JP4157070B2 - Elastic bushing for vibration isolation - Google Patents

Elastic bushing for vibration isolation Download PDF

Info

Publication number
JP4157070B2
JP4157070B2 JP2004102825A JP2004102825A JP4157070B2 JP 4157070 B2 JP4157070 B2 JP 4157070B2 JP 2004102825 A JP2004102825 A JP 2004102825A JP 2004102825 A JP2004102825 A JP 2004102825A JP 4157070 B2 JP4157070 B2 JP 4157070B2
Authority
JP
Japan
Prior art keywords
outer cylinder
inner cylinder
elastic
cylinder
inclined surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004102825A
Other languages
Japanese (ja)
Other versions
JP2005291228A (en
Inventor
努 小川
修一 小野
邦彦 木村
英司 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2004102825A priority Critical patent/JP4157070B2/en
Publication of JP2005291228A publication Critical patent/JP2005291228A/en
Application granted granted Critical
Publication of JP4157070B2 publication Critical patent/JP4157070B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Vehicle Body Suspensions (AREA)
  • Springs (AREA)
  • Body Structure For Vehicles (AREA)

Description

本発明は防振用弾性ブッシュに係り、特に、外筒と内筒との間に弾性体を設け、外筒を一方の部材に取り付け、内筒を他方の部材に取り付けることで、それぞれの部材を弾性体を介して連結する防振用弾性ブッシュに関する。   The present invention relates to a vibration-proof elastic bush, and in particular, an elastic body is provided between an outer cylinder and an inner cylinder, the outer cylinder is attached to one member, and the inner cylinder is attached to the other member. The present invention relates to an anti-vibration elastic bush that connects the two through an elastic body.

車両のなかには、内燃機関および変速機からなるパワーユニット、あるいはサスペンション部材をサブフレームに取り付け、このサブフレームを車体に取り付けることで、パワーユニット、あるいはサスペンション部材を車体に取り付けるタイプのものがある。
このタイプの車両は、パワーユニットの振動や、サスペンション部材の振動を減衰させて車体に伝えるために、サブフレームを防振性を備えた取付部材で取り付ける。
この取付部材として、外筒と内筒との間にゴム状弾性体を備えた防振用弾性ブッシュが知られている(例えば、特許文献1参照。)。
特開2003−97629号公報(図5)
Some vehicles include a power unit including an internal combustion engine and a transmission, or a suspension member attached to a subframe, and the subframe is attached to the vehicle body so that the power unit or the suspension member is attached to the vehicle body.
In this type of vehicle, in order to attenuate the vibration of the power unit and the vibration of the suspension member and transmit the vibration to the vehicle body, the sub frame is attached with an anti-vibration mounting member.
As this mounting member, there is known an anti-vibration elastic bush provided with a rubber-like elastic body between an outer cylinder and an inner cylinder (for example, see Patent Document 1).
Japanese Patent Laying-Open No. 2003-97629 (FIG. 5)

図20は従来の基本構成を説明する図である。
防振用弾性ブッシュ300によれば、外筒301と内筒302との間にゴム状弾性体303を備え、外筒301をサブフレーム304の取付孔305に圧入し、内筒302内にボルト306を差し込み、ナット307で内筒302を固定することで、内筒302を車体フレーム308に取り付ける。
これにより、防振用弾性ブッシュ300を介してサブフレーム304を車体フレーム308に取り付ける。
FIG. 20 is a diagram for explaining a conventional basic configuration.
According to the vibration-proof elastic bush 300, the rubber-like elastic body 303 is provided between the outer cylinder 301 and the inner cylinder 302, the outer cylinder 301 is press-fitted into the mounting hole 305 of the subframe 304, and a bolt is inserted into the inner cylinder 302. The inner cylinder 302 is attached to the vehicle body frame 308 by inserting 306 and fixing the inner cylinder 302 with the nut 307.
Thus, the sub frame 304 is attached to the vehicle body frame 308 via the vibration-proof elastic bush 300.

よって、サブフレーム304に振動が発生して、外筒301に、力F5が軸線309に対して直交する方向に矢印の如くかかると、外筒301および内筒302間のゴム状弾性体303に圧縮力が作用する。
これにより、ゴム状弾性体303が圧縮して振動を吸収し、内筒302に伝わる振動を減衰する。車体フレーム308に取り付けた内筒302の振動を減衰することで、車体フレーム308に伝わる振動を減衰する。
Therefore, when vibration is generated in the subframe 304 and the force F5 is applied to the outer cylinder 301 in the direction perpendicular to the axis 309 as indicated by an arrow, the rubber-like elastic body 303 between the outer cylinder 301 and the inner cylinder 302 is applied to the outer cylinder 301. A compression force acts.
As a result, the rubber-like elastic body 303 compresses and absorbs vibration, and attenuates the vibration transmitted to the inner cylinder 302. By attenuating the vibration of the inner cylinder 302 attached to the vehicle body frame 308, the vibration transmitted to the vehicle body frame 308 is attenuated.

加えて、ゴム状弾性体に中間板を埋設したゴム状弾性体303に圧縮力が作用した場合、ゴム状弾性体303のばね定数を比較的大きく確保できる。よって、サブフレーム304の変位量を抑えて、サブフレーム304に発生する振動を良好に減衰する。   In addition, when a compressive force is applied to the rubber-like elastic body 303 in which the intermediate plate is embedded in the rubber-like elastic body, a relatively large spring constant of the rubber-like elastic body 303 can be secured. Therefore, the amount of displacement of the subframe 304 is suppressed, and vibrations generated in the subframe 304 are satisfactorily damped.

しかし、防振用弾性ブッシュ300によれば、外筒301および内筒302は、それぞれ周壁を軸線309に平行に形成し、これらの周壁にゴム状弾性体303を設けた。
このため、サブフレーム304に振動が発生して、外筒301に、力F6が軸線309の方向にがかかると、ゴム状弾性体303に剪断力が作用する。
However, according to the anti-vibration elastic bush 300, the outer cylinder 301 and the inner cylinder 302 have peripheral walls formed in parallel to the axis 309, and a rubber-like elastic body 303 is provided on these peripheral walls.
For this reason, when vibration occurs in the subframe 304 and a force F6 is applied to the outer cylinder 301 in the direction of the axis 309, a shearing force acts on the rubber-like elastic body 303.

ゴム状弾性体303に剪断力が作用した場合には、圧縮力が作用した場合と比較して、ゴム状弾性体303のばね定数を比較的大きく確保することは難しい。
よって、サブフレーム304の変位量を抑え難く、サブフレーム304に発生する振動を良好に減衰することは難しい。
When a shearing force is applied to the rubber-like elastic body 303, it is difficult to ensure a relatively large spring constant of the rubber-like elastic body 303 as compared with a case where a compressive force is applied.
Therefore, it is difficult to suppress the displacement amount of the subframe 304, and it is difficult to satisfactorily attenuate the vibration generated in the subframe 304.

この対策として、ゴム状弾性体303の下端部に突起303aを形成し、この突起303aをストッパ金具311に当接させる。
これにより、外筒301に、力F6が軸線309の方向にがかかった場合のゴム状弾性体303のばね定数を比較的大きく確保する。
よって、サブフレーム304の変位量を抑えて、サブフレーム304に発生する振動を良好に減衰する。
As a countermeasure, a protrusion 303 a is formed at the lower end of the rubber-like elastic body 303, and the protrusion 303 a is brought into contact with the stopper fitting 311.
This ensures a relatively large spring constant of the rubber-like elastic body 303 when the force F <b> 6 is applied to the outer cylinder 301 in the direction of the axis 309.
Therefore, the amount of displacement of the subframe 304 is suppressed, and vibrations generated in the subframe 304 are satisfactorily attenuated.

ここで、外筒301に、力F6が軸線309の方向にがかかった場合を考慮して、ゴム状弾性体303のばね定数を好ましい状態に設定するためには、ゴム状弾性体303の突起303aにストッパ金具311を当接させた際の押圧力を好適に調整する必要がある。
ストッパ金具311による突起303aへの押圧力を調整するために、内筒302とストッパ金具311との間にスペーサ312を配置する。
Here, in consideration of the case where the force F6 is applied to the outer cylinder 301 in the direction of the axis 309, in order to set the spring constant of the rubber-like elastic body 303 to a preferable state, the protrusion of the rubber-like elastic body 303 is used. It is necessary to suitably adjust the pressing force when the stopper fitting 311 is brought into contact with 303a.
A spacer 312 is disposed between the inner cylinder 302 and the stopper fitting 311 in order to adjust the pressing force applied to the protrusion 303 a by the stopper fitting 311.

しかし、防振用弾性ブッシュ300を取り付ける際に生じる、組付け公差などを考慮すると、一定の厚さのスペーサ312では、突起303aへの押圧力を好適に調整することは難しい。
このため、防振用弾性ブッシュ300を取り付ける際に、ストッパ金具312による突起303aへの押圧力を好適に確保するように、スペーサ312の厚さを選択する必要があり、そのことが防振用弾性ブッシュ300の取付け作業の簡素化を図る妨げになっていた。
However, in consideration of assembly tolerances and the like generated when attaching the vibration-proof elastic bushing 300, it is difficult to suitably adjust the pressing force to the protrusion 303a with the spacer 312 having a certain thickness.
For this reason, when attaching the vibration-proof elastic bushing 300, it is necessary to select the thickness of the spacer 312 so that the pressing force to the protrusion 303a by the stopper metal fitting 312 is suitably secured. This hinders simplification of the mounting operation of the elastic bush 300.

本発明は、防振効果を確保し、かつ取付け作業の簡素化を図ることができる防振用弾性ブッシュを提供することを課題とする。   An object of the present invention is to provide a vibration-proof elastic bushing that can secure a vibration-proofing effect and can simplify installation work.

請求項1に係る発明は、外筒の内側に内筒を組み込むとともに、外筒と内筒との間に弾性体を設け、外筒を一方の部材に取り付け、内筒を他方の部材に取り付けることで、それぞれの部材を弾性体を介して連結する防振用弾性ブッシュにおいて、前記内筒の外周に、軸方向で、少なくとも部分的に径の大きな内筒大径部を設けるとともに、前記外筒の内周に、軸方向で、少なくとも部分的に径の小さな外筒小径部を設け、前記内筒大径部および外筒小径部を対向させ、内筒大径部と外筒小径部との間に前記弾性体を設けた防振用弾性ブッシュであって、前記少なくとも部分的に径の大きな内筒大径部を、前記内筒の端部に向けて径が徐々に大きくなるように傾斜した内筒傾斜面で谷形に形成し、前記少なくとも部分的に径の小さな外筒小径部を、前記内筒傾斜面に対向し、かつ、前記外筒の端部に向けて径が徐々に大きくなるように傾斜した外筒傾斜面で山形に形成し、前記内筒傾斜面と前記外筒傾斜面との間の間隔が前記防振用弾性ブッシュの端部に向けて徐々に大きくなるように前記内筒傾斜面および前記外筒傾斜面の傾斜角を異ならせ、前記内筒傾斜面および前記外筒傾斜面の間に前記弾性体を設け、前記谷形に形成した内筒大径部の最も小径の部位、および前記山形に形成した外筒小径部の最も小径の部位において、前記外筒、前記内筒および前記弾性体を、軸線方向に直交させて分割し、前記外筒の内周のうち前記軸線方向の中央に、前記山形に形成した外筒小径部を設け、前記外筒の内周のうち前記外筒小径部を除いた端部を、前記軸線方向に対して平行に形成したことを特徴とする。 The invention according to claim 1 incorporates the inner cylinder inside the outer cylinder, provides an elastic body between the outer cylinder and the inner cylinder, attaches the outer cylinder to one member, and attaches the inner cylinder to the other member. Thus, in the elastic bushing for vibration isolation in which the respective members are connected via the elastic body, the outer periphery of the inner cylinder is provided with an inner cylinder large-diameter portion having a large diameter at least partially in the axial direction, and the outer cylinder An outer cylinder small diameter portion having a small diameter is provided at least partially in the axial direction on the inner circumference of the cylinder, the inner cylinder large diameter portion and the outer cylinder small diameter portion are opposed to each other, and the inner cylinder large diameter portion and the outer cylinder small diameter portion a vibration isolating elastic bushing provided with the elastic body between the at least partially a larger inner cylinder large-diameter portion of the diameter, the diameter toward the end portion of the inner cylinder is gradually large Kunar so The outer cylinder small diameter portion which is formed in a valley shape with the inclined surface of the inner cylinder inclined to the at least partly the diameter The inner cylinder inclined surface and the outer cylinder are formed in a mountain shape with the outer cylinder inclined surface facing the inner cylinder inclined surface and inclined so as to gradually increase in diameter toward the end of the outer cylinder. The inner cylinder inclined surface and the outer cylinder inclined surface are made different from each other so that an interval between the inclined surface gradually increases toward an end of the vibration-proof elastic bushing, and the inner cylinder inclined surface and The elastic body is provided between the inclined surfaces of the outer cylinder, and the outer diameter of the inner cylinder large diameter portion formed in the valley shape is the smallest diameter portion and the outer cylinder small diameter portion formed in the mountain shape is the smallest diameter portion. The cylinder, the inner cylinder, and the elastic body are divided so as to be orthogonal to the axial direction, and an outer cylinder small-diameter portion formed in the mountain shape is provided at the center in the axial direction on the inner circumference of the outer cylinder, and the outer cylinder the inner peripheral end except for the outer tube small-diameter portion of, and formed parallel to the axial direction octopus The features.

内筒に、軸方向で、少なくとも部分的に径の大きな内筒大径部を設けるとともに、外筒に、軸方向で、少なくとも部分的に径の小さな外筒小径部を設け、内筒大径部と内筒小径部とを互いに対向させた。そして、内筒大径部と内筒小径部との間に弾性体を設けた。
よって、例えば外筒が軸線方向に振動した場合でも、内筒大径部と内筒小径部との間に設けた弾性体に圧縮力をかけて、弾性体の軸線方向のばね定数を比較的大きく確保する。
これにより、外筒の変位量を抑えて、外筒に発生する振動を良好に減衰することができる。
The inner cylinder is provided with an inner cylinder large-diameter portion at least partially large in the axial direction, and the outer cylinder is provided with an outer cylinder small-diameter portion at least partially small in the axial direction. The part and the inner cylinder small diameter part were opposed to each other. And the elastic body was provided between the inner cylinder large diameter part and the inner cylinder small diameter part.
Therefore, for example, even when the outer cylinder vibrates in the axial direction, a compressive force is applied to the elastic body provided between the inner cylinder large diameter portion and the inner cylinder small diameter portion so that the spring constant in the axial direction of the elastic body is relatively Secure large.
Thereby, the amount of displacement of the outer cylinder can be suppressed, and the vibration generated in the outer cylinder can be attenuated satisfactorily.

さらに、この防振用弾性ブッシュによれば、内筒大径部と内筒小径部とを互いに対向させることで、防振用弾性ブッシュの内部に、弾性体の軸線方向のばね定数を比較的大きく確保する手段を組み込むことができる。
よって、通常の防振用弾性ブッシュを部材に組み込む際に必要とされていた、弾性体の突起に対する押圧力をスペーサで調整する必要はない。
これにより、防振用弾性ブッシュの取付け作業を簡素化することができる。
また、外筒、内筒および弾性体を、軸線方向に直交させて分割する構成にした。よって、例えば防振用弾性ブッシュを軸線方向に直交させて2分割することで、分割したうちの、一方の防振用弾性ブッシュのばね定数と、他方の防振用弾性ブッシュのばね定数とを異ならせることが可能になる。
これにより、振動体の振動条件に合わせて、一方の防振用弾性ブッシュのばね定数と、他方の防振用弾性ブッシュのばね定数とを好適に組み合わせることが可能になり、防振用弾性ブッシュの減衰効果をより一層高めることができる。
Furthermore, according to the elastic bushing for vibration isolation, the spring constant in the axial direction of the elastic body is relatively set inside the elastic bushing for vibration isolation by making the inner cylinder large diameter portion and the inner cylinder small diameter portion face each other. Means for ensuring a large amount can be incorporated.
Therefore, it is not necessary to adjust the pressing force with respect to the protrusion of the elastic body, which has been required when incorporating a normal vibration-proofing elastic bush into the member, with the spacer.
Thereby, the installation work of the elastic bushing for vibration isolation can be simplified.
Further, the outer cylinder, the inner cylinder, and the elastic body are divided so as to be orthogonal to the axial direction. Thus, for example, by dividing the vibration isolating elastic bushing into two perpendicularly to the axial direction, the spring constant of one of the vibration isolating elastic bushes and the spring constant of the other vibration isolating elastic bushing are divided. It becomes possible to make it different.
This makes it possible to suitably combine the spring constant of one vibration-proof elastic bush and the spring constant of the other vibration-proof elastic bush in accordance with the vibration conditions of the vibrating body. The damping effect can be further enhanced.

請求項2は、外筒を軸線方向に分割した複数の分割体で構成し、軸線から外筒小径部までの最小距離を、軸線から内筒大径部までの最大距離より小さくしたことを特徴とする。   A second aspect of the present invention is configured by a plurality of divided bodies obtained by dividing the outer cylinder in the axial direction, and the minimum distance from the axis to the outer cylinder small-diameter portion is smaller than the maximum distance from the axis to the inner cylinder large-diameter portion. And

軸線から外筒小径部までの最小距離を、軸線から内筒大径部までの最大距離より小さくすることで、外筒小径部の傾斜を大きく確保する。
よって、例えば外筒が軸線方向に振動した場合に、弾性体のうち、内筒大径部と内筒小径部との間に設けた部位のばね定数、すなわち弾性体の軸線方向のばね定数をより大きく確保することができる。
By making the minimum distance from the axis line to the outer cylinder small diameter part smaller than the maximum distance from the axis line to the inner cylinder large diameter part, a large inclination of the outer cylinder small diameter part is ensured.
Therefore, for example, when the outer cylinder vibrates in the axial direction, the spring constant of the portion provided between the large diameter portion of the inner cylinder and the small diameter portion of the inner cylinder, that is, the spring constant in the axial direction of the elastic body is determined. Larger can be secured.

ここで、軸線から外筒小径部までの最小距離を、軸線から内筒大径部までの最大距離より大きくすると、外筒の内部に内筒を組み込む際に、外筒小径部に内筒大径部が当たり、外筒の内部に内筒を組み込むことは難しい。
そこで、外筒を軸線方向に分割し、これらの分割体を内筒の周囲に配置して一体化することにした。
これにより、軸線から外筒小径部までの最小距離を、軸線から内筒大径部までの最大距離より大きくしても、外筒の内部に内筒を組み込むことができる。
Here, when the minimum distance from the axis to the outer cylinder small-diameter portion is larger than the maximum distance from the axis to the inner cylinder large-diameter portion, when the inner cylinder is assembled inside the outer cylinder, the inner cylinder large It is difficult to incorporate the inner cylinder inside the outer cylinder by hitting the diameter portion.
Therefore, the outer cylinder is divided in the axial direction, and these divided bodies are arranged around the inner cylinder to be integrated.
Thereby, even if the minimum distance from the axis to the outer cylinder small-diameter portion is larger than the maximum distance from the axis to the inner cylinder large-diameter portion, the inner cylinder can be incorporated inside the outer cylinder.

請求項1に係る発明では、内筒の内筒大径部と外筒の外筒小径部とを互いに対向させて、弾性体の軸線方向のばね定数を比較的大きく確保することで、振動を良好に減衰することが可能になり、防振効果を確保できるという利点がある。
また、弾性体の軸線方向のばね定数を確保する手段を、防振用弾性ブッシュの内部に組み込むことで、防振用弾性ブッシュの取付け作業の簡素化を図ることができるという利点がある。
さらに、防振用弾性ブッシュを軸線方向に直交させて分割し、分割した防振用弾性ブッシュのばね定数を異ならせることで、ばね定数を振動に合わせて良好に設定し、防振用弾性ブッシュの減衰効果をより一層高めることができるという利点がある。
In the first aspect of the invention, the inner cylinder large-diameter portion of the inner cylinder and the outer cylinder small-diameter portion of the outer cylinder are opposed to each other to ensure a relatively large spring constant in the axial direction of the elastic body. It is possible to attenuate well and there is an advantage that a vibration isolation effect can be secured.
In addition, there is an advantage that it is possible to simplify the mounting operation of the vibration isolating elastic bushing by incorporating a means for ensuring the spring constant in the axial direction of the elastic body into the vibration isolating elastic bush.
Furthermore, the vibration-proof elastic bushings are divided perpendicularly to the axial direction, and the spring constants of the divided vibration-proof elastic bushings are made different so that the spring constants are set appropriately according to the vibrations. There is an advantage that the damping effect can be further enhanced.

請求項2に係る発明では、外筒を軸線方向に分割し、かつ外筒小径部の傾斜を大きく確保することで、弾性体の軸線方向のばね定数をより大きく確保することができるという利点がある。   In the invention which concerns on Claim 2, an outer cylinder is divided | segmented into an axial direction, and the advantage that the spring constant of the axial direction of an elastic body can be ensured more largely by ensuring the inclination of a small diameter part of an outer cylinder large. is there.

本発明を実施するための最良の形態を添付図に基づいて以下に説明する。なお、「前」、「後」、「左」、「右」、「上」、「下」は運転者から見た方向に従い、Frは前側、Rrは後側、Lは左側、Rは右側を示す。   The best mode for carrying out the present invention will be described below with reference to the accompanying drawings. “Front”, “Rear”, “Left”, “Right”, “Up”, “Down” follow the direction seen from the driver, Fr is front, Rr is rear, L is left, R is right Indicates.

図1は本発明に係る第1実施の形態の防振用弾性ブッシュを備えた車体前部構造を示す斜視図である。
車両10は車体の前部を構成する車体前部構造20を備える。この車体前部構造20は、車体前後方向に延びた左右のフロントサイドフレーム(他方の部材)21,21と、フロントサイドフレーム21,21の車幅方向外側で、かつ上方で車体前後に延びた左右のアッパフレーム22,22と、フロントサイドフレーム21,21とアッパフレーム22,22との間に掛け渡した左右のフロントダンパハウジング23,23と、左右のフロントサイドフレーム21,21の前部並びに左右のアッパフレーム22,22の前部に結合したフロントバルクヘッド24とを備える。
FIG. 1 is a perspective view showing a front structure of a vehicle body provided with a vibration-proof elastic bushing according to a first embodiment of the present invention.
The vehicle 10 includes a vehicle body front structure 20 that forms a front portion of the vehicle body. The vehicle body front structure 20 extends from the left and right front side frames (the other member) 21 and 21 extending in the longitudinal direction of the vehicle body and from the front side frames 21 and 21 to the vehicle longitudinal direction outside and in the vehicle width direction. Left and right upper frames 22, 22; left and right front damper housings 23, 23 spanned between the front side frames 21, 21 and the upper frames 22, 22; and front portions of the left and right front side frames 21, 21; And a front bulkhead 24 coupled to the front portions of the left and right upper frames 22, 22.

フロントバルクヘッド24は、左右のフロントサイドフレーム21,21の前部下方で車幅方向に延びたロアクロスメンバ25と、ロアクロスメンバ25の両端部から上方へ延びた左右のサイドステー26,26と、これらのサイドステー26,26の上端に結合すべく車幅方向に延びたアッパクロスメンバ27とを備える。
アッパクロスメンバ27の左右両端部から、左右の延長部28,28を斜め後方へ延ばし、延長部28,28の端部を左右のアッパフレーム22,22に連結する。
The front bulkhead 24 includes a lower cross member 25 extending in the vehicle width direction below the front portions of the left and right front side frames 21, 21, and left and right side stays 26, 26 extending upward from both ends of the lower cross member 25. And an upper cross member 27 extending in the vehicle width direction so as to be coupled to the upper ends of the side stays 26, 26.
From left and right ends of the upper cross member 27, left and right extensions 28, 28 extend obliquely rearward, and ends of the extensions 28, 28 are connected to the left and right upper frames 22, 22.

フロントサイドフレーム21,21の後端から、左右のフロアフレーム(他方の部材)31,31をそれぞれ車体後方に向けて延ばす。
そして、左右のフロントサイドフレーム21,21のそれぞれの前部と、左右のフロアフレーム31,31とに、一方の部材としてのフロントサブフレーム(以下、「サブフレーム」という)41の前後左右の端部(すなわち、4箇所の端部)を、本発明に係る防振用弾性ブッシュ40…(…は複数を示す。以下同じ。)を介してそれぞれ吊り下げる。
From the rear ends of the front side frames 21 and 21, left and right floor frames (other members) 31 and 31 are respectively extended toward the rear of the vehicle body.
The front and rear left and right ends of a front sub-frame (hereinafter referred to as “sub-frame”) 41 as one member are respectively connected to the front portions of the left and right front side frames 21 and 21 and the left and right floor frames 31 and 31. The parts (that is, the four end parts) are respectively suspended through the vibration-proof elastic bushes 40 according to the present invention (... indicates a plurality. The same applies hereinafter).

サブフレーム41は、右半部に横置きエンジン43を取り付けるとともに、左半部にトランスミッション44を取り付けたものである。トランスミッション44は、出力側から後方にプロペラシャフト(図示せず)を延ばして動力を伝達する。
なお、エンジン43とトランスミッション44とは一体に連結することで、エンジン/トランスミッションユニット45を構成する。
サブフレーム41の左右の前端部には、左右のステー構造80,81を備える。
The subframe 41 has a horizontal engine 43 attached to the right half and a transmission 44 attached to the left half. The transmission 44 transmits power by extending a propeller shaft (not shown) rearward from the output side.
The engine 43 and the transmission 44 are integrally connected to constitute an engine / transmission unit 45.
Left and right stay structures 80 and 81 are provided at the left and right front ends of the subframe 41.

左フロントダンパハウジング23には、左フロントサスペンション46のフロントクッション47を備える。
同様に、右フロントダンパハウジング23には、右フロントサスペンション46(図示せず)のフロントクッション47(図示せず)を備える。
The left front damper housing 23 includes a front cushion 47 for the left front suspension 46.
Similarly, the right front damper housing 23 includes a front cushion 47 (not shown) of a right front suspension 46 (not shown).

図2は第1実施の形態に係る防振用弾性ブッシュを備えたサブフレームを示す斜視図である。
サブフレーム41は、金属材料製品、例えばアルミニウム製品又はアルミニウム合金製品(以下、総称して「アルミニウム合金製品」と言う。)である。
このサブフレーム41は、平面視略井桁状を呈し、車体の前後方向に延びる左右の縦メンバ61,61と、これらの縦メンバ61,61の前端間に掛け渡すべく車体の左右方向に延びる前部横メンバ62と、左右の縦メンバ61,61の後端間に掛け渡すべく車体の左右方向に延びる後部横メンバ63と、左右の縦メンバ61,61の前端部に前部横メンバ62の左右端部を連結する左右の連結部材64,64とを備え、左右の縦メンバ61,61の後端部に後部横メンバ63の左右端部を連結したものである。
FIG. 2 is a perspective view showing a subframe provided with the vibration-proof elastic bushing according to the first embodiment.
The sub-frame 41 is a metal material product, for example, an aluminum product or an aluminum alloy product (hereinafter collectively referred to as “aluminum alloy product”).
The sub-frame 41 has a substantially cross-beam shape in plan view, and has left and right vertical members 61 and 61 extending in the front-rear direction of the vehicle body, and a front portion extending in the left-right direction of the vehicle body so as to span between the front ends of these vertical members 61 and 61 The lateral member 62, the rear lateral member 63 extending in the left-right direction of the vehicle body so as to span between the rear ends of the left and right vertical members 61, 61, and the front lateral member 62 at the front end of the left and right vertical members 61, 61 Left and right connecting members 64 and 64 for connecting the left and right end portions are provided, and the left and right end portions of the rear horizontal member 63 are connected to the rear end portions of the left and right vertical members 61 and 61, respectively.

左右の縦メンバ61,61は、例えば筒状の押出し材(押出し成形品)からなる角パイプを、部分的に凹凸形状に形成した成形品のサイドメンバである。
前部横メンバ62は、例えば筒状の押出し材(押出し成形品)からなる丸パイプのクロスメンバである。
The left and right vertical members 61, 61 are side members of a molded product in which a square pipe made of, for example, a cylindrical extruded material (extruded molded product) is partially formed into an uneven shape.
The front horizontal member 62 is a round pipe cross member made of, for example, a cylindrical extruded material (extruded product).

左右の連結部材64,64は、平面視略L字状を呈するダイカスト製品であって、車体取付部64aを一体に備え、この車体取付部64aに、上下方向に貫通した嵌合孔64b(左側の嵌合孔64bのみを図3に示す)を備える。嵌合孔64b,64bに、防振用弾性ブッシュ40,40をそれぞれ圧入する。
左右の連結部材64,64に縦メンバ61,61および前部横メンバ62を差し込んで、それぞれの部材61,61,62を一体的に接合する。
The left and right connecting members 64, 64 are die-cast products having a substantially L shape in plan view, and are integrally provided with a vehicle body attachment portion 64a, and a fitting hole 64b (left side) penetrating in the vehicle body attachment portion 64a in the vertical direction. Only the fitting hole 64b is shown in FIG. Anti-vibration elastic bushings 40 and 40 are press-fitted into the fitting holes 64b and 64b, respectively.
The vertical members 61, 61 and the front horizontal member 62 are inserted into the left and right connecting members 64, 64, and the members 61, 61, 62 are joined together.

後部横メンバ63は、平面視略H字状のダイカスト製品からなるクロスメンバである。具体的には、後部横メンバ63は、梁部66を上方へ凸となる湾曲状に形成し、左右端に車体の前後方向に延びる左右の副縦メンバ71,71をそれぞれ一体に形成したものである。
左右の副縦メンバ71,71は、後部に上下方向に貫通した嵌合孔72,72を有する。嵌合孔72,72に、防振用弾性ブッシュ40,40をそれぞれ圧入する。
The rear horizontal member 63 is a cross member made of a die-cast product having a substantially H shape in plan view. Specifically, the rear horizontal member 63 is formed by forming the beam portion 66 in a curved shape that protrudes upward, and integrally forming left and right sub-vertical members 71, 71 extending in the front-rear direction of the vehicle body at the left and right ends, respectively. It is.
The left and right sub-vertical members 71 and 71 have fitting holes 72 and 72 penetrating in the vertical direction at the rear part. Anti-vibration elastic bushes 40 and 40 are press-fitted into the fitting holes 72 and 72, respectively.

このように、左右の連結部材64,64の嵌合孔64b,64bに、防振用弾性ブッシュ40,40をそれぞれ圧入した状態で、防振用弾性ブッシュ40,40にボルト74,74を差し込む。差し込んだボルト74,74を左右のフロントサイドフレーム21,21(図1参照)の前端部に取り付ける。   In this manner, the bolts 74 and 74 are inserted into the vibration-proof elastic bushes 40 and 40 in a state where the vibration-proof elastic bushes 40 and 40 are press-fitted into the fitting holes 64b and 64b of the left and right connecting members 64 and 64, respectively. . The inserted bolts 74 and 74 are attached to the front end portions of the left and right front side frames 21 and 21 (see FIG. 1).

さらに、左右の副縦メンバ71,71の嵌合孔72,72に、防振用弾性ブッシュ40,40をそれぞれ圧入した状態で、防振用弾性ブッシュ40,40にボルト74,74を差し込む。差し込んだボルト74,74を左右のフロアフレーム31,31(図1参照)に取り付ける。
これにより、図1に示す左右のフロントサイドフレーム21,21のそれぞれの前部と、左右のフロアフレーム31,31とに、サブフレーム41を、4個の防振用弾性ブッシュ40…を介して吊り下げる。
Further, the bolts 74 and 74 are inserted into the vibration isolating elastic bushes 40 and 40 in a state where the vibration isolating elastic bushes 40 and 40 are respectively press-fitted into the fitting holes 72 and 72 of the left and right sub vertical members 71 and 71, respectively. The inserted bolts 74, 74 are attached to the left and right floor frames 31, 31 (see FIG. 1).
Accordingly, the sub-frame 41 is placed on the front portions of the left and right front side frames 21 and 21 shown in FIG. 1 and the left and right floor frames 31 and 31 via the four vibration-proof elastic bushes 40. Be suspended.

サブフレーム41の左側の連結部材64およびロアクロスメンバ25の左端部25aに亘って、左ステー構造80のステー82を連結するとともに、サブフレーム41の右側の連結部材64およびロアクロスメンバ25の右端部25bに亘って、右ステー構造81のステー82を連結する。   The stay 82 of the left stay structure 80 is connected across the left connecting member 64 of the subframe 41 and the left end 25a of the lower cross member 25, and the right connecting member 64 and the right end of the lower cross member 25 of the subframe 41 are connected. The stay 82 of the right stay structure 81 is coupled across the portion 25b.

すなわち、左側の連結部材64の嵌合孔64bに防振用弾性ブッシュ40を圧入し、防振用弾性ブッシュ40の下端にステー82の基端部83を配置する。
基端部83の取付孔83a(図3参照)および防振用弾性ブッシュ40の貫通孔40aにボルト74を差し込む。
That is, the vibration-proof elastic bush 40 is press-fitted into the fitting hole 64 b of the left connecting member 64, and the base end portion 83 of the stay 82 is disposed at the lower end of the vibration-proof elastic bush 40.
Bolts 74 are inserted into the mounting holes 83a (see FIG. 3) of the base end 83 and the through holes 40a of the vibration-proof elastic bushing 40.

ボルト74の先端部を貫通孔40aから上方に突出させ、突出したボルト74の先端部を左フロントサイドフレーム21(図1参照)の前端部にねじ結合する。
これにより、サブフレーム41の左側の連結部材64に、ステー82の基端部83を防振用弾性ブッシュ40を介して連結する。
The front end of the bolt 74 is protruded upward from the through hole 40a, and the front end of the protruded bolt 74 is screwed to the front end of the left front side frame 21 (see FIG. 1).
Thereby, the base end portion 83 of the stay 82 is connected to the connecting member 64 on the left side of the subframe 41 through the elastic bushing 40 for vibration isolation.

左側のステー82の先端部84を、ロアクロスメンバ25の左端部25aにボルト85,85およびナット86,86で取り付ける。   The distal end portion 84 of the left stay 82 is attached to the left end portion 25 a of the lower cross member 25 with bolts 85 and 85 and nuts 86 and 86.

同様に、右側の連結部材64の嵌合孔64b(図示せず)に防振用弾性ブッシュ40を圧入し、防振用弾性ブッシュ40の下端にステー82の基端部83を配置する。
基端部83の取付孔83a(図示せず)および防振用弾性ブッシュ40の貫通孔40aにボルト74を差し込む。
Similarly, the vibration-proof elastic bush 40 is press-fitted into the fitting hole 64 b (not shown) of the right connection member 64, and the base end portion 83 of the stay 82 is disposed at the lower end of the vibration-proof elastic bush 40.
Bolts 74 are inserted into the mounting holes 83 a (not shown) of the base end portion 83 and the through holes 40 a of the vibration-proof elastic bushing 40.

ボルト74の先端部を貫通孔40aから上方に突出させ、突出したボルト74の先端部を右フロントサイドフレーム21(図1参照)の前端部にねじ結合する。
これにより、サブフレーム41の右側の連結部材64に、ステー82の基端部83を防振用弾性ブッシュ40を介して連結する。
The front end portion of the bolt 74 is protruded upward from the through hole 40a, and the front end portion of the protruded bolt 74 is screwed to the front end portion of the right front side frame 21 (see FIG. 1).
As a result, the base end portion 83 of the stay 82 is connected to the connection member 64 on the right side of the subframe 41 via the elastic bush 40 for vibration isolation.

右側のステー82の先端部84を、ロアクロスメンバ25の右端部25bにボルト85,85およびナット86,86で取り付ける。
以下、サブフレーム41の左側の連結部材64に取り付けた防振用弾性ブッシュ40を代表例に選択し、選択した防振用弾性ブッシュ40の構成を図3〜図11に基づいて詳しく説明する。
The distal end portion 84 of the right stay 82 is attached to the right end portion 25 b of the lower cross member 25 with bolts 85 and 85 and nuts 86 and 86.
Hereinafter, the vibration isolating elastic bush 40 attached to the left connecting member 64 of the subframe 41 is selected as a representative example, and the configuration of the selected vibration isolating elastic bush 40 will be described in detail with reference to FIGS.

図3は第1実施の形態に係る防振用弾性ブッシュを示す斜視図である。
防振用弾性ブッシュ40は、上下の弾性ブッシュ87,88からなる。上弾性ブッシュ87は、上外筒(外筒)91(図6参照)の内部に上内筒(内筒)92を配置し、上外筒91と上内筒92との間に上弾性体(弾性体)93を設けた防振構造の部材である。
上弾性体93は、一例としてゴム製の弾性変形可能な部材である。
FIG. 3 is a perspective view showing the vibration-proof elastic bushing according to the first embodiment.
The anti-vibration elastic bush 40 includes upper and lower elastic bushes 87 and 88. The upper elastic bush 87 has an upper inner cylinder (inner cylinder) 92 disposed inside an upper outer cylinder (outer cylinder) 91 (see FIG. 6), and an upper elastic body between the upper outer cylinder 91 and the upper inner cylinder 92. This is a vibration-proof structure member provided with (elastic body) 93.
The upper elastic body 93 is a rubber elastically deformable member as an example.

下弾性ブッシュ88は、下外筒(外筒)94(図6参照)の内部に下内筒(内筒)95を配置し、下外筒94と下内筒95との間に下弾性体(弾性体)96を設けた防振構造の部材である。
下弾性体96は、一例としてゴム製の弾性変形可能な部材である。
The lower elastic bush 88 has a lower inner cylinder (inner cylinder) 95 disposed inside a lower outer cylinder (outer cylinder) 94 (see FIG. 6), and a lower elastic body between the lower outer cylinder 94 and the lower inner cylinder 95. This is an anti-vibration structure member provided with (elastic body) 96.
The lower elastic body 96 is a rubber elastically deformable member as an example.

上弾性ブッシュ87の上外筒91を、左側の連結部材64の嵌合孔64bに上方から圧入し、下弾性ブッシュ88の下外筒94を、左側の連結部材64の嵌合孔64bに下方から圧入する。
下弾性ブッシュ88の下内筒95の下端部にステー82の基端部83を当接し、基端部83の取付孔83aからボルト74を差し込む。
取付孔83aから突出したボルト74を上下の内筒92,95のそれぞれの貫通孔92a,95aに差し込む。
The upper and outer cylinders 91 of the upper elastic bush 87 are press-fitted into the fitting hole 64b of the left connecting member 64 from above, and the lower outer cylinder 94 of the lower elastic bush 88 is lowered into the fitting hole 64b of the left connecting member 64. Press fit.
The base end portion 83 of the stay 82 is brought into contact with the lower end portion of the lower inner cylinder 95 of the lower elastic bush 88, and the bolt 74 is inserted from the mounting hole 83a of the base end portion 83.
Bolts 74 protruding from the mounting holes 83a are inserted into the through holes 92a and 95a of the upper and lower inner cylinders 92 and 95, respectively.

貫通孔92a,95aからボルト74のねじ部74aを突出させ、突出したねじ部74aを左フロントサイドフレーム21(図1参照)の前端部にねじ結合する。
これにより、左フロントサイドフレーム21の前端部にサブフレーム41の左側の連結部材64を連結する。
なお、貫通孔92a,95aは、防振用弾性ブッシュ40の貫通孔40a(図2参照)を構成する。
The threaded portion 74a of the bolt 74 is projected from the through holes 92a and 95a, and the projected threaded portion 74a is screwed to the front end portion of the left front side frame 21 (see FIG. 1).
As a result, the connecting member 64 on the left side of the sub-frame 41 is connected to the front end portion of the left front side frame 21.
The through holes 92a and 95a constitute a through hole 40a (see FIG. 2) of the vibration-proof elastic bush 40.

ステー構造80のステー82は、サブフレーム41の左側の連結部材64に基端部83を設け、基端部83からロアクロスメンバ25の左端部25aに向けて前方内側に延ばし、このステー82の先端部84をロアクロスメンバ25の左端部25aに連結した補強用の部材である。
このステー82は、その裏面に、溶接などでロッド98を取り付け、先端部84に一対の取付孔99,99を備える。ロッド98は、前端部をフック部101として用い、その他の部位をガード部102として用いる。
The stay 82 of the stay structure 80 is provided with a base end portion 83 on the left connecting member 64 of the subframe 41 and extends forward inward from the base end portion 83 toward the left end portion 25a of the lower cross member 25. This is a reinforcing member in which the distal end portion 84 is connected to the left end portion 25 a of the lower cross member 25.
The stay 82 has a rod 98 attached to the back surface thereof by welding or the like, and a pair of attachment holes 99 and 99 provided at the tip end portion 84. The rod 98 uses the front end portion as the hook portion 101 and the other portion as the guard portion 102.

ステー82の取付孔99,99を、ロアクロスメンバ25の左端部25bの取付孔103,103に合わせ、それぞれの取付孔99…,103…にボルト85,85を差し込み、取付孔103,103から突出したボルト85,85の先端部にナット86,86をねじ結合する。
これにより、ロアクロスメンバ25の左端部25bにステー82の先端部84を取り付ける(図2も参照)。
The mounting holes 99, 99 of the stay 82 are aligned with the mounting holes 103, 103 of the left end portion 25b of the lower cross member 25, and bolts 85, 85 are inserted into the mounting holes 99, 103,. Nuts 86 and 86 are screwed to the tip ends of the protruding bolts 85 and 85.
Thereby, the tip end portion 84 of the stay 82 is attached to the left end portion 25b of the lower cross member 25 (see also FIG. 2).

フック部101は、タイダウン用あるいは牽引用の係止具を掛けるための部材である。
フック101およびガード部102は、その下端部をサブフレーム41の下方まで延ばすことで、縁石などの障害物にサブフレーム41が当たる前に、段階的に障害物に当たることにより、サブフレーム41をガードするとともに、運転者に障害物の存在を音や衝撃によって知らせる部材である。
The hook portion 101 is a member for hanging a tie-down or traction lock.
The hook 101 and the guard part 102 are extended to the lower part of the sub-frame 41 so that the sub-frame 41 is guarded in stages by hitting the obstacle before the sub-frame 41 hits an obstacle such as a curbstone. In addition, it is a member that informs the driver of the presence of an obstacle by sound or impact.

図4は図2の4−4線断面図である。
サブフレーム41の一部を構成する連結部材64の嵌合孔64bに、上方から上弾性ブッシュ87を圧入するとともに、下方から下弾性ブッシュ88を圧入する。
下弾性ブッシュ88の下内筒95の下端部95bにステー82の基端部83を当て、基端部83の取付孔83aからボルト74を差し込む。
取付孔83aから突出したボルト74を、下内筒95の貫通孔95aおよび上内筒92の貫通孔92aに差し込む。
4 is a cross-sectional view taken along line 4-4 of FIG.
The upper elastic bush 87 is press-fitted into the fitting hole 64b of the connecting member 64 constituting a part of the subframe 41 from above, and the lower elastic bush 88 is press-fitted from below.
The base end portion 83 of the stay 82 is brought into contact with the lower end portion 95 b of the lower inner cylinder 95 of the lower elastic bush 88, and the bolt 74 is inserted from the mounting hole 83 a of the base end portion 83.
The bolt 74 protruding from the mounting hole 83 a is inserted into the through hole 95 a of the lower inner cylinder 95 and the through hole 92 a of the upper inner cylinder 92.

上内筒92の貫通孔92aから突出したボルト74のねじ部74aを左フロントサイドフレーム21の前端部(図1も参照)にねじ結合することで、左フロントサイドフレーム21の前端部にサブフレーム41の連結部材64を連結する。   The screw portion 74a of the bolt 74 protruding from the through hole 92a of the upper inner cylinder 92 is screwed to the front end portion of the left front side frame 21 (see also FIG. 1), so that the subframe is attached to the front end portion of the left front side frame 21. 41 connecting members 64 are connected.

図5は図4の5−5線断面図である。
上弾性ブッシュ87の上内筒92は、上部105を楕円に形成し、下部106(図6も参照)を円に形成した部材である。
上部105の楕円は、長軸107の長さがD1、短軸108の長さがD2であり、下部106の内径はd1である。
上内筒92内にはボルト74が差し込まれている。上内筒92の外周109に上弾性体93の内周111を設けるとともに、上外筒91の内周113(図6も参照)に上弾性体93の外周112を設け、さらに上弾性体93で上外筒91の全面を覆う。
5 is a cross-sectional view taken along line 5-5 of FIG.
The upper inner cylinder 92 of the upper elastic bush 87 is a member in which an upper part 105 is formed in an ellipse and a lower part 106 (see also FIG. 6) is formed in a circle.
In the ellipse of the upper part 105, the length of the major axis 107 is D1, the length of the minor axis 108 is D2, and the inner diameter of the lower part 106 is d1.
Bolts 74 are inserted into the upper inner cylinder 92. The inner periphery 111 of the upper elastic body 93 is provided on the outer periphery 109 of the upper inner cylinder 92, the outer periphery 112 of the upper elastic body 93 is provided on the inner periphery 113 of the upper outer cylinder 91 (see also FIG. 6), and the upper elastic body 93 is further provided. Cover the entire surface of the upper outer cylinder 91.

この上弾性体93は、上内筒92と上外筒91(図6も参照)との間に設けた部位で、略筒状体を形成し、上内筒92の短軸108の延長線上に開口115を備える。
また、上弾性体93は、上端部116の上外周116aに沿って半円孤状の上突条部117,117を、長軸107に対して対称になるように2個備える。
The upper elastic body 93 is a portion provided between the upper inner cylinder 92 and the upper outer cylinder 91 (see also FIG. 6), forms a substantially cylindrical body, and extends on the extended line of the short shaft 108 of the upper inner cylinder 92. Is provided with an opening 115.
Further, the upper elastic body 93 includes two semi-circular upper protrusions 117 and 117 along the upper outer periphery 116 a of the upper end portion 116 so as to be symmetric with respect to the long axis 107.

図6は第1実施の形態に係る防振用弾性ブッシュを示す斜視図である。
防振用弾性ブッシュ40は、その軸線118方向の略中央で、かつ軸線118方向に直交させて上下に分割した上下の弾性ブッシュ87,88からなる。
この防振用弾性ブッシュ40は、図3に示す連結部材64の嵌合孔64bに、上方から上弾性ブッシュ87を圧入するとともに、下方から下弾性ブッシュ88を圧入し、上下の弾性ブッシュ87,88を一体化した状態で使用する部材である。
FIG. 6 is a perspective view showing the vibration-proof elastic bushing according to the first embodiment.
The anti-vibration elastic bush 40 is composed of upper and lower elastic bushes 87 and 88 that are divided substantially in the center in the direction of the axis 118 and perpendicular to the direction of the axis 118.
This anti-vibration elastic bush 40 presses the upper elastic bush 87 from above into the fitting hole 64b of the connecting member 64 shown in FIG. 88 is a member used in an integrated state.

上弾性ブッシュ87は、上外筒91の内側に上内筒92を組み込むとともに、上外筒91と上内筒92との間に上弾性体93を設け、上内筒92の外周109に、「軸方向で、少なくとも部分的に径の大きな内筒大径部」としての、軸線118に対して傾斜する上内筒傾斜面109aを設けるとともに、上外筒91の内周113に、「軸方向で、少なくとも部分的に径の小さな外筒小径部」としての軸線118に対して傾斜する上外筒傾斜面113aを設け、上外筒傾斜面113aに上内筒傾斜面109aを対向させ、上外筒傾斜面113aと上内筒傾斜面109aとの間に上弾性体93を設けたものである。   The upper elastic bush 87 incorporates the upper inner cylinder 92 inside the upper outer cylinder 91 and also provides an upper elastic body 93 between the upper outer cylinder 91 and the upper inner cylinder 92. An upper inner cylinder inclined surface 109 a that is inclined with respect to the axis 118 as an “inner cylinder large diameter portion at least partially large in the axial direction” is provided, and “ In the direction, an upper outer cylinder inclined surface 113a that is inclined with respect to the axis 118 as an outer cylinder small diameter portion at least partially having a small diameter is provided, and the upper inner cylinder inclined surface 109a is opposed to the upper outer cylinder inclined surface 113a. An upper elastic body 93 is provided between the upper outer cylinder inclined surface 113a and the upper inner cylinder inclined surface 109a.

下弾性ブッシュ88は、下外筒94の内側に下内筒95を組み込むとともに、下外筒94と下内筒95との間に下弾性体96を設け、下内筒95の外周121に、「軸方向で、少なくとも部分的に径の大きな内筒大径部」としての、軸線118に対して傾斜する下内筒傾斜面121aを設けるとともに、下外筒94の内周122に、「軸方向で、少なくとも部分的に径の小さな外筒小径部」としての軸線118に対して傾斜する下外筒傾斜面122aを設け、下外筒傾斜面122aに下内筒傾斜面121aを対向させ、下外筒傾斜面122aと下内筒傾斜面121aとの間に下弾性体96を設けたものである。   The lower elastic bush 88 incorporates a lower inner cylinder 95 inside the lower outer cylinder 94, and a lower elastic body 96 is provided between the lower outer cylinder 94 and the lower inner cylinder 95. A lower inner cylinder inclined surface 121 a that is inclined with respect to the axis 118 as an “inner cylinder large diameter portion at least partially large in the axial direction” is provided, and “ A lower outer cylinder inclined surface 122a that is inclined with respect to the axis 118 as an outer cylinder small-diameter portion having a small diameter at least partially in the direction, and the lower inner cylinder inclined surface 121a is opposed to the lower outer cylinder inclined surface 122a, A lower elastic body 96 is provided between the lower outer cylinder inclined surface 122a and the lower inner cylinder inclined surface 121a.

このように、防振用弾性ブッシュ40を軸線118方向に直交させて2分割することで、上弾性ブッシュ87のばね定数と、下弾性ブッシュ88のばね定数とを異ならせることが可能になる。
なお、上弾性ブッシュ87のばね定数、および下弾性ブッシュ88のばね定数については、図11で詳しく説明する。
Thus, by dividing the vibration-proof elastic bushing 40 into two perpendicularly to the direction of the axis 118, the spring constant of the upper elastic bush 87 and the spring constant of the lower elastic bush 88 can be made different.
The spring constant of the upper elastic bush 87 and the spring constant of the lower elastic bush 88 will be described in detail with reference to FIG.

図7は第1実施の形態に係る防振用弾性ブッシュを示す内筒長軸方向の断面図である。
上弾性ブッシュ87の上内筒92は、上部105を楕円形に形成して上部105の長軸108(図6参照)をD1と大きく確保し、下部106を円形に形成して外径をD3と小さく抑えることで、上内筒92の外周109のうち、上部105と下部106との間に上内筒傾斜面109aを形成したものである。
FIG. 7 is a cross-sectional view in the longitudinal direction of the inner cylinder showing the vibration-proof elastic bushing according to the first embodiment.
The upper inner cylinder 92 of the upper elastic bush 87 has an upper portion 105 formed in an elliptical shape and a long axis 108 (see FIG. 6) of the upper portion 105 is secured to be large as D1, and a lower portion 106 is formed in a circular shape and has an outer diameter of D3. The upper inner cylinder inclined surface 109a is formed between the upper part 105 and the lower part 106 in the outer periphery 109 of the upper inner cylinder 92.

すなわち、上部105の長軸107をD1と大きく確保することで、上内筒92の軸線118から上部105の外周109までの距離(D1/2)を大きく確保する。
また、下部106の外径をD3と小さく抑えることで、上内筒92の軸線118から下部106の外周109までの距離(D3/2)を小さく抑える。
ここで、D1を長軸方向の長さとすることで、外径D3に対して比較的大きく確保する。よって、上部105と下部106とを連結する上内筒傾斜面109aは、傾斜角θ1を大きく確保する。
That is, by securing the long axis 107 of the upper part 105 as large as D1, a distance (D1 / 2) from the axis 118 of the upper inner cylinder 92 to the outer periphery 109 of the upper part 105 is secured.
Further, by keeping the outer diameter of the lower portion 106 as small as D3, the distance (D3 / 2) from the axis 118 of the upper inner cylinder 92 to the outer periphery 109 of the lower portion 106 is kept small.
Here, by setting D1 to be the length in the major axis direction, a relatively large value is ensured with respect to the outer diameter D3. Therefore, the upper inner cylinder inclined surface 109a that connects the upper portion 105 and the lower portion 106 ensures a large inclination angle θ1.

上弾性ブッシュ87の上外筒91は、上部124に、外側へ向けて張り出した張出部125を備え、上部124を円形に形成して上部124の内径をd2と大きく確保し、下部126を楕円形に形成して下部126の短軸127(図10参照)をd3と小さく抑えることで、上外筒91の内周113のうち、上部124と下部126との間に上外筒傾斜面113aを形成したものである。   The upper outer cylinder 91 of the upper elastic bush 87 is provided with an overhanging portion 125 projecting outward on the upper portion 124. The upper portion 124 is formed in a circular shape so that the inner diameter of the upper portion 124 is as large as d2, and the lower portion 126 is formed. The upper outer cylinder inclined surface is formed between the upper part 124 and the lower part 126 of the inner periphery 113 of the upper outer cylinder 91 by suppressing the short axis 127 (see FIG. 10) of the lower part 126 to be as small as d3. 113a is formed.

すなわち、上部124の内径をd2と比較的大きく確保することで、上外筒91の軸線118から上部124の内周までの距離(d2/2)を大きく確保する。
また、下部126の短軸127(図10参照)をd3と小さく確保することで、上外筒91の軸線118から下部126の内周までの距離(d3/2)を小さく抑える。
ここで、d3を短軸方向の長さとすることで、内径d2に対して比較的小さく確保する。よって、上部124と下部126とを連結する上外筒傾斜面113aは、傾斜角θ2を大きく確保する。
That is, by ensuring a relatively large inner diameter of the upper part d2 and d2, a distance (d2 / 2) from the axis 118 of the upper outer cylinder 91 to the inner periphery of the upper part 124 is secured.
Further, by securing the short axis 127 (see FIG. 10) of the lower portion 126 as small as d3, the distance (d3 / 2) from the axis 118 of the upper outer cylinder 91 to the inner periphery of the lower portion 126 is kept small.
Here, d3 is set to a length in the minor axis direction, thereby ensuring a relatively small size with respect to the inner diameter d2. Therefore, the upper outer cylinder inclined surface 113a that connects the upper portion 124 and the lower portion 126 ensures a large inclination angle θ2.

そして、内筒傾斜面109に上外筒傾斜面113aおよび上部124を対向させ、かつ上内筒92の下部106を上外筒91の下部126に対向させる。
上外筒傾斜面113aと上内筒傾斜面109aの下側部位との間に、上弾性体93を設けるとともに、上外筒91の上部124と上内筒傾斜面109aの上側部位との間に、上弾性体93を設ける。
Then, the upper outer cylinder inclined surface 113 a and the upper part 124 are opposed to the inner cylinder inclined surface 109, and the lower part 106 of the upper inner cylinder 92 is opposed to the lower part 126 of the upper outer cylinder 91.
An upper elastic body 93 is provided between the upper outer cylinder inclined surface 113a and the lower portion of the upper inner cylinder inclined surface 109a, and between the upper portion 124 of the upper outer cylinder 91 and the upper portion of the upper inner cylinder inclined surface 109a. The upper elastic body 93 is provided.

下弾性ブッシュ88の下内筒95は、上弾性ブッシュ87の上内筒92と略上下対称に形成した部材である。すなわち、下内筒95と上内筒92とは、それぞれの内周形状が異なるだけで、その他の形状は上下対称である。
よって、下内筒95は、上内筒92と同様に、下部132を楕円形に形成して下部132の長軸をD1と大きく確保し、上部132を円形に形成して外径をD3と小さく抑えることで、下内筒95の外周121のうち、下部131と上部132との間に下内筒傾斜面121aを形成したものである。
The lower inner cylinder 95 of the lower elastic bush 88 is a member formed substantially symmetrically with the upper inner cylinder 92 of the upper elastic bush 87. That is, the lower inner cylinder 95 and the upper inner cylinder 92 differ only in the inner peripheral shape, and the other shapes are vertically symmetric.
Therefore, the lower inner cylinder 95, like the upper inner cylinder 92, is formed such that the lower portion 132 is elliptical and the major axis of the lower portion 132 is large as D1, and the upper portion 132 is circular and the outer diameter is D3. The lower inner cylinder inclined surface 121a is formed between the lower part 131 and the upper part 132 in the outer periphery 121 of the lower inner cylinder 95 by keeping it small.

すなわち、下部131の長軸をD1と大きく確保することで、下内筒95の軸線118から下部131の外周121までの距離(D1/2)を大きく確保する。
また、上部132の外径をD3と小さく抑えることで、下内筒95の軸線118から上部132の外周121までの距離(D3/2)を小さく抑える。
ここで、D1を長軸方向の長さとすることで、D3に対して比較的大きく確保する。よって、下部131と上部132とを連結する下内筒傾斜面121aは、傾斜角θ1を大きく確保する。
That is, by securing the major axis of the lower part 131 as large as D1, a distance (D1 / 2) from the axis 118 of the lower inner cylinder 95 to the outer periphery 121 of the lower part 131 is secured.
Further, by keeping the outer diameter of the upper part 132 as small as D3, the distance (D3 / 2) from the axis 118 of the lower inner cylinder 95 to the outer periphery 121 of the upper part 132 is kept small.
Here, by making D1 the length in the major axis direction, a relatively large amount is secured with respect to D3. Therefore, the lower inner cylinder inclined surface 121a that connects the lower portion 131 and the upper portion 132 ensures a large inclination angle θ1.

下弾性ブッシュ88の下外筒94は、上弾性ブッシュ87の上外筒91と上下対称に形成した部材である。
下弾性ブッシュ88の下外筒94は、下部134に外側へ向けて張り出した張出部135を備え、下部134を円形に形成して下部134の内径をd2と大きく確保し、上部136を楕円形に形成して上部136の短軸をd3と小さく抑えることで、下外筒94の内周122のうち、下部134と上部136との間に下外筒傾斜面122aを形成したものである。
The lower outer cylinder 94 of the lower elastic bush 88 is a member formed vertically symmetrically with the upper outer cylinder 91 of the upper elastic bush 87.
The lower outer cylinder 94 of the lower elastic bush 88 includes a projecting portion 135 projecting outward from the lower portion 134, the lower portion 134 is formed in a circular shape, and the inner diameter of the lower portion 134 is secured as large as d2, and the upper portion 136 is elliptical. The lower outer cylinder inclined surface 122a is formed between the lower part 134 and the upper part 136 in the inner periphery 122 of the lower outer cylinder 94 by forming the shape and keeping the short axis of the upper part 136 as small as d3. .

すなわち、下部134の内径をd2と比較的大きく確保することで、下外筒94の軸線118から下部134の内周122までの距離(d2/2)を大きく確保する。
また、上部136の短軸をd3と小さく確保することで、下外筒94の軸線118から上部136の内周122までの距離(d3/2)を小さく抑える。
ここで、d3を短軸方向の長さとすることで、d2に対して比較的小さく確保する。よって、下部134と上部136とを連結する下外筒傾斜面122aは、傾斜角θ2を大きく確保する。
That is, by securing the inner diameter of the lower part 134 as relatively large as d2, a distance (d2 / 2) from the axis 118 of the lower outer cylinder 94 to the inner periphery 122 of the lower part 134 is secured.
Further, by securing the short axis of the upper part 136 as small as d3, the distance (d3 / 2) from the axis 118 of the lower outer cylinder 94 to the inner periphery 122 of the upper part 136 is kept small.
Here, d3 is set to a length in the minor axis direction, so that it is relatively small with respect to d2. Therefore, the lower outer cylinder inclined surface 122a connecting the lower portion 134 and the upper portion 136 ensures a large inclination angle θ2.

そして、下内筒傾斜面121aに下外筒傾斜面122aおよび下部134を対向させ、かつ下内筒95の上部132を下外筒94の上部136に対向させる。
下内筒傾斜面121aの上側部位と下外筒傾斜面122aとの間に上弾性体93を設けるとともに、下外筒94の下部134と下内筒傾斜面121aの下側部位との間に上弾性体93を設ける。
Then, the lower outer cylinder inclined surface 122a and the lower part 134 are opposed to the lower inner cylinder inclined surface 121a, and the upper part 132 of the lower inner cylinder 95 is opposed to the upper part 136 of the lower outer cylinder 94.
An upper elastic body 93 is provided between the upper portion of the lower inner cylinder inclined surface 121a and the lower outer cylinder inclined surface 122a, and between the lower portion 134 of the lower outer cylinder 94 and the lower portion of the lower inner cylinder inclined surface 121a. An upper elastic body 93 is provided.

図8は第1実施の形態に係る防振用弾性ブッシュを示す内筒短軸方向の断面図である。
上弾性ブッシュ87の上内筒92は、上部105を楕円形に形成することで短軸108(図6参照)の長さD2を、長軸107の長さD1(図6、図7参照)より小さく抑え、上内筒傾斜面109aの傾斜角θ1を、図7に示す傾斜角θ1より小さく抑えたものである。
FIG. 8 is a cross-sectional view of the inner cylinder minor axis direction showing the vibration-proof elastic bushing according to the first embodiment.
The upper inner cylinder 92 of the upper elastic bushing 87 has an upper portion 105 formed in an oval shape so that the length D2 of the short axis 108 (see FIG. 6) and the length D1 of the long axis 107 (see FIGS. 6 and 7). The inclination angle θ1 of the upper inner cylinder inclined surface 109a is suppressed to be smaller than the inclination angle θ1 shown in FIG.

上弾性ブッシュ87の上外筒91は、上部124から下端126まで内径d2と均一にしたものである。
上内筒92と上外筒91との間に下弾性体96を設け、下弾性体96に開口115(図5も参照)を形成する。
The upper outer cylinder 91 of the upper elastic bush 87 has a uniform inner diameter d2 from the upper part 124 to the lower end 126.
A lower elastic body 96 is provided between the upper inner cylinder 92 and the upper outer cylinder 91, and an opening 115 (see also FIG. 5) is formed in the lower elastic body 96.

下弾性ブッシュ88の下内筒95は、下部131を楕円形に形成することで短軸の長さD2を、長軸の長さD1(図6、図7参照)より小さく抑え、下内筒傾斜面121aの傾斜角θ1を、図7に示す傾斜角θ1より小さく抑えたものである。   The lower inner cylinder 95 of the lower elastic bush 88 is formed by forming the lower part 131 in an elliptical shape, thereby suppressing the length D2 of the short axis to be smaller than the length D1 of the long axis (see FIGS. 6 and 7). The inclination angle θ1 of the inclined surface 121a is suppressed to be smaller than the inclination angle θ1 shown in FIG.

下弾性ブッシュ88の下外筒94は、下部134から上部136まで内径d2と均一にしたものである。
下内筒95と下外筒94との間に下弾性体96を設け、下弾性体96に、上弾性体93と同様に開口138を形成する。
The lower outer cylinder 94 of the lower elastic bush 88 has a uniform inner diameter d2 from the lower part 134 to the upper part 136.
A lower elastic body 96 is provided between the lower inner cylinder 95 and the lower outer cylinder 94, and an opening 138 is formed in the lower elastic body 96 in the same manner as the upper elastic body 93.

図9(a)〜(c)は第1実施の形態に係る上弾性ブッシュを構成する各部材の斜視図であり、(a)は上内筒92を示し、(b)は上外筒91を示し、(c)は上弾性体93を示す。
(a)に示すように、上内筒92は、上部105を楕円形に形成して、下部106を円形に形成した部材である。
上部105は、長軸107の長さをD1、短軸108の長さをD2とした楕円形の筒状部位である。下部106は、外径がD3の円形の筒状部位である。
長軸107の長さD1、短軸108の長さD2、外径D3の関係は、D1>D2>D3である。
FIGS. 9A to 9C are perspective views of members constituting the upper elastic bush according to the first embodiment. FIG. 9A shows the upper inner cylinder 92 and FIG. 9B shows the upper outer cylinder 91. (C) shows the upper elastic body 93.
As shown to (a), the upper inner cylinder 92 is a member which formed the upper part 105 in the ellipse, and formed the lower part 106 in the circle.
The upper part 105 is an elliptical cylindrical part in which the length of the major axis 107 is D1 and the length of the minor axis 108 is D2. The lower part 106 is a circular cylindrical part having an outer diameter D3.
The relationship between the length D1 of the major axis 107, the length D2 of the minor axis 108, and the outer diameter D3 is D1>D2> D3.

よって、上内筒92の外周109において、上部105と下部106との間に、上部105から下部106に向けて徐々に縮径する上内筒傾斜面109aを備える。
加えて、上内筒傾斜面109aの傾斜角θ1は、長軸108方向において最大になり、長軸108方向から短軸108方向に向けて徐々に小さくなり、短軸108方向において最小になる。
Therefore, on the outer periphery 109 of the upper inner cylinder 92, an upper inner cylinder inclined surface 109 a that gradually decreases in diameter from the upper part 105 toward the lower part 106 is provided between the upper part 105 and the lower part 106.
In addition, the inclination angle θ1 of the upper inner cylinder inclined surface 109a is maximized in the major axis 108 direction, gradually decreases from the major axis 108 direction to the minor axis 108 direction, and is minimized in the minor axis 108 direction.

(b)に示すように、上外筒91は、上部124に外側へ向けて張り出した張出部125を備え、上部124の内周113を円形に形成して、下部126の内周113を楕円形に形成した部材である。
上部124は、内径がd2の円形であり、下部126は、長軸128の長さをd2、短軸127の長さをd3とした楕円形である。
内径d2、長軸128の長さd2、短軸127の長さd3の関係は、d2>d3である。
As shown in (b), the upper outer cylinder 91 includes an overhanging portion 125 projecting outward from the upper portion 124, and the inner periphery 113 of the upper portion 124 is formed in a circular shape, and the inner periphery 113 of the lower portion 126 is formed. It is a member formed in an elliptical shape.
The upper part 124 has a circular shape with an inner diameter d2, and the lower part 126 has an elliptical shape in which the length of the major axis 128 is d2 and the length of the minor axis 127 is d3.
The relationship between the inner diameter d2, the length d2 of the major axis 128, and the length d3 of the minor axis 127 is d2> d3.

よって、上外筒91は、上部124と下部126との間に、上部124から下部126に向けて徐々に縮径する上外筒傾斜面113aを備える。
加えて、上外筒傾斜面113aの傾斜角θ2(図7参照)は、短軸127方向において最大になり、短軸127方向から長軸128方向に向けて徐々に小さくなり、長軸128方向において傾斜は0°になる。
Therefore, the upper outer cylinder 91 includes an upper outer cylinder inclined surface 113 a that gradually decreases in diameter from the upper part 124 toward the lower part 126 between the upper part 124 and the lower part 126.
In addition, the inclination angle θ2 (see FIG. 7) of the upper outer cylinder inclined surface 113a is maximized in the minor axis 127 direction, gradually decreases from the minor axis 127 direction to the major axis 128 direction, and the major axis 128 direction. The inclination becomes 0 °.

(c)に示す上弾性体93は、内周111内に上内筒92((a)参照)を設け(図6〜図8参照)、外周141に沿って形成した断面略L形の空間部142内に上外筒91((b)参照)を設けた略筒状の弾性変形可能なゴム製部材である。   The upper elastic body 93 shown in (c) is provided with an upper inner cylinder 92 (see (a)) in the inner circumference 111 (see FIGS. 6 to 8), and has a substantially L-shaped cross section formed along the outer circumference 141. This is a substantially cylindrical elastically deformable rubber member provided with an upper outer cylinder 91 (see (b)) in the portion 142.

図10は第1実施の形態に係る上弾性ブッシュの一部を構成する内筒および外筒を示す平面図である。
上内筒92の長軸107と、上外筒91の短軸127とを合わせ、かつ上内筒92の短軸108と、上外筒91の長軸128とを合わせる。
FIG. 10 is a plan view showing an inner cylinder and an outer cylinder constituting a part of the upper elastic bush according to the first embodiment.
The major axis 107 of the upper inner cylinder 92 and the minor axis 127 of the upper outer cylinder 91 are matched, and the minor axis 108 of the upper inner cylinder 92 and the major axis 128 of the upper outer cylinder 91 are matched.

上内筒92の長軸107と、上外筒91の短軸127とを合わせることで、図7に示すように、傾斜角θ1を大きく確保した上内筒傾斜面109aと、傾斜角θ2を大きく確保した上外筒傾斜面113aとを対向させる。
傾斜角θ1を大きく確保した上内筒傾斜面109aと、傾斜角θ2を大きく確保した上外筒傾斜面113aとの間に上弾性体93を設ける(図7参照)。
By aligning the major axis 107 of the upper inner cylinder 92 and the minor axis 127 of the upper outer cylinder 91, as shown in FIG. 7, the upper inner cylinder inclined surface 109a having a large inclination angle θ1 and the inclination angle θ2 are obtained. The upper outer cylinder inclined surface 113a, which is largely secured, is made to face.
An upper elastic body 93 is provided between the upper inner cylinder inclined surface 109a with a large inclination angle θ1 and the upper outer cylinder inclined surface 113a with a large inclination angle θ2 (see FIG. 7).

一方、上内筒92の短軸108と、上外筒91の長軸128とを合わせることで、図8に示すように、傾斜角θ1を小さく抑えた上内筒傾斜面109aと、傾斜角θ2を0°とした上外筒91の内周113とを対向させる。
傾斜角θ1を小さく抑えた上内筒傾斜面109aと、傾斜角θ2が0°の上外筒91の内周113との間に上弾性体93を設ける(図8参照)。
On the other hand, by combining the short axis 108 of the upper inner cylinder 92 and the long axis 128 of the upper outer cylinder 91, as shown in FIG. 8, the upper inner cylinder inclined surface 109a with the inclination angle θ1 kept small, and the inclination angle The inner periphery 113 of the upper outer cylinder 91 having θ2 of 0 ° is made to face.
An upper elastic body 93 is provided between the upper inner cylinder inclined surface 109a in which the inclination angle θ1 is kept small and the inner periphery 113 of the upper and outer cylinders 91 having an inclination angle θ2 of 0 ° (see FIG. 8).

次に、第1実施の形態に係る防振用弾性ブッシュ40で振動を緩和する例を図11に基づいて説明する。
図11(a),(b)は第1実施の形態に係る防振用弾性ブッシュの作用を説明する図である。
(a)において、サブフレーム41から防振用弾性ブッシュ40に矢印F1の如く水平方向の振動がかかる。
防振用弾性ブッシュ40の上弾性ブッシュ87の上外筒91に振動が伝わり、上外筒91および上内筒92間の上弾性体93に圧縮力をかけ、弾性体を圧縮(弾性変形)する。
Next, an example in which vibration is reduced by the vibration-proof elastic bush 40 according to the first embodiment will be described with reference to FIG.
FIGS. 11A and 11B are views for explaining the action of the vibration-proof elastic bushing according to the first embodiment.
In (a), the vibration in the horizontal direction is applied from the subframe 41 to the elastic bush 40 for vibration isolation as indicated by the arrow F1.
Vibration is transmitted to the upper and outer cylinders 91 of the upper elastic bushing 87 of the vibration isolating elastic bush 40, and a compressive force is applied to the upper elastic body 93 between the upper outer cylinder 91 and the upper inner cylinder 92 to compress the elastic body (elastic deformation). To do.

ここで、弾性体に圧縮力をかけることで、弾性体のばね定数を所望の大きさに確保する。
これにより、上外筒91の変位量を抑えて上外筒91、すなわちサブフレーム41に発生する振動を良好に減衰させることができる。
Here, by applying a compressive force to the elastic body, the spring constant of the elastic body is ensured to a desired size.
Thereby, the amount of displacement of the upper outer cylinder 91 can be suppressed, and the vibration generated in the upper outer cylinder 91, that is, the subframe 41 can be attenuated satisfactorily.

なお、防振用弾性ブッシュ40の下弾性ブッシュ88の下外筒94に振動が伝わった場合にも、上弾性ブッシュ87と同様に、下外筒94の変位量を抑えて下外筒94、すなわちサブフレーム41に発生する振動を良好に減衰させることができる。   Even when vibration is transmitted to the lower outer cylinder 94 of the lower elastic bushing 88 of the vibration isolating elastic bushing 40, the lower outer cylinder 94, while suppressing the amount of displacement of the lower outer cylinder 94, similarly to the upper elastic bushing 87, That is, the vibration generated in the subframe 41 can be attenuated satisfactorily.

(b)において、サブフレーム41から防振用弾性ブッシュ40に矢印F2の如く鉛直方向の振動がかかる。防振用弾性ブッシュ40の上弾性ブッシュ87の上外筒91に振動が伝わる。
ここで、上外筒91の上外筒傾斜面113aと上内筒92の上内筒傾斜面109aとを互いに対向させ、上外筒傾斜面113aと上内筒傾斜面109aとの間に上弾性体93を設けた。
In (b), the vibration in the vertical direction is applied from the subframe 41 to the anti-vibration elastic bush 40 as indicated by the arrow F2. Vibration is transmitted to the upper outer cylinder 91 of the upper elastic bush 87 of the vibration-proof elastic bush 40.
Here, the upper outer cylinder inclined surface 113a of the upper outer cylinder 91 and the upper inner cylinder inclined surface 109a of the upper inner cylinder 92 are opposed to each other, and the upper outer cylinder inclined surface 113a and the upper inner cylinder inclined surface 109a are positioned above each other. An elastic body 93 was provided.

これにより、上外筒91に矢印F2の如く鉛直の振動が伝わった場合でも、上外筒傾斜面113aと上内筒傾斜面109aとの間の上弾性体93に、上外筒傾斜面113aおよび上内筒傾斜面109aに直交する圧縮力を矢印F3の如くかけ、上弾性体93を圧縮(弾性変形)することができる。   Thus, even when vertical vibration is transmitted to the upper outer cylinder 91 as indicated by the arrow F2, the upper outer cylinder inclined surface 113a is placed on the upper elastic body 93 between the upper outer cylinder inclined surface 113a and the upper inner cylinder inclined surface 109a. The upper elastic body 93 can be compressed (elastically deformed) by applying a compression force orthogonal to the upper inner cylinder inclined surface 109a as shown by an arrow F3.

同様に、防振用弾性ブッシュ40の下弾性ブッシュ88の下外筒94に、矢印F2の如く鉛直の振動が伝わった場合にも、下外筒傾斜面122aと下内筒傾斜面121aとの間の下弾性体96に、下外筒傾斜面122aおよび下内筒傾斜面121aに直交する圧縮力を矢印F4の如くかけ、下弾性体96を圧縮(弾性変形)することができる。   Similarly, when vertical vibration is transmitted to the lower outer cylinder 94 of the lower elastic bushing 88 of the vibration isolating elastic bush 40 as indicated by the arrow F2, the lower outer cylinder inclined surface 122a and the lower inner cylinder inclined surface 121a The lower elastic body 96 can be compressed (elastically deformed) by applying a compressive force perpendicular to the lower outer cylinder inclined surface 122a and the lower inner cylinder inclined surface 121a to the lower elastic body 96 as shown by an arrow F4.

ここで、上弾性ブッシュ87の圧縮力F3と、下弾性ブッシュ88の圧縮力F4とは、上下対称の向きに作用する。
すなわち、サブフレーム41が上昇する方向に振動した際に、矢印F3の圧縮力で振動を減衰する。さらに、サブフレーム41が下降する方向に振動した際に、矢印F4の圧縮力で振動を減衰する。
Here, the compressive force F3 of the upper elastic bush 87 and the compressive force F4 of the lower elastic bush 88 act in a vertically symmetrical direction.
That is, when the subframe 41 vibrates in the upward direction, the vibration is attenuated by the compression force indicated by the arrow F3. Further, when the sub frame 41 vibrates in the descending direction, the vibration is attenuated by the compression force indicated by the arrow F4.

よって、上外筒91に矢印F2の如く鉛直方向の振動が伝わった場合において、上弾性体93の軸線118方向のばね定数を比較的大きく確保するとともに、下弾性体96の軸線118方向のばね定数を比較的大きく確保する。
これにより、上外筒91の変位量を抑えて、上外筒91に発生する振動を良好に減衰することができる。
Therefore, when the vibration in the vertical direction is transmitted to the upper outer cylinder 91 as indicated by the arrow F2, the spring constant in the direction of the axis 118 of the upper elastic body 93 is secured relatively large, and the spring in the direction of the axis 118 of the lower elastic body 96 is secured. Ensure a relatively large constant.
Thereby, the displacement amount of the upper outer cylinder 91 can be suppressed, and the vibration generated in the upper outer cylinder 91 can be attenuated satisfactorily.

さらに、この防振用弾性ブッシュ40によれば、上弾性ブッシュ87の上内筒傾斜面109aと上外筒傾斜面113aとを互いに対向させることで、上弾性ブッシュ87の内部に、上弾性体93の軸線118方向のばね定数を比較的大きく確保する手段を組み込むことができる。   Further, according to the vibration isolating elastic bush 40, the upper elastic bush 87 has an upper elastic body in the upper elastic bush 87 by making the upper inner cylinder inclined surface 109a and the upper outer cylinder inclined surface 113a face each other. A means for ensuring a relatively large spring constant in the direction of the axis 118 of 93 can be incorporated.

加えて、下弾性ブッシュ88の下内筒傾斜面121aと下外筒傾斜面122aとを互いに対向させることで、下弾性ブッシュ88の内部に、下弾性体96の軸線118方向のばね定数を比較的大きく確保する手段を組み込むことができる。
よって、従来技術で説明した、通常の防振用弾性ブッシュをサブフレームに組み込む際に必要とされていた、弾性体に対する押圧力をスペーサで調整する必要はない。これにより、防振用弾性ブッシュ40の取付け作業を簡素化することができる。
In addition, by making the lower inner cylinder inclined surface 121a and the lower outer cylinder inclined surface 122a face each other, the spring constant in the direction of the axis 118 of the lower elastic body 96 is compared inside the lower elastic bush 88. It is possible to incorporate a means for ensuring a large size.
Therefore, it is not necessary to adjust the pressing force against the elastic body, which has been required when incorporating the normal vibration-proof elastic bush described in the prior art into the subframe, with the spacer. Thereby, the attachment work of the vibration-proof elastic bush 40 can be simplified.

ここで、第1実施の形態の防振用弾性ブッシュ40は、外筒、内筒および弾性体を、軸線118方向に直交させて分割した上下の弾性ブッシュ87,88で構成した。
このように、防振用弾性ブッシュ40を軸線118方向に直交させて2分割することで、上弾性ブッシュ87のばね定数と、下弾性ブッシュ88のばね定数とを異ならせることが可能になる。
これにより、振動体の振動条件に合わせて、上弾性ブッシュ87のばね定数と、下弾性ブッシュ88のばね定数とを好適に組み合わせることが可能になり、防振用弾性ブッシュ40の減衰効果をより一層高めることができる。
Here, the vibration-insulating elastic bush 40 according to the first embodiment is composed of upper and lower elastic bushes 87 and 88 obtained by dividing the outer cylinder, the inner cylinder, and the elastic body perpendicular to the direction of the axis 118.
Thus, by dividing the vibration-proof elastic bushing 40 into two perpendicularly to the direction of the axis 118, the spring constant of the upper elastic bush 87 and the spring constant of the lower elastic bush 88 can be made different.
Accordingly, it becomes possible to suitably combine the spring constant of the upper elastic bush 87 and the spring constant of the lower elastic bush 88 in accordance with the vibration conditions of the vibrating body, and the damping effect of the vibration isolating elastic bush 40 can be further increased. It can be further enhanced.

次に、第2〜第5実施の形態に係る防振用弾性ブッシュを図12〜図19に基づいて説明する。なお、第2〜第5実施の形態の防振用弾性ブッシュにおいてに、第1実施の形態の防振用弾性ブッシュ40と同一部材のものについては同一符号を付して説明を省略する。   Next, the vibration-proof elastic bushings according to the second to fifth embodiments will be described with reference to FIGS. In the vibration isolating elastic bushings of the second to fifth embodiments, the same members as those of the vibration isolating elastic bushing 40 of the first embodiment are denoted by the same reference numerals and description thereof is omitted.

第2実施の形態
図12(a),(b)は本発明に係る第2実施の形態の防振用弾性ブッシュを示す図であり、(a)は断面図、(b)は平面図である。
防振用弾性ブッシュ170は、上下の弾性ブッシュ171,172からなる。上弾性ブッシュ171は、上外筒(外筒)173の内部に上内筒(内筒)174を配置し、上外筒173と上内筒174との間に上弾性体(弾性体)175を設けた防振構造の部材である。
上弾性体175は、一例としてゴム製の弾性変形可能な部材である。
Second Embodiment FIGS. 12A and 12B are views showing a vibration-proof elastic bushing according to a second embodiment of the present invention, where FIG. 12A is a cross-sectional view and FIG. 12B is a plan view. is there.
The anti-vibration elastic bushing 170 includes upper and lower elastic bushings 171 and 172. The upper elastic bush 171 includes an upper inner cylinder (inner cylinder) 174 disposed inside an upper outer cylinder (outer cylinder) 173, and an upper elastic body (elastic body) 175 between the upper outer cylinder 173 and the upper inner cylinder 174. It is a member of the vibration proof structure which provided.
The upper elastic body 175 is a rubber elastically deformable member as an example.

下弾性ブッシュ172は、下外筒(外筒)177の内部に下内筒(内筒)178を配置し、下外筒177と下内筒178との間に下弾性体(弾性体)179を設けた防振構造の部材である。
下弾性体179は、一例としてゴム製の弾性変形可能な部材である。
The lower elastic bush 172 includes a lower inner cylinder (inner cylinder) 178 disposed inside a lower outer cylinder (outer cylinder) 177, and a lower elastic body (elastic body) 179 between the lower outer cylinder 177 and the lower inner cylinder 178. It is a member of the vibration proof structure which provided.
The lower elastic body 179 is a rubber elastically deformable member as an example.

上外筒173は、上部173aおよび下部173bをそれぞれ円筒形に形成し、上部173aの内周と下部173bの内周との間に、「軸方向で、少なくとも部分的に径の小さな外筒小径部」としての上外筒傾斜面181を形成する。
この上外筒傾斜面181は、傾斜角θ2を一定に保った状態で傾斜させた面で、この状態で上外筒173の全周に亘って形成したものである。
The upper outer cylinder 173 has an upper portion 173a and a lower portion 173b each formed in a cylindrical shape, and has an outer cylinder small diameter that is at least partially small in the axial direction between the inner periphery of the upper portion 173a and the inner periphery of the lower portion 173b. The upper outer cylinder inclined surface 181 is formed as a portion.
The upper outer cylinder inclined surface 181 is an inclined surface with the inclination angle θ2 kept constant, and is formed over the entire circumference of the upper outer cylinder 173 in this state.

上内筒174は、上部174aおよび下部174bをそれぞれ円筒形に形成し、上部174aの内周と下部174bの内周との間に、「軸方向で、少なくとも部分的に径の大きな内筒大径部」としての、上内筒傾斜面182を形成する。
この上内筒傾斜面182は、傾斜角θ1を一定に保った状態で傾斜させ、この状態で上内筒174の全周に亘って形成した傾斜面である。
そして、上外筒傾斜面181と上内筒傾斜面182との間に上弾性体175を設ける。
The upper inner cylinder 174 has an upper part 174a and a lower part 174b each formed in a cylindrical shape. Between the inner circumference of the upper part 174a and the inner circumference of the lower part 174b, an “inner cylinder large at least partially in the axial direction” An upper inner cylinder inclined surface 182 as a “diameter portion” is formed.
The upper inner cylinder inclined surface 182 is an inclined surface that is inclined over the entire circumference of the upper inner cylinder 174 in such a state that the inclination angle θ1 is kept constant.
An upper elastic body 175 is provided between the upper outer cylinder inclined surface 181 and the upper inner cylinder inclined surface 182.

なお、下弾性ブッシュ172は、下外筒177を上外筒173と同様に形成し、下内筒178を上内筒174と同様に形成したものである。
よって、下外筒177は、上外筒173と同様に、「軸方向で、少なくとも部分的に径の小さな外筒小径部」としての下外筒傾斜面183を備える。下外筒傾斜面183は、傾斜角θ2を一定に保った状態で、下外筒177の全周に亘って略円錐台状に形成したものである。
また、下内筒178は、上内筒174と同様に、「軸方向で、少なくとも部分的に径の大きな内筒大径部」としての、下内筒傾斜面184を備える。下内筒傾斜面184は、傾斜角θ1を一定に保った状態で、下内筒178の全周に亘って略円錐台状に形成したものである。
The lower elastic bushing 172 is formed by forming the lower outer cylinder 177 in the same manner as the upper outer cylinder 173 and the lower inner cylinder 178 in the same manner as the upper inner cylinder 174.
Therefore, similarly to the upper outer cylinder 173, the lower outer cylinder 177 includes a lower outer cylinder inclined surface 183 as “an outer cylinder small diameter portion having a small diameter at least partially in the axial direction”. The lower outer cylinder inclined surface 183 is formed in a substantially truncated cone shape over the entire circumference of the lower outer cylinder 177 with the inclination angle θ2 kept constant.
Similarly to the upper inner cylinder 174, the lower inner cylinder 178 includes a lower inner cylinder inclined surface 184 as “an inner cylinder large diameter portion having a large diameter at least partially in the axial direction”. The lower inner cylinder inclined surface 184 is formed in a substantially truncated cone shape over the entire circumference of the lower inner cylinder 178 with the inclination angle θ1 kept constant.

第2実施の形態の防振用弾性ブッシュ170によれば、上弾性ブッシュ171に上外筒傾斜面181および上内筒傾斜面182を備え、下弾性ブッシュ172に下外筒傾斜面183および下内筒傾斜面184を備えることで、第1実施の形態の防振用弾性ブッシュ40と同様の効果を得ることができる。   According to the vibration isolating elastic bush 170 of the second embodiment, the upper elastic bush 171 includes the upper outer cylinder inclined surface 181 and the upper inner cylinder inclined surface 182, and the lower elastic bush 172 includes the lower outer cylinder inclined surface 183 and the lower By providing the inner cylinder inclined surface 184, it is possible to obtain the same effect as the vibration-proof elastic bush 40 of the first embodiment.

さらに、第2実施の形態の防振用弾性ブッシュ170によれば、下外筒傾斜面183および下内筒傾斜面184をそれぞれ略円錐状に形成することで、下外筒177と下内筒178とを組み付ける際に、下外筒177に対して下内筒178の組込み角度を決める必要がない。
よって、下外筒177に下内筒178を組み付ける作業が簡単になる。
Furthermore, according to the vibration-proof elastic bushing 170 of the second embodiment, the lower outer cylinder inclined surface 183 and the lower inner cylinder inclined surface 184 are each formed in a substantially conical shape, so that the lower outer cylinder 177 and the lower inner cylinder are formed. When assembling with 178, it is not necessary to determine the assembly angle of the lower inner cylinder 178 with respect to the lower outer cylinder 177.
Therefore, the work of assembling the lower inner cylinder 178 to the lower outer cylinder 177 is simplified.

第3実施の形態
図13は本発明に係る第3実施の形態の防振用弾性ブッシュを示す断面図である。
防振用弾性ブッシュ190は、第1実施の形態の防振用弾性ブッシュ40を構成する上下の弾性ブッシュ87,88を一体に形成したものである。
すなわち、防振用弾性ブッシュ190は、外筒191の内部に内筒192を配置し、外筒192と内筒192との間に弾性体193を設けた防振構造の部材である。
Third Embodiment FIG. 13 is a cross-sectional view showing a vibration-proof elastic bushing according to a third embodiment of the present invention.
The anti-vibration elastic bush 190 is formed by integrally forming upper and lower elastic bushes 87 and 88 that constitute the anti-vibration elastic bush 40 of the first embodiment.
In other words, the vibration-proof elastic bush 190 is a member having a vibration-proof structure in which the inner cylinder 192 is disposed inside the outer cylinder 191 and the elastic body 193 is provided between the outer cylinder 192 and the inner cylinder 192.

外筒191は、上下の外筒傾斜面113a,122aを備える。上下の外筒傾斜面113a,122aは、第1実施の形態で説明した傾斜面と同一であり、詳細の説明を省略する。
内筒192は、上下の内筒傾斜面109a,121aを備える。上下の内筒傾斜面109a,121aは、第1実施の形態で説明した傾斜面と同一であり、詳細の説明を省略する。
The outer cylinder 191 includes upper and lower outer cylinder inclined surfaces 113a and 122a. The upper and lower outer cylinder inclined surfaces 113a and 122a are the same as the inclined surfaces described in the first embodiment, and detailed description thereof is omitted.
The inner cylinder 192 includes upper and lower inner cylinder inclined surfaces 109a and 121a. The upper and lower inner cylinder inclined surfaces 109a and 121a are the same as the inclined surfaces described in the first embodiment, and detailed description thereof is omitted.

上内筒傾斜面109aは、上外筒傾斜面113aに対向する傾斜面である。上内筒傾斜面109aと上外筒傾斜面113aとの間に弾性体193を設ける。
下内筒傾斜面121aは、下外筒傾斜面122aに対向する傾斜面である。下内筒傾斜面121aと下外筒傾斜面122aとの間に弾性体193を設ける。
The upper inner cylinder inclined surface 109a is an inclined surface facing the upper outer cylinder inclined surface 113a. An elastic body 193 is provided between the upper inner cylinder inclined surface 109a and the upper outer cylinder inclined surface 113a.
The lower inner cylinder inclined surface 121a is an inclined surface facing the lower outer cylinder inclined surface 122a. An elastic body 193 is provided between the lower inner cylinder inclined surface 121a and the lower outer cylinder inclined surface 122a.

第3実施の形態の防振用弾性ブッシュ190によれば、上下の外筒傾斜面113a,122aおよび上下の内筒傾斜面109a,121aを備えることで、第1実施の形態の防振用弾性ブッシュ40と同様の効果を得ることができる。
加えて、第3実施の形態の防振用弾性ブッシュ190によれば、部品点数を減らすことができる。
According to the vibration isolating elastic bush 190 of the third embodiment, the upper and lower outer cylinder inclined surfaces 113a and 122a and the upper and lower inner cylinder inclined surfaces 109a and 121a are provided, so that the vibration isolating elastic of the first embodiment is provided. The same effect as the bush 40 can be obtained.
In addition, according to the elastic bushing 190 for vibration isolation of the third embodiment, the number of parts can be reduced.

第4実施の形態
図14(a),(b)は本発明に係る第4実施の形態の防振用弾性ブッシュを示す断面図である。
防振用弾性ブッシュ200は、外筒201の短軸202の長さ(以下、「短軸長さ」という)をd4とし、かつ内筒192の長軸107の長さ(以下、「長軸長さ」という)をD1とし、軸線118から外筒傾斜面204までの最小距離(d4/2)を、軸線118から上内筒傾斜面109a,121aまでの最大距離(D1/2)より小さくしたものである。
この防振用弾性ブッシュ200は、前記内容の点で、第3実施の形態の防振用弾性ブッシュ190と異なるだけでその他の構成は防振用弾性ブッシュ190と同じである。
Fourth Embodiment FIGS. 14A and 14B are sectional views showing a vibration-proof elastic bushing according to a fourth embodiment of the present invention.
The anti-vibration elastic bushing 200 has the length of the short axis 202 of the outer cylinder 201 (hereinafter referred to as “short axis length”) as d4 and the length of the long axis 107 of the inner cylinder 192 (hereinafter referred to as “long axis”). D1) and the minimum distance (d4 / 2) from the axis 118 to the outer cylinder inclined surface 204 is smaller than the maximum distance (D1 / 2) from the axis 118 to the upper inner cylinder inclined surfaces 109a and 121a. It is a thing.
The anti-vibration elastic bushing 200 is the same as the anti-vibration elastic bushing 190 except for the contents described above, except for the anti-vibration elastic bushing 190 of the third embodiment.

軸線118から外筒傾斜面204までの最小距離(d4/2)を、軸線118から上内筒傾斜面109a,121aまでの最大距離(D1/2)より小さくすることで、外筒201の外筒傾斜面204,204の傾斜角θ3を大きく確保する。
これにより、サブフレーム41に矢印F2の如く鉛直に振動がかかった場合に、弾性体193の圧縮力を増すことが可能になる。
By making the minimum distance (d4 / 2) from the axis 118 to the outer cylinder inclined surface 204 smaller than the maximum distance (D1 / 2) from the axis 118 to the upper inner cylinder inclined surfaces 109a, 121a, the outer cylinder 201 A large inclination angle θ3 between the cylinder inclined surfaces 204 and 204 is ensured.
As a result, when the sub frame 41 is vibrated vertically as indicated by the arrow F2, the compression force of the elastic body 193 can be increased.

よって、第4実施の形態の防振用弾性ブッシュ200によれば、第3実施の形態の防振用弾性ブッシュ190と同様の効果を得ることができる。
加えて、第4実施の形態の防振用弾性ブッシュ200によれば、外筒201の外筒傾斜面204,204の傾斜角θ3を大きく確保することで、防振用弾性ブッシュ200を多種の条件に適用させることが可能になり、用途の拡大を図ることができる。
Therefore, according to the vibration-proof elastic bushing 200 of the fourth embodiment, the same effects as those of the vibration-proof elastic bushing 190 of the third embodiment can be obtained.
In addition, according to the vibration-proof elastic bushing 200 of the fourth embodiment, the vibration-proof elastic bushing 200 can be used in various ways by ensuring a large inclination angle θ3 of the outer cylinder inclined surfaces 204, 204 of the outer cylinder 201. It becomes possible to apply to the conditions, and the use can be expanded.

しかし、第4実施の形態の防振用弾性ブッシュ200では、外筒201の短軸長さd4を、内筒192の長軸長さD1より小さくしたので、外筒201の一対の外筒傾斜面204が、内筒192の上内筒傾斜面109a,121aと平面視で距離S1だけ重なり合う。
このため、外筒201内に内筒192を配置させる際に、外筒201と内筒192とが干渉してしまう虞があり、外筒201内に内筒192を配置するための工夫が要求される。
以下、外筒201内に内筒192を配置させる第1の組付け例を図15に基づいて説明し、第2の組付け例を図16〜図18に基づいて説明する。
However, in the vibration-proof elastic bushing 200 of the fourth embodiment, the short axis length d4 of the outer cylinder 201 is made smaller than the long axis length D1 of the inner cylinder 192. The surface 204 overlaps the upper inner cylinder inclined surfaces 109a and 121a of the inner cylinder 192 by a distance S1 in plan view.
For this reason, when the inner cylinder 192 is arranged in the outer cylinder 201, there is a possibility that the outer cylinder 201 and the inner cylinder 192 interfere with each other, and a device for arranging the inner cylinder 192 in the outer cylinder 201 is required. Is done.
Hereinafter, a first assembly example in which the inner cylinder 192 is arranged in the outer cylinder 201 will be described with reference to FIG. 15, and a second assembly example will be described with reference to FIGS.

図15(a),(b)は第4実施の形態の外筒内に内筒を配置する第1組付け例を示す説明図である。
外筒201を軸線118方向に分割したして2個の分割体201a,201aとする。2個の分割体201a,201aを、内筒192の両側から矢印aの如く移動させて、それぞれの分割体201a,201aの分割面201b…を接合することで、外筒201内に内筒192を配置させる。
FIGS. 15A and 15B are explanatory views showing a first assembly example in which the inner cylinder is arranged in the outer cylinder of the fourth embodiment.
The outer cylinder 201 is divided in the direction of the axis 118 to obtain two divided bodies 201a and 201a. The two divided bodies 201a and 201a are moved from both sides of the inner cylinder 192 as indicated by the arrow a, and the divided surfaces 201b of the respective divided bodies 201a and 201a are joined to each other to join the inner cylinder 192 in the outer cylinder 201. Arrange.

これにより、図14に示すように、外筒201の短軸長さd4を、内筒192の長軸長さD1より小さくしても、内筒192を外筒201内の組付け位置に配置することができる。   Accordingly, as shown in FIG. 14, even if the short axis length d4 of the outer cylinder 201 is smaller than the long axis length D1 of the inner cylinder 192, the inner cylinder 192 is disposed at the assembly position in the outer cylinder 201. can do.

なお、第1組付け例では、外筒201を、2個の分割体201a,201aに分割した例について説明したが、外筒201を分割する個数は2個に限らないで、例えば3個などの複数個に分割することも可能である。   In the first assembly example, the example in which the outer cylinder 201 is divided into two divided bodies 201a and 201a has been described. However, the number of divisions of the outer cylinder 201 is not limited to two, for example, three. It is also possible to divide into a plurality.

図16(a),(b)は第4実施の形態の外筒内に内筒を配置する第2組付け例を示す第1説明図であり、外筒201の短軸202に内筒192の短軸108に合わせた状態を示す。
(a)において、外筒201の短軸202に内筒192の短軸108に合わせることで、外筒201と内筒192との間に隙間S2を確保する。
FIGS. 16A and 16B are first explanatory views showing a second assembly example in which the inner cylinder is arranged in the outer cylinder of the fourth embodiment, and the inner cylinder 192 is attached to the short axis 202 of the outer cylinder 201. A state in which the minor axis 108 is aligned is shown.
In (a), the gap S <b> 2 is secured between the outer cylinder 201 and the inner cylinder 192 by aligning the minor axis 202 of the outer cylinder 201 with the minor axis 108 of the inner cylinder 192.

(b)において、外筒201の内部に向けて内筒192を矢印bの如く差し込む。外筒201と内筒192との間に隙間S2を確保することで、外筒201に当たらないように、内筒192を外筒201内に差し込むことができる。   In (b), the inner cylinder 192 is inserted into the outer cylinder 201 as shown by an arrow b. By securing the clearance S <b> 2 between the outer cylinder 201 and the inner cylinder 192, the inner cylinder 192 can be inserted into the outer cylinder 201 so as not to hit the outer cylinder 201.

図17(a),(b)は第4実施の形態の外筒内に内筒を配置する第2組付け例を示す第2説明図であり、外筒201内に内筒192を差し込んだ状態を示す。
(a)において、外筒201内に内筒192が差し込まれる。この状態で、内筒192の内筒傾斜面109a,121aに、外筒201の外筒傾斜面204,204が対向する。
FIGS. 17A and 17B are second explanatory views showing a second assembly example in which the inner cylinder is arranged in the outer cylinder of the fourth embodiment, and the inner cylinder 192 is inserted into the outer cylinder 201. Indicates the state.
In (a), the inner cylinder 192 is inserted into the outer cylinder 201. In this state, the outer cylinder inclined surfaces 204 and 204 of the outer cylinder 201 face the inner cylinder inclined surfaces 109a and 121a of the inner cylinder 192.

(b)において、内筒192を矢印cの如く回転する。すなわち、内筒192の長軸107が外筒201の短軸202に向けて回転する。   In (b), the inner cylinder 192 is rotated as indicated by an arrow c. That is, the long axis 107 of the inner cylinder 192 rotates toward the short axis 202 of the outer cylinder 201.

図18(a),(b)は第4実施の形態の外筒内に内筒を配置する第2組付け例を示す第3説明図であり、外筒201内に内筒192を配置した状態を示す。
(a)において、内筒192の長軸107を外筒201の短軸202に合わせる。これにより、外筒201の短軸長さd4を、内筒192の長軸長さD1より小さくしても、内筒192を外筒201内の組付け位置に配置することができる。
18A and 18B are third explanatory views showing a second assembly example in which the inner cylinder is arranged in the outer cylinder of the fourth embodiment, and the inner cylinder 192 is arranged in the outer cylinder 201. FIG. Indicates the state.
In (a), the major axis 107 of the inner cylinder 192 is aligned with the minor axis 202 of the outer cylinder 201. Thereby, even if the short axis length d4 of the outer cylinder 201 is smaller than the long axis length D1 of the inner cylinder 192, the inner cylinder 192 can be disposed at the assembly position in the outer cylinder 201.

(b)において、外筒201内に内筒192を配置した後、外筒201と内筒192との間に弾性体193を、例えばインジェクション成形で設ける。これにより、防振用弾性ブッシュ200を得る。   In (b), after the inner cylinder 192 is disposed in the outer cylinder 201, an elastic body 193 is provided between the outer cylinder 201 and the inner cylinder 192 by, for example, injection molding. Thereby, the elastic bushing 200 for vibration isolation is obtained.

なお、図15で説明した第1組付け例や、図16〜図18で説明した第2の組付け例は、防振用弾性ブッシュ200を一体化した場合に適用するものである。
第1、第2実施の形態の防振用弾性ブッシュ40,170のように上下の弾性ブッシュで構成したものは、第1、第2の組付け例を適用しなくても組み付けることが可能である。
The first assembly example described with reference to FIG. 15 and the second assembly example described with reference to FIGS. 16 to 18 are applied when the vibration-proof elastic bushing 200 is integrated.
The anti-vibration elastic bushes 40 and 170 according to the first and second embodiments can be assembled without applying the first and second assembling examples. is there.

第5実施の形態
図19(a),(b)は本発明に係る第5実施の形態の防振用弾性ブッシュを示す斜視図である。
防振用弾性ブッシュ210は、内筒211の外周212を略矩形状に形成し、内筒211の両側に配置した2個の分割体214,214を矢印dの如く移動し、それぞれの分割体214,214の分割面214a…を接合することで外筒213を形成し、外筒213内に内筒211を配置したものである。
外筒213と内筒211との間に弾性体(図示せず)を、例えばインジェクション成形で設ける。
この弾性体は、一例としてゴム製の弾性変形可能な部材である。
Fifth Embodiment FIGS. 19A and 19B are perspective views showing an anti-vibration elastic bushing according to a fifth embodiment of the present invention.
The anti-vibration elastic bushing 210 has an outer periphery 212 of the inner cylinder 211 formed in a substantially rectangular shape, and moves the two divided bodies 214 and 214 arranged on both sides of the inner cylinder 211 as indicated by an arrow d. The outer cylinder 213 is formed by joining the dividing surfaces 214 a of the 214 and 214, and the inner cylinder 211 is disposed in the outer cylinder 213.
An elastic body (not shown) is provided between the outer cylinder 213 and the inner cylinder 211 by, for example, injection molding.
This elastic body is an elastically deformable member made of rubber, for example.

第5実施の形態の防振用弾性ブッシュ210によれば、第1実施の形態の防振用弾性ブッシュ40と同様の効果を得ることができる。
加えて、第5実施の形態の防振用弾性ブッシュ210によれば、内筒211の外周212を略矩形状に形成することで、防振用弾性ブッシュ210を多種の条件に適用させることが可能になり、用途の拡大を図ることができる。
According to the vibration-proof elastic bushing 210 of the fifth embodiment, the same effects as those of the vibration-proof elastic bushing 40 of the first embodiment can be obtained.
In addition, according to the elastic bushing 210 for vibration isolation of the fifth embodiment, the elastic bushing 210 for vibration isolation can be applied to various conditions by forming the outer periphery 212 of the inner cylinder 211 in a substantially rectangular shape. It becomes possible, and the application can be expanded.

防振用弾性ブッシュ210の防振用弾性ブッシュ210では、外筒213を、2個の分割体214,214に分割した例について説明したが、外筒23を分割する個数は2個に限らないで、例えば3個などの複数個に分割することも可能である。   In the anti-vibration elastic bushing 210 of the anti-vibration elastic bushing 210, the example in which the outer cylinder 213 is divided into the two divided bodies 214 and 214 has been described, but the number of divisions of the outer cylinder 23 is not limited to two. For example, it can be divided into a plurality of pieces such as three.

なお、前記第1〜第5の実施の形態では、外筒をサブフレーム41に取り付け、内筒を左右のフロントサイドフレーム21,21に取り付けた例ついて説明したが、これに限らないで、その他の部材に取り付けても同様の発明の効果を得ることができる。   In the first to fifth embodiments, the example in which the outer cylinder is attached to the sub-frame 41 and the inner cylinder is attached to the left and right front side frames 21 and 21 has been described. Even if it is attached to this member, the same effect of the invention can be obtained.

また、前記第1〜第5の実施の形態では、防振用弾性ブッシュ40,170,190,200,210に備えた内筒の外周中央を凹状に形成し、外筒の内周中央を凸状に形成したが、内筒の外周中央を凸状に形成し、外筒の内周中央を凹状に形成しても同様の効果を得ることができる。   In the first to fifth embodiments, the center of the outer circumference of the inner cylinder provided in the elastic bushings for vibration isolation 40, 170, 190, 200, 210 is formed in a concave shape, and the center of the inner circumference of the outer cylinder is convex. However, the same effect can be obtained by forming the center of the outer periphery of the inner cylinder in a convex shape and forming the center of the inner periphery of the outer cylinder in a concave shape.

さらに、前記実施の形態では、内筒の外周を楕円、円、略矩形状に形成した例について説明したが、内筒の外周は、これに限定するものではなく、防振用弾性ブッシュの用途に応じて適宜選択することが可能である。
さらに、外筒の内周の形状も、前記実施の形態で説明したものに限らないで、防振用弾性ブッシュの用途に応じて適宜選択することが可能である。
Furthermore, in the above-described embodiment, the example in which the outer periphery of the inner cylinder is formed in an ellipse, a circle, and a substantially rectangular shape has been described. However, the outer periphery of the inner cylinder is not limited to this, and the application of the elastic bushing for vibration isolation It is possible to select appropriately according to the situation.
Furthermore, the shape of the inner periphery of the outer cylinder is not limited to that described in the above embodiment, and can be appropriately selected according to the use of the vibration-proof elastic bushing.

また、前記実施の形態では、「軸方向で、少なくとも部分的に径の大きな内筒大径部」として、上内筒傾斜面109a,182、および下内筒傾斜面121a,184を例に説明したが、内筒大径部は傾斜面に限らないで、軸線118に対して直交する面で内筒大径部を形成することも可能である。   In the above-described embodiment, the upper inner cylinder inclined surfaces 109a and 182 and the lower inner cylinder inclined surfaces 121a and 184 are described as an example of the “inner cylinder large diameter portion at least partially large in the axial direction”. However, the inner cylinder large-diameter portion is not limited to the inclined surface, and the inner cylinder large-diameter portion can be formed by a plane orthogonal to the axis 118.

さらに、前記実施の形態では、「軸方向で、少なくとも部分的に径の小さな外筒小径部」として、上外筒傾斜面113a,181、および下外筒傾斜面122a,183を例に説明したが、外筒小径部は傾斜面に限らないで、軸線118に対して直交する面で外筒小径部を形成することも可能である。   Further, in the above-described embodiment, the upper outer cylinder inclined surfaces 113a and 181 and the lower outer cylinder inclined surfaces 122a and 183 are described as examples as “the outer cylinder small diameter portion having a small diameter at least partially in the axial direction”. However, the outer cylinder small-diameter portion is not limited to the inclined surface, and the outer cylinder small-diameter portion can be formed by a plane orthogonal to the axis 118.

本発明は、外筒を一方の部材に取り付け、内筒を他方の部材に取り付けることで、各々の部材を弾性体を介して連結する防振用弾性ブッシュへの適用に好適である。   The present invention is suitable for application to an anti-vibration elastic bush that connects each member via an elastic body by attaching the outer cylinder to one member and attaching the inner cylinder to the other member.

本発明に係る第1実施の形態の防振用弾性ブッシュを備えた車体前部構造を示す斜視図である。It is a perspective view which shows the vehicle body front part structure provided with the elastic bush for vibration proofing of 1st Embodiment which concerns on this invention. 第1実施の形態に係る防振用弾性ブッシュを備えたサブフレームを示す斜視図である。It is a perspective view which shows the sub-frame provided with the elastic bush for vibration isolation which concerns on 1st Embodiment. 第1実施の形態に係る防振用弾性ブッシュを示す斜視図である。It is a perspective view which shows the elastic bush for vibration isolation which concerns on 1st Embodiment. 図2の4−4線断面図である。FIG. 4 is a cross-sectional view taken along line 4-4 of FIG. 図4の5−5線断面図である。FIG. 5 is a sectional view taken along line 5-5 of FIG. 第1実施の形態に係る防振用弾性ブッシュを示す斜視図である。It is a perspective view which shows the elastic bush for vibration isolation which concerns on 1st Embodiment. 第1実施の形態に係る防振用弾性ブッシュを示す内筒長軸方向の断面図である。It is sectional drawing of the inner cylinder long axis direction which shows the elastic bush for vibration damping which concerns on 1st Embodiment. 第1実施の形態に係る防振用弾性ブッシュを示す内筒短軸方向の断面図である。It is sectional drawing of the inner cylinder short axis direction which shows the elastic bush for vibration damping which concerns on 1st Embodiment. 第1実施の形態に係る上弾性ブッシュを構成する各部材の斜視図である。It is a perspective view of each member which constitutes the upper elastic bush concerning a 1st embodiment. 第1実施の形態に係る上弾性ブッシュの一部を構成する内筒および外筒を示す平面図である。It is a top view which shows the inner cylinder and outer cylinder which comprise some upper elastic bushes which concern on 1st Embodiment. 第1実施の形態に係る防振用弾性ブッシュの作用を説明する図である。It is a figure explaining the effect | action of the elastic bush for vibration isolation which concerns on 1st Embodiment. 本発明に係る第2実施の形態の防振用弾性ブッシュを示す図である。It is a figure which shows the elastic bush for vibration proofing of 2nd Embodiment which concerns on this invention. 本発明に係る第3実施の形態の防振用弾性ブッシュを示す断面図である。It is sectional drawing which shows the elastic bush for vibration proofing of 3rd Embodiment which concerns on this invention. 本発明に係る第4実施の形態の防振用弾性ブッシュを示す断面図である。It is sectional drawing which shows the elastic bush for vibration proofing of 4th Embodiment which concerns on this invention. 第4実施の形態の外筒内に内筒を配置する第1組付け例を示す説明図である。It is explanatory drawing which shows the 1st assembly example which arrange | positions an inner cylinder in the outer cylinder of 4th Embodiment. 第4実施の形態の外筒内に内筒を配置する第2組付け例を示す第1説明図である。It is 1st explanatory drawing which shows the 2nd assembly example which arrange | positions an inner cylinder in the outer cylinder of 4th Embodiment. 第4実施の形態の外筒内に内筒を配置する第2組付け例を示す第2説明図である。It is 2nd explanatory drawing which shows the 2nd assembly example which arrange | positions an inner cylinder in the outer cylinder of 4th Embodiment. 第4実施の形態の外筒内に内筒を配置する第2組付け例を示す第3説明図である。It is 3rd explanatory drawing which shows the 2nd assembly example which arrange | positions an inner cylinder in the outer cylinder of 4th Embodiment. 本発明に係る第5実施の形態の防振用弾性ブッシュを示す斜視図である。It is a perspective view which shows the elastic bush for vibration proof of 5th Embodiment which concerns on this invention. 従来の基本構成を説明する図である。It is a figure explaining the conventional basic composition.

符号の説明Explanation of symbols

10…車両、20…車体前部構造、21…フロントサイドフレーム(他方の部材)、41…サブフレーム(一方の部材)、31…フロアフレーム(他方の部材)、40,170,190,200,210…防振用弾性ブッシュ、87,171…上弾性ブッシュ、88,172…下弾性ブッシュ、91,173…上外筒(外筒)、92,174…上内筒(内筒)、93,175…上弾性体(弾性体)、94,177…下外筒(外筒)、95,178…下内筒(内筒)、96,179…下弾性体(弾性体)、109…上内筒の外周、109a,182…上内筒傾斜面(軸方向で、少なくとも部分的に径の大きな内筒大径部)、113…上外筒の内周、113a,181…上外筒傾斜面(軸方向で、少なくとも部分的に径の小さな外筒小径部)、118…軸線、121…下内筒の外周、121a,184…下内筒傾斜面(軸方向で、少なくとも部分的に径の大きな内筒大径部)、122…下外筒の内周、122a,183…下外筒傾斜面(軸方向で、少なくとも部分的に径の小さな外筒小径部)、191,201、213…外筒、192,211…内筒、193…弾性体、201a,214…分割体、204…外筒傾斜面、D1/2…最大距離、d4/2…最小距離。   DESCRIPTION OF SYMBOLS 10 ... Vehicle, 20 ... Car body front part structure, 21 ... Front side frame (the other member), 41 ... Sub frame (one member), 31 ... Floor frame (the other member), 40, 170, 190, 200, 210 ... Elastic bushing for vibration isolation, 87, 171 ... Upper elastic bush, 88, 172 ... Lower elastic bush, 91, 173 ... Upper outer cylinder (outer cylinder), 92, 174 ... Upper inner cylinder (inner cylinder), 93, 175 ... Upper elastic body (elastic body), 94, 177 ... Lower outer cylinder (outer cylinder), 95, 178 ... Lower inner cylinder (inner cylinder), 96, 179 ... Lower elastic body (elastic body), 109 ... Upper inner The outer periphery of the cylinder, 109a, 182 ... the upper inner cylinder inclined surface (the inner cylinder large diameter portion at least partially large in the axial direction), 113 ... The inner periphery of the upper and outer cylinders, 113a, 181 ... the upper outer cylinder inclined surface (In the axial direction, at least partially a small diameter outer cylinder small diameter portion), 1 8 ... Axis line, 121 ... Outer circumference of lower inner cylinder, 121a, 184 ... Lower inner cylinder inclined surface (inner cylinder large diameter portion having a large diameter at least partially in the axial direction), 122 ... Inner circumference of lower outer cylinder, 122a , 183... Lower outer cylinder inclined surface (in the axial direction, at least a part of the outer cylinder having a small diameter) 191, 201, 213 ... Outer cylinder, 192, 211 ... Inner cylinder, 193 ... Elastic body, 201 a, 214 ... divided body, 204 ... inclined surface of outer cylinder, D1 / 2 ... maximum distance, d4 / 2 ... minimum distance.

Claims (2)

外筒の内側に内筒を組み込むとともに、外筒と内筒との間に弾性体を設け、外筒を一方の部材に取り付け、内筒を他方の部材に取り付けることで、それぞれの部材を弾性体を介して連結する防振用弾性ブッシュにおいて、
前記内筒の外周に、軸方向で、少なくとも部分的に径の大きな内筒大径部を設けるとともに、前記外筒の内周に、軸方向で、少なくとも部分的に径の小さな外筒小径部を設け、
前記内筒大径部および外筒小径部を対向させ、内筒大径部と外筒小径部との間に前記弾性体を設けた防振用弾性ブッシュであって、
前記少なくとも部分的に径の大きな内筒大径部を、前記内筒の端部に向けて径が徐々に大きくなるように傾斜した内筒傾斜面で谷形に形成し、
前記少なくとも部分的に径の小さな外筒小径部を、前記内筒傾斜面に対向し、かつ、前記外筒の端部に向けて径が徐々に大きくなるように傾斜した外筒傾斜面で山形に形成し、
前記内筒傾斜面と前記外筒傾斜面との間の間隔が前記防振用弾性ブッシュの端部に向けて徐々に大きくなるように前記内筒傾斜面および前記外筒傾斜面の傾斜角を異ならせ、
前記内筒傾斜面および前記外筒傾斜面の間に前記弾性体を設け、
前記谷形に形成した内筒大径部の最も小径の部位、および前記山形に形成した外筒小径部の最も小径の部位において、前記外筒、前記内筒および前記弾性体を、軸線方向に直交させて分割し
前記外筒の内周のうち前記軸線方向の中央に、前記山形に形成した外筒小径部を設け、
前記外筒の内周のうち前記外筒小径部を除いた端部を、前記軸線方向に対して平行に形成したことを特徴とする防振用弾性ブッシュ。
In addition to incorporating the inner cylinder inside the outer cylinder, an elastic body is provided between the outer cylinder and the inner cylinder, the outer cylinder is attached to one member, and the inner cylinder is attached to the other member, so that each member is elastic. In the elastic bush for vibration isolation connected through the body,
The outer periphery of the inner cylinder is provided with an inner cylinder large-diameter portion having a large diameter at least partially in the axial direction, and the outer cylinder small-diameter portion having a small diameter at least partially in the axial direction is provided on the inner periphery of the outer cylinder. Provided,
An elastic bushing for vibration isolation in which the inner cylinder large diameter part and the outer cylinder small diameter part are opposed to each other, and the elastic body is provided between the inner cylinder large diameter part and the outer cylinder small diameter part,
The large inner cylinder large-diameter portion of the at least partially radial, forming a valley shape in cylindrical slanted surface inner diameter toward the end of the inner cylinder is inclined to gradually large Kunar so,
The outer cylinder small-diameter portion having a small diameter at least partially is opposed to the inner cylinder inclined surface, and the outer cylinder inclined surface is inclined so that the diameter gradually increases toward the end of the outer cylinder. Formed into
The inclination angles of the inner cylinder inclined surface and the outer cylinder inclined surface are set so that the distance between the inner cylinder inclined surface and the outer cylinder inclined surface gradually increases toward the end of the vibration isolating elastic bush. Different,
The elastic body is provided between the inner cylinder inclined surface and the outer cylinder inclined surface,
The outer cylinder, the inner cylinder, and the elastic body are arranged in the axial direction at the smallest diameter part of the inner cylinder large diameter part formed in the valley shape and the smallest diameter part of the outer cylinder small diameter part formed in the mountain shape. Divided perpendicularly ,
Outer circumference of the outer cylinder is provided in the center in the axial direction with a small diameter outer cylinder formed in the chevron.
An elastic bushing for vibration isolation , wherein an end portion of the inner periphery of the outer cylinder excluding the outer cylinder small diameter part is formed in parallel to the axial direction .
前記外筒を軸線方向に分割した複数の分割体で構成し、前記軸線から外筒小径部までの最小距離を、軸線から内筒大径部までの最大距離より小さくしたことを特徴とする請求項1記載の防振用弾性ブッシュ。   The outer cylinder is constituted by a plurality of divided bodies divided in the axial direction, and the minimum distance from the axis to the outer cylinder small-diameter portion is made smaller than the maximum distance from the axis to the inner cylinder large-diameter portion. Item 2. An elastic bushing for vibration isolation according to item 1.
JP2004102825A 2004-03-31 2004-03-31 Elastic bushing for vibration isolation Expired - Fee Related JP4157070B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004102825A JP4157070B2 (en) 2004-03-31 2004-03-31 Elastic bushing for vibration isolation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004102825A JP4157070B2 (en) 2004-03-31 2004-03-31 Elastic bushing for vibration isolation

Publications (2)

Publication Number Publication Date
JP2005291228A JP2005291228A (en) 2005-10-20
JP4157070B2 true JP4157070B2 (en) 2008-09-24

Family

ID=35324407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004102825A Expired - Fee Related JP4157070B2 (en) 2004-03-31 2004-03-31 Elastic bushing for vibration isolation

Country Status (1)

Country Link
JP (1) JP4157070B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5150374B2 (en) * 2008-06-09 2013-02-20 株式会社ブリヂストン Vibration isolator
JP2013050176A (en) * 2011-08-31 2013-03-14 Tokai Rubber Ind Ltd Cylindrical vibration damper
KR101428303B1 (en) * 2012-12-21 2014-08-14 현대자동차주식회사 Mounting bush
JP6070473B2 (en) * 2013-08-07 2017-02-01 トヨタ車体株式会社 Vehicle body underfloor structure
CN103821860A (en) * 2014-03-06 2014-05-28 安徽中鼎减震橡胶技术有限公司 Novel car auxiliary frame bush
KR101601441B1 (en) 2014-06-27 2016-03-09 현대자동차주식회사 Sub frame mounting bush
KR101713712B1 (en) * 2015-08-13 2017-03-08 현대자동차 주식회사 Bush unit for sub-frame
JP7290399B2 (en) 2018-06-13 2023-06-13 株式会社プロスパイラ bush

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03287405A (en) * 1990-04-03 1991-12-18 Toyota Motor Corp Vehicle suspension
JPH05126183A (en) * 1991-10-29 1993-05-21 Toyoda Gosei Co Ltd Vibration proof bush
JP3477771B2 (en) * 1993-12-10 2003-12-10 日産自動車株式会社 Bush device
JPH08128482A (en) * 1994-10-31 1996-05-21 Tokai Rubber Ind Ltd Cylindrical type vibration control mount

Also Published As

Publication number Publication date
JP2005291228A (en) 2005-10-20

Similar Documents

Publication Publication Date Title
KR102115200B1 (en) Dynamic damper
JP3899836B2 (en) Cylindrical rubber mount
JP4356641B2 (en) Torque rod
JP6424299B1 (en) Torque rod
JP4157070B2 (en) Elastic bushing for vibration isolation
JP6783162B2 (en) Anti-vibration device with bracket
JP6207320B2 (en) Vibration isolator
KR100622505B1 (en) Bush assembly with high stiffness in radial direction
WO2017145221A1 (en) Bracket for vibration-damping device and vibration-damping device using same
JP6417499B1 (en) Torque rod
JP3017483B1 (en) Body mount
WO2022202187A1 (en) Anti-vibration device
JP6332351B2 (en) Anti-vibration device for automobile and anti-vibration structure for automobile
JP4543318B2 (en) Dynamic damper
JP7408472B2 (en) Vibration isolator
JP6182077B2 (en) Cylindrical vibration isolator
JP2019052725A (en) Torque rod
JP3716632B2 (en) Cylindrical anti-vibration mount
JP5396252B2 (en) Cylindrical vibration isolator
JP7493437B2 (en) Anti-vibration device
JP6148904B2 (en) Outer bracket for cylindrical vibration isolator and cylindrical vibration isolator with outer bracket
JP2014066297A (en) Cylindrical type vibration control device
JP2002276713A (en) Connecting rod
JP4426602B2 (en) Vibration isolator
JPH10339342A (en) Vibration isolating device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080710

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4157070

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140718

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees