JP4201467B2 - Absorption type vacuum breaker detector - Google Patents

Absorption type vacuum breaker detector Download PDF

Info

Publication number
JP4201467B2
JP4201467B2 JP2000249295A JP2000249295A JP4201467B2 JP 4201467 B2 JP4201467 B2 JP 4201467B2 JP 2000249295 A JP2000249295 A JP 2000249295A JP 2000249295 A JP2000249295 A JP 2000249295A JP 4201467 B2 JP4201467 B2 JP 4201467B2
Authority
JP
Japan
Prior art keywords
detection
valve
electrode
working fluid
fluid system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000249295A
Other languages
Japanese (ja)
Other versions
JP2002061997A (en
Inventor
知男 団栗
正道 一本松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2000249295A priority Critical patent/JP4201467B2/en
Publication of JP2002061997A publication Critical patent/JP2002061997A/en
Application granted granted Critical
Publication of JP4201467B2 publication Critical patent/JP4201467B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/005Arrangement or mounting of control or safety devices of safety devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は吸収式冷凍機の真空破壊検出装置に関する。
【0002】
【従来の技術】
吸収式冷凍機では、真空引きした低圧状態下で吸収液や冷媒を循環させる動作流体系で真空破壊(すなわち気密破壊)が起こると、内部圧力の上昇で冷媒蒸発が阻害されて冷凍能力が大きく低下し、また最悪の事態としては、侵入酸素との結び付きで吸収液の強い腐食性が発現されて急速な内部腐食を招くが、従来、吸収式冷凍機における動作流体系の真空破壊は、吸収器や蒸発器における器内圧力の上昇を検知するなど、動作流体系の圧力を監視することで検知していた(例えば、特開平10−89796号公報参照)。
【0003】
【発明が解決しようとする課題】
しかし、単に動作流体系の圧力を監視する従来方式では、動作流体系の圧力変化が真空破壊によるものか、あるいは、吸収式冷凍機で見られる水素ガスの内部発生によるものかを判別することができず、この点で、動作流体系の真空破壊(特に発生初期等の未だ軽微な真空破壊)を精度良く正確に検出できない問題があった。
【0004】
この実情に鑑み、本発明の主たる課題は、合理的な検出構成により吸収式冷凍機の真空破壊を精度良く正確に検出できるようにする点にある。
また、本発明のもう1つの主たる課題は、吸収式冷凍機の能力低下原因となる内部発生水素の除去も併せて行なえる実用価値の高い真空破壊検出装置を提供する点にある。
【0005】
【課題を解決するための手段】
請求項1又は請求項2に係る発明では、
多孔質の機内側電極と多孔質の機外側電極との間に酸素イオン伝導体を挟んでセルを形成し、
このセルを、吸収式冷凍機における動作流体系側の低圧気密空間に前記機内側電極を臨ませ、かつ、大気空間に前記機外側電極を臨ませる状態に配置し、
前記機内側電極と前記機外側電極とを導電回路で結んで両電極間の電位差又は前記導電回路の電流を検出する検出手段を設ける。
【0006】
つまり、上記セルでは、両電極が導電回路により結ばれた状態において、大気空間と動作流体系側の低圧気密空間との酸素分圧差により、機内側電極での主に次の(イ)式の反応を伴いながら、セルにおける酸素イオン伝導体の内部を機外側電極から機内側電極に向かって酸素イオンO2-が移動し、これにより、機内側電極と機外側電極との間に両空間の酸素分圧差に応じた電位差が生じる。
2O2-→O2 +4e- ……(イ)
【0007】
したがって、この電位差又は導電回路の電流を上記検出手段により検出すれば、その検出電位差又は検出電流に基づき大気空間と低圧気密空間との酸素分圧差を把握することができ、これにより、それら検出電位差や検出電流の低減(すなわち、低圧気密空間の酸素分圧上昇による両空間の酸素分圧差の低減)をもって、動作流体系側の低圧気密空間で生じた真空破壊を検出することができる。
【0008】
そして、この真空破壊検出であれば、吸収式冷凍機で見られる水素ガスの内部発生に原因する動作流体系の圧力変化とは明確に区別して真空破壊を検出することができ、この点で、単に動作流体系の圧力を監視する先述の従来方式に比べ、真空破棄をより精度良く正確に検出することができ、また、最悪の内部腐食トラブルの要因となる酸素の侵入度を的確に把握することができ、これらのことで、真空破壊に対し一層適切に対応することが可能になる。
【0009】
しかも、上記イオン移動に伴う機内側電極での次の(ロ)式の反応により、動作流体系側の低圧気密空間に存在する水素ガスH2 (すなわち、動作流体系で内部発生した水素ガス)を水分子H2 Oの形にして除去するといったことも可能になり、
2 +O2-→H2 O+2e- ……(ロ)
この点、動作流体系側の低圧気密空間における酸素濃度(分圧)を他の酸素センサを用いて検出する方式を採るに比べ、真空破壊検出機能と水素ガス除去機能とを併せ持つ装置として、吸収式冷凍機の水素ガス内部発生に原因する能力低下の防止にも利用できる利点が有る。
【0010】
なお、機内側電極と機外側電極との間に生じる電位差Eaは、次の(ハ)式のNernst式により示される値になる。
Ea=RT/4F・ln(Poo/Poi) ……(ハ)
ここで、R:気体定数
T:絶対温度
F:ファラデー定数
Poo:機外側電極が臨む大気空間の酸素分圧
Poi:機内側電極が臨む低圧気密空間の酸素分圧
【0011】
また、この酸素イオン伝導を用いた真空破壊検出では、上記(イ)式の反応により低圧気密空間で酸素ガスO2 が発生して、大気空間から低圧気密空間に酸素ガスが侵入する形になるが、セルの大きさの選定やセルの酸素イオン通過抵抗の選定などで、酸素分圧差による酸素イオン移動に適当な制限を加えるようにしておけば、この真空破壊検出に伴う低圧気密空間での酸素ガス発生は、吸収式冷凍機の冷凍能力を適正に維持する上で特に問題にならない程度のものにすることができる。
【0012】
請求項1又は請求項2に係る発明の実施において、酸素イオン伝導体には酸素イオン伝導性を有する電解質であれば、ジルコニア、セリウムオキサイト、ハフニュームオキサイトなど種々のものを採用でき、また、その安定化剤にもイットリウム、カルシウム、スカンジューム、イッテリビューム、マグネシウムなど種々のものを採用できるが、酸素イオン伝導体に安定化ジルコニアを用いれば化学的安定性の面で有利であり、中でも部分安定化ジルコニアを用いれば強度(じん性)面及びコスト面でも有利になる。
【0013】
請求項1又は請求項2に係る発明では、上記の構成に加え、
前記酸素イオン伝導体における酸素イオン移動を制限又は遮断するクローズド状態と、その制限又は遮断を解除するオープン状態とに切り換え可能なゲート手段を設ける。
【0014】
つまり、この構成では、前記検出手段の検出電位差又は検出電流に基づく真空破壊検出を適当時間ごとに時限的に実施するようにし、そして、各回の検出実施時には上記ゲート手段をオープン状態にし、それ以外の検出休止期間中は上記ゲート手段をクローズド状態にする検出形態を採る。
【0015】
すなわち、真空破壊検出を上記の如く適当時間ごとに時限的に実施することにおいて、検出休止期間中は上記ゲート手段をクローズド状態にすることにより、前記(イ)式の反応による低圧気密空間での検出休止期間中における酸素ガス発生を抑止することができ、これにより、低圧気密空間での検出休止期間及び検出実施時を通じた全体としての酸素ガス発生量を効果的に低減することができて、吸収式冷凍機の冷凍能力を高く維持する上で一層優れたものになる。
【0016】
そして、このように低圧気密空間での酸素ガス発生を一層効果的に抑止しながらも、各回の検出実施時には上記ゲート手段をオープン状態にすることにより、真空が適切に保たれているときと真空破壊が生じたときとでの低圧気密空間の酸素分圧変化による酸素イオン移動量の変化(換言すれば、検出手段による検出電位差や検出電流の変化)が顕著に現れるようにすることができ、これにより、そのオープン状態での前記検出手段による検出電位差又は検出電流に基づき真空破壊を精度良く正確に検出することができる。
【0017】
なお、クローズド状態において酸素イオン伝導体における酸素イオン移動を制限する形態あるいは遮断する形態のいずれを採用してもよいが、クローズド状態において酸素イオン移動を適当量に制限する形態を採れば、低圧気密空間での酸素ガス発生を抑止する機能とともに、前記(ロ)式の反応による水素ガス除去機能をクローズド状態において発現させることができ、これにより、高い水素ガス除去機能を併せ得ることができる。
【0018】
また、請求項1又は請求項2に係る発明の実施においては、請求項3に係る発明として次の構成を実施してもよい。即ち、請求項3に係る発明では、
前記ゲート手段として、前記機内側電極の方を負極にした状態で前記両電極に所定の直流電圧を印加することにより前記クローズド状態を現出し、かつ、その電圧印加を停止することで前記オープン状態を現出する電源装置を設ける。
【0019】
つまり、機内側電極の方を負極にした状態で機外側電極と機内側電極とに直流電圧を印加すれば、酸素イオン伝導体における機内側電極の側への酸素分圧差による酸素イオン移動が電気的な反発により抑止される。したがって、機内側電極の方を負極にした状態で両電極に直流電圧を印加する状態と、その電圧印加を停止する状態とに切り換え可能な電源装置を設ければ、それをゲート手段として、その電圧印加により前記クローズド状態を現出でき、また、その電圧印加の停止により前記オープン状態を現出することができる。
【0020】
すなわち、このように直流電圧の印加とその電圧印加の停止とでクローズド状態とオープン状態との切り換えを行なう上記構成であれば、例えば、機外側電極を大気空間に臨ませる状態と機外側電極を大気空間に対して遮蔽する状態とに切り換える機械的な手段をもってゲート手段を構成するに比べ、クローズド状態とオープン状態との切り換え操作、及び、その切り換え操作構造を簡略にすることができる。
【0021】
そしてまた、その電源装置による印加電圧Ebを、動作流体系側の低圧気密空間における酸素分圧Poiの調整目標上限値Pxと水素分圧Phの調整目標上限値Pyとに応じた適当値に設定するだけで、低圧気密空間での前記(イ)式の反応による酸素ガス発生を抑止する機能と、前記(ロ)式の反応による水素ガスの除去機能とが並存するクローズド状態(すなわち、酸素イオン移動を適当量に制限するクローズド状態)にして、低圧気密空間の酸素分圧Poi及び水素分圧Phを各々の調整目標上限値Px,Py以下の適正範囲に保つようにする機能を発現させることができる。
【0022】
すなわち、低圧気密空間の酸素分圧Poiをその調整目標上限値Pxに保つ印加電圧Ebxは次の(ハ′)式で与えられ、また、低圧気密空間の水素分圧Phをその調整目標上限値Pyに保つ印加電圧Ebyは次の(ニ)式で与えられるから、
Ebx=RT/4F・ln(Poo/Px) ……(ハ′)
Eby=Eo+RT/2F・ln〔Ps/(Poo1/2 ・Py)〕……(ニ)
ここで、Eo:酸素と水素から水が生成される反応の標準電位
R:気体定数
T:絶対温度
F:ファラデー定数
Ps:機内側電極が臨む低圧機密空間の水蒸気分圧
Poo:機外側電極が臨む大気空間の酸素分圧
検出手段による検出電位差又は検出電流に基づく真空破壊検出を適当時間ごとに時限的に実施する前述の検出形態(理想的には、オープン状態での検出実施時間をクローズド状態の検出休止期間に比べ無視できる程度の短い時間に限定した繰り返し検出形態)を採ることにおいて、上記電源装置による印加電圧Ebを次の(ホ)式を満たす値に設定すれば、低圧気密空間の酸素分圧Poi及び水素分圧Phを各々の調整目標上限値Px,Py以下の適正範囲に保つようにする機能が生じる。
Ebx≦Eb≦Eby ……(ホ)
【0023】
請求項1に係る発明では、請求項1及び請求項2に係る発明の上記共通構成に加えて、
前記ゲート手段を定期的かつ時限的にオープン状態に切り換える定期制御を実行するとともに、
この定期制御の実行下において、前記ゲート手段がオープン状態にあるときの前記検出手段による検出電位差又は検出電流が設定閾値よりも小さくなったとき、所定の異常対応制御を実行する制御手段を設ける。
【0024】
つまり、この構成では、ゲート手段を時限的にオープン状態にして、そのオープン状態にあるときの検出手段による検出電位差又は検出電流に基づき真空破壊を検出するという前述の時限的な真空破壊検出の定期的実施を、上記制御手段に自動的に行なわせる。
【0025】
そして、各回の時限的な真空破壊検出において検出電位差又は検出電流が設定閾値よりも小さくなったとき、すなわち、大気空間と低圧気密空間との酸素分圧差が所定の閾値よりも小さくなったとき、真空破壊が生じたものとして、真空破壊に対する所定の異常対応制御を上記制御手段に実行させる。
【0026】
すなわち、上記の如きゲート手段の切り換えを伴う真空破壊検出、及び、真空破壊発生時の異常対応制御を制御手段に自動的に行わせることにより、このような真空破壊検出を吸収式冷凍機の管理者に人為的に行なわせるに比べ、管理者の負担を軽減できるとともに、真空破壊に対する対応をより一層的確にすることができる。
【0027】
請求項1に係る発明の実施において、制御手段に実行させる異常対応制御は、例えば、吸収式冷凍機の緊急停止、警報の発令、腐食防止剤の投入、あるいは、通信回線を利用した管理センターへの異常連絡など、どのようなものであってもよく、また、上記設定閾値を複数段に設けて、それら閾値ごとに異なる異常対応制御(すなわち、真空破壊の程度によって異なる異常対応制御)を実行させるようにしてもよい。
【0028】
なお、ゲート手段に前述の電源装置を採用して、その電源装置の印加電圧Ebを低圧気密空間の酸素分圧Poi及び水素分圧Phが各々の調整目標上限値Px,Py以下の適正範囲に保たれる値(前記(ホ)式を満足する値)に設定する実施形態を採る場合、当然のことではあるが、上記設定閾値は低圧気密空間における酸素分圧Poiの調整目標上限値Pxよりも大きな酸素分圧Poiに対応する値に設定する。
【0029】
請求項2に係る発明では、請求項1及び請求項2に係る発明の前記共通構成に加えて、
前記機内側電極を臨ませる前記低圧気密空間として、吸収式冷凍機の動作流体系に対し開閉弁を介して接続した検出室を設け、
前記開閉弁を定期的かつ時限的に開弁状態にし、かつ、前記開閉弁の各回の開弁操作の近傍時期で前記開閉弁が閉弁状態にあるときに前記ゲート手段を時限的にオープン状態に切り換える定期制御を実行するとともに、
この定期制御の実行下において、前記ゲート手段がオープン状態にあるときの前記検出手段による検出電位差又は検出電流が設定閾値よりも小さくなったとき、所定の異常対応制御として前記開閉弁の以降の開弁操作を不実行にする制御手段を設ける。
【0030】
つまり、この構成では、吸収式冷凍機の動作流体系に対し開閉弁を介して接続した検出室に前記セルの機内側電極を臨ませる構成において、その開閉弁を定期的かつ時限的に開弁状態にすることにより、検出室の酸素分圧(低圧気密空間の酸素分圧Poi)を通常時には動作流体系の酸素分圧と同等に保つように、また、前記(ロ)式の反応により除去する水素ガス(動作流体系での発生水素ガス)を検出室に導入するようにする。
【0031】
また、例えばセルの破損やセル取り付け部におけるシール破損などが原因で真空破壊が検出室自体で生じたときに、その真空破壊が直ちに動作流体系に及んでしまうことを閉弁状態にある開閉弁(すなわち、定期的かつ時限的な開弁制御において閉弁期間にある開閉弁)により阻止する。
【0032】
そして、ゲート手段を時限的にオープン状態にして、そのオープン状態にあるときの検出手段による検出電位差又は検出電流に基づき真空破壊を検出するという前述の時限的な真空破壊検出の定期的実施を、開閉弁の各回の開弁操作の近傍時期で開閉弁が閉弁状態にあるときにゲート手段をオープン状態にする形態で上記制御手段に自動的に実行させ、この各回の時限的な真空破壊検出において検出電位差又は検出電流が設定閾値よりも小さくなっとき、真空破壊が生じた(すなわち、動作流体系で生じた真空破壊が開閉弁の前回の開弁時に検出室に及んだ、ないし、検出室自体で真空破壊が生じた)ものとして、開閉弁の以降の開弁操作を不実行にする異常対応制御を上記制御手段に実行させる。
【0033】
すなわち、この構成によれば、動作流体系で生じる真空破壊を通常時には動作流体系と同等の酸素分圧に保つ検出室で検出するようにして、動作流体系に対する真空破壊検出機能を備えさせながらも、セル破損やセル取り付け部のシール破損などで検出室自体において真空破壊が生じたときに、その真空破壊が動作流体系に及んでしまうことを上記の異常対応制御(すなわち、開閉弁を閉弁状態に保持する制御)により防止して、動作流体系を保護することができる。
【0034】
また、上記の如きゲート手段や開閉弁の切り換えを伴う真空破壊検出、及び、真空破壊発生時の異常対応制御を制御手段に自動的に行わせることにより、このような真空破壊検出を吸収式冷凍機の管理者に人為的に行なわせる比べ、管理者の負担を軽減できるとともに、真空破壊に対する対応をより一層的確にすることができる。
【0035】
請求項2に係る発明の実施において、制御手段には、異常対応制御として、開閉弁の以降の開弁操作の不実行とともに、例えば、吸収式冷凍機の停止、警報の発令、あるいは、通信回線を利用した管理センターへの異常連絡など、他の異常対応制御も併せ実行させるのが望ましく、また、上記設定閾値を複数段に設けて、それら閾値ごとに異なる異常対応制御(真空破壊の程度によって異なる異常対応制御)を実行させるようにしてもよい。
【0036】
なお、請求項1に係る発明と同様、ゲート手段に前述の電源装置を採用して、その電源装置の印加電圧Ebを低圧気密空間(検出室)の酸素分圧Poi及び水素分圧Phが各々の調整目標上限値Px,Py以下の適正範囲に保たれる値(前記(ホ)式を満足する値)に設定する実施形態を採る場合、当然のことではあるが、上記設定閾値は低圧気密空間(検出室)における酸素分圧Poiの調整目標上限値Pxよりも大きな酸素分圧Poiに対応する値に設定する。
【0037】
請求項4に係る発明では、請求項2に係る発明の実施にあたり、
前記動作流体系での発生水素ガスを前記開閉弁の開弁状態において前記検出室へ送り込むガス抽気手段を設ける。
【0038】
つまり、この構成によれば、動作流体系での発生水素ガスを前記開閉弁の開弁により検出室に導入して前記(ロ)式の反応により除去することにおいて、単なる開閉弁の開弁だけで水素ガスを検出室に導入する比べ、上記ガス抽気手段による検出室への強制的な水素ガスの送り込みにより、動作流体系での発生水素ガスをより効率的に除去することができる。
【0039】
また、水素ガスだけでなく酸素ガスなどの水素ガス以外の不凝縮性ガスも上記ガス抽気手段の送り込み機能により動作流体系から排除することができ、これらのことから、動作流体系の真空状態を適切に保って冷凍能力を高く維持する機能を一層高めることができる。
【0040】
なお、ガス抽気手段にはエゼクタを初め、ガスに対するポンプ機能を有するものであれば種々の方式のものを採用できる。
【0041】
【発明の実施の形態】
図1は、冷媒に水を用い吸収液に臭化リチウム溶液を用いた二重効用型の吸収式冷凍機を示し、吸収器1の底部(後述する蒸発器10との共通底部)から溶液ポンプ2及び溶液熱交換器3を通じて高温再生器4に戻される低濃度の吸収液La(希吸収液)をバーナ5により加熱することで、その希吸収液Laから冷媒蒸気Rsを発生させ、続いて、この冷媒蒸気Rsの発生で中濃度になった吸収液Lbを、溶液熱交換器3の高温側熱交換部3aにおいて希吸収液Laと熱交換させた上で低温再生器6に導入して、高温再生器4での発生冷媒蒸気Rsと伝熱筒7を介し熱交換させることにより、その中濃度の吸収液Lbから更に冷媒蒸気Rs′を発生させる。
【0042】
そして、伝熱筒7を介しての中濃度吸収液Lbとの熱交換で一部ないし全部が凝縮した冷媒R、及び、低温再生器6で発生した冷媒蒸気Rs′を凝縮器8に導入して凝縮器コイル9における通過冷却水Wにより冷却し、この冷却により完全に凝縮させた冷媒Rを蒸発器10の内部に散布して、蒸発器コイル11における通過冷水Cからの気化熱奪取で蒸発させることにより、冷却対象である蒸発器コイル11の通過冷水Cを冷却する。
【0043】
一方、低温再生器6での冷媒蒸気Rs′の発生で高濃度になった吸収液Lc(濃吸収液)は、溶液熱交換器3の低温側熱交換部3bにおいて希吸収液Laと熱交換させた上で吸収器1の内部に散布し、この吸収器1において吸収器コイル12の通過冷却水Wによる冷却下で散布濃吸収液Lcに蒸発器10での蒸発冷媒を吸収させることにより、蒸発器10の内部を冷媒蒸発に適した低圧状態に維持する。そして、この冷媒吸収により再び低濃度になった吸収液La(希吸収液)を溶液ポンプ2により高温再生器4に送ることで、動作流体である冷媒R及び吸収液Lを繰り返し機内循環させて、吸収式冷凍機の運転(冷水発生運転)を継続する。
【0044】
なお、13は温水発生運転用の切替弁であり、温水発生運転では、この切替弁13を開いて高温再生器4での発生冷媒蒸気Rsを短絡的に蒸発器10へ送ることで、その高温の冷媒蒸気Rsにより加熱対象である蒸発器コイル11の通過温水Hを加熱する。
【0045】
Xは、水素ガス除去装置と真空破壊検出装置とを兼ねる付加装置であり、その装置構成については、真空引きした低圧状態下で吸収液や冷媒を循環させる動作流体系の適当箇所(例えば蒸発器10や吸収器1)に対しガス抽気手段14及び開閉弁15を介してガス除去室を兼ねる気密容器状の検出室16を接続し、そして、図2に示す如く、白金(Pt)製の2枚の多孔質電極17a,17bの間に酸素イオン伝導体18である部分安定化ジルコニア(例えば、6%イットリア安定化ジルコニア(Zr0.940.062-α))を挟んだ構造の有底筒状のセル19を、一方の電極17aを機内側電極として検出室16の内部に臨ませ、かつ、他方の電極17bを機外側電極として外部の大気空間Aに臨ませた状態で、検出室16の室壁16wに装着してある。
【0046】
また、同図2に示す如く、機内側電極17aと機外側電極17bとを導電回路20で結んで両電極17a,17b間の電位差Eaを検出する検出回路21を設け、さらに、大気空間Aと動作流体系側の低圧気密空間である検出室16との酸素分圧差による上記酸素イオン伝導体18での酸素イオン移動を制限するクローズド状態とその制限を解除するオープン状態とに切り換え可能なゲート手段として、スイッチ素子22aにより検出回路21側の導電回路20を開くとともに直流電源22bを両電極17a,17bに接続して、この直流電源22bにより機内側電極17aの方を負極とする所定の直流電圧Ebを両電極17a,17bに印加することで上記クローズド状態を現出し、かつ、スイッチ素子22aにより検出回路21側の導電回路20を閉じるとともに両電極17a,17bに対する直流電源22bの接続を断って、両電極17a,17bに対する電圧印加を停止することで上記オープン状態を現出する電源装置22を設けてある。
【0047】
そしてまた、制御手段として、図3に示す如く、開閉弁15を設定インターバル時間Ta(例えば数時間)ごとに、そのインターバル時間Taよりも極短い設定開弁時間Tb(例えば十数秒)だけ時限的に開弁状態にし、かつ、開閉弁15の各回の開弁操作の近傍時期(すなわち、各インターバル時間Taの終期)で開閉弁15が閉弁状態にあるときに設定検出時間Tc(例えば十数秒)だけゲート手段としての電源装置22を時限的にオープン状態(すなわち、電圧印加停止状態)に切り換える定期制御を実行するとともに、この定期制御の実行下において、オープン状態にあるときの検出回路21による検出電位差Eaが設定閾値Ezよりも小さくなったとき、真空破壊に対する異常対応制御として、開閉弁15の以降の開弁操作を不実行にするとともに、吸収式冷凍機の運転停止及び警報の発令を行なう制御器23を設けてある。
【0048】
つまり、上記セル19では、両電極17a,17bが検出回路21側の導電回路20により結ばれたオープン状態において、大気空間Aと検出室16との酸素分圧差により、機内側電極17aでの主に次の(イ)式の反応を伴いながら、酸素イオン伝導体18の内部を機外側電極17bから機内側電極17bに向かって酸素イオンO2-が移動し、これにより、機内側電極17aと機外側電極17bとの間に両空間A,16の酸素分圧差に応じた電位差Ea(次の(ハ)式のNernst式により示される電位差)が生じる。
2O2-→O2 +4e- ……(イ)
Ea=RT/4F・ln(Poo/Poi) ……(ハ)
ここで、R:気体定数
T:絶対温度
F:ファラデー定数
Poo:大気空間Aの酸素分圧
Poi:検出室16の酸素分圧
【0049】
このことを用いて、上記付加装置Xでは、開閉弁15の定期的開弁により通常時には検出室16の酸素分圧を動作流体系の酸素分圧と同等に保つようにした状態の下で、上記インターバル時間Taの終期に検出回路21により検出されるオープン状態での両電極17a,17b間の電位差Eaが設定閾値Ezよりも小さくなったとき(すなわち、大気空間Aと検出室16の酸素分圧差が所定の閾値よりも小さくなったとき)、動作流体系で真空破壊が生じてその真空破壊が前回の開閉弁15の開弁で検出室16に及んだ、ないしは、開閉弁15の閉弁期間中に検出室16自体で真空破壊が生じたとして、上記の異常対応制御を実行させるようにしてある。
【0050】
また、この真空破壊検出において、開閉弁15の各回の開弁を時限的に行なうとともに、真空破壊が生じたと認められたときの異常対応制御の1つとして開閉弁15の以降の開弁操作を不実行にすることで、真空破壊がセル破損やセル取り付け部のシール破損などで検出室16自体において生じたものである場合に、その真空破壊が動作流体系に及ぶことを防止して、動作流体系を保護するようにしてある。
【0051】
そしてまた、この付加装置Xでは、電源装置22により両電極17a,17bに印加する上記直流電圧Ebに次の(ハ′)式、(ニ)式、(ホ)式を満足する電圧値を採用して、前記(イ)式の反応による検出室16での酸素ガス発生を抑止する機能とともに、開閉弁15の開弁時に検出室16に導入される水素ガスH2 (すなわち、動作流体系での発生水素ガス)を機内側電極17aでの次の(ロ)式の反応により水分子H2Oの形にして除去する機能をクローズド状態において並存させることにより、
Ebx=RT/4F・ln(Poo/Px) ……(ハ′)
Eby=Eo+RT/2F・ln〔Ps/(Poo1/2 ・Py)〕……(ニ)
Ebx≦Eb≦Eby ……(ホ)
ここで、Eo:酸素と水素から水が生成される反応の標準電位
R:気体定数
T:絶対温度
F:ファラデー定数
Ps:ガス除去室16の水蒸気分圧
Poo:大気空間Aの酸素分圧
Px:検出室16における酸素分圧の調整目標上限値
Py:検出室16における水素分圧の調整目標上限値
2 +O2-→H2 O+2e- ……(ロ)
上記の如くオープン状態での検出実施時間Tcをクローズド状態の検出休止期間に比べ極短い時間に限った検出形態を採ることにおいて、検出室16の酸素分圧Poiをその調整目標上限値Px以下の適正範囲に保つ機能とともに、検出室16の水素分圧Phもその調整目標上限値Py以下の適正範囲に保つ機能を生じさせ、これにより、動作流体系での発生水素ガスH2 を除去する装置として併せ機能させるようにしてある。
【0052】
一方、ガス抽気手段14は、動作流体系での発生水素ガスH2 を吸入して、その吸入水素ガスH2 を開閉弁15の開弁時に検出室16に送り込むことで、上記の水素ガス除去を一層効率的に行なえるようにするものであり、本実施形態では、図1に示す如く、溶液ポンプ2から送出される希吸収液Laの一部La′を分岐路24を通じ誘引用流体としてエゼクタ25に導き、このエゼクタ25での希吸収液La′の高速流動により生じる誘引作用で動作流体系の適当箇所(例えば蒸発器10や吸収器1)から吸入路26を通じてガス吸入を行なうようにしてある。
【0053】
そして、誘引用流体として機能させた希吸収液La′と吸入水素ガスH2 との混合流体を、エゼクタ25の下流側に接続した内部噴出管27の先端から噴出させることで、この噴出部において希吸収液La′と吸入水素ガスH2 とを気液分離して、この分離水素ガスH2 を開閉弁15の開弁時に検出室16に送り込む構成にしてある。28は内部噴出管27からの噴出で水素ガスH2 と分離した希吸収液La′を圧力差により吸収器1及び蒸発器10の共通底部に戻す還流路である。
【0054】
図2において、29はセル19を固定するネジ具、30は金(Au)製ないし銅(Cu)製のシール部材、31はセル19を所定温度に加熱するヒータであり、セル19は必要な水素ガス除去量に応じて1個ないし複数個を検出室16に装備するが、複数個のセル19を装備する場合、それら複数個のセル19の全てを真空破壊検出に用いる必要はなく、一部のセル19のみを前述のオープン状態とクローズド状態との切り換えを伴う真空破壊検出に用い、他のセル19については前記直流電圧Ebの印加状態を保ったままの状態で水素ガス除去にのみ用いるようにしてもよい。
【0055】
なお、本実施形態の吸収式冷凍機について、その運転諸元の一例としては次の値を挙げることができる。
Ps=0.04×101.325(kPa)
Poo=0.21×101.325(kPa)
Eo=1.11(V)
T=600(K)
Px=0.001(kPa)
Py=0.001×101.325(kPa)
Eb=0.995(V)
Ez=0.069(V) (Poi=0.1kPaに対応する電位差)
【0056】
〔別実施形態〕
次に本発明の別実施形態を列記する。
【0057】
前述の実施形態では、開閉弁15を介して動作流体系に接続した検出室16(ガス除去室)に機内側電極17aを臨ませる構成を採用したが、これに代え、図4に示す如く、動作流体系における吸収器1や蒸発器10などの適当箇所に連通路26′を通じ常時連通させた検出室16′に対して機内側電極17aを臨ませる状態にセル19を装備してもよく、また、動作流体系における吸収器1や蒸発器10などの適当箇所に対して機内側電極17aを直接的に臨ませる状態にセル19を装備してもよく、機内側電極17aを臨ませる動作流体系側の低圧気密空間は、吸収式冷凍機における動作流体系の適当空間部ないし動作流体系に対し付加的に接続した空間のいずれであってもよい。
【0058】
また、開閉弁15を設けない上記の如きセル装備構成を採る場合などでは、前述の実施形態で示した開閉弁制御を伴う自動検出に代え、ゲート手段22(電源装置)を定期的かつ時限的にオープン状態に切り換える定期制御を制御手段23に実行させるとともに、この定期制御の実行下において、ゲート手段22がオープン状態にあるときの検出回路21による検出電位差Eaが設定閾値Ezよりも小さくなったとき所定の異常対応制御を制御手段23に実行させるようにしてもよい。
【0059】
前述の実施形態では、セル19の機内側電極17aと機外側電極17bとを導電回路20で結んだ状態での両電極17a,17b間の電位差Ea(酸素分圧差による酸素イオン伝導で生じる電位差)を検出手段21により検出して、この検出電位差Eaに基づき真空破壊を検知するようにしたが、これに代え、両電極17a,17bを導電回路20で結んだ状態での導電回路20における電流Ia(酸素分圧差による酸素イオン伝導で生じる電流)を検出して、この検出電流Iaに基づき真空破壊を検知するようにしてもよい。
【0060】
ゲート手段は、セル19の両電極17a,17bに直流電圧Ebを印加することでクローズド状態を現出する前述の如き電源装置22に限定されるものでなく、場合によっては、両電極17a,17bを結ぶ導電回路20を単に遮断することでクローズド状態を現出する方式や、機外側電極17bを大気空間Aに対して臨ませる状態と大気空間Aに対して遮蔽する状態とに切り換えることでクローズド状態とオープン状態とを切り換え現出する方式など、種々の切り換え方式のものを採用できる。
【0061】
また、前述の実施形態では、クローズド状態において酸素イオン伝導体18での酸素イオン移動を適当量に制限するようにしたが、場合によっては、クローズド状態において酸素イオン伝導体18での酸素イオン移動を遮断するようにしてもよい。
【0062】
前述の実施形態で示した装置構成においてガス抽気手段14を省略してもよく、また、上記図4で示す装置構成においてガス抽気手段を付加装備してもよく、ガス抽気手段の装備の有無やどのような抽気形式のものを採用するかは、条件等に応じて適宜決定すればよい。
【0063】
セル19における多孔質の機内側電極17a及び多孔質の機外側電極17bには夫々、白金に限らず、十分な強度と耐食性を有するものであれば、種々の電極材を採用でき、また、セル19の形状は、前述の実施形態で示した如き有底筒状に限られるものではなく、例えば平板状や波板状のセル形状にしてもよい。
【0064】
本発明による真空破壊検出装置は、必ずしも水素ガス除去装置を兼ねるものとしての使用に限られるものではなく、場合によっては吸収式冷凍機の真空破壊検出のみに用いるようにしてもよい。
【0065】
本発明による真空破壊検出装置は、二重効用型の吸収式冷凍機に限らず、単効用型や三重効用型を初め、種々の形式の吸収式冷凍機に適用でき、また、水以外の冷媒や臭化リチウム溶液以外の吸収液を用いる吸収式冷凍機にも適用できる。
【図面の簡単な説明】
【図1】吸収式冷凍機の構成図
【図2】セル構造及びセル周りの構造を示す拡大図
【図3】制御手段の検出動作を示すグラフ
【図4】別実施形態を示す吸収式冷凍機の構成図
【符号の説明】
14 ガス抽気手段
15 開閉弁
16 低圧気密空間,検出室
17a 機内側電極
17b 機外側電極
18 酸素イオン伝導体
19 セル
20 導電回路
21 検出手段
22 ゲート手段,電源装置
23 制御手段
A 大気空間
Ea 電位差
Eb 印加直流電圧
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vacuum break detection device for an absorption refrigerator.
[0002]
[Prior art]
In an absorption refrigerator, when vacuum breakage (ie, airtight breakage) occurs in an operating fluid system that circulates absorption liquid or refrigerant under a vacuumed low pressure condition, refrigerant evaporation is hindered by an increase in internal pressure, resulting in a large refrigerating capacity. In the worst case, the strong corrosiveness of the absorbing liquid is manifested due to the combination with the invading oxygen, leading to rapid internal corrosion. This was detected by monitoring the pressure of the working fluid system, such as detecting an increase in the internal pressure of the evaporator or the evaporator (see, for example, Japanese Patent Application Laid-Open No. 10-89796).
[0003]
[Problems to be solved by the invention]
However, in the conventional method of simply monitoring the pressure of the working fluid system, it is possible to determine whether the pressure change in the working fluid system is due to vacuum breakage or due to the internal generation of hydrogen gas seen in an absorption refrigerator. In this respect, there has been a problem that the vacuum breakage of the working fluid system (particularly, a slight vacuum breakage at the initial stage of occurrence, etc.) cannot be detected accurately and accurately.
[0004]
In view of this situation, the main object of the present invention is to enable accurate and accurate detection of the vacuum break of the absorption chiller with a rational detection configuration.
Another main problem of the present invention is to provide a vacuum break detection device having a high practical value that can also remove internally generated hydrogen which causes a reduction in the capacity of an absorption refrigerator.
[0005]
[Means for Solving the Problems]
  In the invention according to claim 1 or claim 2,
  A cell is formed by sandwiching an oxygen ion conductor between the porous inner electrode and the porous outer electrode,
  This cell is disposed in a state where the inner electrode faces the low-pressure airtight space on the working fluid system side in the absorption refrigerator and the outer electrode faces the atmospheric space,
  Detection means for detecting a potential difference between the two electrodes or a current in the conductive circuit by connecting the inner electrode and the outer electrode with a conductive circuit is provided.
[0006]
That is, in the above cell, in the state where both electrodes are connected by a conductive circuit, due to the oxygen partial pressure difference between the atmospheric space and the low pressure airtight space on the working fluid system side, While accompanying the reaction, the oxygen ion conductor in the cell is moved from the outside electrode toward the inside electrode.2-As a result, a potential difference corresponding to the oxygen partial pressure difference between the two spaces is generated between the in-machine electrode and the out-of-machine electrode.
2O2-→ O2+ 4e-  ……(I)
[0007]
Therefore, if the potential difference or the current of the conductive circuit is detected by the detection means, the oxygen partial pressure difference between the atmospheric space and the low-pressure airtight space can be grasped based on the detected potential difference or the detected current. In addition, a vacuum break that has occurred in the low-pressure gas-tight space on the working fluid system side can be detected by reducing the detection current (that is, reducing the difference in oxygen partial pressure between the two spaces due to an increase in the oxygen partial pressure in the low-pressure gas-tight space).
[0008]
And if this vacuum break detection, it is possible to detect the vacuum break distinctly from the pressure change of the working fluid system caused by the internal generation of hydrogen gas seen in the absorption refrigerator, Compared to the previous method that simply monitors the pressure of the working fluid system, it can detect the vacuum break more accurately and accurately, and accurately grasp the degree of oxygen penetration that causes the worst internal corrosion trouble. These allow for a more appropriate response to vacuum breaks.
[0009]
Moreover, the hydrogen gas H present in the low-pressure gas-tight space on the working fluid system side is obtained by the reaction of the following equation (b) at the in-machine electrode accompanying the ion movement.2(Ie, hydrogen gas generated internally in the working fluid system)2It can also be removed in the form of O,
H2+ O2-→ H2O + 2e-  (B)
In this regard, as a device that has both a vacuum break detection function and a hydrogen gas removal function, it absorbs the oxygen concentration (partial pressure) in the low-pressure gas-tight space on the working fluid system side using another oxygen sensor. There is an advantage that it can be used to prevent a decrease in capacity caused by the internal generation of hydrogen gas in a refrigerator.
[0010]
Note that the potential difference Ea generated between the in-machine electrode and the out-of-machine electrode is a value represented by the following Nernst equation (C).
Ea = RT / 4F · ln (Poo / Poi) (C)
Where R: gas constant
T: Absolute temperature
F: Faraday constant
Poo: Oxygen partial pressure in the atmospheric space facing the outboard electrode
Poi: Partial pressure of oxygen in the low-pressure airtight space facing the in-machine electrode
[0011]
Further, in this vacuum break detection using oxygen ion conduction, oxygen gas O in the low-pressure airtight space is obtained by the reaction of the above equation (a).2Oxygen gas enters the low-pressure airtight space from the atmospheric space, but it is suitable for oxygen ion movement due to the partial pressure difference of oxygen by selecting the cell size or selecting the oxygen ion passage resistance of the cell. If restrictions are added, the generation of oxygen gas in the low-pressure airtight space associated with this vacuum break detection should be of a level that does not cause any particular problems in maintaining the refrigeration capacity of the absorption chiller properly. it can.
[0012]
  Invention according to claim 1 or claim 2In the implementation of the present invention, as the oxygen ion conductor, various electrolytes such as zirconia, cerium oxide, and hafnium oxide can be adopted as long as the electrolyte has oxygen ion conductivity, and yttrium and calcium are also used as stabilizers. Various materials such as scandium, ytterbium, and magnesium can be used. However, if stabilized zirconia is used for the oxygen ion conductor, it is advantageous in terms of chemical stability, and if partially stabilized zirconia is used, strength ( It is also advantageous in terms of toughness and cost.
[0013]
  In the invention according to claim 1 or 2, in addition to the above-described configuration,
  There is provided gate means capable of switching between a closed state for restricting or blocking oxygen ion movement in the oxygen ion conductor and an open state for releasing the restriction or blocking.
[0014]
In other words, in this configuration, the vacuum break detection based on the detection potential difference or detection current of the detection means is performed in a timely manner at an appropriate time, and the gate means is opened at the time of each detection. During the detection pause period, a detection mode is adopted in which the gate means is closed.
[0015]
In other words, when the vacuum break detection is performed at appropriate time intervals as described above, the gate means is closed during the detection pause period, so that the reaction in the low-pressure airtight space due to the reaction of the formula (A) is performed. Oxygen gas generation during the detection pause period can be suppressed, thereby effectively reducing the amount of oxygen gas generation as a whole throughout the detection pause period and the detection execution time in the low-pressure airtight space, It becomes more excellent in maintaining the refrigeration capacity of the absorption refrigerator.
[0016]
And while suppressing the generation of oxygen gas in the low-pressure airtight space more effectively in this way, when the detection is performed each time, by opening the gate means, the vacuum is maintained properly and the vacuum is maintained. Changes in the amount of oxygen ion transfer due to changes in the partial pressure of oxygen in the low-pressure gas-tight space when destruction occurs (in other words, changes in the detection potential difference and detection current by the detection means) can be made to appear significantly. Thereby, the vacuum break can be accurately and accurately detected based on the detection potential difference or the detection current by the detection means in the open state.
[0017]
It should be noted that either a form for restricting or blocking oxygen ion movement in the oxygen ion conductor in the closed state may be adopted, but if a form for restricting oxygen ion movement to an appropriate amount in the closed state is adopted, low-pressure airtightness is adopted. In addition to the function of suppressing the generation of oxygen gas in the space, the hydrogen gas removal function by the reaction (b) can be expressed in a closed state, and thus a high hydrogen gas removal function can be obtained together.
[0018]
  In carrying out the invention according to claim 1 or claim 2, the following configuration may be implemented as the invention according to claim 3. That is,In the invention according to claim 3,
  As the gate means, the closed state is revealed by applying a predetermined DC voltage to both electrodes in a state where the in-machine electrode is set to a negative electrode, and the open state is stopped by stopping the voltage application. Is provided.
[0019]
In other words, if a DC voltage is applied to the outboard electrode and the inboard electrode with the inboard electrode being the negative electrode, oxygen ion movement due to the oxygen partial pressure difference toward the inboard electrode side of the oxygen ion conductor is electrically Deterred by natural repulsion. Therefore, if a power supply device that can be switched between a state in which a DC voltage is applied to both electrodes in a state in which the inner electrode is made negative and a state in which the voltage application is stopped, is provided as a gate means, The closed state can be revealed by applying a voltage, and the open state can be revealed by stopping the voltage application.
[0020]
That is, in the above-described configuration in which switching between the closed state and the open state is performed by applying the DC voltage and stopping the voltage application, for example, the state in which the outside electrode is exposed to the atmospheric space and the outside electrode Compared with the case where the gate means is configured with a mechanical means for switching to a state of shielding against the atmospheric space, the switching operation between the closed state and the open state and the switching operation structure can be simplified.
[0021]
Further, the applied voltage Eb by the power supply device is set to an appropriate value according to the adjustment target upper limit value Px of the oxygen partial pressure Poi and the adjustment target upper limit value Py of the hydrogen partial pressure Ph in the low-pressure airtight space on the working fluid system side. The closed state (that is, oxygen ions) in which the function of suppressing the generation of oxygen gas due to the reaction of formula (a) in the low-pressure airtight space and the function of removing hydrogen gas by the reaction of formula (b) coexist. (Closed state in which the movement is limited to an appropriate amount), and the function of maintaining the oxygen partial pressure Poi and the hydrogen partial pressure Ph in the low-pressure hermetic space within appropriate ranges below the respective adjustment target upper limit values Px and Py. Can do.
[0022]
That is, the applied voltage Ebx for maintaining the oxygen partial pressure Poi in the low pressure hermetic space at the adjustment target upper limit value Px is given by the following equation (c), and the hydrogen partial pressure Ph in the low pressure hermetic space is set as the adjustment target upper limit value. Since the applied voltage Eby maintained at Py is given by the following equation (d),
Ebx = RT / 4F · ln (Poo / Px) (Cha ')
Eby = Eo + RT / 2F · ln [Ps / (Poo1/2・ Py)] …… (D)
Where Eo: standard potential of the reaction in which water is produced from oxygen and hydrogen
R: Gas constant
T: Absolute temperature
F: Faraday constant
Ps: Water vapor partial pressure in the low-pressure secret space facing the inner electrode
Poo: Oxygen partial pressure in the atmospheric space facing the outboard electrode
The above-described detection mode in which the vacuum break detection based on the detection potential difference or detection current by the detection means is carried out in a timely manner (ideally, the detection execution time in the open state is ignored compared to the detection pause period in the closed state) In the repetitive detection mode limited to the shortest possible time), if the voltage Eb applied by the power supply device is set to a value satisfying the following equation (e), the oxygen partial pressure Poi and the hydrogen content in the low pressure hermetic space A function for keeping the pressure Ph in an appropriate range below the respective adjustment target upper limit values Px and Py is generated.
Ebx ≦ Eb ≦ Eby (e)
[0023]
  In the invention according to claim 1, in addition to the common configuration of the invention according to claim 1 and claim 2,
  Performing periodic control to periodically and timely switch the gate means to an open state;
  Under the execution of this periodic control, there is provided control means for executing predetermined abnormality response control when the detection potential difference or detection current by the detection means when the gate means is in an open state becomes smaller than a set threshold value.
[0024]
In other words, in this configuration, the above-mentioned timed vacuum break detection periodical period in which the gate means is opened for a time period, and the vacuum break is detected based on the detection potential difference or the detection current by the detection means when in the open state. The control means is automatically made to perform the target implementation.
[0025]
And when the detection potential difference or the detection current becomes smaller than the set threshold in each timed vacuum break detection, that is, when the oxygen partial pressure difference between the atmospheric space and the low-pressure airtight space becomes smaller than a predetermined threshold, Assuming that a vacuum break has occurred, the control means is caused to execute a predetermined abnormality response control for the vacuum break.
[0026]
That is, the vacuum break detection accompanying the switching of the gate means as described above and the control means automatically perform the control for the abnormality when the vacuum break occurs, so that the vacuum break detection is managed by the absorption refrigerator. Compared to letting a person perform it artificially, the burden on the administrator can be reduced and the response to the vacuum break can be made more accurate.
[0027]
  Invention according to claim 1In the implementation of the above, the abnormality response control to be executed by the control means includes, for example, an emergency stop of the absorption refrigeration machine, an alarm, an injection of a corrosion inhibitor, or an abnormal communication to the management center using a communication line. In addition, the set threshold value may be provided in a plurality of stages, and different abnormality response control may be executed for each threshold value (that is, different abnormality response control depending on the degree of vacuum break). .
[0028]
The above-described power supply device is adopted as the gate means, and the applied voltage Eb of the power supply device is set within an appropriate range in which the oxygen partial pressure Poi and the hydrogen partial pressure Ph in the low-pressure airtight space are below the respective adjustment target upper limit values Px and Py. In the case of adopting an embodiment in which the value is set to a value that is maintained (a value that satisfies the expression (e)), it goes without saying that the set threshold value is based on the adjustment target upper limit value Px of the oxygen partial pressure Poi in the low-pressure airtight space. Is set to a value corresponding to a large oxygen partial pressure Poi.
[0029]
  In the invention according to claim 2, in addition to the common configuration of the invention according to claim 1 and claim 2,
  As the low-pressure airtight space facing the in-machine electrode, a detection chamber connected to the working fluid system of the absorption chiller through an on-off valve is provided,
  The gate means is opened in a timely manner when the on-off valve is opened regularly and in a timely manner, and the on-off valve is in a closed state at a timing close to each opening operation of the on-off valve. In addition to executing periodic control to switch to
  Under the execution of this periodic control, when the detection potential difference or the detection current by the detection means when the gate means is in the open state becomes smaller than a set threshold value, the subsequent opening / closing of the on-off valve is performed as predetermined abnormality response control. Control means for disabling valve operation is provided.
[0030]
That is, in this configuration, in the configuration in which the in-machine electrode of the cell is exposed to the detection chamber connected to the working fluid system of the absorption refrigeration machine via the on-off valve, the on-off valve is opened regularly and timely. By maintaining the state, the oxygen partial pressure in the detection chamber (the oxygen partial pressure Poi in the low-pressure airtight space) is normally kept equal to the oxygen partial pressure in the working fluid system, and is removed by the reaction of the above (b) equation. Hydrogen gas (hydrogen gas generated in the working fluid system) is introduced into the detection chamber.
[0031]
In addition, when a vacuum break occurs in the detection chamber itself due to, for example, a cell breakage or a seal breakage in the cell attachment portion, the open / close valve in a closed state that the vacuum break immediately reaches the working fluid system (That is, an on-off valve that is in a valve closing period in periodic and timed valve opening control).
[0032]
And the periodic implementation of the above-mentioned timed vacuum break detection that detects the vacuum break based on the detection potential difference or the detection current by the detection means when the gate means is opened in a timely manner, When the on-off valve is in the closed state at each time of the opening / closing operation of the on-off valve, the control means is automatically executed in such a manner that the gate means is opened, and this time-limited vacuum break detection is performed. When the detected potential difference or detected current becomes smaller than the set threshold value, a vacuum break occurred (that is, the vacuum break that occurred in the working fluid system reached the detection chamber when the on-off valve was opened last time or was detected. Assuming that a vacuum break has occurred in the chamber itself), the control means is caused to execute an abnormality handling control that makes the subsequent opening operation of the on-off valve non-executable.
[0033]
That is, according to this configuration, a vacuum break that occurs in the working fluid system is detected in a detection chamber that normally maintains an oxygen partial pressure equivalent to that of the working fluid system, while providing a vacuum break detection function for the working fluid system. However, when a vacuum break occurs in the detection chamber itself due to a cell breakage or a seal breakage of the cell mounting portion, the above-described abnormality response control (that is, closing the on-off valve) means that the vacuum break affects the working fluid system. The control of the valve state) prevents the working fluid system.
[0034]
In addition, by detecting the vacuum break with the switching of the gate means and the opening / closing valve as described above and controlling the abnormality when the vacuum break occurs, the control means automatically performs such a vacuum break detection. Compared to making the machine administrator perform it manually, the burden on the administrator can be reduced, and the response to the vacuum break can be made more accurate.
[0035]
  Invention according to claim 2In the implementation of the above, the control means includes, for example, a stop operation of the absorption refrigeration machine, an alarm issuance, or a management center using a communication line as an abnormality response control, with subsequent non-execution of the valve opening operation. It is desirable to execute other abnormality response control such as abnormal communication, etc. Also, the above set thresholds are provided in multiple stages, and different abnormality response control (abnormality control depending on the degree of vacuum breakage) for each threshold is provided. Even if you let it runGood.
[0036]
  In addition,Invention according to claim 1Similarly to the above, the above-described power supply device is adopted as the gate means, and the applied voltage Eb of the power supply device is set to the adjustment target upper limit values Px, Py for the oxygen partial pressure Poi and the hydrogen partial pressure Ph in the low-pressure hermetic space (detection chamber). In the case of adopting an embodiment in which the following value is set to a value (a value satisfying the expression (e)), it is a matter of course that the set threshold value is the oxygen content in the low-pressure airtight space (detection chamber). The pressure Poi is set to a value corresponding to an oxygen partial pressure Poi that is larger than the adjustment target upper limit value Px.
[0037]
  In carrying out the invention according to claim 2, in the invention according to claim 4,
  Gas extraction means is provided for sending hydrogen gas generated in the working fluid system into the detection chamber when the on-off valve is open.
[0038]
That is, according to this configuration, the hydrogen gas generated in the working fluid system is introduced into the detection chamber by opening the on-off valve and removed by the reaction (b). In comparison with introducing hydrogen gas into the detection chamber, the hydrogen gas generated in the working fluid system can be more efficiently removed by forcibly feeding the hydrogen gas into the detection chamber by the gas extraction means.
[0039]
Further, not only hydrogen gas but also non-condensable gas other than hydrogen gas such as oxygen gas can be eliminated from the working fluid system by the feeding function of the gas extraction means, and from these, the vacuum state of the working fluid system can be reduced. It is possible to further enhance the function of maintaining the refrigerating capacity at a high level by maintaining it appropriately.
[0040]
Various types of gas extraction means may be employed as long as they have a pump function for gas, including an ejector.
[0041]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows a double-effect absorption refrigerator using water as a refrigerant and a lithium bromide solution as an absorption liquid, and a solution pump from the bottom of the absorber 1 (common bottom with an evaporator 10 described later). 2 and the low-temperature absorbent La (diluted absorbent) returned to the high-temperature regenerator 4 through the solution heat exchanger 3 is heated by the burner 5 to generate refrigerant vapor Rs from the diluted absorbent La, The absorption liquid Lb having a medium concentration due to the generation of the refrigerant vapor Rs is introduced into the low temperature regenerator 6 after heat exchange with the diluted absorption liquid La in the high temperature side heat exchange section 3a of the solution heat exchanger 3. The refrigerant vapor Rs generated in the high-temperature regenerator 4 is exchanged with the heat transfer cylinder 7 to generate further refrigerant vapor Rs ′ from the medium concentration absorbent Lb.
[0042]
Then, the refrigerant R partially or wholly condensed by heat exchange with the medium concentration absorbent Lb through the heat transfer cylinder 7 and the refrigerant vapor Rs ′ generated in the low temperature regenerator 6 are introduced into the condenser 8. The refrigerant R is cooled by the passing cooling water W in the condenser coil 9, and the refrigerant R completely condensed by this cooling is dispersed inside the evaporator 10, and is evaporated by taking the heat of vaporization from the passing cold water C in the evaporator coil 11. By doing so, the passing cold water C of the evaporator coil 11 to be cooled is cooled.
[0043]
On the other hand, the absorption liquid Lc (concentrated absorption liquid) having a high concentration due to generation of the refrigerant vapor Rs ′ in the low-temperature regenerator 6 exchanges heat with the dilute absorption liquid La in the low-temperature side heat exchange section 3b of the solution heat exchanger 3. After being dispersed inside the absorber 1, in this absorber 1, the evaporated refrigerant in the evaporator 10 is absorbed by the sprayed concentrated absorbent Lc under cooling by the passing cooling water W of the absorber coil 12. The inside of the evaporator 10 is maintained at a low pressure state suitable for refrigerant evaporation. Then, the absorption liquid La (diluted absorption liquid) having a low concentration again due to the absorption of the refrigerant is sent to the high-temperature regenerator 4 by the solution pump 2 so that the refrigerant R and the absorption liquid L, which are working fluids, are repeatedly circulated in the apparatus. Continue the operation of the absorption refrigerator (cold water generation operation).
[0044]
Reference numeral 13 denotes a switching valve for hot water generation operation. In the hot water generation operation, the switching valve 13 is opened and the refrigerant vapor Rs generated in the high-temperature regenerator 4 is short-circuited to the evaporator 10 to increase the temperature. The passing hot water H of the evaporator coil 11 to be heated is heated by the refrigerant vapor Rs.
[0045]
X is an additional device that doubles as a hydrogen gas removal device and a vacuum breakage detection device. The device configuration is appropriate for the operating fluid system that circulates the absorbing liquid and refrigerant under a vacuumed state (for example, an evaporator). 10 and an absorber 1) are connected to an airtight container-like detection chamber 16 which also serves as a gas removal chamber via a gas extraction means 14 and an on-off valve 15, and, as shown in FIG. 2, 2 made of platinum (Pt) Partially stabilized zirconia (for example, 6% yttria stabilized zirconia (Zr0.94Y0.06O2-A bottomed cylindrical cell 19 having a structure sandwiching α)) faces the inside of the detection chamber 16 with one electrode 17a as an in-machine electrode and the outside atmospheric space with the other electrode 17b as an out-board electrode. It is attached to the chamber wall 16w of the detection chamber 16 in the state of facing A.
[0046]
Further, as shown in FIG. 2, a detection circuit 21 is provided for detecting a potential difference Ea between the electrodes 17a and 17b by connecting the inner electrode 17a and the outer electrode 17b with a conductive circuit 20, and further, an atmospheric space A and Gate means capable of switching between a closed state for restricting oxygen ion movement in the oxygen ion conductor 18 and an open state for releasing the restriction due to a difference in oxygen partial pressure with respect to the detection chamber 16 which is a low pressure airtight space on the working fluid system side. The switch element 22a opens the conductive circuit 20 on the detection circuit 21 side, and a DC power source 22b is connected to both electrodes 17a and 17b, and the DC power source 22b uses a predetermined DC voltage with the inner electrode 17a as a negative electrode. By applying Eb to both the electrodes 17a and 17b, the above closed state appears, and the switch element 22a conducts the conduction on the detection circuit 21 side. The electrodes 17a closes the road 20, turned down a connection of the DC power supply 22b for 17b, the electrodes 17a, is provided with power supply 22 for revealing the open state by stopping voltage application to 17b.
[0047]
As a control means, as shown in FIG. 3, the open / close valve 15 is limited for each set interval time Ta (for example, several hours) for a set valve opening time Tb (for example, several tens of seconds) that is extremely shorter than the interval time Ta. When the on-off valve 15 is in a closed state at a time close to each opening operation of the on-off valve 15 (that is, at the end of each interval time Ta), the set detection time Tc (for example, tens of seconds) ) Only when the periodic control for switching the power supply device 22 as the gate means to the open state (that is, the state where the voltage application is stopped) is performed for a limited time, and by the detection circuit 21 in the open state under the execution of the regular control. When the detected potential difference Ea becomes smaller than the set threshold value Ez, the subsequent valve opening operation of the on-off valve 15 is unsuccessful as an abnormality response control against vacuum break As well as to, it is provided with a controller 23 which performs issuance of shutdown and alarm absorption refrigerating machine.
[0048]
That is, in the cell 19, the main electrode at the inner electrode 17 a is caused by the oxygen partial pressure difference between the atmospheric space A and the detection chamber 16 in the open state where both electrodes 17 a and 17 b are connected by the conductive circuit 20 on the detection circuit 21 side. The oxygen ion conductor 18 is moved from the outside electrode 17b toward the inside electrode 17b through the reaction of the following formula (a).2-As a result, a potential difference Ea (a potential difference represented by the following Nernst equation (C)) between the inner electrode 17a and the outer electrode 17b corresponds to the oxygen partial pressure difference between the spaces A and 16. Arise.
2O2-→ O2+ 4e-  ……(I)
Ea = RT / 4F · ln (Poo / Poi) (C)
Where R: gas constant
T: Absolute temperature
F: Faraday constant
Poo: oxygen partial pressure in atmospheric space A
Poi: oxygen partial pressure in the detection chamber 16
[0049]
By using this, in the additional device X, the oxygen partial pressure in the detection chamber 16 is normally kept equal to the oxygen partial pressure of the working fluid system by periodically opening the on-off valve 15. When the potential difference Ea between the electrodes 17a and 17b in the open state detected by the detection circuit 21 at the end of the interval time Ta becomes smaller than the set threshold value Ez (that is, the oxygen content in the atmospheric space A and the detection chamber 16). When the pressure difference becomes smaller than a predetermined threshold value), a vacuum break occurs in the working fluid system, and the vacuum break reaches the detection chamber 16 by the previous opening of the on-off valve 15 or the on-off valve 15 is closed. When the vacuum break occurs in the detection chamber 16 itself during the valve period, the above-described abnormality response control is executed.
[0050]
Further, in this vacuum break detection, the on-off valve 15 is opened for each time in a timely manner, and the subsequent opening operation of the on-off valve 15 is performed as one of the abnormality control when it is recognized that the vacuum break has occurred. By not performing the operation, when the vacuum break is caused in the detection chamber 16 itself due to the breakage of the cell or the seal of the cell attachment portion, the vacuum break is prevented from reaching the working fluid system and operates. The fluid system is protected.
[0051]
In addition, in this additional device X, a voltage value satisfying the following equations (c), (d), and (e) is adopted as the DC voltage Eb applied to both electrodes 17a and 17b by the power supply device 22. Thus, the hydrogen gas H introduced into the detection chamber 16 when the on-off valve 15 is opened, together with the function of suppressing the generation of oxygen gas in the detection chamber 16 due to the reaction of the formula (A).2(That is, hydrogen gas generated in the working fluid system) is converted into water molecules H by reaction of the following equation (b) at the in-machine electrode 17a.2By coexisting in the closed state the function of removing in the form of O,
Ebx = RT / 4F · ln (Poo / Px) (Cha ')
Eby = Eo + RT / 2F · ln [Ps / (Poo1/2・ Py)] …… (D)
Ebx ≦ Eb ≦ Eby (e)
Where Eo: standard potential of the reaction in which water is produced from oxygen and hydrogen
R: Gas constant
T: Absolute temperature
F: Faraday constant
Ps: Water vapor partial pressure in the gas removal chamber 16
Poo: oxygen partial pressure in atmospheric space A
Px: Adjustment target upper limit value of oxygen partial pressure in the detection chamber 16
Py: Adjustment target upper limit value of hydrogen partial pressure in the detection chamber 16
H2+ O2-→ H2O + 2e-  (B)
As described above, in the detection mode in which the detection execution time Tc in the open state is limited to a time shorter than the detection pause period in the closed state, the oxygen partial pressure Poi in the detection chamber 16 is less than or equal to the adjustment target upper limit value Px. In addition to the function of maintaining the proper range, the hydrogen partial pressure Ph of the detection chamber 16 also has a function of maintaining the proper range of the adjustment target upper limit value Py or less, thereby generating the generated hydrogen gas H in the working fluid system.2It is made to function together as a device which removes.
[0052]
On the other hand, the gas extraction means 14 generates hydrogen gas H in the working fluid system.2And inhaled hydrogen gas H2Is supplied to the detection chamber 16 when the on-off valve 15 is opened, so that the hydrogen gas can be removed more efficiently. In the present embodiment, as shown in FIG. A part La ′ of the rare absorbing liquid La to be sent out is guided to the ejector 25 as a reference fluid through the branch path 24, and an appropriate portion of the working fluid system is obtained by the attraction action caused by the high-speed flow of the rare absorbing liquid La ′ in the ejector 25. Gas suction is performed from the suction path 26 (for example, the evaporator 10 or the absorber 1).
[0053]
Then, the diluted absorbing liquid La ′ and the sucked hydrogen gas H functioned as the reference fluid2Is ejected from the tip of the internal ejection pipe 27 connected to the downstream side of the ejector 25, so that the rare absorbing liquid La ′ and the suctioned hydrogen gas H are ejected at the ejection part.2And gas-liquid separation, and this separated hydrogen gas H2Is sent to the detection chamber 16 when the on-off valve 15 is opened. 28 is an ejection from the internal ejection pipe 27, and hydrogen gas H2And a dilute absorption liquid La ′ separated and returned to the common bottom of the absorber 1 and the evaporator 10 by a pressure difference.
[0054]
In FIG. 2, 29 is a screw fixture for fixing the cell 19, 30 is a seal member made of gold (Au) or copper (Cu), 31 is a heater for heating the cell 19 to a predetermined temperature, and the cell 19 is necessary. One or a plurality of cells are installed in the detection chamber 16 according to the amount of hydrogen gas removed. However, when a plurality of cells 19 are installed, it is not necessary to use all of the plurality of cells 19 for vacuum break detection. Only the cell 19 of the part is used for the detection of the vacuum break accompanied by the switching between the open state and the closed state, and the other cells 19 are used only for removing hydrogen gas while maintaining the application state of the DC voltage Eb. You may do it.
[0055]
In addition, about the absorption refrigerator of this embodiment, the following value can be mentioned as an example of the operation specification.
Ps = 0.04 × 101.325 (kPa)
Poo = 0.21 × 101.325 (kPa)
Eo = 1.11 (V)
T = 600 (K)
Px = 0.001 (kPa)
Py = 0.001 × 101.325 (kPa)
Eb = 0.955 (V)
Ez = 0.069 (V) (potential difference corresponding to Poi = 0.1 kPa)
[0056]
[Another embodiment]
Next, other embodiments of the present invention will be listed.
[0057]
In the above-described embodiment, a configuration is adopted in which the in-machine electrode 17a is exposed to the detection chamber 16 (gas removal chamber) connected to the working fluid system via the on-off valve 15, but instead, as shown in FIG. The cell 19 may be equipped in such a manner that the inner electrode 17a faces the detection chamber 16 ′ that is always in communication with an appropriate portion such as the absorber 1 and the evaporator 10 in the working fluid system through the communication passage 26 ′. Further, the cell 19 may be provided in such a state that the inner electrode 17a directly faces an appropriate portion such as the absorber 1 or the evaporator 10 in the working fluid system, and the operating flow that faces the inner electrode 17a. The low-pressure airtight space on the system side may be any suitable space of the working fluid system in the absorption refrigerator or a space additionally connected to the working fluid system.
[0058]
Further, in the case of adopting the above-described cell equipment configuration in which the on-off valve 15 is not provided, the gate means 22 (power supply device) is periodically and timed instead of the automatic detection with the on-off valve control shown in the above embodiment. The control means 23 executes periodic control for switching to the open state at the same time, and under the execution of this periodic control, the detection potential difference Ea by the detection circuit 21 when the gate means 22 is in the open state becomes smaller than the set threshold value Ez. Sometimes, the control means 23 may execute a predetermined abnormality response control.
[0059]
In the above-described embodiment, the potential difference Ea between the electrodes 17a and 17b in the state where the in-machine electrode 17a and the out-of-machine electrode 17b of the cell 19 are connected by the conductive circuit 20 (potential difference caused by oxygen ion conduction due to oxygen partial pressure difference). Is detected by the detecting means 21, and the vacuum break is detected based on the detected potential difference Ea. Instead of this, the current Ia in the conductive circuit 20 in a state where both electrodes 17a and 17b are connected by the conductive circuit 20 is detected. (A current generated by oxygen ion conduction due to an oxygen partial pressure difference) may be detected, and a vacuum break may be detected based on the detected current Ia.
[0060]
The gate means is not limited to the above-described power supply device 22 that brings out the closed state by applying the DC voltage Eb to both the electrodes 17a and 17b of the cell 19. In some cases, the both electrodes 17a and 17b are used. The closed state can be obtained by simply shutting off the conductive circuit 20 connecting the two, and the closed state can be obtained by switching between a state in which the outside electrode 17b is exposed to the atmospheric space A and a state in which it is shielded from the atmospheric space A. Various switching methods such as a method of switching and displaying the state and the open state can be adopted.
[0061]
In the above-described embodiment, the oxygen ion movement in the oxygen ion conductor 18 is limited to an appropriate amount in the closed state. However, in some cases, the oxygen ion movement in the oxygen ion conductor 18 in the closed state is limited. You may make it interrupt.
[0062]
In the apparatus configuration shown in the above-described embodiment, the gas extraction means 14 may be omitted. In addition, in the apparatus configuration shown in FIG. 4, the gas extraction means may be additionally provided. What kind of bleed-out type should be adopted may be appropriately determined according to conditions and the like.
[0063]
The porous inner electrode 17a and the porous outer electrode 17b in the cell 19 are not limited to platinum, and various electrode materials can be used as long as they have sufficient strength and corrosion resistance. The shape of 19 is not limited to the bottomed cylindrical shape as shown in the above-described embodiment, and may be a flat or corrugated cell shape, for example.
[0064]
The vacuum break detection device according to the present invention is not necessarily limited to use as a hydrogen gas removal device, and may be used only for vacuum break detection of an absorption refrigerator.
[0065]
The vacuum break detection device according to the present invention is not limited to a double-effect absorption refrigerator, but can be applied to various types of absorption refrigerators including a single-effect type and a triple-effect type, and a refrigerant other than water. It can also be applied to absorption refrigerators that use absorption liquids other than lithium bromide solutions.
[Brief description of the drawings]
1 is a block diagram of an absorption refrigerator
FIG. 2 is an enlarged view showing a cell structure and a structure around the cell.
FIG. 3 is a graph showing the detection operation of the control means.
FIG. 4 is a configuration diagram of an absorption refrigerator showing another embodiment.
[Explanation of symbols]
14 Gas extraction means
15 On-off valve
16 Low pressure airtight space, detection room
17a Inside electrode
17b Outer electrode
18 Oxygen ion conductor
19 cells
20 Conductive circuit
21 Detection means
22 Gate means, power supply
23 Control means
A Atmospheric space
Ea Potential difference
Eb Applied DC voltage

Claims (4)

多孔質の機内側電極と多孔質の機外側電極との間に酸素イオン伝導体を挟んでセルを形成し、
このセルを、吸収式冷凍機における動作流体系側の低圧気密空間に前記機内側電極を臨ませ、かつ、大気空間に前記機外側電極を臨ませる状態に配置し、
前記機内側電極と前記機外側電極とを導電回路で結んで両電極間の電位差又は前記導電回路の電流を検出する検出手段を設け、
前記酸素イオン伝導体における酸素イオン移動を制限又は遮断するクローズド状態と、その制限又は遮断を解除するオープン状態とに切り換え可能なゲート手段を設け、
前記ゲート手段を定期的かつ時限的にオープン状態に切り換える定期制御を実行するとともに、この定期制御の実行下において、前記ゲート手段がオープン状態にあるときの前記検出手段による検出電位差又は検出電流が設定閾値よりも小さくなったとき、所定の異常対応制御を実行する制御手段を設けてある吸収式冷凍機の真空破壊検出装置。
A cell is formed by sandwiching an oxygen ion conductor between the porous inner electrode and the porous outer electrode,
This cell is disposed in a state where the inner electrode faces the low-pressure airtight space on the working fluid system side in the absorption refrigerator and the outer electrode faces the atmospheric space,
A detecting means for detecting a potential difference between the electrodes or a current of the conductive circuit by connecting the inner electrode and the outer electrode with a conductive circuit ;
Providing a gate means capable of switching between a closed state for limiting or blocking oxygen ion movement in the oxygen ion conductor and an open state for releasing the limitation or blocking;
The periodic control for switching the gate means to the open state periodically and timely is executed, and the detection potential difference or the detection current by the detection means when the gate means is in the open state is set under the execution of the periodic control. A vacuum breakage detection device for an absorption refrigeration machine provided with a control means for executing predetermined abnormality response control when it becomes smaller than a threshold value .
多孔質の機内側電極と多孔質の機外側電極との間に酸素イオン伝導体を挟んでセルを形成し、
このセルを、吸収式冷凍機における動作流体系側の低圧気密空間に前記機内側電極を臨ませ、かつ、大気空間に前記機外側電極を臨ませる状態に配置し、
前記機内側電極と前記機外側電極とを導電回路で結んで両電極間の電位差又は前記導電回路の電流を検出する検出手段を設け、
前記酸素イオン伝導体における酸素イオン移動を制限又は遮断するクローズド状態と、その制限又は遮断を解除するオープン状態とに切り換え可能なゲート手段を設け、
前記機内側電極を臨ませる前記低圧気密空間として、吸収式冷凍機の動作流体系に対し開閉弁を介して接続した検出室を設け、
前記開閉弁を定期的かつ時限的に開弁状態にし、かつ、前記開閉弁の各回の開弁操作の近傍時期で前記開閉弁が閉弁状態にあるときに前記ゲート手段を時限的にオープン状態に切り換える定期制御を実行するとともに、この定期制御の実行下において、前記ゲート手段がオープン状態にあるときの前記検出手段による検出電位差又は検出電流が設定閾値よりも小さくなったとき、所定の異常対応制御として前記開閉弁の以降の開弁操作を不実行にする制御手段を設けてある吸収式冷凍機の真空破壊検出装置。
A cell is formed by sandwiching an oxygen ion conductor between the porous inner electrode and the porous outer electrode,
This cell is disposed in a state where the inner electrode faces the low-pressure airtight space on the working fluid system side in the absorption refrigerator and the outer electrode faces the atmospheric space,
A detecting means for detecting a potential difference between the electrodes or a current of the conductive circuit by connecting the inner electrode and the outer electrode with a conductive circuit;
And closed state to limit or block the oxygen ion migration in the oxygen ion conductor, a gate means capable of switching to an open state for releasing the restriction or blockage is provided,
As the low-pressure airtight space facing the in-machine electrode, a detection chamber connected to the working fluid system of the absorption chiller through an on-off valve is provided,
The gate means is opened in a timely manner when the on-off valve is opened regularly and in a timely manner, and the on-off valve is in a closed state at a timing close to each opening operation of the on-off valve. When the periodic potential control or the detected current by the detecting means when the gate means is in an open state becomes smaller than a set threshold value under the execution of the periodic control, a predetermined abnormality handling is performed. A vacuum breakage detection apparatus for an absorption refrigeration machine provided with control means for making the subsequent opening operation of the on-off valve non-executable as control .
前記ゲート手段として、前記機内側電極の方を負極にした状態で前記両電極に所定の直流電圧を印加することにより前記クローズド状態を現出し、かつ、その電圧印加を停止することで前記オープン状態を現出する電源装置を設けてある請求項1又は2記載の吸収式冷凍機の真空破壊検出装置。As the gate means, the closed state is revealed by applying a predetermined DC voltage to both electrodes in a state where the in-machine electrode is set to a negative electrode, and the open state is stopped by stopping the voltage application. The vacuum break detection device for an absorption refrigerator according to claim 1 or 2, further comprising a power supply device for displaying 前記動作流体系での発生水素ガスを前記開閉弁の開弁状態において前記検出室へ送り込むガス抽気手段を設けてある請求項2記載の吸収式冷凍機の真空破壊検出装置。The vacuum breakage detection device for an absorption refrigerating machine according to claim 2, further comprising gas extraction means for sending hydrogen gas generated in the working fluid system into the detection chamber when the on-off valve is open .
JP2000249295A 2000-08-21 2000-08-21 Absorption type vacuum breaker detector Expired - Fee Related JP4201467B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000249295A JP4201467B2 (en) 2000-08-21 2000-08-21 Absorption type vacuum breaker detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000249295A JP4201467B2 (en) 2000-08-21 2000-08-21 Absorption type vacuum breaker detector

Publications (2)

Publication Number Publication Date
JP2002061997A JP2002061997A (en) 2002-02-28
JP4201467B2 true JP4201467B2 (en) 2008-12-24

Family

ID=18739055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000249295A Expired - Fee Related JP4201467B2 (en) 2000-08-21 2000-08-21 Absorption type vacuum breaker detector

Country Status (1)

Country Link
JP (1) JP4201467B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02275262A (en) * 1989-04-14 1990-11-09 Sanyo Electric Co Ltd Absorptive freezer
JPH0487231A (en) * 1990-07-30 1992-03-19 Meidensha Corp Vacuum deterioration detecting device
JP3253985B2 (en) * 1991-10-11 2002-02-04 関西電力株式会社 Power storage device
JP3195086B2 (en) * 1992-11-30 2001-08-06 大阪瓦斯株式会社 Absorption refrigerator
JPH1163742A (en) * 1997-08-22 1999-03-05 Mitsubishi Denki Bill Techno Service Kk Device for detecting and controlling degree of vacuum in drum of absorptive freezer

Also Published As

Publication number Publication date
JP2002061997A (en) 2002-02-28

Similar Documents

Publication Publication Date Title
EP2861919B1 (en) Refrigeration system with purge using enrivonmentally-suitable chiller refrigerant
KR101809963B1 (en) Absorption Chiller
KR100892547B1 (en) Absorption type water chiller and heater
JP6076628B2 (en) Drain discharge device and air compressor
JP4201467B2 (en) Absorption type vacuum breaker detector
JPH0996456A (en) Control method and control device for absorption refrigerator
TWI534400B (en) Oxygen depletion system
US7871731B2 (en) Fuel cell assembly operating method and fuel cell system
JP5103719B2 (en) Fuel cell system
JP2008130392A (en) Fuel cell system
CN207778882U (en) Fluid injection control system and fluid circulating system
JP2005291564A (en) Hydrogen gas discharge device
JP2001208453A (en) Equipment for removing hydrogen gas of absorption refrigerating machine
WO2023169344A1 (en) Refrigerator and control method therefor
KR20220129887A (en) Absorbed chiller
JP2002213844A (en) Absorption refrigerating device
KR20130068219A (en) Refrigerant contamination discharge device of absorption type refrigerator
JPH10288426A (en) Refrigerator
KR100386099B1 (en) Device and Method for Automation Keep Control of a Refrigerant in Absorption Refrigerator
JPH02176374A (en) Absorption refrigerator
KR19990029471U (en) Refrigerant Purifier of Absorption Chiller
JP5261118B2 (en) Absorption type water heater
CN117516026A (en) Storage device and refrigerating method thereof
JP2010071605A (en) Cooling storage
JPH10113648A (en) Water circulating system and administrative controller therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081007

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141017

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees