JP3685136B2 - Polymer electrolyte fuel cell - Google Patents

Polymer electrolyte fuel cell Download PDF

Info

Publication number
JP3685136B2
JP3685136B2 JP2002028613A JP2002028613A JP3685136B2 JP 3685136 B2 JP3685136 B2 JP 3685136B2 JP 2002028613 A JP2002028613 A JP 2002028613A JP 2002028613 A JP2002028613 A JP 2002028613A JP 3685136 B2 JP3685136 B2 JP 3685136B2
Authority
JP
Japan
Prior art keywords
fuel cell
hydrogen peroxide
oxygen
generator
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002028613A
Other languages
Japanese (ja)
Other versions
JP2003229165A (en
Inventor
克徳 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2002028613A priority Critical patent/JP3685136B2/en
Publication of JP2003229165A publication Critical patent/JP2003229165A/en
Application granted granted Critical
Publication of JP3685136B2 publication Critical patent/JP3685136B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【0001】
【発明の属する技術分野】
本発明は固体高分子型燃料電池、特に、酸素利用率を高めたことを特徴とする固体高分子型燃料電池に関する。
【0002】
【従来の技術】
近年の環境問題、特に自動車の排気ガスによる大気汚染や二酸化炭素による地球温暖化の問題に対して、クリーンな排気および高いエネルギー変換効率を可能とする燃料電池技術が注目されている。燃料電池は、その燃料となる水素あるいは水素リッチな改質ガス、および空気を供給することにより電気化学反応を起こし、化学エネルギーを直接電気エネルギーに変換するエネルギー変換システムである。その中でも特に高い出力密度を有する固体高分子電解質型燃料電池が自動車用移動体電源あるいは、家庭用定置電源として注目されている。
【0003】
固体高分子型燃料電池では、生成水または加湿水の凝縮によりガス流路内で水詰まりがおこり、よってガス供給不足による電池性能低下の問題が知られている。これを防止する手段として、取り出す負荷電流に対してファラデーの法則から算出される必要反応ガス流量よりも大きなガス流量を燃料電池に供給することが一般的に行われている。
【0004】
【発明が解決しようとする課題】
しかしながら空気流量の増加は、燃料電池へ空気を供給する空気送風機あるいは空気圧縮機において余分な電力消費をもたらすため、燃料電池システムの効率が下がるという問題点があった。
【0005】
上記従来の問題点に鑑み、本発明の目的は、高い酸素利用率で運転することにより空気送風機又は空気圧縮機の消費電力を低減することができる固体高分子型燃料電池を提供することである。
【0006】
【課題を解決するための手段】
上記目的を達成するために、請求項1記載の発明は、燃料電池本体の排水素および排空気を利用して過酸化水素を合成し、該過酸化水素を分解して得られる酸素を前記燃料電池本体の空気供給系に戻すことを要旨とする固体高分子型燃料電池である。
【0007】
上記目的を達成するために、請求項2記載の発明は、燃料電池本体の排水素および排空気から過酸化水素を合成する過酸化水素発生器と、該過酸化水素発生器が合成した過酸化水素を分解して酸素を生成する酸素発生器と、該酸素発生器が発生した酸素を燃料電池本体の空気供給系へ循環させる空気循環手段と、を備えたことを要旨とする固体高分子型燃料電池である。
【0008】
上記目的を達成するために、請求項3記載の発明は、請求項2記載の固体高分子型燃料電池において、前記過酸化水素発生器は、プロトン導電性液体電解質を容れる電解質槽および一対の過酸化水素合成用電極触媒を備えた燃料電池型過酸化水素発生器であり、該燃料電池型過酸化水素発生器が合成した過酸化水素は、前記液体電解質中に溶解し、前記酸素発生器の容器が保持する液体電解質中に拡散移動することを要旨とする。
【0009】
上記目的を達成するために、請求項4記載の発明は、請求項3記載の固体高分子型燃料電池において、前記酸素発生器中に設けられた過酸化水素分解触媒により過酸化水素を酸素と水に分解して酸素発生器中の酸素分圧およびガス全圧を上昇せしめ、前記空気循環手段に設けられた所定の圧力差で開閉する逆止弁または制御弁を通じて発生酸素を燃料電池の空気供給系に戻すことを要旨とする。
【0010】
上記目的を達成するために、請求項5記載の発明は、請求項3記載の固体高分子型燃料電池において、前記過酸化水素発生器は、前記過酸化水素合成用電極触媒と前記プロトン導電性液体電解質との界面にプロトン導電性固体高分子膜を設けることにより、前記プロトン導電性液体電解質の圧力上昇による電解質の排ガスラインへの漏れを防止することを要旨とする。
【0011】
上記目的を達成するために、請求項6記載の発明は、請求項3記載の固体高分子型燃料電池において、前記燃料電池型過酸化水素発生器における一対の過酸化水素合成用電極触媒間を短絡して得られる電力を使用して、前記酸素発生器中の電解質水溶液を加熱して水蒸気分圧を高め、燃料電池の空気加湿の要求に応じて、酸素とともに水蒸気を空気供給系に戻すことを要旨とする。
【0012】
〔作用〕
上記構成の請求項1または請求項2によれば、燃料電池本体の排水素および排空気から過酸化水素を合成し、該過酸化水素を分解して得られる酸素を燃料電池本体の空気供給系に戻し、よって酸素利用率を高めることができるが、以下にその作用につき説明する。
【0013】
水素および空気を燃料電池型反応装置に導入して過酸化水素を合成することは特開2001−236968号公報に開示されている。
【0014】
この反応装置は、水素が導入されるアノード室、空気(酸素)が導入されるカソード室、および硫酸等のプロトン導電性電解質溶液を存在させた中間室を備えている。アノード室と電解質との界面に設けられたアノード電極の白金または金触媒上で水素分子からプロトンと電子が生成する。プロトンは電解質溶液中をカソード極へ移動し、カソード室と電解質との界面に設けたカソード電極触媒の金あるいはカーボン上で酸素および電子と結合し、過酸化水素(H22)が生成される。
【0015】
この過酸化水素は中間室の電解質溶液中に溶解し蓄積されていく。同時に両電極間を中間室の外部で負荷等を接続して電流を流すことで、過酸化水素の生成量を増加させることができる。また、電解質溶液としては前記硫酸等の酸性溶液の他に、中性、アルカリ性の電解質溶液も用いられる。
【0016】
本発明では燃料電池本体からの排ガスを、上記と同等の燃料電池型過酸化水素発生器に導入して過酸化水素を生成せしめる。
【0017】
かかる過酸化水素から酸素を取り出すために、その容器の一部が液体電解質により満たされ、電解質溶液を満たしたテフロン配管等により過酸化水素発生装置の中間室(電解質槽)と接続されている酸素発生用容器を設ける構成としてある。生成した過酸化水素は電解質溶液中に蓄積するが、その濃度勾配に従って、酸素発生器内の電解質溶液中に拡散移動していく(請求項3)。
【0018】
酸素発生器内の電解質溶液中には過酸化水素分解用触媒として、例えばカーボンあるいは金あるいは白金、パラジウム等から構成される触媒板を複数設けてあり、過酸化水素がこの触媒上で酸素と水に分解し、酸素は酸素発生器中の気相中に放出され、その酸素分圧および全ガス圧力が増加する。酸素発生器中のガス圧力が、燃料電池の空気入口圧力以上になった場合、所定の圧力差で開閉する逆止弁または制御弁を通じて発生酸素を燃料電池本体の空気供給系に戻し、よって酸素利用率を高めることができる(請求項4)。
【0019】
燃料電池空気供給系からの空気が、酸素発生器へ逆流しないように逆止弁のみ使用する場合は、簡便に低コストで酸素発生器において生成した空気を燃料電池空気供給系に戻すことができる。開閉圧力は所望の値のものを用いることができるが、生成酸素を速やかに燃料電池空気供給系に戻すためには、その開閉圧力はなるべく小さいことが好ましい。
【0020】
また制御弁を用いて空気を戻す場合は、酸素発生器のガス圧力P1と空気供給系のガス圧力P2をモニターして、その圧力差が常にP1>P2となるように制御弁を開閉することにより、酸素発生器において生成した空気を燃料電池本体の空気供給系に戻すことができる。制御弁を使用する場合は、燃料電池の運転状態に応じて、酸素発生器側の空気を燃料電池本体の空気供給系に戻すことが可能になるメリットがある。たとえば、水詰まり等で燃料電池性能が低下した場合などは、発生酸素をなるべく高い圧力になるまで保持し、速やかに制御弁を開閉することにより、水詰まりを解消できる。
【0021】
本発明の特徴の一つは、上記の過酸化水素発生器と酸素発生器とを組み合わせたことにより、酸素濃縮を行えることにある。通常、空気から酸素濃度の高い空気を取り出すためには圧力スイング吸着法(PSA:Pressure Swing Adsorption )が行われているが、酸素濃縮を行う場合、高圧力を発生させるためのポンプ等の駆動力が必要になり、実質的には燃料電池システム効率を増加させる効果がない。
【0022】
一方、本発明においては、燃料電池本体の排水素と排空気とを燃料電池型反応器で電気化学反応させて過酸化水素を生成し、この過酸化水素を触媒により分解せしめるのみなので、電力消費をする補機が必要でないばかりでなく、過酸化水素発生時においてはむしろ電力を得ることができるという、優れたメリットがある。酸素発生器内で生じた酸素の一部は電解質溶液に溶解するものの、酸素発生器から燃料電池本体の空気供給系に常に酸素をもどすために酸素溶解平衡をずらすことが可能であり、酸素の過酸化水素発生器への逆流を防ぐことが可能である。
【0023】
以上の酸素濃縮効果ゆえに、供給空気中の酸素濃度より高い濃度の酸素を得ることができるので、通常の水素・空気燃料電池では行うことができない空気循環を行うことが可能になり、酸素利用率を高めることができる。
【0024】
ところで、酸素発生器中の酸素ガス分圧および全ガス圧力が増加するにつれ、酸素発生器中および過酸化水素発生器中の電解質溶液圧力も増加するため、過酸化水素発生容器におけるアノード多孔質電極およびアノード多孔質電極の電解質溶液側からガス供給側へ圧力差が生じ、電解質溶液がガス供給室に逆流する恐れがでてくる。この電解質溶液の逆流を防止するために、請求項5に示したように電解質溶液と電極界面にプロトン導電性固体高分子電解質膜を設けることができる。
【0025】
また、請求項6の発明によれば、燃料電池型過酸化水素発生器における一対の過酸化水素合成用電極触媒間を短絡して得られる電力を使用して液体プロトン電解質水溶液を加熱して水蒸気分圧を高め、燃料電池の空気加湿の要求に応じて、酸素とともに水蒸気を空気供給系に戻すことができる。
【0026】
具体的には、酸素発生器周囲又は内部に抵抗発熱体を設け、この抵抗発熱体とは別に外部負荷を設け、過酸化水素発生器の発電電力を抵抗発熱体または外部負荷に切り替え可能に供給する切替手段を設ける。
【0027】
そして、酸素発生器が所望の温度以下の場合は、抵抗発熱体に通電して酸素発生器を加熱し、所望の温度以上であれば、外部負荷で電力を消費すればよい。温度の設定は燃料電池のセル電圧の経時変化やあるいは内部抵抗測定により、燃料電池高分子膜の乾燥状態を判断し、必要な加湿量に相当する露点温度を目標値として、温度設定を行うことができる。
【0028】
なお、請求項6において、酸素発生器中の水分を系外に除去することにより、過酸化水素分解時に発生した水により低下した電解質溶液濃度を回復させる効果がある。従って、電解質溶液の交換あるいは補充までの時間を延長させることができる。
【0029】
【発明の効果】
請求項1または請求項2記載の発明によれば、固体高分子型燃料電池における排水素および排空気を利用して過酸化水素を合成し、この過酸化水素を分解して得られる酸素を燃料電池の空気供給系に戻すことにより酸素利用率を高めることができるため、高効率の固体高分子型燃料電池を得ることができるという効果がある。
【0030】
請求項3記載の発明によれば、燃料電池型過酸化水素発生器で過酸化水素を発生させると共に、発生した過酸化水素が液体電解質中を拡散移動により酸素発生器へ移動するため、エネルギーを使用することなく過酸化水素を発生させ、且つ発生した過酸化水素を酸素発生器へ移動させることができるという効果がある。
【0031】
請求項4記載の発明によれば、酸素発生器中で触媒により過酸化水素を分解して酸素分圧およびガス全圧を上昇せしめ、この圧力を利用して燃料電池の空気供給系に酸素濃度の高い空気を供給することが出来るので、発生した酸素を空気供給系に戻すためにエネルギーを不要とすることができるという効果がある。
【0032】
請求項5記載の発明によれば、プロトン導電性液体電解質の圧力上昇による電解質の排ガスラインへの漏れを防止し取り扱いを容易にすることができるという効果がある。
【0033】
請求項6記載の発明によれば、外部からエネルギーを供給することなく、酸素発生器中の電解質水溶液を加熱して水蒸気分圧を高め、燃料電池の空気加湿の要求に応じて、酸素とともに水蒸気を空気供給系に戻すことができるという効果がある。
【0034】
【発明の実施の形態】
次に、図面を参照して本発明の実施の形態を詳細に説明する。
〔第1実施形態〕
図1は、本発明に係る固体高分子型燃料電池の第1実施形態を説明する構成図である。
【0035】
固体高分子型の燃料電池スタック3には、図外の空気圧縮機から空気供給ライン1を介して空気、図外の水素供給装置から水素供給ライン2を介して水素がそれぞれ供給される。燃料電池スタック3のガス出口部に設けた背圧制御弁4および5により、それぞれ空気および水素の運転圧力が調整されている。背圧制御弁4および5を通過した排気ガスは、過酸化水素発生器6のカソード室11に空気の排気ガスが、アノード室7に水素の排気ガスが供給される。
【0036】
過酸化水素発生器6は、特開2001−236968号公報等に記載された所謂燃料電池型反応装置である。過酸化水素発生器6は、排水素が供給されるアノード室7と、排空気が供給されるカソード室11と、プロトン導電性液体電解質として硫酸溶液が満たされた電解質槽9と備えている。
【0037】
アノード室7と電解質槽9とは、プロトン導電性固体高分子膜に白金または金を含むアノード触媒を被着したガス拡散電極8により分画されている。カソード室11と電解質槽9とは、プロトン導電性固体高分子膜に金を含むカソード触媒を被着したガス拡散電極10により分画されている。
【0038】
ガス拡散電極8においては、水素分子からプロトンおよび電子が生成し、プロトンは硫酸電解質溶液を満たした電解質槽9を移動してガス拡散電極10の金触媒上に到達し、電子は外部負荷12を通過したのちガス拡散電極10において、酸素とプロトンとの還元反応により過酸化水素を生成する。
【0039】
過酸化水素発生器6の電解質槽9に接続するように硫酸電解質溶液を満たした配管18を設けてあり、酸素発生器13中に存在する硫酸電解質溶液14と電解質槽9内の硫酸電解質溶液とを連絡している。酸素発生器13には硫酸電解質溶液14と接触するように過酸化水素分解触媒である金板15を設けてある。過酸化水素分解触媒としては、本実施形態で用いた金以外に、カーボン、白金も利用可能である。
【0040】
電解質槽9で生成された過酸化水素は徐々にその濃度が増加するため、酸素発生器13の硫酸電解質溶液14に向かって拡散移動していく。酸素発生器13中で金板15の表面に到達した過酸化水素は、酸素と水に分解し、発生酸素により酸素発生器13の容器内のガス圧力は増加していく。
【0041】
酸素発生器13から空気供給ライン1に空気循環配管16を設け、空気循環配管16の途中には開閉圧力が1〔psi〕の逆止弁17を設けてある。酸素発生器13内圧力と空気供給ライン1の空気供給圧力との差が、逆止弁17の開閉圧力以上になった場合に、逆止弁17が開き酸素発生器13中の酸素分圧の高まった空気を空気供給ライン1に戻すことができる。以上から酸素利用率を高めることができるため、高効率の固体高分子型燃料電池を得ることができる。
【0042】
第1実施形態で示した燃料電池と、第1実施形態から過酸化水素発生器と酸素発生器と空気循環系を除いた以外は同じ構成とした比較対照の燃料電池とを、それぞれ大気圧下、セル加湿温度70℃、水素ガス利用率70%、空気ガス利用率67%の条件で運転して、燃料電池セル性能を比較したところ、本実施形態の燃料電池は、比較対照より、電流密度1〔A/cm2〕でのセル電圧が約4%向上した。
【0043】
〔第2実施形態〕
図2は、本発明に係る固体高分子型燃料電池の第2実施形態を説明する構成図である。
固体高分子型の燃料電池スタック3には、図外の空気圧縮機から空気供給ライン1を介して空気、図外の水素供給装置から水素供給ライン2を介して水素がそれぞれ供給される。燃料電池スタック3のガス出口部に設けた背圧制御弁4および5により、それぞれ空気および水素の運転圧力が調整されている。背圧制御弁4および5を通過した排気ガスは、過酸化水素発生器6のカソード室11に空気の排気ガスが、アノード室7に水素の排気ガスが供給される。
【0044】
過酸化水素発生器6は、特開2001−236968号公報等に記載された所謂燃料電池型反応装置である。過酸化水素発生器6は、排水素が供給されるアノード室7と、排空気が供給されるカソード室11と、プロトン導電性液体電解質として硫酸溶液が満たされた電解質槽9と備えている。
【0045】
アノード室7と電解質槽9とは、プロトン導電性固体高分子膜に白金または金を含むアノード触媒を被着したガス拡散電極8により分画されている。カソード室11と電解質槽9とは、プロトン導電性固体高分子膜に金を含むカソード触媒を被着したガス拡散電極10により分画されている。
【0046】
ガス拡散電極8においては、水素分子からプロトンおよび電子が生成し、プロトンは硫酸電解質溶液を満たした電解質槽9を移動してガス拡散電極10の金触媒上に到達し、電子は外部負荷12又はヒータ23を通過したのちガス拡散電極10において、酸素とプロトンとの還元反応により過酸化水素を生成する。
【0047】
過酸化水素発生器6の電解質槽9に接続するように硫酸電解質溶液を満たした配管18を設けてあり、酸素発生器13中に存在する硫酸電解質溶液14と電解質槽9内の硫酸電解質溶液とを連絡している。酸素発生器13には硫酸電解質溶液14と接触するように過酸化水素分解触媒である金板15を設けてある。
【0048】
電解質槽9で生成された過酸化水素は徐々にその濃度が増加するため、酸素発生器13の硫酸電解質溶液14に向かって拡散移動していく。酸素発生器13中で金板15の表面に到達した過酸化水素は、酸素と水に分解し、発生酸素により酸素発生器13の容器内のガス圧力は増加していく。
【0049】
酸素発生器13と空気供給ライン1の間には空気循環配管16を設け、空気循環配管16の途中には制御弁17を設けてある。また、酸素発生器13内の圧力を測定するため圧力計19を、また、空気供給ライン1の圧力を測定するために圧力計20を設けてある。
【0050】
制御部21には、圧力計19、20、及び燃料電池スタック3のセル電圧を検出するセル電圧モニタ22が入力信号として接続されている。これらの入力信号に基づいて、制御部21は、制御弁17の開閉信号、SW24の切り替え信号を出力する。
【0051】
SW24は、過酸化水素発生器6が発電した電力を外部負荷12を介して消費するか、ヒータ23を介して消費するかを切り替える。ヒータ23は、酸素発生器13の周囲又は内部に配置され、酸素発生器13又はその内部の硫酸電解質溶液14を加熱するようになっている。
【0052】
制御部21は、圧力計19の圧力が常に圧力計20より高くなる範囲で制御弁17を開閉することにより、酸素発生器13中の酸素分圧の高まった空気を空気供給ライン1に戻すことができる。
【0053】
また、制御部21は、セル電圧モニタ22が検出したセル電圧により、経時変化から燃料電池スタック3内の高分子膜が乾燥状態であると判断した場合には、SW24を外部負荷12からヒータ23へ切り替える。これにより、ヒータ23が酸素発生器13又は硫酸電解質溶液14を加熱して、酸素発生器13内の水蒸気分圧以上を増加せしめ、酸素発生器13で発生している酸素とともに所望の温度に温調した水蒸気を空気供給ライン1へ供給する。
【0054】
以上説明したように本実施形態によれば、酸素利用率を高めるとともに、過酸化水素発生器で発生する電力を無駄に使用することなく、燃料電池の水蒸気加湿にも利用して、高効率の固体高分子型燃料電池を得ることができる。
【図面の簡単な説明】
【図1】図1は、本発明に係る固体高分子型燃料電池の第1実施形態の構成図である。
【図2】図2は、本発明に係る固体高分子型燃料電池の第2実施形態の構成図である。
【符号の説明】
1…空気供給ライン
2…水素供給ライン
3…燃料電池スタック
4…背圧制御弁
5…背圧制御弁
6…過酸化水素発生器
7…アノード室
8…ガス拡散電極
9…電解質槽
10…ガス拡散電極
11…カソード室
12…外部負荷
13…酸素発生器
14…硫酸電解質溶液
15…金板
16…空気循環配管
17…逆止弁
18…配管
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a polymer electrolyte fuel cell, and more particularly to a polymer electrolyte fuel cell characterized by an increased oxygen utilization rate.
[0002]
[Prior art]
In recent years, fuel cell technology that enables clean exhaust and high energy conversion efficiency has attracted attention against environmental problems in recent years, particularly air pollution caused by automobile exhaust gas and global warming caused by carbon dioxide. A fuel cell is an energy conversion system that causes an electrochemical reaction by supplying hydrogen or a hydrogen-rich reformed gas and air as fuel and directly converts chemical energy into electrical energy. Among them, a solid polymer electrolyte fuel cell having a particularly high output density has attracted attention as a mobile power source for automobiles or a stationary power source for home use.
[0003]
In the polymer electrolyte fuel cell, water clogging occurs in the gas flow path due to condensation of generated water or humidified water, and thus there is a known problem of cell performance degradation due to insufficient gas supply. As a means for preventing this, it is generally performed to supply the fuel cell with a gas flow rate larger than the necessary reaction gas flow rate calculated from Faraday's law for the load current to be extracted.
[0004]
[Problems to be solved by the invention]
However, the increase in the air flow rate causes extra power consumption in an air blower or an air compressor that supplies air to the fuel cell, which causes a problem in that the efficiency of the fuel cell system is reduced.
[0005]
In view of the above conventional problems, an object of the present invention is to provide a polymer electrolyte fuel cell capable of reducing the power consumption of an air blower or an air compressor by operating at a high oxygen utilization rate. .
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the invention according to claim 1 synthesizes hydrogen peroxide using exhaust hydrogen and exhaust air of a fuel cell main body, and decomposes the hydrogen peroxide to obtain oxygen obtained from the fuel. It is a polymer electrolyte fuel cell whose gist is to return to the air supply system of the battery body.
[0007]
In order to achieve the above object, a second aspect of the present invention provides a hydrogen peroxide generator that synthesizes hydrogen peroxide from exhaust hydrogen and exhaust air of a fuel cell body, and a peroxidation synthesized by the hydrogen peroxide generator. A solid polymer type comprising: an oxygen generator that decomposes hydrogen to generate oxygen; and an air circulation means that circulates oxygen generated by the oxygen generator to an air supply system of a fuel cell main body. It is a fuel cell.
[0008]
In order to achieve the above object, according to a third aspect of the present invention, in the polymer electrolyte fuel cell according to the second aspect, the hydrogen peroxide generator includes an electrolyte tank containing a proton conductive liquid electrolyte and a pair of excess electrolytes. A fuel cell type hydrogen peroxide generator comprising an electrode catalyst for synthesizing hydrogen oxide, and the hydrogen peroxide synthesized by the fuel cell type hydrogen peroxide generator is dissolved in the liquid electrolyte, and the oxygen generator The gist is to diffuse and move into the liquid electrolyte held by the container.
[0009]
In order to achieve the above object, according to a fourth aspect of the present invention, in the polymer electrolyte fuel cell according to the third aspect, the hydrogen peroxide is converted into oxygen by a hydrogen peroxide decomposition catalyst provided in the oxygen generator. It decomposes into water to increase the oxygen partial pressure and total gas pressure in the oxygen generator, and the generated oxygen is supplied to the air of the fuel cell through a check valve or a control valve that opens and closes at a predetermined pressure difference provided in the air circulation means. The gist is to return to the supply system.
[0010]
In order to achieve the above object, according to a fifth aspect of the present invention, in the polymer electrolyte fuel cell according to the third aspect, the hydrogen peroxide generator includes the electrode catalyst for synthesizing hydrogen peroxide and the proton conductivity. The gist is to prevent leakage of the electrolyte to the exhaust gas line due to an increase in pressure of the proton conductive liquid electrolyte by providing a proton conductive solid polymer membrane at the interface with the liquid electrolyte.
[0011]
In order to achieve the above object, a sixth aspect of the present invention is the polymer electrolyte fuel cell according to the third aspect, wherein a gap between a pair of hydrogen peroxide synthesizing electrode catalysts in the fuel cell type hydrogen peroxide generator is provided. Using electric power obtained by short-circuiting, heating the electrolyte aqueous solution in the oxygen generator to increase the water vapor partial pressure, and returning the water vapor together with oxygen to the air supply system according to the demand for air humidification of the fuel cell Is the gist.
[0012]
[Action]
According to claim 1 or claim 2 of the above-described configuration, hydrogen peroxide is synthesized from exhaust hydrogen and exhaust air of the fuel cell main body, and oxygen obtained by decomposing the hydrogen peroxide is used as an air supply system of the fuel cell main body. Thus, the oxygen utilization rate can be increased, and the operation will be described below.
[0013]
Japanese Patent Laid-Open No. 2001-236968 discloses that hydrogen and air are introduced into a fuel cell reactor to synthesize hydrogen peroxide.
[0014]
This reaction apparatus includes an anode chamber into which hydrogen is introduced, a cathode chamber into which air (oxygen) is introduced, and an intermediate chamber in which a proton conductive electrolyte solution such as sulfuric acid is present. Protons and electrons are generated from hydrogen molecules on the platinum or gold catalyst of the anode electrode provided at the interface between the anode chamber and the electrolyte. Protons move through the electrolyte solution to the cathode electrode and combine with oxygen and electrons on the gold or carbon of the cathode electrode catalyst provided at the interface between the cathode chamber and the electrolyte to produce hydrogen peroxide (H 2 O 2 ). The
[0015]
This hydrogen peroxide is dissolved and accumulated in the electrolyte solution in the intermediate chamber. At the same time, the amount of hydrogen peroxide produced can be increased by connecting a load or the like between the two electrodes outside the intermediate chamber and causing a current to flow. In addition to the acidic solution such as sulfuric acid, neutral and alkaline electrolyte solutions are also used as the electrolyte solution.
[0016]
In the present invention, exhaust gas from the fuel cell main body is introduced into a fuel cell type hydrogen peroxide generator equivalent to the above to generate hydrogen peroxide.
[0017]
In order to extract oxygen from hydrogen peroxide, oxygen is connected to the intermediate chamber (electrolyte tank) of the hydrogen peroxide generator by a Teflon pipe filled with a liquid electrolyte and a part of the container filled with a liquid electrolyte. The generation container is provided. The generated hydrogen peroxide accumulates in the electrolyte solution, but diffuses and moves into the electrolyte solution in the oxygen generator according to the concentration gradient (claim 3).
[0018]
In the electrolyte solution in the oxygen generator, a plurality of catalyst plates made of, for example, carbon, gold, platinum, palladium, or the like are provided as hydrogen peroxide decomposition catalysts. The oxygen is released into the gas phase in the oxygen generator, increasing its oxygen partial pressure and total gas pressure. When the gas pressure in the oxygen generator exceeds the fuel cell air inlet pressure, the generated oxygen is returned to the air supply system of the fuel cell main body through a check valve or control valve that opens and closes at a predetermined pressure difference. The utilization rate can be increased (claim 4).
[0019]
When only the check valve is used so that the air from the fuel cell air supply system does not flow back to the oxygen generator, the air generated in the oxygen generator can be easily returned to the fuel cell air supply system at low cost. . An opening / closing pressure having a desired value can be used, but the opening / closing pressure is preferably as small as possible in order to quickly return the generated oxygen to the fuel cell air supply system.
[0020]
When air is returned using a control valve, the gas pressure P1 of the oxygen generator and the gas pressure P2 of the air supply system are monitored, and the control valve is opened and closed so that the pressure difference is always P1> P2. Thus, the air generated in the oxygen generator can be returned to the air supply system of the fuel cell main body. When the control valve is used, there is an advantage that the air on the oxygen generator side can be returned to the air supply system of the fuel cell main body according to the operating state of the fuel cell. For example, when the fuel cell performance deteriorates due to water clogging or the like, the water clogging can be eliminated by holding the generated oxygen until the pressure becomes as high as possible and quickly opening and closing the control valve.
[0021]
One of the features of the present invention is that oxygen concentration can be performed by combining the hydrogen peroxide generator and the oxygen generator. Normally, pressure swing adsorption (PSA) is used to extract air with high oxygen concentration from air, but when oxygen concentration is performed, driving force such as a pump for generating high pressure is used. Is required, and there is substantially no effect of increasing the efficiency of the fuel cell system.
[0022]
On the other hand, in the present invention, the hydrogen hydrogen and exhaust air of the fuel cell main body are electrochemically reacted in a fuel cell type reactor to generate hydrogen peroxide, and this hydrogen peroxide is only decomposed by the catalyst. There is an advantage that not only an auxiliary machine is not required, but also power can be obtained when hydrogen peroxide is generated. Although some of the oxygen generated in the oxygen generator is dissolved in the electrolyte solution, it is possible to shift the oxygen dissolution equilibrium in order to always return oxygen from the oxygen generator to the air supply system of the fuel cell body. It is possible to prevent backflow to the hydrogen peroxide generator.
[0023]
Oxygen concentration higher than the oxygen concentration in the supply air can be obtained because of the above oxygen concentration effect, so that it is possible to perform air circulation that cannot be performed with a normal hydrogen / air fuel cell, and the oxygen utilization rate Can be increased.
[0024]
By the way, as the oxygen gas partial pressure and total gas pressure in the oxygen generator increase, the electrolyte solution pressure in the oxygen generator and hydrogen peroxide generator also increases. In addition, a pressure difference is generated from the electrolyte solution side of the anode porous electrode to the gas supply side, and the electrolyte solution may flow back into the gas supply chamber. In order to prevent the backflow of the electrolyte solution, a proton conductive solid polymer electrolyte membrane can be provided at the interface between the electrolyte solution and the electrode as shown in claim 5.
[0025]
Further, according to the invention of claim 6, the liquid proton electrolyte aqueous solution is heated by using the electric power obtained by short-circuiting the pair of hydrogen peroxide synthesis electrode catalysts in the fuel cell type hydrogen peroxide generator to The partial pressure can be increased and water vapor can be returned to the air supply system along with oxygen in response to the fuel cell air humidification requirements.
[0026]
Specifically, a resistance heating element is provided around or inside the oxygen generator, an external load is provided separately from the resistance heating element, and the generated power of the hydrogen peroxide generator can be switched to the resistance heating element or the external load. Switching means is provided.
[0027]
When the oxygen generator is below the desired temperature, the resistance heating element is energized to heat the oxygen generator. If the oxygen generator is above the desired temperature, power may be consumed by an external load. The temperature is set by determining the dry state of the polymer membrane of the fuel cell by measuring the cell voltage of the fuel cell over time or measuring the internal resistance, and setting the temperature using the dew point temperature corresponding to the required amount of humidification as the target value. Can do.
[0028]
In addition, in claim 6, by removing the water in the oxygen generator out of the system, there is an effect of recovering the electrolyte solution concentration lowered by the water generated during the decomposition of hydrogen peroxide. Therefore, it is possible to extend the time until replacement or replenishment of the electrolyte solution.
[0029]
【The invention's effect】
According to the first or second aspect of the present invention, hydrogen peroxide is synthesized using exhausted hydrogen and exhausted air in a polymer electrolyte fuel cell, and oxygen obtained by decomposing the hydrogen peroxide is used as fuel. Since the oxygen utilization rate can be increased by returning to the air supply system of the battery, there is an effect that a highly efficient solid polymer fuel cell can be obtained.
[0030]
According to the third aspect of the present invention, hydrogen peroxide is generated by the fuel cell type hydrogen peroxide generator, and the generated hydrogen peroxide moves through the liquid electrolyte to the oxygen generator by diffusion movement. Hydrogen peroxide can be generated without being used, and the generated hydrogen peroxide can be transferred to the oxygen generator.
[0031]
According to the fourth aspect of the present invention, hydrogen peroxide is decomposed by the catalyst in the oxygen generator to increase the oxygen partial pressure and the total gas pressure, and the oxygen concentration is supplied to the air supply system of the fuel cell using this pressure. Therefore, there is an effect that energy can be made unnecessary in order to return the generated oxygen to the air supply system.
[0032]
According to the fifth aspect of the present invention, there is an effect that the electrolyte can be prevented from leaking to the exhaust gas line due to an increase in the pressure of the proton conductive liquid electrolyte and can be handled easily.
[0033]
According to the sixth aspect of the present invention, without supplying energy from the outside, the aqueous electrolyte solution in the oxygen generator is heated to increase the partial pressure of water vapor. Can be returned to the air supply system.
[0034]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described in detail with reference to the drawings.
[First Embodiment]
FIG. 1 is a configuration diagram for explaining a first embodiment of a polymer electrolyte fuel cell according to the present invention.
[0035]
The solid polymer fuel cell stack 3 is supplied with air from an air compressor (not shown) via an air supply line 1 and hydrogen from a hydrogen supply device (not shown) via a hydrogen supply line 2. The operating pressures of air and hydrogen are adjusted by back pressure control valves 4 and 5 provided at the gas outlet of the fuel cell stack 3, respectively. The exhaust gas that has passed through the back pressure control valves 4 and 5 is supplied with air exhaust gas into the cathode chamber 11 of the hydrogen peroxide generator 6 and hydrogen exhaust gas into the anode chamber 7.
[0036]
The hydrogen peroxide generator 6 is a so-called fuel cell type reactor described in Japanese Patent Application Laid-Open No. 2001-236968. The hydrogen peroxide generator 6 includes an anode chamber 7 to which exhaust hydrogen is supplied, a cathode chamber 11 to which exhaust air is supplied, and an electrolyte tank 9 that is filled with a sulfuric acid solution as a proton conductive liquid electrolyte.
[0037]
The anode chamber 7 and the electrolyte tank 9 are divided by a gas diffusion electrode 8 in which an anode catalyst containing platinum or gold is deposited on a proton conductive solid polymer membrane. The cathode chamber 11 and the electrolyte tank 9 are separated by a gas diffusion electrode 10 in which a proton-conducting solid polymer film is coated with a cathode catalyst containing gold.
[0038]
In the gas diffusion electrode 8, protons and electrons are generated from hydrogen molecules, the protons move through the electrolyte tank 9 filled with the sulfuric acid electrolyte solution, reach the gold catalyst of the gas diffusion electrode 10, and the electrons pass through the external load 12. After passing, the gas diffusion electrode 10 generates hydrogen peroxide by the reduction reaction of oxygen and proton.
[0039]
A pipe 18 filled with a sulfuric acid electrolyte solution is provided so as to be connected to the electrolyte tank 9 of the hydrogen peroxide generator 6, and the sulfuric acid electrolyte solution 14 existing in the oxygen generator 13 and the sulfuric acid electrolyte solution in the electrolyte tank 9 Have contacted. The oxygen generator 13 is provided with a metal plate 15 as a hydrogen peroxide decomposition catalyst so as to come into contact with the sulfuric acid electrolyte solution 14. As the hydrogen peroxide decomposition catalyst, carbon and platinum can be used in addition to the gold used in the present embodiment.
[0040]
Since the concentration of hydrogen peroxide generated in the electrolyte tank 9 gradually increases, it diffuses and moves toward the sulfuric acid electrolyte solution 14 of the oxygen generator 13. The hydrogen peroxide that has reached the surface of the metal plate 15 in the oxygen generator 13 is decomposed into oxygen and water, and the gas pressure in the container of the oxygen generator 13 increases due to the generated oxygen.
[0041]
An air circulation pipe 16 is provided in the air supply line 1 from the oxygen generator 13, and a check valve 17 having an opening / closing pressure of 1 [psi] is provided in the air circulation pipe 16. When the difference between the internal pressure of the oxygen generator 13 and the air supply pressure of the air supply line 1 becomes equal to or higher than the opening / closing pressure of the check valve 17, the check valve 17 opens and the oxygen partial pressure in the oxygen generator 13 is reduced. The increased air can be returned to the air supply line 1. As described above, since the oxygen utilization rate can be increased, a highly efficient polymer electrolyte fuel cell can be obtained.
[0042]
The fuel cell shown in the first embodiment and the comparative fuel cell having the same configuration except that the hydrogen peroxide generator, the oxygen generator, and the air circulation system are removed from the first embodiment under atmospheric pressure. When the fuel cell performance was compared by operating under the conditions of a cell humidification temperature of 70 ° C., a hydrogen gas utilization rate of 70%, and an air gas utilization rate of 67%, the fuel cell of this embodiment was more The cell voltage at 1 [A / cm 2 ] was improved by about 4%.
[0043]
[Second Embodiment]
FIG. 2 is a configuration diagram for explaining a second embodiment of the polymer electrolyte fuel cell according to the present invention.
The solid polymer fuel cell stack 3 is supplied with air from an air compressor (not shown) via an air supply line 1 and hydrogen from a hydrogen supply device (not shown) via a hydrogen supply line 2. The operating pressures of air and hydrogen are adjusted by back pressure control valves 4 and 5 provided at the gas outlet of the fuel cell stack 3, respectively. The exhaust gas that has passed through the back pressure control valves 4 and 5 is supplied with air exhaust gas into the cathode chamber 11 of the hydrogen peroxide generator 6 and hydrogen exhaust gas into the anode chamber 7.
[0044]
The hydrogen peroxide generator 6 is a so-called fuel cell type reactor described in Japanese Patent Application Laid-Open No. 2001-236968. The hydrogen peroxide generator 6 includes an anode chamber 7 to which exhaust hydrogen is supplied, a cathode chamber 11 to which exhaust air is supplied, and an electrolyte tank 9 that is filled with a sulfuric acid solution as a proton conductive liquid electrolyte.
[0045]
The anode chamber 7 and the electrolyte tank 9 are divided by a gas diffusion electrode 8 in which an anode catalyst containing platinum or gold is deposited on a proton conductive solid polymer membrane. The cathode chamber 11 and the electrolyte tank 9 are separated by a gas diffusion electrode 10 in which a proton-conducting solid polymer film is coated with a cathode catalyst containing gold.
[0046]
In the gas diffusion electrode 8, protons and electrons are generated from hydrogen molecules, the protons move through the electrolyte tank 9 filled with the sulfuric acid electrolyte solution, reach the gold catalyst of the gas diffusion electrode 10, and the electrons are externally loaded 12 or After passing through the heater 23, hydrogen peroxide is generated in the gas diffusion electrode 10 by a reduction reaction between oxygen and protons.
[0047]
A pipe 18 filled with a sulfuric acid electrolyte solution is provided so as to be connected to the electrolyte tank 9 of the hydrogen peroxide generator 6, and the sulfuric acid electrolyte solution 14 existing in the oxygen generator 13 and the sulfuric acid electrolyte solution in the electrolyte tank 9 Have contacted. The oxygen generator 13 is provided with a metal plate 15 as a hydrogen peroxide decomposition catalyst so as to come into contact with the sulfuric acid electrolyte solution 14.
[0048]
Since the concentration of hydrogen peroxide generated in the electrolyte tank 9 gradually increases, it diffuses and moves toward the sulfuric acid electrolyte solution 14 of the oxygen generator 13. The hydrogen peroxide that has reached the surface of the metal plate 15 in the oxygen generator 13 is decomposed into oxygen and water, and the gas pressure in the container of the oxygen generator 13 increases due to the generated oxygen.
[0049]
An air circulation pipe 16 is provided between the oxygen generator 13 and the air supply line 1, and a control valve 17 is provided in the middle of the air circulation pipe 16. A pressure gauge 19 is provided for measuring the pressure in the oxygen generator 13, and a pressure gauge 20 is provided for measuring the pressure in the air supply line 1.
[0050]
Pressure gauges 19 and 20 and a cell voltage monitor 22 for detecting the cell voltage of the fuel cell stack 3 are connected to the control unit 21 as input signals. Based on these input signals, the control unit 21 outputs an opening / closing signal for the control valve 17 and a switching signal for the SW 24.
[0051]
The SW 24 switches whether the power generated by the hydrogen peroxide generator 6 is consumed via the external load 12 or the heater 23. The heater 23 is disposed around or inside the oxygen generator 13 and heats the oxygen generator 13 or the sulfuric acid electrolyte solution 14 in the oxygen generator 13.
[0052]
The control unit 21 opens and closes the control valve 17 in a range in which the pressure of the pressure gauge 19 is always higher than that of the pressure gauge 20, thereby returning air having an increased oxygen partial pressure in the oxygen generator 13 to the air supply line 1. Can do.
[0053]
In addition, when the control unit 21 determines that the polymer film in the fuel cell stack 3 is in a dry state from the change over time based on the cell voltage detected by the cell voltage monitor 22, the control unit 21 sends the SW 24 from the external load 12 to the heater 23. Switch to. As a result, the heater 23 heats the oxygen generator 13 or the sulfuric acid electrolyte solution 14 to increase the partial pressure of water vapor in the oxygen generator 13 and increase the temperature to a desired temperature together with the oxygen generated in the oxygen generator 13. The prepared water vapor is supplied to the air supply line 1.
[0054]
As described above, according to the present embodiment, the oxygen utilization rate is increased, the electric power generated by the hydrogen peroxide generator is not wasted, and it is also used for steam humidification of the fuel cell. A polymer electrolyte fuel cell can be obtained.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a first embodiment of a polymer electrolyte fuel cell according to the present invention.
FIG. 2 is a configuration diagram of a second embodiment of a polymer electrolyte fuel cell according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Air supply line 2 ... Hydrogen supply line 3 ... Fuel cell stack 4 ... Back pressure control valve 5 ... Back pressure control valve 6 ... Hydrogen peroxide generator 7 ... Anode chamber 8 ... Gas diffusion electrode 9 ... Electrolyte tank 10 ... Gas Diffusion electrode 11 ... Cathode chamber 12 ... External load 13 ... Oxygen generator 14 ... Sulfuric acid electrolyte solution 15 ... Metal plate 16 ... Air circulation pipe 17 ... Check valve 18 ... Pipe

Claims (6)

燃料電池本体の排水素および排空気を利用して過酸化水素を合成し、該過酸化水素を分解して得られる酸素を前記燃料電池本体の空気供給系に戻すことを特徴とする固体高分子型燃料電池。Solid polymer characterized by synthesizing hydrogen peroxide using exhaust hydrogen and exhaust air of the fuel cell main body and returning oxygen obtained by decomposing the hydrogen peroxide to the air supply system of the fuel cell main body Type fuel cell. 燃料電池本体の排水素および排空気から過酸化水素を合成する過酸化水素発生器と、
該過酸化水素発生器が合成した過酸化水素を分解して酸素を生成する酸素発生器と、
該酸素発生器が発生した酸素を燃料電池本体の空気供給系へ循環させる空気循環手段と、
を備えたことを特徴とする固体高分子型燃料電池。
A hydrogen peroxide generator that synthesizes hydrogen peroxide from the exhaust and exhaust air of the fuel cell body,
An oxygen generator that decomposes hydrogen peroxide synthesized by the hydrogen peroxide generator to generate oxygen;
An air circulation means for circulating oxygen generated by the oxygen generator to an air supply system of the fuel cell body;
A solid polymer fuel cell comprising:
前記過酸化水素発生器は、プロトン導電性液体電解質を容れる電解質槽および一対の過酸化水素合成用電極触媒を備えた燃料電池型過酸化水素発生器であり、
該燃料電池型過酸化水素発生器が合成した過酸化水素は、前記液体電解質中に溶解し、前記酸素発生器の容器が保持する液体電解質中に拡散移動することを特徴とする請求項2記載の固体高分子型燃料電池。
The hydrogen peroxide generator is a fuel cell type hydrogen peroxide generator including an electrolyte tank containing a proton conductive liquid electrolyte and a pair of hydrogen peroxide synthesis electrode catalysts.
The hydrogen peroxide synthesized by the fuel cell type hydrogen peroxide generator is dissolved in the liquid electrolyte and diffused and transferred into the liquid electrolyte held by the container of the oxygen generator. Solid polymer fuel cell.
前記酸素発生器中に設けられた過酸化水素分解触媒により過酸化水素を酸素と水に分解して酸素発生器中の酸素分圧およびガス全圧を上昇せしめ、
前記空気循環手段に設けられた所定の圧力差で開閉する逆止弁または制御弁を通じて発生酸素を燃料電池の空気供給系に戻すことを特徴とする請求項3記載の固体高分子型燃料電池。
Hydrogen peroxide is decomposed into oxygen and water by the hydrogen peroxide decomposition catalyst provided in the oxygen generator to increase the oxygen partial pressure and gas total pressure in the oxygen generator,
4. The polymer electrolyte fuel cell according to claim 3, wherein the generated oxygen is returned to the air supply system of the fuel cell through a check valve or a control valve that opens and closes at a predetermined pressure difference provided in the air circulation means.
前記過酸化水素発生器は、前記過酸化水素合成用電極触媒と前記プロトン導電性液体電解質との界面にプロトン導電性固体高分子膜を設けることにより、前記プロトン導電性液体電解質の圧力上昇による電解質の排ガスラインへの漏れを防止することを特徴とする請求項3記載の固体高分子型燃料電池。The hydrogen peroxide generator is provided with a proton conductive solid polymer film at an interface between the hydrogen peroxide synthesis electrode catalyst and the proton conductive liquid electrolyte, so that an electrolyte caused by a rise in pressure of the proton conductive liquid electrolyte is provided. 4. The polymer electrolyte fuel cell according to claim 3, wherein leakage to the exhaust gas line is prevented. 前記燃料電池型過酸化水素発生器における一対の過酸化水素合成用電極触媒間を短絡して得られる電力を使用して、前記酸素発生器中の電解質水溶液を加熱して水蒸気分圧を高め、燃料電池の空気加湿の要求に応じて、酸素とともに水蒸気を空気供給系に戻すことを特徴とする請求項3記載の固体高分子型燃料電池。Using electric power obtained by short-circuiting between a pair of hydrogen peroxide synthesis electrode catalysts in the fuel cell type hydrogen peroxide generator, the aqueous electrolyte solution in the oxygen generator is heated to increase the water vapor partial pressure, 4. The polymer electrolyte fuel cell according to claim 3, wherein water vapor is returned to the air supply system together with oxygen in response to a request for air humidification of the fuel cell.
JP2002028613A 2002-02-05 2002-02-05 Polymer electrolyte fuel cell Expired - Fee Related JP3685136B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002028613A JP3685136B2 (en) 2002-02-05 2002-02-05 Polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002028613A JP3685136B2 (en) 2002-02-05 2002-02-05 Polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JP2003229165A JP2003229165A (en) 2003-08-15
JP3685136B2 true JP3685136B2 (en) 2005-08-17

Family

ID=27749746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002028613A Expired - Fee Related JP3685136B2 (en) 2002-02-05 2002-02-05 Polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP3685136B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4843908B2 (en) * 2004-05-18 2011-12-21 富士ゼロックス株式会社 Secondary battery and power generation method
JP4835001B2 (en) 2005-02-03 2011-12-14 株式会社デンソー Fuel cell system
KR20110109351A (en) 2010-03-31 2011-10-06 엘지전자 주식회사 Oxygen generator
KR101628443B1 (en) * 2013-12-10 2016-06-08 현대자동차주식회사 Dehydration Control System and Method of Fuel Cell Stack
KR102448960B1 (en) * 2021-09-23 2022-09-29 주식회사 델타엑스 Hydrogen fuel cell vehicle and environment for circulating hydrogen peroxide

Also Published As

Publication number Publication date
JP2003229165A (en) 2003-08-15

Similar Documents

Publication Publication Date Title
US6280865B1 (en) Fuel cell system with hydrogen purification subsystem
US7045233B2 (en) Method and apparatus for electrochemical compression and expansion of hydrogen in a fuel cell system
JP5403198B2 (en) Hydrogen production apparatus, fuel cell power generation apparatus, electric vehicle, submarine, and hydrogen supply system using the same
US20040028979A1 (en) Method and apparatus for electrochemical compression and expansion of hydrogen in a fuel cell system
US7132182B2 (en) Method and apparatus for electrochemical compression and expansion of hydrogen in a fuel cell system
JP2001332281A (en) Solid polyelectrolyte fuel cell power generation system and its operation method
JP3685136B2 (en) Polymer electrolyte fuel cell
US8426075B2 (en) Fuel cell system, and operation method for fuel cell
JP3812586B2 (en) Hydrogen supply system
US20110183238A1 (en) Fuel cell
JP4958058B2 (en) Fuel cell power generator
JP4947338B2 (en) Stand-alone hydrogen production system
JP5403199B2 (en) Honeycomb type hydrogen production apparatus, fuel cell power generation apparatus using the same, electric vehicle, submarine ship and hydrogen supply system, and reaction tube for hydrogen production cell
KR20060118128A (en) Air recycling device for proton exchange membrane fuel cell
JP2021166152A (en) Fuel cell system
KR20070084733A (en) Fuel cell system using performance restoration apparatus and method of fuel cell system performance restoration
JP3561659B2 (en) Fuel cell system
KR20070012660A (en) Hydrogen supply system
KR101084078B1 (en) Fuel cell system and driving method the same
JP2004179042A (en) Solid polymer fuel cell
JP4578238B2 (en) Fuel cell starting method, fuel cell system, and vehicle equipped with fuel cell system
JP2012009182A (en) Fuel cell system, power generation method of fuel cell and method of determining flooding
KR100675691B1 (en) Apparatus for contolling fuel temperature of fc and thereof method
KR100763143B1 (en) Apparatus for preventing power down of fuel cell
JP4863099B2 (en) Stack type fuel cell power generator

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050523

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees