (in the first embodiment, a value equal to the allowable upper limit value of the oxygen partial pressure in the evaporator 10 and the absorber 1 is adopted).
[0033]
That is, with this configuration, oxygen ions O 2− moving inside the partially stabilized zirconia 18 as a solid electrolyte from the atmospheric space A through the porous oxygen-side electrode 17, and hydrogen gas H 2 in the gas removal chamber 15 (ie, , Hydrogen gas generated in the working fluid system of the absorption chiller) is reacted at the hydrogen side electrode 16 as shown in the following formula (c),
H 2 + O 2− → H 2 O + 2e (c)
This effectively removes the hydrogen gas H 2 generated in the working fluid system in the absorption chiller in the form of water molecules H 2 O (water vapor), causing the generation of hydrogen gas in the working fluid system. The rise in the internal pressure of the absorber 1 and the evaporator 10 and the decrease in the refrigerating capacity caused thereby are prevented.
[0034]
Further, as the voltage E applied by the DC power source 23, a voltage value satisfying the above expression (A ') (a value satisfying both the above expressions (A) and (B)) is adopted. Suppressing an increase in the amount of oxygen gas generated at the hydrogen-side electrode 16 due to the following reaction (d)
2O 2- → O 2 + 4e - ...... ( d)
Thereby, both the hydrogen partial pressure and the oxygen partial pressure in the absorber 1 and the evaporator 10 are kept below their allowable upper limit values.
[0035]
In the figure, 24 is a screw fixture for fixing the cell 19, 25 is a packing made of gold (Au) or copper (Cu), and the cell 19 removes one or a plurality of gases depending on the amount of hydrogen gas to be removed. Equipped in chamber 15.
[0036]
The first embodiment in which the gas removal chamber 15 as the hydrogen gas removal target space equipped with the cell 19 is directly communicated with the low-pressure portion (evaporator 10 and absorber 1) of the working fluid system through the communication passage 14. In the absorption refrigerator of
For example, Ps = 0.04 × 101.325 (kPa)
Poo = 0.21 × 101.325 (kPa)
Ph = 0.001 × 101.325 (kPa)
Eo = 1.11 (V)
T = 600 (K)
If the voltage applied to both electrodes 16 and 17 is set to E = 0.993 (V) as a voltage value satisfying the above-mentioned formula (A ') under the condition
While maintaining the hydrogen partial pressure in the gas removal chamber 15 below the target 0.001 × 101.325 (kPa),
The oxygen partial pressure in the gas removal chamber 15 can be maintained at a value on the order of 10 −32 (kPa) (substantially negligible value);
The inside of the absorber 1 and the evaporator 10 can be maintained at a very good low pressure state.
[0037]
[Second Embodiment]
FIG. 3 shows an example in which the apparatus configuration is partially changed in the double-effect absorption refrigerator shown in the first embodiment. The change is that the gas removal chamber 15 is changed to a low pressure part of the working fluid system. Instead of direct communication, the gas removal chamber 26 as the hydrogen gas removal target space equipped with the cell 19 as shown in FIG. 2 described above is connected to the low pressure section (evaporator 10) of the working fluid system via the gas extraction means 27. Or at the point connected to the absorber 1).
[0038]
This gas extraction means 27 uses the ejector 29 to suck in the generated hydrogen gas H 2 in the working fluid system from the low pressure portion (evaporator 10 to absorber 1) of the working fluid system through the suction passage 30. A part La ′ of the rare absorbent La sent out from the pump 2 is guided to the ejector 29 as a reference fluid through the branch path 28, and the suction path 30 is attracted by the high-speed flow of the rare absorbent La ′ in the ejector 29. Through which gas is sucked.
[0039]
Then, the mixed fluid of the diluted absorbing liquid La ′ and the sucked hydrogen gas H 2 functioned as the reference fluid is ejected from the tip of the internal ejection pipe 31 connected to the downstream side of the ejector 29, so that in this ejection portion The dilute absorbent La ′ and the sucked hydrogen gas H 2 are separated into gas and liquid, and the separated hydrogen gas H 2 is fed into the gas removal chamber 26. In the gas removal chamber 26, the above-described first implementation is performed by the equipped cell 19. Similar to the configuration, the hydrogen gas H 2 is efficiently removed in the form of water molecules H 2 O (water vapor) while suppressing the generation of oxygen gas O 2 , causing the generation of hydrogen gas in the working fluid system. The rise in the internal pressure of the absorber 1 and the evaporator 10 and the decrease in the refrigerating capacity caused thereby are prevented.
[0040]
In the second embodiment, the voltage E applied to both electrodes 16 and 17 of the cell 19 by the DC power supply 23 is a value satisfying both the following formulas (a) and (b) as in the first embodiment. Is set to a value that satisfies the following equation (A ').
[0041]
E ≦ Eo + (RT / 2F) ln [Ps / (Poo 1/2 · Ph)] …… (I)
E ≧ (RT / 4F) ln (Poo / Poi) (b)
E = Eo + (RT / 2F) ln [Ps / (Poo 1/2 · Ph)] (b)
[0042]
here,
Eo: standard potential of reaction in which water is generated from oxygen and hydrogen R: gas constant T: absolute temperature (cell temperature maintained by electric heater 21)
F: Faraday constant Ps: water vapor partial pressure in the gas removal chamber 26 (in the second embodiment, a predetermined value is greater than the standard water vapor partial pressure in the evaporator 10 and the absorber 1 during the operation of the absorption refrigerator). Adopt large value)
Poo: standard oxygen partial pressure in the atmospheric space A Ph: allowable upper limit value of hydrogen partial pressure in the gas removal chamber 26 (in the second embodiment, from the allowable upper limit value of hydrogen partial pressure in the evaporator 10 and the absorber 1) Is also larger by a predetermined value)
Poi: Allowable upper limit value of oxygen partial pressure in gas removal chamber 26 (In the second embodiment, a value larger than the allowable upper limit value of oxygen partial pressure in evaporator 10 and absorber 1 is adopted by a predetermined value)
[0043]
In the figure, reference numeral 32 denotes a reflux path for returning the diluted absorbent La ′ separated from the hydrogen gas H 2 by jetting from the internal jet pipe 31 to the common bottom of the absorber 1 and the evaporator 10 by a pressure difference.
[0044]
The second embodiment in which a gas removal chamber 26 as a hydrogen gas removal target space equipped with the cell 19 is connected to the low pressure portion (evaporator 10 and absorber 1) of the working fluid system via the gas extraction means 27. In the absorption refrigerator of
In the example given in the first embodiment described above, the applied voltage is set to E = 0.955 (V), whereas if the applied voltage is set to about E = 0.8 (V), the absorber 1 and The inside of the evaporator 10 can be maintained at a good low pressure state equivalent to the example given in the first embodiment.
[0045]
In the second embodiment, as shown by a broken line in the figure, an opening / closing valve 33 is provided at the inlet of the gas removal chamber 26, and the opening / closing valve 33 is automatically opened / closed to automatically open / close the opening / closing valve 33. Alternatively, the separated hydrogen gas H 2 may be introduced into the gas removal chamber 26 in the state, and the internal hydrogen gas H 2 may be removed by the cell 19 with the on-off valve 33 closed.
[0046]
[Another embodiment]
Next, another embodiment is listed.
The oxygen ion conductor 18 sandwiched between the hydrogen side electrode 16 and the oxygen side electrode 17 in the cell 19 is not limited to zirconia, and various types such as cerium oxide and hafnium oxide can be adopted. The stabilizer is not limited to yttrium, and various types such as calcium, scandium, ytterbium, and magnesium can be employed.
[0047]
The porous hydrogen side electrode 16 and the porous oxygen side electrode 17 in the cell 19 are not limited to platinum, and various electrode materials can be used as long as they have sufficient corrosion resistance.
[0048]
The shape of the cell 19 is not limited to the bottomed cylindrical shape as shown in the above-described embodiment, and may be a flat or corrugated cell shape, for example.
[0049]
In the above-described embodiment, the gas removal chambers 15 and 26 are additionally provided as hydrogen gas removal target spaces facing the hydrogen side electrode 16 of the cell 19, and these gas removal chambers 15 and 26 are provided as working fluid systems in the absorption refrigerator. In some cases, a structure in which the cell 19 is directly attached to the absorber 1, the evaporator 10, or the other part of the working fluid system may be employed. The hydrogen gas removal target space that faces the side electrode 16 may be any space as long as it is an airtight space through which the generated hydrogen gas H 2 in the working fluid system in the absorption refrigerator is conducted.
[0050]
In the second embodiment described above, an example in which the hydrogen gas H 2 generated in the working fluid system of the absorption chiller is sent from the working fluid system to the gas removal chamber 26 using the ejector 29 has been described. In implementing the above, such an ejector is not necessarily required, and the expected function can be sufficiently obtained even in a configuration not using the ejector as shown in the first embodiment.
[0051]
In the above-described embodiment, the voltage value satisfying the above-described equation (A ') is adopted as the applied voltage E by the DC power source 23. A voltage value that satisfies both of them may be adopted, or a format in which the voltage E applied by the DC power source 23 is automatically adjusted to an appropriate value according to the situation based on various detection information may be adopted.
[0052]
The present invention is not limited to a double-effect absorption refrigerator, but can be applied to a single-effect or triple-effect absorption refrigerator, and uses a refrigerant other than water or an absorption liquid other than lithium bromide. It can also be applied to absorption refrigerators.
[Brief description of the drawings]
FIG. 1 is a block diagram of an absorption chiller showing a first embodiment. FIG. 2 is an enlarged view showing a cell structure and a cell equipment structure. FIG. 3 is a block diagram of an absorption chiller showing a second embodiment. Explanation of symbols]
15, 26 Hydrogen gas removal target space 16 Hydrogen side electrode 17 Oxygen side electrode 18 Oxygen ion conductor (activated zirconia)
19 cell 22 conductive circuit 23 DC power source A atmospheric space

Claims (5)

多孔質の水素側電極と多孔質の酸素側電極との間に酸素イオン伝導体を挟んでセルを形成し、
このセルを、吸収式冷凍機における動作流体系側の水素ガス除去対象空間に前記水素側電極を臨ませ、かつ、大気空間に前記酸素側電極を臨ませる状態に配置し、
前記水素側電極と前記酸素側電極とを結ぶ導電回路に、前記水素側電極の方を負極として両電極に電圧を印加するイオン伝導制御用の直流電源を介装してある吸収式冷凍機の水素ガス除去装置。
A cell is formed by sandwiching an oxygen ion conductor between the porous hydrogen side electrode and the porous oxygen side electrode,
This cell is placed in a state where the hydrogen side electrode faces the hydrogen gas removal target space on the working fluid system side in the absorption refrigerator and the oxygen side electrode faces the atmospheric space,
An absorption refrigerating machine in which a conductive circuit connecting the hydrogen side electrode and the oxygen side electrode is provided with a DC power source for controlling ion conduction that applies a voltage to both electrodes with the hydrogen side electrode serving as a negative electrode. Hydrogen gas removal device.
前記直流電源による印加電圧を、前記水素ガス除去対象空間における水素分圧及び酸素分圧がともに各々の許容上限値以下に保たれる値にしてある請求項1に記載した吸収式冷凍機の水素ガス除去装置。2. The absorption refrigerator hydrogen according to claim 1, wherein the voltage applied by the DC power supply is set to a value at which both of the hydrogen partial pressure and the oxygen partial pressure in the hydrogen gas removal target space are kept below their allowable upper limit values. Gas removal device. 前記直流電源による印加電圧Eを、次の(イ)式及び(ロ)式をともに満足する値にしてある請求項2に記載した吸収式冷凍機の水素ガス除去装置。
E≦Eo+(RT/2F)ln〔Ps/(Poo1/2 ・Ph)〕……(イ)
E≧(RT/4F)ln(Poo/Poi)……(ロ)
ここで、Eo:酸素と水素とから水が生成される反応の標準電位
R:気体定数
T:絶対温度
F:ファラデー定数
Ps:水素ガス除去対象空間の水蒸気分圧
Poo:大気空間の酸素分圧
Ph:水素ガス除去対象空間における水素分圧の許容上限値
Poi:水素ガス除去対象空間における酸素分圧の許容上限値
The hydrogen gas removal apparatus for an absorption refrigeration machine according to claim 2, wherein the voltage E applied by the DC power supply is set to a value satisfying both of the following formulas (a) and (b).
E ≦ Eo + (RT / 2F) ln [Ps / (Poo 1/2 · Ph)] …… (I)
E ≧ (RT / 4F) ln (Poo / Poi) (b)
Here, Eo: standard potential of reaction in which water is generated from oxygen and hydrogen R: gas constant T: absolute temperature F: Faraday constant Ps: partial pressure of water vapor in hydrogen gas removal target Poo: partial pressure of oxygen in atmospheric space Ph: allowable upper limit value of hydrogen partial pressure in hydrogen gas removal target space Poi: allowable upper limit value of oxygen partial pressure in hydrogen gas removal target space
前記酸素イオン伝導体に安定化ジルコニアを用いてある請求項1〜3のいずれか1項に記載した吸収式冷凍機の水素ガス除去装置。The hydrogen gas removal apparatus for an absorption refrigerating machine according to any one of claims 1 to 3, wherein stabilized zirconia is used for the oxygen ion conductor. 前記酸素イオン伝導体に部分安定化ジルコニアを用いてある請求項4に記載した吸収式冷凍機の水素ガス除去装置。The hydrogen gas removal apparatus for an absorption refrigerator according to claim 4, wherein partially stabilized zirconia is used for the oxygen ion conductor.
JP2000018680A 2000-01-27 2000-01-27 Absorption refrigerator hydrogen gas removal device Expired - Fee Related JP4159220B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000018680A JP4159220B2 (en) 2000-01-27 2000-01-27 Absorption refrigerator hydrogen gas removal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000018680A JP4159220B2 (en) 2000-01-27 2000-01-27 Absorption refrigerator hydrogen gas removal device

Publications (2)

Publication Number Publication Date
JP2001208453A JP2001208453A (en) 2001-08-03
JP4159220B2 true JP4159220B2 (en) 2008-10-01

Family

ID=18545495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000018680A Expired - Fee Related JP4159220B2 (en) 2000-01-27 2000-01-27 Absorption refrigerator hydrogen gas removal device

Country Status (1)

Country Link
JP (1) JP4159220B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57105665A (en) * 1980-12-22 1982-07-01 Hitachi Ltd Closed circulation type absorption refrigerating machine
JPH0424550A (en) * 1990-05-18 1992-01-28 Riken Corp Method and apparatus for measuring partial pressure of gas
JP2940707B2 (en) * 1990-10-23 1999-08-25 三洋電機株式会社 Fuel cell
JP3253985B2 (en) * 1991-10-11 2002-02-04 関西電力株式会社 Power storage device
JPH11281210A (en) * 1998-03-30 1999-10-15 Sanyo Electric Co Ltd Hydrogen discharger and apparatus utilizing it
JP2001036167A (en) * 1999-07-26 2001-02-09 Mitsubishi Electric Corp Gas cooling method and laser device using the same

Also Published As

Publication number Publication date
JP2001208453A (en) 2001-08-03

Similar Documents

Publication Publication Date Title
JP5681978B2 (en) Heat pump equipment
RU2670991C2 (en) Electrolysis method and electrolysis apparatus
RU2332753C2 (en) Thermoregulation in electrochemical fuel elements
JPH1055812A (en) Fuel cell
US7267900B2 (en) Fuel cell system
JP2001015135A (en) Fuel cell system
US6355368B1 (en) Cooling method and apparatus for use with a fuel cell stack
JP6500227B2 (en) Gas generation apparatus and gas generation method
JP4159220B2 (en) Absorption refrigerator hydrogen gas removal device
JP2023022865A (en) Electrochemical hydrogen compressor
JP2011129491A (en) Solid oxide fuel cell and its operation method
EP1062995B1 (en) Reduced-pressure distillation system
US9937465B2 (en) Gas-producing apparatus and gas-producing method
JP3656596B2 (en) Fuel cell system
RU69322U1 (en) FUEL BATTERY FOR A STAND-ALONE POWER SUPPLY
JP2005259440A (en) Fuel cell system
JP2000357527A (en) Fuel cell system
WO2016013321A1 (en) Anode system for fuel cells
KR20170043331A (en) Cooling apparatus using electrochemical reaction
JP2004171974A (en) Fuel cell system
JP2003262423A (en) Heat pump
JPH0831437A (en) Fuel cell and operation thereof
JP3138097B2 (en) Hydrogen gas discharge device of absorption refrigerator
JP4201467B2 (en) Absorption type vacuum breaker detector
JP2005291564A (en) Hydrogen gas discharge device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080715

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140725

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees