JP5396252B2 - Cylindrical vibration isolator - Google Patents

Cylindrical vibration isolator Download PDF

Info

Publication number
JP5396252B2
JP5396252B2 JP2009277337A JP2009277337A JP5396252B2 JP 5396252 B2 JP5396252 B2 JP 5396252B2 JP 2009277337 A JP2009277337 A JP 2009277337A JP 2009277337 A JP2009277337 A JP 2009277337A JP 5396252 B2 JP5396252 B2 JP 5396252B2
Authority
JP
Japan
Prior art keywords
axial
circumferential direction
spring
elastic connecting
axial direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009277337A
Other languages
Japanese (ja)
Other versions
JP2011117570A (en
Inventor
靖也 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Riko Co Ltd
Original Assignee
Sumitomo Riko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Riko Co Ltd filed Critical Sumitomo Riko Co Ltd
Priority to JP2009277337A priority Critical patent/JP5396252B2/en
Publication of JP2011117570A publication Critical patent/JP2011117570A/en
Application granted granted Critical
Publication of JP5396252B2 publication Critical patent/JP5396252B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vibration Prevention Devices (AREA)
  • Springs (AREA)

Description

本発明は、自動車のサブフレームブッシュ等に適用される筒形防振装置に関するものである。   The present invention relates to a cylindrical vibration isolator applied to a subframe bush or the like of an automobile.

従来から、振動伝達系を構成する部材間に介装されて、それら部材を防振連結する防振装置の一種として、筒形防振装置が知られている。筒形防振装置は、同心的に配されたインナ軸金具とアウタ筒金具を本体ゴム弾性体によって連結した構造を有しており、例えば特開平4−25628号公報(特許文献1)に示されているのが、それである。   2. Description of the Related Art Conventionally, a cylindrical vibration isolator is known as a type of a vibration isolator that is interposed between members constituting a vibration transmission system and that anti-vibrates and connects these members. The cylindrical vibration isolator has a structure in which an inner shaft fitting and an outer cylinder fitting arranged concentrically are connected by a main rubber elastic body, for example, as disclosed in JP-A-4-25628 (Patent Document 1). That is what it is.

ところで、このような筒形防振装置では、主たる入力振動の違いや要求性能の違いから、軸方向と軸直角方向で異なるばね特性を求められる場合がある。例えば、自動車のサブフレームブッシュでは、軸方向で支持ばね剛性を確保すると共に、軸直角方向で振動絶縁性を高めることが要求される。   By the way, in such a cylindrical vibration isolator, there are cases in which different spring characteristics are required in the axial direction and in the direction perpendicular to the axis due to differences in main input vibrations and differences in required performance. For example, an automobile sub-frame bush is required to secure support spring rigidity in the axial direction and to improve vibration insulation in a direction perpendicular to the axis.

ところが、筒形防振装置では、本体ゴム弾性体がインナ軸金具とアウタ筒金具の径方向対向面間に介装されていることから、軸直角方向での振動入力に対しては、圧縮変形が支配的となって、ばねが硬くなり易い。一方、軸方向での振動入力に対しては、剪断変形が支配的となることから、ばねが柔らかくなり易く、軸方向のばね特性と軸直角方向でのばね特性のチューニングが困難であった。   However, in the cylindrical vibration isolator, since the main rubber elastic body is interposed between the radially opposing surfaces of the inner shaft bracket and the outer cylinder bracket, it is compressed and deformed against vibration input in the direction perpendicular to the axis. Becomes dominant and the spring tends to become stiff. On the other hand, since shear deformation becomes dominant with respect to vibration input in the axial direction, the spring tends to be soft, and tuning of the spring characteristics in the axial direction and the spring characteristics in the direction perpendicular to the axis is difficult.

なお、本体ゴム弾性体に対して凹所状や貫通孔状のすぐりを設けることによって、軸直角方向でのばねを柔らかく設定することも提案されている。しかしながら、すぐりが小さいと軸直角方向でのばねを柔らかく設定するには不充分である一方、大きなすぐりを設けると軸方向でのばねが許容し難いほどに柔らかくなるおそれがあることから、軸方向と軸直角方向のばね比を適当にチューニングすることが難しかった。   In addition, it has also been proposed that the spring in the direction perpendicular to the axis is set soft by providing a recess or a through hole-shaped curl to the main rubber elastic body. However, if the tickling is small, it is not sufficient to set the spring in the direction perpendicular to the axis soft. On the other hand, if a large tickling is provided, the spring in the axial direction may become unacceptably soft. It was difficult to properly tune the spring ratio in the direction perpendicular to the axis.

特開平4−25628号公報Japanese Patent Laid-Open No. 4-25628

本発明は、上述の事情を背景に為されたものであって、その解決課題は、軸方向で要求される硬いばね特性と、軸直角方向で要求される柔らかいばね特性とを、簡単な構造で両立して実現し得る、新規な構造の筒形防振装置を提供することにある。   The present invention has been made in the background of the above-mentioned circumstances, and the problem to be solved is a simple structure of hard spring characteristics required in the axial direction and soft spring characteristics required in the direction perpendicular to the axis. It is an object of the present invention to provide a cylindrical vibration isolator having a novel structure that can be realized at the same time.

本発明の第一の態様は、インナ軸部材の外周側にアウタ筒部材が離隔配置されて、それらインナ軸部材とアウタ筒部材が本体ゴム弾性体で連結された筒形防振装置において、前記インナ軸部材を挟んだ軸直角方向両側において前記本体ゴム弾性体を軸方向に貫通する一対のすぐり孔が形成されており、それら一対のすぐり孔によって該本体ゴム弾性体が周方向に分けられて一対の弾性連結部が設けられていると共に、該各弾性連結部の周方向両側における軸方向寸法が周方向中央よりも小さくされており、且つ、前記一対の弾性連結部が、周方向両側において段差面をもって軸方向寸法が小さくなる周方向の段付形状とされているものである。 According to a first aspect of the present invention, in the cylindrical vibration damping device in which the outer cylindrical member is spaced apart on the outer peripheral side of the inner shaft member, and the inner shaft member and the outer cylindrical member are connected by a main rubber elastic body, A pair of straight holes penetrating the main rubber elastic body in the axial direction are formed on both sides in the direction perpendicular to the axis across the inner shaft member, and the main rubber elastic body is divided in the circumferential direction by the pair of straight holes. A pair of elastic connecting portions are provided, the axial dimensions on both sides in the circumferential direction of each elastic connecting portion are smaller than the center in the circumferential direction , and the pair of elastic connecting portions are on both sides in the circumferential direction. It has a stepped shape in the circumferential direction in which the axial dimension is reduced with a stepped surface .

このような第一の態様に従う構造とされた筒形防振装置では、インナ軸部材とアウタ筒部材を連結する弾性連結部の軸方向寸法を周方向に変化させることで、軸直角方向のばねを維持しつつ軸方向のばねを自由に調整することが可能となり、軸方向に要求される硬いばね特性と、軸直角方向に要求される柔らかいばね特性とを、両立して何れも有効に実現することが出来る。   In the cylindrical vibration isolator having the structure according to the first aspect as described above, by changing the axial dimension of the elastic connecting portion that connects the inner shaft member and the outer cylindrical member in the circumferential direction, the spring in the direction perpendicular to the axis is obtained. The spring in the axial direction can be freely adjusted while maintaining the same, and both the hard spring characteristics required in the axial direction and the soft spring characteristics required in the direction perpendicular to the axis are realized effectively. I can do it.

すなわち、弾性連結部が軸方向寸法を充分に大きく確保された周方向中央部分だけでなく、周方向両側に突出する部分も備えている。それ故、インナ軸部材とアウタ筒部材を連結する弾性連結部のゴムボリュームを大きく確保することが出来て、弾性連結部の軸方向でのばね特性を効率的に硬く設定することが出来る。   That is, the elastic connecting portion includes not only a central portion in the circumferential direction in which a sufficiently large axial dimension is ensured, but also a portion protruding on both sides in the circumferential direction. Therefore, it is possible to secure a large rubber volume of the elastic connecting portion that connects the inner shaft member and the outer cylindrical member, and it is possible to efficiently set the spring characteristics in the axial direction of the elastic connecting portion.

一方、弾性連結部における周方向両側に突出する部分が、周方向中央部分に比べて小さな軸方向寸法で形成されている。それ故、弾性連結部を周方向両側に延び出させたことに起因して弾性連結部の軸直角方向でのばね特性が硬くなるのを低減することが出来て、軸方向と軸直角方向のばね比を高い自由度で調整することが可能となる。   On the other hand, the part which protrudes in the circumferential direction both sides in an elastic connection part is formed in the axial direction dimension small compared with the circumferential direction center part. Therefore, it is possible to reduce the stiffness of the elastic connection portion in the direction perpendicular to the axis due to extending the elastic connection portion on both sides in the circumferential direction. The spring ratio can be adjusted with a high degree of freedom.

しかも、弾性連結部において軸方向での硬いばね特性を実現するために設けられた周方向両側部分が、軸直角方向での主たる荷重の作用位置を周方向に外れている。それ故、軸直角方向の振動入力によって弾性連結部が弾性変形する際に、周方向両側部分では周方向中央部分に比べて剪断成分が増加する。その結果、弾性連結部の周方向両側部分では、圧縮成分が支配的な周方向中央部分よりも軸直角方向のばね特性が充分に柔らかくなる。従って、弾性連結部を周方向両側に延び出させたことによって軸直角方向でのばね特性が硬くなるのを抑えることが出来て、軸方向のばねと軸直角方向のばねとの比を大きな自由度でチューニングすることが可能となる。
また、第一の態様によれば、周方向両側部分において軸直角方向の振動入力時に比較的に圧縮成分が大きくなる周方向中央寄りの部位の軸方向寸法を、充分に小さく設定することが出来る。それ故、周方向両側部分を設けることによって軸直角方向でのばね特性が硬くなるのをより効果的に抑えて、ばね比のチューニング自由度を高めることが出来る。
In addition, both circumferential portions provided in the elastic connecting portion in order to realize hard spring characteristics in the axial direction deviate from the main load acting position in the circumferential direction in the circumferential direction. Therefore, when the elastic coupling portion is elastically deformed by the vibration input in the direction perpendicular to the axis, the shear component increases in the circumferential side portions as compared with the circumferential center portion. As a result, the spring characteristics in the direction perpendicular to the axis are sufficiently softer in the circumferentially opposite side portions of the elastic connecting portion than in the circumferentially central portion where the compression component is dominant. Therefore, it is possible to prevent the spring characteristics in the direction perpendicular to the axis from becoming stiff by extending the elastic connecting part to both sides in the circumferential direction, and the ratio between the spring in the axis direction and the spring in the direction perpendicular to the axis can be greatly increased. It becomes possible to tune in degrees.
Further, according to the first aspect, the axial dimension of the portion near the center in the circumferential direction where the compression component becomes relatively large when vibration in the direction perpendicular to the axis is input in both circumferential portions can be set sufficiently small. . Therefore, by providing both circumferential portions, it is possible to more effectively suppress the spring characteristics in the direction perpendicular to the axis from becoming hard, and to increase the degree of freedom in tuning the spring ratio.

本発明の第二の態様は、第一の態様に記載された筒形防振装置において、前記アウタ筒部材の軸方向一方の端部に内フランジが形成されていると共に、前記本体ゴム弾性体の前記一対の弾性連結部が該内フランジに固着されているものである。   According to a second aspect of the present invention, in the cylindrical vibration damping device described in the first aspect, an inner flange is formed at one end portion in the axial direction of the outer cylindrical member, and the main rubber elastic body The pair of elastic connecting portions is fixed to the inner flange.

第二の態様によれば、弾性連結部が内フランジに固着されていることで、軸方向での振動入力時に、弾性連結部が内フランジによって軸方向で圧縮されて、弾性連結部の軸方向での支持ばね剛性が大きくなる。それ故、軸方向と軸直角方向のばね比のチューニング可能領域をより広く設定することが可能となる。   According to the second aspect, since the elastic connecting portion is fixed to the inner flange, the elastic connecting portion is compressed in the axial direction by the inner flange when the vibration is input in the axial direction, and the axial direction of the elastic connecting portion. The rigidity of the support spring is increased. Therefore, the tunable region of the spring ratio in the axial direction and the direction perpendicular to the axial direction can be set wider.

本発明の第三の態様は、第一又は第二の態様に記載された筒形防振装置において、前記弾性連結部の軸方向端面が軸方向一方に向かって傾斜する軸方向傾斜面とされているものである。   According to a third aspect of the present invention, in the cylindrical vibration isolator described in the first or second aspect, the axial end surface of the elastic coupling portion is an axially inclined surface inclined toward one axial direction. It is what.

第三の態様によれば、筒形防振装置の他部材への装着によって軸方向に静的な荷重が作用する場合に、弾性連結部の軸方向両端面を静的荷重の入力方向に応じて傾斜する軸方向傾斜面とすることで、静的荷重の入力による弾性連結部の初期変形が圧縮変形となる。それ故、弾性連結部に作用する引張応力が低減されて、弾性連結部の耐久性の向上が図られる。   According to the third aspect, when a static load is applied in the axial direction by mounting the cylindrical vibration isolator on the other member, both axial end surfaces of the elastic coupling portion are set according to the input direction of the static load. By setting the inclined surface in the axial direction to be inclined, the initial deformation of the elastic connecting portion by the input of the static load becomes the compression deformation. Therefore, the tensile stress acting on the elastic connecting portion is reduced, and the durability of the elastic connecting portion is improved.

本発明によれば、インナ軸部材とアウタ筒部材を連結する弾性連結部が、周方向中央部分に加えて、中央部分から周方向両側に延び出す周方向両側部分を有していることで、弾性連結部のゴムボリュームが充分に大きく確保されて、軸方向での硬いばね特性が実現される。しかも、ゴムボリュームを確保する周方向両側部分は、軸方向での寸法が中央部分よりも小さくなっていると共に、軸直角方向の荷重が作用する線上を周方向に外れていることから、軸直角方向でのばね特性が硬くなるのを抑えることが出来る。これらによって、軸方向と軸直角方向のばね比をより自由にチューニングして設定することが可能となって、要求されるばね特性を有効に実現することが可能となる。   According to the present invention, the elastic coupling portion that couples the inner shaft member and the outer cylindrical member has circumferential side portions that extend from the central portion to both sides in the circumferential direction in addition to the circumferential central portion. A sufficiently large rubber volume of the elastic connecting portion is secured, and a hard spring characteristic in the axial direction is realized. In addition, both sides in the circumferential direction that secure the rubber volume are smaller in the axial direction than the central part, and are out of the circumferential direction on the line where the load in the direction perpendicular to the axis acts. It can suppress that the spring characteristic in a direction becomes hard. As a result, the spring ratio in the axial direction and the direction perpendicular to the axial direction can be more freely tuned and set, and the required spring characteristics can be effectively realized.

本発明の一実施形態としてのサブフレームブッシュを示す縦断面図であって、図2におけるI−I断面に相当する図。It is a longitudinal cross-sectional view which shows the sub-frame bush as one Embodiment of this invention, Comprising: The figure corresponded in the II cross section in FIG. 図1に示されたサブフレームブッシュの正面図。The front view of the sub-frame bush shown by FIG. 図1に示されたサブフレームブッシュの背面図。The rear view of the sub-frame bush shown by FIG. 図1に示されたサブフレームブッシュにおいてアウタ筒部材を取り外した状態を示す斜視図。The perspective view which shows the state which removed the outer cylinder member in the sub-frame bush shown by FIG. 図1に示されたサブフレームブッシュを構成する本体ゴム弾性体の要部を示す側面図。The side view which shows the principal part of the main body rubber elastic body which comprises the sub-frame bush shown by FIG. 本発明の別の実施形態としてのサブフレームブッシュを構成する弾性連結部の外周面形状を示す図。The figure which shows the outer peripheral surface shape of the elastic connection part which comprises the sub-frame bush as another embodiment of this invention. 本発明の別の実施形態としてのサブフレームブッシュを構成する弾性連結部の外周面形状を示す図。The figure which shows the outer peripheral surface shape of the elastic connection part which comprises the sub-frame bush as another embodiment of this invention. 本発明の参考形態としてのサブフレームブッシュを構成する弾性連結部の外周面形状を示す図。The figure which shows the outer peripheral surface shape of the elastic connection part which comprises the sub-frame bush as a reference form of this invention. 本発明の更に別の実施形態としてのサブフレームブッシュを構成する弾性連結部の外周面形状を示す図。The figure which shows the outer peripheral surface shape of the elastic connection part which comprises the sub-frame bush as another embodiment of this invention. 本発明の別参考形態としてのサブフレームブッシュを構成する弾性連結部の外周面形状を示す図。The figure which shows the outer peripheral surface shape of the elastic connection part which comprises the sub-frame bush as another reference form of this invention.

以下、本発明の実施形態について、図面を参照しつつ説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1〜図3には、本発明に従う構造とされた筒形防振装置の一実施形態として、自動車用のサブフレームブッシュ10が示されている。サブフレームブッシュ10は、インナ軸部材12とアウタ筒部材14を本体ゴム弾性体16で連結した構造を有している。そして、インナ軸部材12が図示しない車両ボデーに取り付けられると共に、アウタ筒部材14が同じく図示しないサブフレームに取り付けられることにより、サブフレームが車両ボデーに対して防振連結されるようになっている。   1 to 3 show a subframe bush 10 for an automobile as an embodiment of a cylindrical vibration isolator having a structure according to the present invention. The subframe bush 10 has a structure in which an inner shaft member 12 and an outer cylinder member 14 are connected by a main rubber elastic body 16. The inner shaft member 12 is attached to a vehicle body (not shown), and the outer cylinder member 14 is attached to a subframe (not shown), so that the subframe is connected to the vehicle body in a vibration-proof manner. .

より詳細には、インナ軸部材12は、高剛性の金属材料等で形成されており、厚肉小径の略円筒形状を有している。そして、インナ軸部材12の中心孔に挿通される図示しない固定ボルトによって、インナ軸部材12が図示しない車両ボデー側に固定されるようになっている。   More specifically, the inner shaft member 12 is formed of a highly rigid metal material or the like, and has a substantially cylindrical shape with a thick wall and a small diameter. The inner shaft member 12 is fixed to a vehicle body (not shown) by a fixing bolt (not shown) inserted through the center hole of the inner shaft member 12.

アウタ筒部材14は、インナ軸部材12と同様に高剛性の金属材料等で形成されており、薄肉大径の略円筒形状を有している。また、アウタ筒部材14の軸方向一方の開口部に対して内周側に延び出す内フランジ18が一体形成されていると共に、他方の開口部に対して外周側に延び出す外フランジ20が一体形成されている。そして、アウタ筒部材14が図示しないサブフレームの取付孔に圧入されることによって、アウタ筒部材14がサブフレーム側に固定されるようになっている。   The outer cylinder member 14 is formed of a highly rigid metal material or the like, like the inner shaft member 12, and has a thin cylindrical shape with a large diameter. Further, an inner flange 18 that extends toward the inner peripheral side with respect to one opening in the axial direction of the outer cylinder member 14 is integrally formed, and an outer flange 20 that extends toward the outer peripheral side with respect to the other opening is integrated. Is formed. And the outer cylinder member 14 is fixed to the sub-frame side by press-fitting the outer cylinder member 14 into the attachment hole of the sub-frame which is not illustrated.

このような構造のインナ軸部材12とアウタ筒部材14は、径方向に所定距離を隔てて同軸的に配置されており、それらインナ軸部材12とアウタ筒部材14の間に本体ゴム弾性体16が介装されている。   The inner shaft member 12 and the outer cylinder member 14 having such a structure are coaxially arranged at a predetermined distance in the radial direction, and the main rubber elastic body 16 is interposed between the inner shaft member 12 and the outer cylinder member 14. Is intervening.

本体ゴム弾性体16は、全体として厚肉大径の略円筒形状を有しており、内周面がインナ軸部材12の外周面に加硫接着されていると共に、外周面がアウタ筒部材14の内周面に加硫接着されている。これにより、インナ軸部材12とアウタ筒部材14は、本体ゴム弾性体16によって弾性的に連結されている。なお、本実施形態では、本体ゴム弾性体16がインナ軸部材12とアウタ筒部材14を備えた一体加硫成形品として形成されている。   The main rubber elastic body 16 as a whole has a thick, large-diameter, generally cylindrical shape. The inner peripheral surface is vulcanized and bonded to the outer peripheral surface of the inner shaft member 12, and the outer peripheral surface is the outer cylindrical member 14. Is vulcanized and bonded to the inner peripheral surface of Thereby, the inner shaft member 12 and the outer cylinder member 14 are elastically connected by the main rubber elastic body 16. In the present embodiment, the main rubber elastic body 16 is formed as an integrally vulcanized molded product including the inner shaft member 12 and the outer cylindrical member 14.

また、アウタ筒部材14の軸方向両端面には、本体ゴム弾性体16と一体形成された第一の緩衝ゴム22と第二の緩衝ゴム24が加硫接着されている。第一の緩衝ゴム22は、略円環形状のゴム弾性体であって、内フランジ18の軸方向外側の面に加硫接着されている。一方、第二の緩衝ゴム24は、略円環板形状のゴム弾性体であって、外フランジ20の軸方向外側の面に加硫接着されている。なお、第一の緩衝ゴム22の周上の複数箇所に、軸方向外側への突出高さが大きい突出部26が形成されていると共に、第二の緩衝ゴム24の周上の複数箇所に、軸方向外側への突出高さが大きい突出部28が形成されている。   Further, a first buffer rubber 22 and a second buffer rubber 24 integrally formed with the main rubber elastic body 16 are vulcanized and bonded to both end surfaces in the axial direction of the outer cylinder member 14. The first buffer rubber 22 is a substantially annular rubber elastic body, and is vulcanized and bonded to the outer surface of the inner flange 18 in the axial direction. On the other hand, the second buffer rubber 24 is a rubber elastic body having a substantially annular plate shape, and is vulcanized and bonded to the outer surface of the outer flange 20 in the axial direction. In addition, a plurality of protruding portions 26 having a large protruding height outward in the axial direction are formed at a plurality of locations on the circumference of the first buffer rubber 22, and at a plurality of locations on the circumference of the second buffer rubber 24, A protrusion 28 having a large protrusion height outward in the axial direction is formed.

このような第一,第二の緩衝ゴム22,24によって、衝撃的な大振幅振動の入力には、内外フランジ18,20と車両ボデー側の部材が緩衝的に当接することで、インナ軸部材12とアウタ筒部材14の軸方向での相対変位量が制限されるようになっている。これにより、第一のストッパ機構が構成されている。   By such first and second buffer rubbers 22 and 24, the inner and outer flange members 18 and 20 and the vehicle body side member abut on each other in a shock-absorbing manner to input shocking large amplitude vibrations, so that the inner shaft member The relative displacement amount in the axial direction of the outer cylinder member 12 and the outer cylinder member 14 is limited. Thereby, the 1st stopper mechanism is comprised.

また、本体ゴム弾性体16には、軸方向に貫通するすぐり孔30が形成されている。すぐり孔30は、略一定の断面形状で軸方向に直線的に延びる貫通孔であって、インナ軸部材12を挟んだ両側に径方向で対向する一対のすぐり孔30,30が形成されている。   The main rubber elastic body 16 is formed with a straight hole 30 penetrating in the axial direction. The straight hole 30 is a through hole that has a substantially constant cross-sectional shape and extends linearly in the axial direction, and a pair of straight holes 30 and 30 that are opposed to each other in the radial direction are formed on both sides of the inner shaft member 12. .

また、すぐり孔30内には、ストッパ突部32が突出している。ストッパ突部32は、略矩形断面で軸方向に延びるゴム弾性体であって、本体ゴム弾性体16と一体形成されてインナ軸部材12の外周面から径方向外側に向かって突出している。また、ストッパ突部32は、径方向一方向でインナ軸部材12を挟んだ両側に向かって突出する一対が形成されており、各ストッパ突部32が各すぐり孔30内に突出している。なお、ストッパ突部32は、アウタ筒部材14の軸方向寸法よりも大きな軸方向寸法で形成されて、内外フランジ18,20の形成位置よりも軸方向外側まで延びていると共に、その突出先端面がアウタ筒部材14に略対応する曲率で湾曲している。   Further, a stopper protrusion 32 protrudes into the tick hole 30. The stopper protrusion 32 is a rubber elastic body having a substantially rectangular cross section and extending in the axial direction. The stopper protrusion 32 is integrally formed with the main rubber elastic body 16 and protrudes radially outward from the outer peripheral surface of the inner shaft member 12. The stopper protrusions 32 are formed as a pair that protrudes toward both sides of the inner shaft member 12 in one radial direction, and each stopper protrusion 32 protrudes into each straight hole 30. The stopper protrusion 32 is formed with an axial dimension larger than the axial dimension of the outer cylindrical member 14 and extends outward in the axial direction from the position where the inner and outer flanges 18 and 20 are formed. Is curved with a curvature substantially corresponding to the outer cylinder member 14.

さらに、アウタ筒部材14の内周面上においてストッパ突部32と径方向で対向する部位には、径方向内側に向かって突出する当接突部34が形成されている。当接突部34は、略矩形断面を有するゴム弾性体であって、アウタ筒部材14の内周面に固着された本体ゴム弾性体16と一体形成されている。また、当接突部34は、ストッパ突部32に比べて周方向で大きな寸法を有しており、周方向両側に突出していると共に、ストッパ突部32に比べて突出高さが小さくなっている。なお、当接突部34の突出先端面は、ストッパ突部32の突出先端面と対応する湾曲面とされている。   Furthermore, a contact protrusion 34 that protrudes radially inward is formed on a portion of the inner peripheral surface of the outer cylindrical member 14 that faces the stopper protrusion 32 in the radial direction. The contact protrusion 34 is a rubber elastic body having a substantially rectangular cross section, and is integrally formed with the main rubber elastic body 16 fixed to the inner peripheral surface of the outer cylinder member 14. The contact protrusion 34 has a larger dimension in the circumferential direction than the stopper protrusion 32, protrudes on both sides in the circumferential direction, and has a lower protrusion height than the stopper protrusion 32. Yes. The protruding tip surface of the contact protrusion 34 is a curved surface corresponding to the protruding tip surface of the stopper protrusion 32.

これらインナ軸部材12から突出するストッパ突部32と、アウタ筒部材14から突出する当接突部34は、径方向で所定距離を隔てて対向配置されている。そして、径方向での大振幅振動入力時に、インナ軸部材12とアウタ筒部材14がストッパ突部32と当接突部34を介して緩衝的に当接するようになっており、もって、インナ軸部材12とアウタ筒部材14の径方向での相対変位量を緩衝的に制限する第二のストッパ機構が構成されている。   The stopper protrusion 32 protruding from the inner shaft member 12 and the abutting protrusion 34 protruding from the outer cylinder member 14 are arranged to face each other with a predetermined distance in the radial direction. When a large amplitude vibration is input in the radial direction, the inner shaft member 12 and the outer cylindrical member 14 are abutted in a shock-absorbing manner via the stopper projecting portion 32 and the abutting projecting portion 34. A second stopper mechanism is configured to limit the relative displacement in the radial direction between the member 12 and the outer cylinder member 14 in a buffering manner.

また、本体ゴム弾性体16においてすぐり孔30の周方向両側に位置する部位が弾性連結部36とされている。弾性連結部36は、周方向に所定の長さで延びており、一対のすぐり孔30,30が対向する径方向に対して直交する径方向でインナ軸部材12を挟んだ両側に配されて、インナ軸部材12とアウタ筒部材14の径方向間に介装されている。また、弾性連結部36の軸方向一方の端部には、内フランジ18が埋設状態で固着されている。   Further, portions of the main rubber elastic body 16 located on both sides in the circumferential direction of the straight hole 30 are formed as elastic coupling portions 36. The elastic connecting portions 36 extend in the circumferential direction by a predetermined length, and are disposed on both sides of the inner shaft member 12 in the radial direction orthogonal to the radial direction in which the pair of straight holes 30, 30 oppose each other. The inner shaft member 12 and the outer cylinder member 14 are interposed between the radial directions. Further, the inner flange 18 is fixed in an embedded state at one axial end of the elastic connecting portion 36.

さらに、図4に示されているように、弾性連結部36の周方向両側には段差面38が形成されており、段差面38よりも周方向内側部分が軸方向寸法の大きい厚肉部40とされていると共に、段差面38よりも周方向外側部分が厚肉部40に比べて軸方向寸法の小さい薄肉部42とされている。換言すれば、弾性連結部36は、軸方向一方の端部の周方向寸法が他方の端部の周方向寸法に比べて大きくなっている。これにより、弾性連結部36は、周方向の段付き形状とされており、図5に示されているように、その外周面形状が平面視で略T字形状とされている。   Further, as shown in FIG. 4, stepped surfaces 38 are formed on both sides in the circumferential direction of the elastic connecting portion 36, and a thick-walled portion 40 whose inner portion in the circumferential direction is larger than the stepped surface 38 in the axial direction. In addition, the outer circumferential portion of the step surface 38 is a thin portion 42 having a smaller axial dimension than the thick portion 40. In other words, in the elastic connecting portion 36, the circumferential dimension of one end in the axial direction is larger than the circumferential dimension of the other end. Thereby, the elastic connection part 36 is made into the stepped shape of the circumferential direction, and as FIG. 5 shows, the outer peripheral surface shape is made into the substantially T shape by planar view.

また、図1,図4に示されているように、弾性連結部36の軸方向一方の端面が軸方向一方に向かって傾斜する第一の軸方向傾斜面44とされていると共に、弾性連結部36の軸方向他方の端面が軸方向一方に向かって傾斜する第二の軸方向傾斜面46とされている。更に、第二の軸方向傾斜面46は、厚肉部40の軸方向端面である厚肉部軸方向傾斜面48と、薄肉部42の軸方向端面である薄肉部軸方向傾斜面49とを含んで構成されている。   As shown in FIGS. 1 and 4, one end surface in the axial direction of the elastic connecting portion 36 is a first axially inclined surface 44 that inclines toward one axial direction, and elastic connection The other end surface in the axial direction of the portion 36 is a second axially inclined surface 46 inclined toward one axial direction. Further, the second axially inclined surface 46 includes a thick part axially inclined surface 48 that is an axial end face of the thick part 40 and a thin part axially inclined face 49 that is an axial end face of the thin part 42. It is configured to include.

これら第一,第二の軸方向傾斜面44,46は、インナ軸部材12側からアウタ筒部材14側に行くに従って、内フランジ18が形成された軸方向一方の側に傾斜している。更に、第一の軸方向傾斜面44と第二の軸方向傾斜面46は、軸直角方向の投影においてそれらの全体が重なり合うことなく軸方向に離隔しており、軸直角方向の荷重入力時に弾性連結部36が薄肉部42においても圧縮変形するようになっている。なお、厚肉部軸方向傾斜面48と薄肉部軸方向傾斜面49は、相互に異なる傾斜で形成されていても良いが、本実施形態では略同一の傾斜で形成されている。   The first and second axially inclined surfaces 44 and 46 are inclined toward one axial side on which the inner flange 18 is formed as going from the inner shaft member 12 side to the outer cylinder member 14 side. Furthermore, the first axially inclined surface 44 and the second axially inclined surface 46 are separated from each other in the axial direction without overlapping each other in the projection in the direction perpendicular to the axis, and are elastic when a load is applied in the direction perpendicular to the axis. The connecting portion 36 is also compressively deformed in the thin portion 42. In addition, although the thick part axial direction inclined surface 48 and the thin part axial direction inclined surface 49 may be formed with mutually different inclinations, in this embodiment, they are formed with substantially the same inclination.

このような本実施形態に従う構造とされたサブフレームブッシュ10では、インナ軸部材12とアウタ筒部材14を連結する弾性連結部36が、周方向中央の厚肉部40と、厚肉部40の周方向両側に突出する薄肉部42で構成されている。それ故、弾性連結部36のゴムボリュームを大きく確保することが出来て、軸方向のばね特性を硬くすることが出来る。   In the subframe bush 10 having the structure according to this embodiment, the elastic connecting portion 36 that connects the inner shaft member 12 and the outer cylindrical member 14 includes the thick portion 40 at the center in the circumferential direction and the thick portion 40. It is comprised by the thin part 42 which protrudes in the circumferential direction both sides. Therefore, a large rubber volume of the elastic connecting portion 36 can be secured, and the spring characteristics in the axial direction can be hardened.

さらに、アウタ筒部材14の軸方向端部(図1中,左側の端部)に内フランジ18が一体形成されており、内フランジ18に対して弾性連結部36の厚肉部40と薄肉部42が加硫接着されている。これにより、軸方向の振動入力時に弾性連結部36が内フランジ18によって圧縮変形させられることから、サブフレームブッシュ10の軸方向でのばね特性をより硬く設定することが出来る。特に、弾性連結部36において周方向長さ寸法が大きくなる第一の軸方向傾斜面44側の端部に対して、内フランジ18が加硫接着されていることにより、軸方向の圧縮変形が弾性連結部36の全体に亘って効率的に惹起されて、目的とする軸方向のばね特性がより効果的に実現される。   Further, the inner flange 18 is integrally formed at the axial end portion (the left end portion in FIG. 1) of the outer cylinder member 14, and the thick portion 40 and the thin portion of the elastic connecting portion 36 with respect to the inner flange 18. 42 is vulcanized and bonded. As a result, the elastic coupling portion 36 is compressed and deformed by the inner flange 18 at the time of axial vibration input, so that the spring characteristics in the axial direction of the subframe bush 10 can be set to be harder. In particular, the inner flange 18 is vulcanized and bonded to the end portion on the first axially inclined surface 44 side where the circumferential length dimension of the elastic connecting portion 36 is increased, so that the axial compression deformation is caused. It is efficiently induced over the entire elastic connecting portion 36, and the intended axial spring characteristic is more effectively realized.

一方、薄肉部42は、軸直角方向の主たる振動入力方向(図2中、上下)での投影において、インナ軸部材12を径方向外側に外れた位置に形成されている。これにより、軸直角方向の振動入力時には、薄肉部42が主として剪断変形を生ずることから薄肉部42のばねが小さくなって、サブフレームブッシュ10の軸直角方向でのばね特性に対する薄肉部42の影響が低減されている。それ故、薄肉部42によってゴムボリュームを確保しつつ、軸直角方向での軟らかいばね特性を実現することが出来て、軸方向のばねと軸直角方向のばねとの比を高いチューニング自由度で設定することが出来る。その結果、サブフレームブッシュ10では、軸方向のばねと軸直角方向のばねとの比が小さく設定されて、軸方向での支持ばね剛性と軸直角方向一方向での振動絶縁性が実現されている。   On the other hand, the thin portion 42 is formed at a position where the inner shaft member 12 deviates radially outward in the projection in the main vibration input direction (up and down in FIG. 2) perpendicular to the axis. As a result, when the vibration in the direction perpendicular to the axis is input, the thin portion 42 mainly undergoes shear deformation, so the spring of the thin portion 42 becomes smaller, and the influence of the thin portion 42 on the spring characteristics of the subframe bush 10 in the direction perpendicular to the axis. Has been reduced. Therefore, it is possible to realize a soft spring characteristic in the direction perpendicular to the axis while securing the rubber volume by the thin wall portion 42, and set the ratio of the spring in the axis direction and the spring in the direction perpendicular to the axis with a high degree of freedom in tuning. I can do it. As a result, in the sub-frame bush 10, the ratio of the axial spring to the axially perpendicular spring is set to be small, and the supporting spring rigidity in the axial direction and the vibration insulation in the axially perpendicular direction are realized. Yes.

加えて、薄肉部42は、厚肉部40に比して軸方向寸法を小さく設定されている。それ故、薄肉部42の軸直角方向でのばねが一層柔らかくなって、サブフレームブッシュ10の軸直角方向でのばねが硬くなるのを防ぐことが出来る。   In addition, the thin portion 42 has a smaller axial dimension than the thick portion 40. Therefore, it is possible to prevent the spring in the direction perpendicular to the axis of the thin portion 42 from becoming softer and to harden the spring in the direction perpendicular to the axis of the subframe bush 10.

さらに、厚肉部40と薄肉部42の境界に段差面38が設けられており、薄肉部42の軸方向寸法が厚肉部40の軸方向寸法に対して急激に小さくなっている。これにより、薄肉部42の軸直角方向でのばねが大きくなるのを防いで、軸直角方向での柔らかいばね特性が効率的に実現されている。   Further, a step surface 38 is provided at the boundary between the thick portion 40 and the thin portion 42, and the axial dimension of the thin portion 42 is abruptly smaller than the axial dimension of the thick portion 40. Thereby, the spring in the direction perpendicular to the axis of the thin portion 42 is prevented from becoming large, and a soft spring characteristic in the direction perpendicular to the axis is efficiently realized.

また、弾性連結部36の軸方向両端面が第一,第二の軸方向傾斜面44,46で構成されており、車両への装着によって車両重量による荷重が作用して、インナ軸部材12がアウタ筒部材14に対して軸方向で図1中の左側に相対変位することにより、弾性連結部36が径方向に予圧縮されるようになっている。これにより、弾性連結部36の引張応力が軽減されて、耐久性の向上が図られる。   Further, both end surfaces in the axial direction of the elastic connecting portion 36 are constituted by first and second axially inclined surfaces 44 and 46, and a load due to the vehicle weight acts by being mounted on the vehicle, so that the inner shaft member 12 is The elastic coupling portion 36 is pre-compressed in the radial direction by relative displacement to the left side in FIG. 1 in the axial direction with respect to the outer cylinder member 14. Thereby, the tensile stress of the elastic connection part 36 is reduced and durability is improved.

また、第一の軸方向傾斜面44と第二の軸方向傾斜面46が軸方向に離隔しており、軸直角方向の荷重入力時には弾性連結部36に圧縮成分も作用するようになっている。これにより、サブフレームブッシュ10の軸直角方向でのばね特性をコントロールして、軸方向のばねと軸直角方向のばねとの比を容易にチューニングすることが出来る。   In addition, the first axially inclined surface 44 and the second axially inclined surface 46 are separated in the axial direction, and a compression component also acts on the elastic connecting portion 36 when a load is applied in a direction perpendicular to the axis. . Thereby, the spring characteristic in the direction perpendicular to the axis of the subframe bush 10 can be controlled, and the ratio of the spring in the axial direction and the spring in the direction perpendicular to the axis can be easily tuned.

なお、サブフレームブッシュ10では、弾性連結部36における厚肉部40と薄肉部42の軸方向寸法と周方向寸法をそれぞれ調節することで、軸方向のばねと軸直角方向のばねとの比を大きくすることも小さくすることも可能であって、軸方向のばね特性及び軸直角方向のばね特性を容易にチューニングすることが出来る。   In the subframe bush 10, the ratio of the axial spring to the axially perpendicular spring is adjusted by adjusting the axial dimension and the circumferential dimension of the thick part 40 and the thin part 42 in the elastic connecting part 36. The spring characteristics in the axial direction and the spring characteristics in the direction perpendicular to the axis can be easily tuned.

また、インナ軸部材12を挟んだ径方向両側にすぐり孔30,30が形成されていると共に、それらすぐり孔30,30の対向方向と略直交する径方向で一対の弾性連結部36,36が設けられている。これらによって、互いに直交する軸直角方向2方向でのばね比を調節することが出来て、例えば走行安定性と振動絶縁性能の両立等が有利に図られ得る。特に、弾性連結部36,36の対向方向での振動入力時に圧縮ばねが支配的に作用する弾性連結部36の周方向中央部分が、軸方向寸法の大きい厚肉部40とされている。それ故、軸直角方向2方向でのばね比を大きく設定することも可能であって、軸直角方向におけるばね特性をより高い自由度をもってチューニングすることも出来る。   Further, the straight holes 30 are formed on both sides in the radial direction with the inner shaft member 12 interposed therebetween, and a pair of elastic connecting portions 36 are formed in the radial direction substantially orthogonal to the facing direction of the straight holes 30, 30. Is provided. By these, the spring ratio in two directions perpendicular to the axis perpendicular to each other can be adjusted, and for example, compatibility between running stability and vibration insulation performance can be advantageously achieved. In particular, the central portion in the circumferential direction of the elastic connecting portion 36 where the compression spring acts predominantly when vibration is input in the direction opposite to the elastic connecting portions 36, 36 is the thick portion 40 having a large axial dimension. Therefore, it is possible to set a large spring ratio in two directions perpendicular to the axis, and the spring characteristics in the direction perpendicular to the axis can be tuned with a higher degree of freedom.

また、図6には、本発明の別の一実施形態としてのサブフレームブッシュに採用される弾性連結部50が示されている。弾性連結部50は、薄肉部52の周方向中間部分に更に段差面51が形成されている。これによって、薄肉部52が、厚肉部40よりも薄肉とされた第一の薄肉部54と、第一の薄肉部54よりも薄肉とされて第一の薄肉部54から周方向外側に突出する第二の薄肉部56とを有する周方向の段付形状とされている。   FIG. 6 shows an elastic connecting portion 50 that is employed in a subframe bush as another embodiment of the present invention. In the elastic connecting part 50, a step surface 51 is further formed at an intermediate part in the circumferential direction of the thin part 52. As a result, the thin portion 52 is made thinner than the thick portion 40, and the first thin portion 54 is thinner than the first thin portion 54, and protrudes outward in the circumferential direction from the first thin portion 54. It is set as the stepped shape of the circumferential direction which has the 2nd thin part 56 to do.

このような構造の弾性連結部50によれば、互いに軸方向寸法が異なる第一,第二の薄肉部54,56の軸方向寸法と周方向寸法を、それぞれ調節することで、軸直角方向でのばね特性の調節をより高精度且つ容易に行うことが出来る。   According to the elastic connecting part 50 having such a structure, by adjusting the axial dimension and the circumferential dimension of the first and second thin-walled parts 54 and 56 having different axial dimensions from each other, the axially perpendicular direction can be adjusted. The spring characteristics can be adjusted more accurately and easily.

また、図7には、本発明の別の一実施形態としてのサブフレームブッシュに採用される弾性連結部60が示されている。弾性連結部60では、厚肉部40の軸方向中間部分から周方向外側に薄肉部42が突出形成されている。このように、薄肉部42は、必ずしも厚肉部40の軸方向端部に設けられていなくても良い。   Further, FIG. 7 shows an elastic connecting portion 60 employed in a subframe bush as another embodiment of the present invention. In the elastic connection part 60, a thin part 42 is formed so as to protrude outward in the circumferential direction from the axially intermediate part of the thick part 40. Thus, the thin part 42 does not necessarily have to be provided at the axial end of the thick part 40.

また、図8には、本発明の参考形態としてのサブフレームブッシュの弾性連結部70が示されている。弾性連結部70は、厚肉部40と薄肉部72で構成されており、薄肉部72が周方向外側に向かって次第に軸方向寸法が小さくなる周方向のテーパ形状を有している。なお、厚肉部40と薄肉部72の軸方向端面は、段差や局所的な凹凸を持つことなく滑らかに接続されている。 FIG. 8 shows an elastic connecting portion 70 of the subframe bush as a reference form of the present invention. The elastic connection part 70 is comprised by the thick part 40 and the thin part 72, and the thin part 72 has the taper shape of the circumferential direction in which an axial direction dimension becomes small gradually toward the circumferential direction outer side. In addition, the axial direction end surface of the thick part 40 and the thin part 72 is smoothly connected, without having a level | step difference or a local unevenness | corrugation.

このような弾性連結部70を有するサブフレームブッシュでは、前記実施形態のサブフレームブッシュ10と同様に、軸方向と軸直角方向のばね比を調節することが可能となって、防振特性のチューニング自由度を高めることが出来る。しかも、厚肉部40と薄肉部72が段差や凹凸を持つことなく滑らかに接続されていることから、応力の集中を防いで耐久性の向上を図ることも出来る。   In the sub-frame bush having such an elastic connecting portion 70, the spring ratio in the axial direction and the direction perpendicular to the axial direction can be adjusted in the same manner as the sub-frame bush 10 of the above-described embodiment, and the vibration proof characteristic can be tuned. The degree of freedom can be increased. Moreover, since the thick portion 40 and the thin portion 72 are smoothly connected without having a step or unevenness, it is possible to prevent stress concentration and improve durability.

なお、図9に示された弾性連結部80のように、弾性連結部36の段付形状と弾性連結部70のテーパ形状を組み合わせた構造を採用することも出来る。即ち、弾性連結部80では、薄肉部81が第一〜第三の薄肉部82,86,88で構成されている。より詳細には、厚肉部40の周方向外側にテーパ形状の第一の薄肉部82が一体形成されていると共に、第一の薄肉部82の周方向外側の端面が軸方向に広がる段差面84とされている。更に、段差面84を挟んで第一の薄肉部82の周方向外側には、第一の薄肉部82よりも小さい略一定の軸方向寸法を有する第二の薄肉部86が一体形成されている。更にまた、第二の薄肉部86の周方向外側には、周方向外側に向かって軸方向寸法が小さくなるテーパ形状の第三の薄肉部88が一体形成されている。   It is also possible to employ a structure in which the stepped shape of the elastic connecting portion 36 and the tapered shape of the elastic connecting portion 70 are combined, such as the elastic connecting portion 80 shown in FIG. That is, in the elastic connection part 80, the thin part 81 is comprised by the 1st-3rd thin part 82,86,88. More specifically, a stepped surface in which a tapered first thin portion 82 is integrally formed on the outer peripheral side of the thick portion 40 and the end surface on the outer peripheral side of the first thin portion 82 extends in the axial direction. 84. Further, a second thin portion 86 having a substantially constant axial dimension smaller than that of the first thin portion 82 is integrally formed on the outer side in the circumferential direction of the first thin portion 82 with the stepped surface 84 interposed therebetween. . Furthermore, on the outer side in the circumferential direction of the second thin portion 86, a tapered third thin portion 88 whose axial dimension decreases toward the outer side in the circumferential direction is integrally formed.

このような構造の弾性連結部80を備えたサブフレームブッシュによれば、第一〜第三の薄肉部82,86,88の形状や寸法をそれぞれ調節することで、より詳細なチューニングが可能となる。   According to the sub-frame bush provided with the elastic connecting portion 80 having such a structure, it is possible to perform more detailed tuning by adjusting the shapes and dimensions of the first to third thin-walled portions 82, 86, and 88, respectively. Become.

また、テーパ形状の薄肉部を周方向両側に備えた弾性連結部においては、図10に示された弾性連結部90のように、薄肉部92の軸方向端面が凹面状の湾曲テーパ形状を有していても良い。これによれば、直線的なテーパ形状を採用する場合に比べて、薄肉部92の周方向中央側端部の軸方向寸法を急激に小さく出来て、軸直角方向での低動ばね化が図られると共に、直線的なテーパ形状と同様に応力の分散化を実現することが出来る。   Further, in the elastic connecting portion provided with the tapered thin wall portions on both sides in the circumferential direction, like the elastic connecting portion 90 shown in FIG. 10, the axial end surface of the thin wall portion 92 has a concave curved taper shape. You may do it. According to this, as compared with the case of adopting a linear taper shape, the axial dimension of the circumferentially central end of the thin portion 92 can be drastically reduced, and a low dynamic spring can be achieved in the direction perpendicular to the axis. In addition, the stress can be distributed as in the case of the linear taper shape.

以上、本発明の実施形態について詳述してきたが、本発明はその具体的な記載によって限定されない。例えば、軸方向寸法を小さくされた弾性連結部の周方向両端部分は、略一定の軸方向寸法で形成されていなくても良いし、周方向外側に向かって次第に軸方向寸法が小さくなっていなくても良い。具体的には、周方向外側に向かって次第に軸方向寸法が大きくなる逆テーパ形状であっても良い。これらの形状においても、軸直角方向のばねを維持しつつ、軸方向ばねを軸直角方向のばねに対して大きく或いは小さく設定することが可能である。それ故、軸方向のばね特性と軸直角方向のばね特性を何れも高い自由度で設定することが出来ると共に、軸方向と軸直角方向のばね比を自由にチューニングして設定することが可能となる。   As mentioned above, although embodiment of this invention was explained in full detail, this invention is not limited by the specific description. For example, both end portions in the circumferential direction of the elastic connecting portion whose axial dimension is reduced may not be formed with a substantially constant axial dimension, and the axial dimension is not gradually decreased toward the outer side in the circumferential direction. May be. Specifically, an inversely tapered shape in which the axial dimension gradually increases toward the outer side in the circumferential direction may be used. Even in these shapes, it is possible to set the axial spring larger or smaller than the spring perpendicular to the axis while maintaining the spring perpendicular to the axis. Therefore, both the spring characteristics in the axial direction and the spring characteristics in the direction perpendicular to the axis can be set with a high degree of freedom, and the spring ratio in the axial direction and the direction perpendicular to the axis can be freely tuned and set. Become.

また、本発明は、自動車用の筒形防振装置にのみ適用されるものではなく、鉄道用列車や産業用車両等にも好適に適用され得る。更に、本発明の適用範囲は、ゴムブッシュに限定されるものではなく、例えばゴムマウントにも適用される。   Further, the present invention is not only applied to a tubular vibration isolator for automobiles, but can also be suitably applied to railway trains, industrial vehicles, and the like. Furthermore, the scope of application of the present invention is not limited to the rubber bush, but may be applied to, for example, a rubber mount.

10:サブフレームブッシュ(筒形防振装置)、12:インナ軸部材、14:アウタ筒部材、16:本体ゴム弾性体、18:内フランジ、30:すぐり孔、36,50,60,70,80,90:弾性連結部、40:厚肉部(周方向中央)、42,52,72,82,92:薄肉部(周方向両側)、44:第一の軸方向傾斜面(軸方向傾斜面)、46:第二の軸方向傾斜面(軸方向傾斜面) 10: Subframe bush (cylindrical vibration isolator), 12: Inner shaft member, 14: Outer cylinder member, 16: Rubber elastic body of main body, 18: Inner flange, 30: Straight hole, 36, 50, 60, 70, 80, 90: elastic connecting part, 40: thick part (circumferential center), 42, 52, 72, 82, 92: thin part (both sides in the circumferential direction), 44: first axially inclined surface (axially inclined) Surface), 46: second axially inclined surface (axially inclined surface)

Claims (3)

インナ軸部材の外周側にアウタ筒部材が離隔配置されて、それらインナ軸部材とアウタ筒部材が本体ゴム弾性体で連結された筒形防振装置において、
前記インナ軸部材を挟んだ軸直角方向両側において前記本体ゴム弾性体を軸方向に貫通する一対のすぐり孔が形成されており、それら一対のすぐり孔によって該本体ゴム弾性体が周方向に分けられて一対の弾性連結部が設けられていると共に、該各弾性連結部の周方向両側における軸方向寸法が周方向中央よりも小さくされており、且つ、
前記一対の弾性連結部が、周方向両側において段差面をもって軸方向寸法が小さくなる周方向の段付形状とされていることを特徴とする筒形防振装置。
In the cylindrical vibration isolator in which the outer cylindrical member is arranged separately on the outer peripheral side of the inner shaft member, and the inner shaft member and the outer cylindrical member are connected by the main rubber elastic body,
A pair of straight holes penetrating the main rubber elastic body in the axial direction are formed on both sides in a direction perpendicular to the axis across the inner shaft member, and the main rubber elastic body is divided in the circumferential direction by the pair of straight holes. A pair of elastic connecting portions, the axial dimensions on both sides in the circumferential direction of each elastic connecting portion are smaller than the center in the circumferential direction , and
The cylindrical vibration isolator characterized in that the pair of elastic connecting portions have a stepped shape in the circumferential direction having a stepped surface on both sides in the circumferential direction and having a reduced axial dimension .
前記アウタ筒部材の軸方向一方の端部に内フランジが形成されていると共に、前記本体ゴム弾性体の前記一対の弾性連結部が該内フランジに固着されている請求項1に記載の筒形防振装置。   2. The cylindrical shape according to claim 1, wherein an inner flange is formed at one axial end of the outer cylindrical member, and the pair of elastic coupling portions of the main rubber elastic body are fixed to the inner flange. Anti-vibration device. 前記弾性連結部の軸方向端面が軸方向一方に向かって傾斜する軸方向傾斜面とされている請求項1又は2に記載の筒形防振装置。   The cylindrical vibration isolator according to claim 1 or 2, wherein an axial end surface of the elastic connecting portion is an axially inclined surface inclined toward one axial direction.
JP2009277337A 2009-12-07 2009-12-07 Cylindrical vibration isolator Expired - Fee Related JP5396252B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009277337A JP5396252B2 (en) 2009-12-07 2009-12-07 Cylindrical vibration isolator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009277337A JP5396252B2 (en) 2009-12-07 2009-12-07 Cylindrical vibration isolator

Publications (2)

Publication Number Publication Date
JP2011117570A JP2011117570A (en) 2011-06-16
JP5396252B2 true JP5396252B2 (en) 2014-01-22

Family

ID=44283124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009277337A Expired - Fee Related JP5396252B2 (en) 2009-12-07 2009-12-07 Cylindrical vibration isolator

Country Status (1)

Country Link
JP (1) JP5396252B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7432455B2 (en) * 2020-06-30 2024-02-16 住友理工株式会社 Cylindrical vibration isolator

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4011854A1 (en) * 1990-04-12 1991-10-17 Daimler Benz Ag FASTENING FOR A STOCK BEARING
JPH0425628A (en) * 1990-05-15 1992-01-29 Bridgestone Corp Bush type oscillation proof rubber
JPH08210407A (en) * 1995-01-31 1996-08-20 Tokai Rubber Ind Ltd Member mount
JP2001280386A (en) * 2000-03-29 2001-10-10 Tokai Rubber Ind Ltd Cylindrical mount
JP2002317843A (en) * 2001-04-19 2002-10-31 Toyo Tire & Rubber Co Ltd Vibration isolating mount
JP4203063B2 (en) * 2005-11-15 2008-12-24 東洋ゴム工業株式会社 Vibration isolator

Also Published As

Publication number Publication date
JP2011117570A (en) 2011-06-16

Similar Documents

Publication Publication Date Title
US6666438B2 (en) Cylindrical elastic mount
JP5290260B2 (en) Rubber cushion for tank
US11028894B2 (en) Tubular vibration-damping device
JP2008223920A (en) Vibration control bush and vibration control bush assembly
JP6532367B2 (en) Tubular vibration control with bracket
WO2015045041A1 (en) Cylindrical antivibration device
JP2003294084A (en) Vibration-resistant bush
JP4716387B2 (en) Anti-vibration bush
JP2007333029A (en) Torque rod
JP2003065388A (en) Vibration-isolation device
JP2001280386A (en) Cylindrical mount
JP4833883B2 (en) Vibration isolator
JP5396252B2 (en) Cylindrical vibration isolator
JP3733306B2 (en) Cylindrical vibration isolator
JP3932025B2 (en) Anti-vibration bush
JP3627527B2 (en) Cylindrical anti-vibration mount
JP2014066297A (en) Cylindrical type vibration control device
WO2012132105A1 (en) Vibration prevention device
JP7457635B2 (en) Vibration isolator
JP3456286B2 (en) Cylindrical anti-vibration mount
JP3823688B2 (en) Suspension member mount with to collect action
JP7374754B2 (en) Vibration isolator
JP7121719B2 (en) Cylindrical anti-vibration device with bracket
JP7527258B2 (en) Multiple types of cylindrical vibration isolation devices with brackets
JP2004028250A (en) Cylindrical mount

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131021

R150 Certificate of patent or registration of utility model

Ref document number: 5396252

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees