JP2004171974A - Fuel cell system - Google Patents

Fuel cell system Download PDF

Info

Publication number
JP2004171974A
JP2004171974A JP2002337513A JP2002337513A JP2004171974A JP 2004171974 A JP2004171974 A JP 2004171974A JP 2002337513 A JP2002337513 A JP 2002337513A JP 2002337513 A JP2002337513 A JP 2002337513A JP 2004171974 A JP2004171974 A JP 2004171974A
Authority
JP
Japan
Prior art keywords
water
fuel cell
container
recovery
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002337513A
Other languages
Japanese (ja)
Inventor
Tomohiro Iihara
智宏 飯原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corona Corp
Original Assignee
Corona Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corona Corp filed Critical Corona Corp
Priority to JP2002337513A priority Critical patent/JP2004171974A/en
Publication of JP2004171974A publication Critical patent/JP2004171974A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a specific fuel cell system for using discharged water from fuel cells, and to improve reliability and service life of the system. <P>SOLUTION: A recovery container 1 is used as both a container for a heat recovering heat medium and a humidifier for an oxidizing agent gas of fuel cells 6, and stores water discharged from the fuel cells including pure water generated in the fuel cells. An inlet pipe 4, through which the water from the fuel cells is supplied to the recovery container 1, is connected to the under part of the recovery container 1. An outlet pipe 5 is connected to the recovery container 1 at a position upper than the fluid level by the static pressure value of the oxidizing agent gas supplied into the recovery container 1 on the way of the inlet pipe 4 and lower than an upper plate 12 of the recovery container 1. This can keep the interior of the fuel cells clean, and realizes simplification and cost reduction of the system. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は燃料電池において発電時の反応により生成した純水を含む燃料加湿に使用した精製水または還元剤ガス由来凝縮水の一方、又は両方の回収水をシステム中の精製水を使用する部位に供給または再利用することで、燃料電池システムの簡略化、耐久性の向上、消費電力の低減を実現する技術に関するものである。
【0002】
【従来の技術】
燃料電池はイオン導電体である電解質の両側に一対の電極を設け、一方の電極に酸化剤、他方に還元剤を供給し、電気化学的に発電する。燃料電池は、一般に燃料供給方法や、用いる電解質の種類によって様々種類があるが、中でも近年では固体高分子電解質に関する研究が進み作動温度が100℃以下と低く電流密度が高い為小型の燃料電池の実用化が期待されている。
【0003】
この固体高分子による発電に関わるプロトン伝導のためには、固体高分子電解質が常に適正な水分保持をする必要がある。
又還元剤としての水素含有ガスを得る為に、アルコール、エーテル、炭化水素系燃料などを水蒸気改質等の手法を用いて得ようとする場合にも水の供給が必要となる。
【0004】
このような水の必要性に対し、従来技術としては燃料ガスオフガス、及び、酸化剤ガスオフガスに含まれる水を再利用する燃料電池システムがある。(例えば、特許文献1参照)
【0005】
又燃料電池から排出される還元剤ガスオフガス中及び酸化剤ガスオフガス中に含まれるオフガス中の水を回収し、改質原料及び加湿水として再利用する燃料電池システムがある。(例えば、特許文献2)
【0006】
しかし、この場合燃料ガスオフガス中及び、酸化剤ガスオフガス中の水を凝縮し、一つの貯留部に貯留し、改質原料及び燃料ガス、酸化剤ガスの加湿水として再利用しているが、燃料ガスオフガス中には不純物が含まれているため、そのまま再利用すると燃料電池の性能低下に繋がる。
【0007】
これを解決するために、還元剤ガス凝縮水を回収し改質原料水として利用する方法がある。(例えば、特許文献3)
又回収水を脱塩処理した後、これを燃料電池に供給する方法もある。(例えば、特許文献4)しかし、家庭用燃料電池システムのように低コストでしかもコンパクトに製作するには現実的でない。
【0008】
又発電時に燃料電池で発生する熱を回収する方法の従来技術としては、一旦精製水と熱交換し、その後高温となった精製水を再度市水と熱交換する方法がある。精製水を使用するのは、電導度が高い熱媒を使用すると燃料電池から電流がリークする恐れがあるためであるが、閉ループ内で長時間循環を続けると徐々に伝導度が上昇してしまう問題がある。
【0009】
【特許文献1】
特開平6−325780号公報
【特許文献2】
特開平9−17438号公報
【特許文献3】
特開2000−223144号公報
【特許文献4】
特開2000−331703公報
【0010】
【発明が解決しようとする課題】
家庭用燃料電池コジェネレーションシステムの実用化への課題の一つとして、燃料電池より排出された水の簡単な回収、再利用方法の確立が挙げられる。本発明は燃料電池より排出された水を利用する具体的システムを提供し、同時にシステムの信頼性の向上、長寿命化に対し大きく貢献するものである。
【0011】
【課題を解決する手段】
この発明はこの点に着目し上記課題を解決する為、システムの構造上、燃料電池より排出された加湿ガスを凝縮したうえ特別な動力を必要とせずに水を回収し、精製水容器内の液位を常に一定に保持し、また、酸化剤ガスと還元剤ガスの接触なしに、燃料電池内部を清浄な状態に保ちつつ、同用途または、別用途に再度利用できるようにしたものである。
【0012】
【発明の実施形態】
本発明の基本的な構造は図1に示すように、ガス加湿器等の回収容器1から加湿ガスを得る為に、該回収容器1内の液中にガス2を導入すると雰囲気温度の本液体の飽和ガスが得られる。これを加湿済みガス3として燃料電池へ導入する。このとき、回収容器1内はガス2の供給によって一定の静圧を有するので、静圧分だけ、容器内液面位置は低下し、同時に導入管4の液面位置は上昇する。
【0013】
この関係は、h=(P1−P2)/(ρ・g)で示され、(大気圧等の様に)P2が決まれば、ガス2の供給と下流の燃料電池等の圧損によって決まる容器内圧力P1によりhは決定する。
【0014】
よって、このh分だけ高い位置に、排出管5を配すことで、ガス入力2によって導入管4の液面が上昇した分を無駄に排出することは防止できる。また、燃料電池より排出された、ガスを凝縮器を介して導入管4より導入することで、回収容器1への水回収を行い再度利用を可能とし、更に余剰分は排気と排出管5から排出される為、液面位置は常に一定に保たれる。更に、構造的にガスが導入管4から排出することもなく、全量が加湿後燃料電池に導入可能である。
【0015】
【実施例】
次に本発明を燃料電池システムに使用した一実施例を図2から図4で説明するが、先ず図2では、燃料電池6は作動時発熱し、結果として熱回収用熱媒容器及び酸化剤ガス加湿器を兼用する回収容器1の温度は上昇するが、精製水及び市水熱交換用の送液手段7が温度検出手段8からの信号を受けて回収容器1の温度が一定となる精製水の供給を制御するものである。
【0016】
本願第1の発明は、熱回収用熱媒容器及び酸化剤ガス加湿器を回収容器1で兼用し、燃料電池1で生成した純水を含む燃料電池より排出される酸化剤排気を凝縮器9を介し凝縮水を回収容器1に回収し、同時に燃料電池6の熱回収用の冷却ポンプ10を常時動作させる事で常に燃料電池に導入する酸化剤ガスの加湿状態を燃料電池6の温度での水の飽和状態の酸化性ガスとして導入することが可能である。
【0017】
又燃料電池6が発電状態では酸化剤排出ガス中には、酸化剤ガスを加湿したときの加湿分の水と燃料電池6中で生成された純水が含まれる為、回収容器1に水位を一定とするための排出管5を配した場合、発電量が大きく、回収水量が大きい時は余剰な液体水は酸化剤排気ガスと共に排出管5から排出される為、回収容器1の水は生成水によって希釈され、常に清浄な状態を保持する事が可能である。
【0018】
逆に発電量が小さく生成水が少量で酸化性排ガス中の凝縮水の回収のロス等で、回収容器1の水位が保持できない場合には、該回収容器1に設置した液位検出手段11から信号を受け、精製水を補充する為の送液手段7の開閉を行う。この構造により、回収容器1内は清浄な水と希釈されるため、燃料電池1の電解質膜にも悪影響を与えない上、回収容器1内の水のイオン濃度上昇による燃料電池6からの電流リークを回避する効果もある。更に、容器を兼用とすることで、液位検出手段11及び、精製水の補充手段の設置数低減の効果もある。
【0019】
本願第2の発明は、図1に示す様に酸化剤加湿ガスを得る場合、回収容器1内の水中に酸化剤ガス2を導入すると雰囲気温度の本液体の飽和ガスが得られる。これを加湿済み酸化剤ガス3として燃料電池6へ導入する。このとき、回収容器1内は酸化剤ガス2の供給によって一定の静圧を有するので、静圧分だけ回収容器1内液面位置は低下し、同時に導入管4の液面位置は上昇する。
【0020】
この関係は、h=(P1−P2)/(ρ・g)で示され、(大気圧等の様に)P2が決まれば、酸化剤ガス2の供給と下流の燃料電池6、や凝縮器9などの圧損によって決まる回収容器1内圧力P1によりhは決定する。このh分だけ高い位置に、排出管5を配し且つ回収容器1の上面板12より低い位置とすことで、入力ガス2によって導入管4の液面が上昇した分を無駄に排出することは防止できる。
【0021】
又燃料電池6より排出された、ガスを凝縮器9を介して導入管4より導入することで、回収容器1への水回収を行い再度利用を可能とし、更に余剰分は排気と共に排出管5から排出される為、液面位置は常に一定に保たれる。更に、構造的にガスが排出管5から排出することもなく、全量が加湿後燃料電池6に導入可能である。
【0022】
当然のことながら図2に示す様に、酸化剤ガス送気手段13は停止時の水の流入を防ぐ為、水面位置より上方に位置させるべきである。
【0023】
還元剤ガスについて、本願第2の発明と同様な効果を発現するものである。炭化水素の水蒸気改質は通常コーキング防止の目的で水が過剰な組成で供給し改質を行う。この結果、生成還元剤ガスは非常に多くの未反応水を含有した状態となっている為、適正な水含有状態として燃料電池6に供給する必要から改質ガスの温度を低下させ、凝縮器9で回収した凝縮水を還元剤ガスの排出なしに排出管5より排出するものである。
【0024】
本願第3の発明は図3に示す様に、還元剤ガス(H2含有ガス)中の凝縮容器14を回収容器1内に位置させ、且つ凝縮容器14の水位位置より下から一端を取り出した連絡管15の他端を、凝縮容器14の水位位置より上側、且つ凝縮容器14の上面板16より下の位置で改質用燃料水を有する改質用燃料水容器17の液面位置より上側に開口した構造である。
【0025】
又回収容器1からの導入管4途中の排出管5もこの改質用燃料水容器17の液面位置より上側で且つ回収容器1の上面板12より下の位置に接続させた構造である。
【0026】
この構造を持つ事で本願第3の発明による効果を発現する上、還元剤ガスの凝縮容器14を回収容器1内に位置させ、冷却ポンプ10による燃料電池1での熱回収及び温度検出手段8からの信号によって作動/停止する送液手段7によって燃料電池1、酸化剤ガスの加湿温度及び還元剤ガスの凝縮温度が比較的近い温度で行われる。この結果燃料電池6の電解質の湿潤状態が良好となるので、安定した燃料電池6の運転が実現できる。
【0027】
更に改質用燃料水容器17内の液位が低下したとき、改質用燃料水容器17に配した液位検出手段11からの信号によって、回収容器1に備えた送液手段7を開として精製水の補充を行う。これによって回収容器1内の液位が上昇し、酸化剤ガス送気手段13による静圧分を含め、導入管4の管内水位が改質用燃料水容器17の接続箇所である排出管5の高さに至ると、改質燃料用水容器17に流入する。改質用燃料水容器17内の液位が充分な量となると、液位検出手段11からの信号で、精製水補充のための送液手段7を閉とする。
このことで、回収容器1内の水を常に清浄な状態に保つ事が可能である。
【0028】
図4は図3の様に位置させた、回収容器1からの導入管4途中の排出管5を改質用燃料水容器17の液面位置より上側で且つ回収容器1の上面板12より下の位置に接続させた構造である。
【0029】
この構造により、本願第1、2の発明の効果を保持しつつ、回収容器1からの余剰水を供給ポンプ18を介して改質用燃料水として再利用可能である上、改質用燃料水が改質用燃料水容器17から回収容器1へ逆流し、該回収容器1内を汚染する事も無い。
【0030】
更に改質用燃料水容器17内の液位が低下したとき、改質用燃料水容器17に配した液位検出手段11からの信号によって、回収容器1に備えた送液手段7を開として精製水の補充を行う。これによって回収容器1内の液位が上昇し、酸化剤ガス送気手段13による静圧分を含め、導入管4の管内水位が改質用燃料水容器17の接続箇所である排出管5の高さに至ると、改質燃料用水容器17に流入する。改質用燃料水容器17内の液位が充分な量となると、液位検出手段11からの信号で、精製水補充のための送液手段7を閉とする。
このことで、上記同様に回収容器1内の水を常に清浄な状態に保つ事が可能である。
【0031】
又燃料電池1から酸化剤排気は凝縮器9を介し水を凝縮させ、導入管4で回収容器1へ回収されると同時に、余剰水と酸化剤ガス排気は、改質用燃料水容器17へ流入し、水は改質に再利用され酸化剤ガス排気は酸化剤ガス排気箇所及び余剰水は溢れ口19から廃棄される。
【0032】
改質用燃料水容器17内は常に酸化剤ガス排気が流入しているが還元剤ガスは構造上、改質用燃料水容器17に流入することがないので、改質用燃料水容器17内を爆発性雰囲気にする事もなく、酸化剤ガス由来の凝縮水および還元剤ガス由来の凝縮水をともに、改質に再利用できる。
【0033】
回収容器1内方底部には熱交換器20が備えられ、該回収容器1内の高温水と熱交換して循環ポンプ21を備えた循環路22を介して、熱使用部23に熱を送りここで各種の熱として使用して、効率の向上を図るものである。
【0034】
【発明の効果】
以上の様にこの発明によれば、燃料電池より排出された酸化剤消費ガスに由来の凝縮水及び、還元性ガス由来の凝縮水をシステムの構造上無駄なく回収再利用する事が可能であり、燃料電池内部を清浄な状態に保つ事が可能でしかも、システムの簡素化、低コスト化を実現したものである。
【図面の簡単な説明】
【図1】この発明の基本構成図。
【図2】この発明の一実施例を示す燃料電池システムの構成図。
【図3】この発明の他の実施例を示す構成図。
【図4】この発明の更に別の実施例を示す構成図。
【符号の説明】
1 回収容器
4 導入管
5 排出管
6 燃料電池
8 液位検出手段
12、16 上面板
14 凝縮容器
15 連絡管
17 燃料改質用水容器
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides one or both of the purified water or the condensed water derived from the reducing agent gas used for fuel humidification including pure water generated by the reaction at the time of power generation in the fuel cell, and the recovered water in the system using the purified water in the system. The present invention relates to a technology for achieving simplification of a fuel cell system, improvement of durability, and reduction of power consumption by supplying or reusing.
[0002]
[Prior art]
A fuel cell is provided with a pair of electrodes on both sides of an electrolyte which is an ion conductor, supplies an oxidizing agent to one electrode and a reducing agent to the other electrode, and electrochemically generates power. In general, there are various types of fuel cells depending on the fuel supply method and the type of electrolyte used.In particular, in recent years, research on solid polymer electrolytes has been advanced, and the operating temperature is as low as 100 ° C. or less and the current density is high, so that a small Practical application is expected.
[0003]
For proton conduction related to power generation by the solid polymer, the solid polymer electrolyte must always keep appropriate water.
Further, in order to obtain a hydrogen-containing gas as a reducing agent, it is necessary to supply water even when an alcohol, an ether, a hydrocarbon-based fuel, or the like is obtained by using a technique such as steam reforming.
[0004]
In response to such a need for water, conventional technologies include a fuel cell system that reuses water contained in a fuel gas off-gas and an oxidant gas off-gas. (For example, see Patent Document 1)
[0005]
There is also a fuel cell system that collects water in off-gas contained in off-gas of reducing agent gas and off-gas of oxidizing gas discharged from a fuel cell and reuses it as reforming raw material and humidified water. (For example, Patent Document 2)
[0006]
However, in this case, the water in the fuel gas off-gas and the oxidizing gas off-gas is condensed, stored in one storage unit, and reused as the humidifying water for the reforming raw material, the fuel gas, and the oxidizing gas. Since impurities are contained therein, if they are reused as they are, the performance of the fuel cell will be reduced.
[0007]
In order to solve this, there is a method in which condensed water of a reducing agent gas is collected and used as reforming raw water. (For example, Patent Document 3)
There is also a method in which the recovered water is desalted and then supplied to a fuel cell. (For example, Patent Document 4) However, it is not practical to manufacture the fuel cell system at low cost and compactly as in a home fuel cell system.
[0008]
As a conventional technique for recovering heat generated in a fuel cell during power generation, there is a method in which heat is exchanged once with purified water, and then the purified water having a high temperature is exchanged again with city water. The reason why purified water is used is that when a heat medium having high conductivity is used, current may leak from the fuel cell, but if the circulation is continued for a long time in a closed loop, the conductivity gradually increases. There's a problem.
[0009]
[Patent Document 1]
JP-A-6-325780 [Patent document 2]
JP-A-9-17438 [Patent Document 3]
Japanese Patent Application Laid-Open No. 2000-223144 [Patent Document 4]
JP 2000-331703 A
[Problems to be solved by the invention]
One of the issues for practical use of a home fuel cell cogeneration system is to establish a simple method for collecting and reusing water discharged from a fuel cell. The present invention provides a specific system that uses water discharged from a fuel cell, and at the same time, greatly contributes to improvement of the reliability of the system and prolonging its life.
[0011]
[Means to solve the problem]
The present invention focuses on this point and solves the above-mentioned problems.In view of the structure of the system, the humidified gas discharged from the fuel cell is condensed and water is collected without requiring special power, and the water in the purified water container is collected. The liquid level is kept constant, and the fuel cell can be reused for the same or another use while keeping the inside of the fuel cell clean without contact between the oxidizing gas and the reducing agent gas. .
[0012]
DETAILED DESCRIPTION OF THE INVENTION
As shown in FIG. 1, the basic structure of the present invention is as follows. In order to obtain a humidified gas from a collection container 1 such as a gas humidifier, a gas 2 is introduced into the liquid in the collection container 1 so that the liquid at ambient temperature can be obtained. Is obtained. This is introduced into the fuel cell as humidified gas 3. At this time, since the inside of the recovery container 1 has a constant static pressure due to the supply of the gas 2, the liquid level position in the container decreases by the static pressure, and at the same time, the liquid level position of the introduction pipe 4 increases.
[0013]
This relationship is expressed by h = (P1−P2) / (ρ · g). When P2 is determined (such as atmospheric pressure), the inside of the container is determined by the supply of gas 2 and the pressure loss of the downstream fuel cell and the like. H is determined by the pressure P1.
[0014]
Accordingly, by disposing the discharge pipe 5 at a position higher by h, it is possible to prevent the liquid level of the introduction pipe 4 raised by the gas input 2 from being wastefully discharged. Also, by introducing the gas discharged from the fuel cell through the introduction pipe 4 through the condenser, water can be collected in the collection container 1 and reused, and the surplus is discharged from the exhaust and the discharge pipe 5. Since the liquid is discharged, the liquid level position is always kept constant. Further, the entire amount of the gas can be introduced into the fuel cell after humidification without structurally discharging the gas from the introduction pipe 4.
[0015]
【Example】
Next, an embodiment in which the present invention is applied to a fuel cell system will be described with reference to FIGS. 2 to 4. First, in FIG. 2, the fuel cell 6 generates heat during operation, and as a result, a heat recovery heat medium container and an oxidizing agent. Although the temperature of the recovery container 1 which also serves as a gas humidifier rises, the liquid sending means 7 for heat exchange between purified water and city water receives a signal from the temperature detecting means 8 to purify the temperature of the recovery container 1 to be constant. It controls the supply of water.
[0016]
According to the first invention of the present application, the heat recovery heat medium container and the oxidizing gas humidifier are also used in the recovery container 1, and the oxidizing gas exhaust gas discharged from the fuel cell including the pure water generated in the fuel cell 1 is discharged to the condenser 9. The condensed water is collected in the collection container 1 via the fuel cell, and at the same time, the cooling pump 10 for heat recovery of the fuel cell 6 is always operated, so that the humidified state of the oxidizing gas always introduced into the fuel cell is changed at the temperature of the fuel cell 6 It can be introduced as an oxidizing gas saturated with water.
[0017]
When the fuel cell 6 is in the power generation state, the oxidant exhaust gas contains humidified water when the oxidant gas is humidified and pure water generated in the fuel cell 6. When the discharge pipe 5 is provided to keep the amount constant, the amount of power generation is large, and when the amount of recovered water is large, excess liquid water is discharged from the discharge pipe 5 together with the oxidant exhaust gas. It is diluted with water and can always maintain a clean state.
[0018]
Conversely, when the power level is small and the amount of generated water is small and the water level of the recovery vessel 1 cannot be maintained due to loss of recovery of condensed water in the oxidizing exhaust gas, the liquid level detection means 11 installed in the recovery vessel 1 Upon receiving the signal, the liquid supply means 7 for replenishing the purified water is opened and closed. With this structure, the inside of the recovery container 1 is diluted with clean water, so that the electrolyte membrane of the fuel cell 1 is not adversely affected, and current leakage from the fuel cell 6 due to an increase in the ion concentration of water in the recovery container 1 is performed. There is also the effect of avoiding. Furthermore, the use of the container also has the effect of reducing the number of the liquid level detecting means 11 and the number of the purified water replenishing means.
[0019]
According to the second aspect of the present invention, when an oxidizing gas is obtained as shown in FIG. 1, when the oxidizing gas 2 is introduced into the water in the collection container 1, a saturated gas of the present liquid at an ambient temperature is obtained. This is introduced into the fuel cell 6 as the humidified oxidant gas 3. At this time, since the inside of the collection container 1 has a constant static pressure due to the supply of the oxidizing gas 2, the liquid level position in the collection container 1 decreases by the static pressure, and at the same time, the liquid level position of the introduction pipe 4 increases.
[0020]
This relationship is represented by h = (P1−P2) / (ρ · g). When P2 is determined (such as atmospheric pressure), the supply of the oxidizing gas 2 and the downstream fuel cell 6 and the condenser H is determined by the pressure P1 in the collection container 1 determined by a pressure loss such as 9. By arranging the discharge pipe 5 at a position higher by h and at a position lower than the upper surface plate 12 of the collection container 1, wasteful discharge of the liquid level of the introduction pipe 4 caused by the input gas 2 is achieved. Can be prevented.
[0021]
Also, by introducing the gas discharged from the fuel cell 6 through the introduction pipe 4 through the condenser 9, water can be collected in the collection container 1 and reused. , The liquid level is always kept constant. Further, the entire amount of the gas can be introduced into the fuel cell 6 after humidification without structurally discharging the gas from the discharge pipe 5.
[0022]
Needless to say, as shown in FIG. 2, the oxidizing gas supply means 13 should be located above the water surface position in order to prevent the inflow of water when stopped.
[0023]
The reducing agent gas exhibits the same effect as the second invention of the present application. In the steam reforming of hydrocarbons, water is usually supplied in an excessive composition for the purpose of preventing coking, and reforming is performed. As a result, since the generated reducing agent gas contains a very large amount of unreacted water, the temperature of the reformed gas is lowered since it needs to be supplied to the fuel cell 6 in an appropriate water-containing state. The condensed water collected in 9 is discharged from the discharge pipe 5 without discharging the reducing agent gas.
[0024]
As shown in FIG. 3, in the third invention of this application, the condensing container 14 in the reducing agent gas (H2 containing gas) is placed in the collecting container 1 and one end is taken out from below the water level position of the condensing container 14. The other end of the pipe 15 is located above the water level position of the condensing container 14 and below the top plate 16 of the condensing container 14 above the liquid level position of the reforming fuel water container 17 having the reforming fuel water. It has an open structure.
[0025]
The discharge pipe 5 in the middle of the introduction pipe 4 from the recovery container 1 is also connected to a position above the liquid level of the fuel water container 17 for reforming and below the top plate 12 of the recovery container 1.
[0026]
With this structure, the effect of the third invention of the present application is exhibited, and the condensing container 14 for the reducing agent gas is located in the collecting container 1, and the heat recovery and the temperature detecting means 8 in the fuel cell 1 by the cooling pump 10 are performed. The fuel cell 1, the humidifying temperature of the oxidizing gas and the condensing temperature of the reducing agent gas are relatively close to each other by the liquid sending means 7 which operates / stops in response to a signal from the controller. As a result, the wet state of the electrolyte of the fuel cell 6 is improved, so that stable operation of the fuel cell 6 can be realized.
[0027]
Further, when the liquid level in the reforming fuel water container 17 drops, the liquid sending means 7 provided in the recovery container 1 is opened by a signal from the liquid level detecting means 11 arranged in the reforming fuel water container 17. Replenish the purified water. As a result, the liquid level in the recovery vessel 1 rises, and the water level in the introduction pipe 4, including the static pressure component by the oxidizing gas supply means 13, rises in the discharge pipe 5 where the reforming fuel water vessel 17 is connected. When it reaches the height, it flows into the water container 17 for reformed fuel. When the liquid level in the reforming fuel water container 17 becomes a sufficient amount, the liquid sending means 7 for replenishing purified water is closed by a signal from the liquid level detecting means 11.
Thereby, it is possible to keep the water in the collection container 1 always in a clean state.
[0028]
FIG. 4 shows a state in which the discharge pipe 5 in the middle of the introduction pipe 4 from the recovery vessel 1 is positioned above the liquid level position of the reforming fuel water vessel 17 and below the upper surface plate 12 of the recovery vessel 1 as shown in FIG. This is the structure connected to the position.
[0029]
With this structure, while retaining the effects of the first and second aspects of the present invention, the surplus water from the recovery container 1 can be reused as the reforming fuel water via the supply pump 18 and the reforming fuel water can be reused. Does not flow back from the reforming fuel water container 17 to the recovery container 1 and does not contaminate the recovery container 1.
[0030]
Further, when the liquid level in the reforming fuel water container 17 drops, the liquid sending means 7 provided in the recovery container 1 is opened by a signal from the liquid level detecting means 11 arranged in the reforming fuel water container 17. Replenish the purified water. As a result, the liquid level in the recovery vessel 1 rises, and the water level in the introduction pipe 4, including the static pressure component by the oxidizing gas supply means 13, rises in the discharge pipe 5 where the reforming fuel water vessel 17 is connected. When it reaches the height, it flows into the water container 17 for reformed fuel. When the liquid level in the reforming fuel water container 17 becomes a sufficient amount, the liquid sending means 7 for replenishing purified water is closed by a signal from the liquid level detecting means 11.
This makes it possible to always keep the water in the collection container 1 clean as described above.
[0031]
Also, the oxidant exhaust gas from the fuel cell 1 condenses water through the condenser 9 and is collected in the collection container 1 by the introduction pipe 4, while the excess water and the oxidant gas exhaust gas are sent to the reforming fuel water container 17. Inflow, water is reused for reforming, and oxidant gas exhaust is discharged from the oxidant gas exhaust point and excess water from the overflow port 19.
[0032]
Although the oxidizing gas exhaust gas always flows into the reforming fuel water container 17, the reducing agent gas does not flow into the reforming fuel water container 17 due to its structure. Both the condensed water derived from the oxidizing gas and the condensed water derived from the reducing agent gas can be reused for reforming without causing an explosive atmosphere.
[0033]
A heat exchanger 20 is provided at an inner bottom portion of the collection container 1, and exchanges heat with high-temperature water in the collection container 1 to send heat to a heat use unit 23 through a circulation path 22 provided with a circulation pump 21. Here, various types of heat are used to improve the efficiency.
[0034]
【The invention's effect】
As described above, according to the present invention, it is possible to collect and reuse the condensed water derived from the oxidant consumption gas discharged from the fuel cell and the condensed water derived from the reducing gas without waste in the structure of the system. In addition, the inside of the fuel cell can be kept clean, and the system can be simplified and the cost can be reduced.
[Brief description of the drawings]
FIG. 1 is a basic configuration diagram of the present invention.
FIG. 2 is a configuration diagram of a fuel cell system showing one embodiment of the present invention.
FIG. 3 is a configuration diagram showing another embodiment of the present invention.
FIG. 4 is a configuration diagram showing still another embodiment of the present invention.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 collection container 4 introduction pipe 5 discharge pipe 6 fuel cell 8 liquid level detecting means 12, 16 top plate 14 condensing vessel 15 communication pipe 17 fuel reforming water vessel

Claims (5)

燃料電池の熱回収用熱媒用容器、及び酸化剤ガス用加湿器を兼用し、前記燃料電池で生成した純水を含む該燃料電池より排出された水を貯留する回収容器で、
前記回収容器に貯留した水を燃料電池熱回収用熱媒、酸化剤ガス用加湿水、の用途に再利用する事を特徴とする燃料電池システム。
A heat recovery heat medium container for the fuel cell, and a humidifier for the oxidizing gas, which also serves as a recovery container for storing water discharged from the fuel cell, including pure water generated by the fuel cell,
A fuel cell system wherein the water stored in the recovery container is reused for a heat medium for fuel cell heat recovery and humidifying water for oxidizing gas.
前記回収容器の下部には燃料電池からの水を該回収容器に供給する導入管を連結し、更にこの導入管途中で前記回収容器に供給される酸化剤ガスの静圧分だけ液位位置より上方で、且つ回収容器の上面板より下方の位置には排出管を設けた事を特徴とする請求項1記載の燃料電池システム。An inlet pipe for supplying water from the fuel cell to the recovery vessel is connected to the lower part of the recovery vessel, and furthermore, the middle of the introduction pipe is a static pressure of the oxidizing gas supplied to the recovery vessel from the liquid level. 2. The fuel cell system according to claim 1, wherein a discharge pipe is provided at a position above and below a top plate of the collection container. 前記回収容器内に、還元剤ガス中の水を凝縮する為の凝縮容器を設け、この凝縮容器の下部には還元剤ガスの供給管を連結すると共に、連絡管の一端を連結しその他端を還元剤ガスの静圧分だけ液位位置より上方で、且つ凝縮容器の上面板位置より下方に開口させた事を特徴とする請求項1及び2記載の燃料電池システムの構造。In the recovery container, a condensing container for condensing water in the reducing agent gas is provided.A lower pipe of the condensing container is connected to a supply pipe of the reducing agent gas, and one end of a connecting pipe is connected to the other end. 3. The structure of the fuel cell system according to claim 1, wherein the fuel cell system is opened above the liquid level by an amount corresponding to the static pressure of the reducing agent gas and below the upper plate of the condensation vessel. 前記連絡管を燃料改質用水容器の水位位置より上に連結させ、凝縮余剰水を燃料改質用水として再利用する事を特徴とする請求項3記載の燃料電池システム。4. The fuel cell system according to claim 3, wherein the connecting pipe is connected above a water level position of the fuel reforming water container, and condensed surplus water is reused as fuel reforming water. 前記燃料改質用水容器には、前記導入管途中の排出管が水位位置より上に連結すると共に、液位検知手段を備え、該水位検知手段で回収容器への純水の供給を制御する事を特徴とする請求項4記載の燃料電池システム。The fuel reforming water container is connected to the discharge pipe in the middle of the introduction pipe above a water level position, and is provided with a liquid level detecting means, and the supply of pure water to the recovery vessel is controlled by the water level detecting means. The fuel cell system according to claim 4, wherein:
JP2002337513A 2002-11-21 2002-11-21 Fuel cell system Pending JP2004171974A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002337513A JP2004171974A (en) 2002-11-21 2002-11-21 Fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002337513A JP2004171974A (en) 2002-11-21 2002-11-21 Fuel cell system

Publications (1)

Publication Number Publication Date
JP2004171974A true JP2004171974A (en) 2004-06-17

Family

ID=32701008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002337513A Pending JP2004171974A (en) 2002-11-21 2002-11-21 Fuel cell system

Country Status (1)

Country Link
JP (1) JP2004171974A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008027587A (en) * 2006-07-18 2008-02-07 Fuji Electric Holdings Co Ltd Fuel cell power generator
JP2008521185A (en) * 2004-11-19 2008-06-19 ヌベラ・フュエル・セルズ・ヨーロッパ・ソチエタ・ア・レスポンサビリタ・リミタータ Power generation system including a membrane fuel cell supplied with dry gas
JP2008300058A (en) * 2007-05-29 2008-12-11 Kyocera Corp Fuel cell device
KR101054658B1 (en) 2005-02-17 2011-08-08 현대자동차주식회사 Fuel cell with water heater
JP2016157598A (en) * 2015-02-25 2016-09-01 株式会社Ihi Fuel cell power generation device and method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008521185A (en) * 2004-11-19 2008-06-19 ヌベラ・フュエル・セルズ・ヨーロッパ・ソチエタ・ア・レスポンサビリタ・リミタータ Power generation system including a membrane fuel cell supplied with dry gas
US8551666B2 (en) 2004-11-19 2013-10-08 Nuvera Fuel Cells Europe S.R.L. Electrical generation system comprising membrane fuel cells fed with dry gases
KR101054658B1 (en) 2005-02-17 2011-08-08 현대자동차주식회사 Fuel cell with water heater
JP2008027587A (en) * 2006-07-18 2008-02-07 Fuji Electric Holdings Co Ltd Fuel cell power generator
JP2008300058A (en) * 2007-05-29 2008-12-11 Kyocera Corp Fuel cell device
JP2016157598A (en) * 2015-02-25 2016-09-01 株式会社Ihi Fuel cell power generation device and method

Similar Documents

Publication Publication Date Title
JP3722019B2 (en) Fuel cell system
JP4334578B2 (en) Fuel cell system
JP2004178818A (en) Fuel cell system
RU2332753C2 (en) Thermoregulation in electrochemical fuel elements
JP4295847B2 (en) Polymer electrolyte fuel cell system
JP2000090954A (en) Fuel cell stack
WO2001071837A1 (en) Solid polymer fuel cell
CN113039153A (en) Hydrogen system
JP2007141524A (en) Gas liquid separator and fuel cell power generation system provided with gas liquid separator
JP3477926B2 (en) Solid polymer electrolyte fuel cell
JP2007157508A (en) Gas liquid separator and fuel cell power generation system with gas liquid separator
JP2006093157A (en) Solid polymer fuel cell system
JP2009064619A (en) Fuel cell system
JP2000260455A (en) Deterioration restoring process for fuel cell
JP2004171974A (en) Fuel cell system
KR20030073679A (en) Cooling water recycling system for fuel cell
JP3705182B2 (en) Water circulation device
JP4665353B2 (en) Solid polymer electrolyte fuel cell power generator and its operation method
JPH11162489A (en) Fuel cell device and operating method for fuel cell device
US7514165B2 (en) Fuel cell system fluid recovery
JP4694203B2 (en) Power supply having a fuel cell that does not release substances to the outside and a method for controlling such a power supply
KR100464051B1 (en) Fuel cell system
JP3685136B2 (en) Polymer electrolyte fuel cell
JP3871182B2 (en) Fuel cell humidifier
JP2000357530A (en) Fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070522

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071016