JP4153459B2 - Residual chlorine measuring device - Google Patents

Residual chlorine measuring device Download PDF

Info

Publication number
JP4153459B2
JP4153459B2 JP2004125549A JP2004125549A JP4153459B2 JP 4153459 B2 JP4153459 B2 JP 4153459B2 JP 2004125549 A JP2004125549 A JP 2004125549A JP 2004125549 A JP2004125549 A JP 2004125549A JP 4153459 B2 JP4153459 B2 JP 4153459B2
Authority
JP
Japan
Prior art keywords
measurement
measurement chamber
fluid
tank
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004125549A
Other languages
Japanese (ja)
Other versions
JP2005308534A (en
Inventor
宗保 栗田
忍 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwaki Co Ltd
Original Assignee
Iwaki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwaki Co Ltd filed Critical Iwaki Co Ltd
Priority to JP2004125549A priority Critical patent/JP4153459B2/en
Publication of JP2005308534A publication Critical patent/JP2005308534A/en
Application granted granted Critical
Publication of JP4153459B2 publication Critical patent/JP4153459B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/38Cleaning of electrodes

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

本発明は、残留塩素濃度をポーラログラフィーによって検出する残留塩素測定装置に関する。   The present invention relates to a residual chlorine measuring device that detects a residual chlorine concentration by polarography.

生活用水、プール水、24時間風呂水等では、それらの滅菌のために塩素が注入される。塩素注入量は、検水に含まれる遊離残留塩素濃度を測定することにより管理されている。遊離残留塩素濃度を測定する無試薬測定方法としては、主としてポーラログラフ法が使用されている。ポーラログラフ法は、検水に浸漬した2つの電極(対電極と作用電極)の間に電圧を印加したときに2電極間に流れる酸化・還元電流を測定することにより、特定の化学種のイオン濃度を測定する方法である。また、対電極及び作用電極の他に参照電極を使用した3電極型も知られている。3電極型では、絶対電位の不明な作用電極の電位を特定するため、参照電極に基準電位を与えるようにしている。この3電極法によれば、電導度変化に強いという利点がある。ポーラログラフ法では、電極と接触する検水の流量が変化すると酸化・還元電流値も変化するため、電極を流量一定の検水に浸漬するためのフローセルと呼ばれる測定槽を使用する。   In domestic water, pool water, 24-hour bath water, etc., chlorine is injected for sterilization thereof. The amount of chlorine injected is controlled by measuring the concentration of free residual chlorine contained in the sample water. As a reagent-free measuring method for measuring the free residual chlorine concentration, a polarographic method is mainly used. In the polarographic method, the ion concentration of a specific chemical species is measured by measuring the oxidation / reduction current flowing between two electrodes when a voltage is applied between the two electrodes (counter electrode and working electrode) immersed in the test water. Is a method of measuring. A three-electrode type using a reference electrode in addition to the counter electrode and the working electrode is also known. In the three-electrode type, the reference potential is applied to the reference electrode in order to specify the potential of the working electrode whose absolute potential is unknown. This three-electrode method has the advantage of being resistant to changes in conductivity. In the polarographic method, since the oxidation / reduction current value changes when the flow rate of the sample water in contact with the electrode changes, a measurement tank called a flow cell for immersing the electrode in the water sample with a constant flow rate is used.

また、作用電極の表面は、還元反応によって汚れるため、測定槽にセラミックビーズを収納し、作用電極をモータにより回転せることにより、セラミックビーズに電極表面を擦り付けて電極表面を洗浄することがなされている。また、特許文献1では、一対の電極が端部のみを環状のビーズ貯留部に臨ませ、環状のビーズ貯留部に還流を生起させて、ビーズを遠心力で電極表面に衝突させることにより電極表面を洗浄することが開示されている。これによれば、電極の汚染を効果的に防止することができ、電極を回転させるモータを使用しないことによる構成の簡単化を図ることができる。
特開2002−250711(段落0019〜0021、図1及び図2)
Also, since the surface of the working electrode is contaminated by the reduction reaction, the ceramic beads are housed in a measuring tank, and the working electrode is rotated by a motor so that the electrode surface is rubbed against the ceramic beads to clean the electrode surface. Yes. Moreover, in patent document 1, only a pair of electrodes faces an annular bead reservoir, causing reflux in the annular bead reservoir, and causing the beads to collide with the electrode surface by centrifugal force. Is disclosed. According to this, contamination of the electrode can be effectively prevented, and the configuration can be simplified by not using a motor that rotates the electrode.
JP 2002-250711 (paragraphs 0019 to 0021, FIGS. 1 and 2)

しかし、上述した特許文献1に開示された残留塩素計では、円筒状のビーズ貯留槽に導入された検水と共に移動するビーズは、ビーズ貯留槽に沿った回転運動となるが、これだけではなお、効果的な洗浄が行えないというのが現状であった。   However, in the residual chlorine meter disclosed in Patent Document 1 described above, the beads that move together with the test water introduced into the cylindrical bead storage tank have a rotational motion along the bead storage tank. The current situation is that effective cleaning cannot be performed.

本発明は、このような点に鑑みなされたもので、電極の良好な洗浄が可能な残留塩素測定装置を提供することを目的とする。   The present invention has been made in view of these points, and an object thereof is to provide a residual chlorine measuring apparatus capable of satisfactorily cleaning an electrode.

本発明に係る残留塩素測定装置は、測定流体を導入する導入口、この導入口に連接する測定室及びこの測定室につながり前記測定流体を排出する排出口を備えた測定槽と、前記測定槽に装着されて前記導入口から前記測定室に導入された測定流体と電極が接触して前記測定流体に含まれる遊離残留塩素の濃度に基づく酸化・還元電流を出力する電極ユニットと、前記測定槽に収容されて前記電極ユニットの電極を洗浄するビーズと備えた残留塩素測定装置において、前記測定槽の測定室は、前記測定流体の導入方向に対して直交し且つ水平方向に延びる軸を中心とした環状に形成され、前記導入口は、前記環状の測定室の下側に接線方向に前記測定流体を導入するように接続され、前記排出口は、前記測定室の上部に設けられ、前記電極ユニットは、平面的に同心円状に配列された作用電極、参照電極及び対電極を含む検出面を有する本体部を備え、前記本体部の検出面が前記測定流体の導入口から排出口までの前記測定室における前記測定流体の流路のほぼ中間位置で前記環状の測定室の外周面に接するように前記測定槽に装着され、前記測定槽は、前記導入口の断面積が前記排出口の断面積よりも小さく設定され、前記測定室に導入される前記測定流体の流速をコントロール自在に構成することにより、前記測定流体によって巻き上げられるビーズが、前記測定室の1/4周分を循環する態様と、前記測定室の一周を循環する態様とを選択自在とされていることを特徴とする。 A residual chlorine measuring device according to the present invention includes an introduction port for introducing a measurement fluid, a measurement chamber connected to the introduction port, a measurement tank having a discharge port connected to the measurement chamber and discharging the measurement fluid, and the measurement tank An electrode unit that is attached to a measurement fluid introduced into the measurement chamber from the introduction port and that contacts an electrode and outputs an oxidation / reduction current based on the concentration of free residual chlorine contained in the measurement fluid; and the measurement tank And a bead for cleaning the electrode of the electrode unit, wherein the measurement chamber of the measurement tank is centered on an axis that is orthogonal to the introduction direction of the measurement fluid and that extends in the horizontal direction. The introduction port is connected to the lower side of the annular measurement chamber so as to introduce the measurement fluid in a tangential direction, and the discharge port is provided at an upper portion of the measurement chamber, Uni Comprising a main body portion having a detection surface including a working electrode, a reference electrode and a counter electrode arranged concentrically in a plane, the detection surface of the main body portion from the introduction port to the discharge port of the measurement fluid The measurement tank is attached to the measurement tank so as to be in contact with the outer peripheral surface of the annular measurement chamber at a position approximately in the middle of the flow path of the measurement fluid in the measurement chamber. A mode in which beads set up by the measurement fluid circulate in a quarter of the measurement chamber by setting the flow rate of the measurement fluid introduced into the measurement chamber to be controllable , which is set smaller than the area. And a mode of circulating around the measurement chamber is freely selectable .

本発明によれば、測定室が、測定流体の導入方向に対して直交し且つ水平方向に延びる軸を中心とした環状に形成され、導入口は、環状の測定室の下側に接線方向に測定流体を導入するように接続され、排出口は、測定室の上部に設けられ、電極ユニットは、検出面が測定流体の導入口から排出口までの流路のほぼ中間位置で環状の測定室の外周面に接するように装着され、且つ導入口の断面積が排出口の断面積よりも小さく設定され、さらに、測定室に導入される測定流体の流速をコントロール自在に構成することにより、測定流体によって巻き上げられるビーズが、測定室の1/4周分を循環する態様と、測定室の一周を循環する態様とを選択自在とされているので、電極ユニットの汚れが激しい場合には、ビーズを一周させて、ビーズの検出面への衝撃力を高めて洗浄能力を増加させることができる。その他の状態では、ビーズを1/4周だけ循環させることより、電極の寿命低下を防止することが可能であり、この場合、測定室に収容されたビーズは、導入口からの速い流速の測定流体によって環状の測定室の外周に沿って巻き上げられ、電極ユニットの検出面に摺接する。また、排出口の断面積は導入口の断面積よりも大きいので、測定室に導入された測定流体の流速は徐々に低下していく。このため、検出面に摺接したビーズは、排出口までに到達せずに自重によって環状の測定室の内周に沿って落下する。ビーズは、このような巻き上げと落下とを繰り返して比較的短い距離を往復し、単位面積当たりのビーズの数を増加させることができる。これにより、更に均一で効率の良い電極洗浄が可能になる。また、ビーズは重力に抗して測定流体の流れに乗る形で電極ユニットの検出面に到達するので、測定流体の流速とビーズの重量とのバランスによって、検出面に当たる衝撃は軽減され、電極の寿命を延ばすことができる。 According to the present invention, the measurement chamber is formed in an annular shape centered on an axis that is orthogonal to the introduction direction of the measurement fluid and extends in the horizontal direction, and the introduction port is tangentially below the annular measurement chamber. Connected to introduce the measurement fluid, the discharge port is provided in the upper part of the measurement chamber, and the electrode unit has an annular measurement chamber in the middle of the flow path from the measurement fluid introduction port to the discharge port. It is mounted so that it is in contact with the outer peripheral surface, the cross-sectional area of the inlet is set smaller than the cross-sectional area of the outlet, and the flow rate of the measurement fluid introduced into the measurement chamber is configured to be controllable, thereby measuring Since the beads wound up by the fluid can be freely selected from a mode in which they circulate a quarter of the measurement chamber and a mode in which they circulate around the measurement chamber , if the electrode unit is heavily soiled, the beads Around the bead The cleaning performance can be increased by increasing the impact force to the detection surface. In other states, it is possible to prevent the life of the electrode from being reduced by circulating the beads only by 1/4 turn. In this case, the beads stored in the measurement chamber measure the high flow rate from the inlet. It is wound up along the outer periphery of the annular measurement chamber by the fluid and is in sliding contact with the detection surface of the electrode unit. Further, since the cross-sectional area of the discharge port is larger than the cross-sectional area of the introduction port, the flow velocity of the measurement fluid introduced into the measurement chamber gradually decreases. For this reason, the beads in sliding contact with the detection surface do not reach the discharge port and fall along the inner circumference of the annular measurement chamber by their own weight. The beads can be repeatedly wound up and dropped to reciprocate over a relatively short distance to increase the number of beads per unit area. Thereby, more uniform and efficient electrode cleaning becomes possible. In addition, since the beads reach the detection surface of the electrode unit in the form of riding on the flow of the measurement fluid against gravity, the impact on the detection surface is reduced by the balance between the flow velocity of the measurement fluid and the weight of the beads, and the electrode Life can be extended.

以下、添付の図面を参照して、この発明の好ましい実施の形態を説明する。
図1は、本発明の一実施形態に係る残留塩素測定のフローセルの構成を示す図、図2は、図1における測定槽本体のA−A’断面図である。
このフローセルは、例えば滅菌すべき対象水等の測定流体のメインの循環経路から分岐し再び循環経路に合流する検査流路に挿入され、内部に残留塩素を測定するための測定室1aを形成する測定槽1と、この測定槽1に装着された電極ユニット2と、測定槽1の内部に収容された電極ユニット2の洗浄用のビーズ3とを備えて構成されている。
Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a diagram showing the configuration of a flow cell for residual chlorine measurement according to one embodiment of the present invention, and FIG. 2 is a cross-sectional view taken along line AA ′ of the measurement tank body in FIG.
This flow cell is inserted into an inspection flow path that branches from the main circulation path of the measurement fluid such as target water to be sterilized and merges with the circulation path again, and forms a measurement chamber 1a for measuring residual chlorine therein. A measurement tank 1, an electrode unit 2 attached to the measurement tank 1, and beads 3 for cleaning the electrode unit 2 housed in the measurement tank 1 are configured.

測定槽1は、測定槽本体11に中心軸が水平に延びる円柱状孔部11aが、図2に図1のA−A’断面(但し、測定槽本体11の部分のみ)で示すように、一方の面から掘り込んだ形で形成され、この円柱状孔部11aは、その中心部に円柱部12aが同軸配置されるように円柱固定ねじ12によって液密に密閉されている。この円柱状孔部11aと円柱部12aとで環状の測定室13が形成されている。この環状の測定室13の下側に測定室13の外周に接する接線方向で測定流体を導入する導入口14が形成されている。導入口14は、測定流体の導入管15と連通している。また、測定室13の上部で導入口14から180°を超えた位置には排出口16が設けられ、この排出口16は、上方に延びる排出経路17及びこの排出経路17から水平に延びる排出経路18を介して排出管19に連通している。排出口17の断面積は、導入口14の断面積よりも大きく、例えば導入口14及び排出口17が円形断面である場合、排出口17の直径が導入口14の直径の2倍以上に設定されている。   The measurement tank 1 has a cylindrical hole portion 11a whose central axis extends horizontally to the measurement tank main body 11, as shown in FIG. 2 by the AA ′ cross section of FIG. 1 (however, only the measurement tank main body 11 portion). The cylindrical hole portion 11a is formed in a shape dug from one surface, and is liquid-tightly sealed by a cylindrical fixing screw 12 so that the cylindrical portion 12a is coaxially disposed at the center thereof. An annular measurement chamber 13 is formed by the cylindrical hole portion 11a and the cylindrical portion 12a. An introduction port 14 for introducing a measurement fluid in a tangential direction in contact with the outer periphery of the measurement chamber 13 is formed below the annular measurement chamber 13. The introduction port 14 communicates with a measurement fluid introduction tube 15. In addition, a discharge port 16 is provided at a position exceeding 180 ° from the introduction port 14 in the upper part of the measurement chamber 13, and the discharge port 16 has a discharge path 17 extending upward and a discharge path extending horizontally from the discharge path 17. The exhaust pipe 19 communicates with the exhaust pipe 19. The cross-sectional area of the discharge port 17 is larger than the cross-sectional area of the introduction port 14. For example, when the introduction port 14 and the discharge port 17 have a circular cross section, the diameter of the discharge port 17 is set to be twice or more the diameter of the introduction port 14. Has been.

測定室13の導入口14から排出口16に至る測定流体の流路の中間位置、すなわち環状の測定室13の導入口とは反対側の外周面には、電極ユニット2の先端の検出面2aが接している。電極ユニット2は、図3に示すように、例えば3電極式のもので円形の検出面2aの中心から順に作用電極21、参照電極22及び対電極23の順で平面的に同心配置されている。これらの電極21〜23は、検出面2aでのみ露出するように封止材によって一体に封止されている。これら電極21〜23と封止材とで円柱状の本体部24を形成している。そして、この本体部24の基端側に固定用のつば部25及び電線が接続される接続部26がそれぞれ形成されている。   The detection surface 2a at the tip of the electrode unit 2 is positioned at the intermediate position of the flow path of the measurement fluid from the inlet 14 to the outlet 16 of the measurement chamber 13, that is, on the outer peripheral surface opposite to the inlet of the annular measurement chamber 13. Is touching. As shown in FIG. 3, the electrode unit 2 is, for example, a three-electrode type, and is arranged concentrically in a plane in the order of the working electrode 21, the reference electrode 22 and the counter electrode 23 in this order from the center of the circular detection surface 2a. . These electrodes 21 to 23 are integrally sealed with a sealing material so as to be exposed only on the detection surface 2a. These electrodes 21 to 23 and the sealing material form a cylindrical main body 24. A fixing collar portion 25 and a connection portion 26 to which an electric wire is connected are respectively formed on the base end side of the main body portion 24.

次に、このように構成された残留塩素測定装置の動作を説明する。
図4は、本装置における測定室13の部分を拡大して示す図、図5は、図4のB−B’断面図である。なお、図中点線矢印は、測定流体の流れの方向を示し、実線矢印は、ビーズ3の動きを示している。
検査流路を流れる測定流体は、導入管15からこのフローセルに導入され、導入口14を介して測定槽1の測定室13の下端部に外周の接線方向に導かれる。測定室13内に導かれた測定流体は、図中点線矢印で示すように、環状の測定室13の外側の円筒状壁部に沿って反時計回りに上部に移動し、一部は排出口16を介して上方に排出され、残りは測定室13の測定流体の導入部側に戻る。
Next, the operation of the thus configured residual chlorine measuring device will be described.
4 is an enlarged view showing a portion of the measurement chamber 13 in the present apparatus, and FIG. 5 is a cross-sectional view taken along the line BB ′ of FIG. In the figure, the dotted line arrow indicates the direction of the flow of the measurement fluid, and the solid line arrow indicates the movement of the bead 3.
The measurement fluid flowing through the inspection flow channel is introduced into the flow cell from the introduction pipe 15 and is guided to the lower end portion of the measurement chamber 13 of the measurement tank 1 through the introduction port 14 in the tangential direction of the outer periphery. The measurement fluid introduced into the measurement chamber 13 moves upward along the cylindrical wall portion on the outer side of the annular measurement chamber 13 as shown by a dotted arrow in the figure, and a part thereof is a discharge port. 16 and is discharged upward, and the rest returns to the measurement fluid introduction portion side of the measurement chamber 13.

測定室13内に収容されたビーズ3は、測定流体の流れに乗って、実線矢印で示すように、環状の測定室13の外側の壁部に沿って反時計回りに移動し、その過程で電極ユニット2の検出面2aと摺接する。検出面2aに摺接したビーズは、測定流体の流速と自重とのバランスによって排出口16側に移動するか自然落下するかが決まる。排出口16の直径は、導入口14の直径の2倍以上に設定されているので、測定流体の流速は、導入口14付近では最大であるが、排出口1近傍では大きく低下する。このため、ビーズ3は、排出口16に至ることなく自重で落下する。落下するビーズ3は、環状の測定室13の内周側の壁部に沿って落下する。また、図5に示すように、導入口14が測定室13の幅方向の中央に設けられている場合には、中央部での流速は、両端での流速よりも高いので、図示のように、ビーズ3は、内側から外側への軌道に沿って循環する。   The beads 3 accommodated in the measurement chamber 13 ride on the flow of the measurement fluid and move counterclockwise along the outer wall portion of the annular measurement chamber 13 as indicated by the solid line arrow. It is in sliding contact with the detection surface 2a of the electrode unit 2. Whether the beads in sliding contact with the detection surface 2a move to the discharge port 16 side or naturally fall is determined by the balance between the flow velocity of the measurement fluid and its own weight. Since the diameter of the discharge port 16 is set to be twice or more the diameter of the introduction port 14, the flow velocity of the measurement fluid is maximum near the introduction port 14, but greatly decreases near the discharge port 1. For this reason, the beads 3 fall by their own weight without reaching the discharge port 16. The falling beads 3 fall along the inner peripheral wall portion of the annular measurement chamber 13. Further, as shown in FIG. 5, when the inlet 14 is provided at the center in the width direction of the measurement chamber 13, the flow velocity at the center is higher than the flow velocity at both ends, as shown in the figure. The beads 3 circulate along a trajectory from the inside to the outside.

このように、本装置によれば、ビーズ3が測定室13内を一周することは無く、ビーズ3の移動距離は、測定室13の約1/4周と極めて短いから、少ない量でも単位空間に占めるビーズの数は多くなる。このため、検出面2aへの当接も確実で広い範囲にわたってビーズを検出面2aに均一に接触させることができ、洗浄効果が極めて高い。
また、本装置によれば、ビーズ3を重力に逆らって上方に垂直に噴流させるようにしているので、ビーズ3による電極ユニット2の検出面2aへの強い衝撃を緩和し、電極の寿命を長くすることが可能になる。
Thus, according to the present apparatus, the beads 3 do not go around the measurement chamber 13 and the moving distance of the beads 3 is as short as about 1/4 of the measurement chamber 13, so even a small amount of unit space can be obtained. The number of beads occupies more. For this reason, the contact with the detection surface 2a is reliable and the beads can be uniformly brought into contact with the detection surface 2a over a wide range, and the cleaning effect is extremely high.
Further, according to the present apparatus, the beads 3 are jetted vertically upward against gravity, so that the strong impact of the beads 3 on the detection surface 2a of the electrode unit 2 is alleviated and the life of the electrodes is extended. It becomes possible to do.

なお、導入口14から測定室13に導入される測定流体の流速を更に増加させると、ビーズ3を測定室13内で一周させることができる。従って、測定室13に導入される測定流体の流速をコントロールすることにより、ビーズ3を測定室13の1/4周分を循環させる態様と、測定室13の一周を循環させる態様とを選択することができる。この場合、電極ユニット2の汚れが激しい場合には、ビーズ3を一周させて、ビーズ3の検出面2aへの衝撃力を高めて洗浄能力を増加させ、その他の状態では、ビーズ3を1/4周だけ循環させることより、電極の寿命低下を防止することが可能である。そして、この場合でも、排出口16及び排出経路17,18の直径が導入口14の直径の2倍以上に設定され、排出経路17は上方に延びるように形成されているので、ビーズ3が排出経路17側に排出されることも殆どない。   If the flow rate of the measurement fluid introduced from the introduction port 14 into the measurement chamber 13 is further increased, the beads 3 can be made to make a round in the measurement chamber 13. Therefore, by controlling the flow rate of the measurement fluid introduced into the measurement chamber 13, a mode in which the beads 3 are circulated by a quarter of the measurement chamber 13 and a mode in which the round of the measurement chamber 13 is circulated is selected. be able to. In this case, when the electrode unit 2 is heavily soiled, the bead 3 is made to circulate once and the impact force of the bead 3 on the detection surface 2a is increased to increase the cleaning ability. By circulating only four rounds, it is possible to prevent the life of the electrode from being reduced. Even in this case, the diameter of the discharge port 16 and the discharge paths 17 and 18 is set to be twice or more the diameter of the introduction port 14, and the discharge path 17 is formed to extend upward, so that the beads 3 are discharged. There is almost no discharge to the path 17 side.

本発明の一実施形態に係る残留塩素測定装置の構成を示す図である。It is a figure which shows the structure of the residual chlorine measuring apparatus which concerns on one Embodiment of this invention. 同装置に用いられる測定槽本体の図1におけるA−A’断面図である。It is A-A 'sectional drawing in FIG. 1 of the measurement tank main body used for the apparatus. 同装置における電極ユニットを示す図で、同図(a)は外観斜視図、同図(b)は先端部分を示す正面図である。It is a figure which shows the electrode unit in the apparatus, The figure (a) is an external appearance perspective view, The figure (b) is a front view which shows a front-end | tip part. 同装置における測定室の部分を拡大して示す図である。It is a figure which expands and shows the part of the measurement chamber in the same apparatus. 図4におけるB−B’断面図である。It is B-B 'sectional drawing in FIG.

符号の説明Explanation of symbols

1…測定槽、2…電極ユニット、3…ビーズ、11…測定槽本体、12…円柱固定ねじ、13…測定室、14…導入口、15…導入管、16…排出口、17,18…排出経路、19…排出管。   DESCRIPTION OF SYMBOLS 1 ... Measurement tank, 2 ... Electrode unit, 3 ... Bead, 11 ... Measurement tank main body, 12 ... Cylindrical fixing screw, 13 ... Measurement chamber, 14 ... Introducing port, 15 ... Introducing pipe, 16 ... Discharge port, 17, 18 ... Discharge path, 19 ... discharge pipe.

Claims (2)

測定流体を導入する導入口、この導入口に連接する測定室及びこの測定室につながり前記測定流体を排出する排出口を備えた測定槽と、
前記測定槽に装着されて前記導入口から前記測定室に導入された測定流体と電極が接触して前記測定流体に含まれる遊離残留塩素の濃度に基づく酸化・還元電流を出力する電極ユニットと、
前記測定槽に収容されて前記電極ユニットの電極を洗浄するビーズと
を備えた残留塩素測定装置において、
前記測定槽の測定室は、前記測定流体の導入方向に対して直交し且つ水平方向に延びる軸を中心とした環状に形成され、
前記導入口は、前記環状の測定室の下側に接線方向に前記測定流体を導入するように接続され、
前記排出口は、前記測定室の上部に設けられ、
前記電極ユニットは、平面的に同心円状に配列された作用電極、参照電極及び対電極を含む検出面を有する本体部を備え、前記本体部の検出面が前記測定流体の導入口から排出口までの前記測定室における前記測定流体の流路のほぼ中間位置で前記環状の測定室の外周面に接するように前記測定槽に装着され、
前記測定槽は、前記導入口の断面積が前記排出口の断面積よりも小さく設定され
前記測定室に導入される前記測定流体の流速をコントロール自在に構成することにより、前記測定流体によって巻き上げられるビーズが、前記測定室の1/4周分を循環する態様と、前記測定室の一周を循環する態様とを選択自在とされていることを特徴とする残留塩素測定装置。
A measurement tank having an introduction port for introducing the measurement fluid, a measurement chamber connected to the introduction port, and a discharge port connected to the measurement chamber and discharging the measurement fluid;
An electrode unit that is attached to the measurement tank and that is in contact with the measurement fluid introduced into the measurement chamber from the introduction port and outputs an oxidation / reduction current based on the concentration of free residual chlorine contained in the measurement fluid;
A residual chlorine measuring device comprising: beads housed in the measuring tank and cleaning the electrodes of the electrode unit;
The measurement chamber of the measurement tank is formed in an annular shape around an axis that is orthogonal to the introduction direction of the measurement fluid and extends in the horizontal direction,
The introduction port is connected to introduce the measurement fluid in a tangential direction below the annular measurement chamber;
The outlet is provided in the upper part of the measurement chamber,
The electrode unit includes a main body portion having a detection surface including a working electrode, a reference electrode, and a counter electrode arranged concentrically in a plane, and the detection surface of the main body portion extends from the measurement fluid introduction port to the discharge port. Is attached to the measurement tank so as to be in contact with the outer peripheral surface of the annular measurement chamber at a substantially intermediate position of the flow path of the measurement fluid in the measurement chamber.
The measuring tank is set so that the cross-sectional area of the inlet is smaller than the cross-sectional area of the outlet ,
By configuring the flow velocity of the measurement fluid introduced into the measurement chamber to be controllable, the bead wound up by the measurement fluid circulates a quarter of the measurement chamber, and one round of the measurement chamber The residual chlorine measuring device is characterized in that it can freely select a mode of circulating the gas.
前記導入口及び排出口の断面が円形である場合、前記排出口の直径は、前記導入口の直径の2倍以上であることを特徴とする請求項1記載の残留塩素測定装置。   The residual chlorine measuring device according to claim 1, wherein when the cross section of the inlet and the outlet is circular, the diameter of the outlet is at least twice the diameter of the inlet.
JP2004125549A 2004-04-21 2004-04-21 Residual chlorine measuring device Expired - Lifetime JP4153459B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004125549A JP4153459B2 (en) 2004-04-21 2004-04-21 Residual chlorine measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004125549A JP4153459B2 (en) 2004-04-21 2004-04-21 Residual chlorine measuring device

Publications (2)

Publication Number Publication Date
JP2005308534A JP2005308534A (en) 2005-11-04
JP4153459B2 true JP4153459B2 (en) 2008-09-24

Family

ID=35437483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004125549A Expired - Lifetime JP4153459B2 (en) 2004-04-21 2004-04-21 Residual chlorine measuring device

Country Status (1)

Country Link
JP (1) JP4153459B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103008276B (en) * 2012-12-17 2016-10-19 中国水产科学研究院黑龙江水产研究所 Pond water quality monitoring sensor automatic cleaning device and cleaning, offer water sample method
JP6372302B2 (en) * 2014-10-20 2018-08-15 東亜ディーケーケー株式会社 Free residual chlorine measuring device
WO2023149448A1 (en) * 2022-02-01 2023-08-10 株式会社堀場アドバンスドテクノ Measurement instrument, measurement device, measurement system, and measurement method

Also Published As

Publication number Publication date
JP2005308534A (en) 2005-11-04

Similar Documents

Publication Publication Date Title
JP5175116B2 (en) Washing machine control method
KR20150143863A (en) Amperometric sensor system
JPWO2016080077A1 (en) Densitometer and endoscope reprocessor
JP4153459B2 (en) Residual chlorine measuring device
JP4463405B2 (en) Sensor for redox current measuring device and redox current measuring device
JP6372302B2 (en) Free residual chlorine measuring device
JP5093377B2 (en) Electron capture detector
WO1988008532A1 (en) Residual analyzer assembly
WO2016080076A1 (en) Endoscope reprocessor
KR100768340B1 (en) Residual chlorine analyzer of sampling form
US3402116A (en) Apparatus for the measurement of residual chlorine or the like
US2585060A (en) Electrical cell apparatus for testing liquids
JP2005308533A (en) Residual chlorine measuring instrument
WO2016080077A1 (en) Concentration meter and endoscope reprocessor
JP2005181279A (en) Apparatus for measuring residual chlorine, and electrode unit
US7569128B2 (en) Coulometric water vapor sensor
JP4352367B2 (en) Electrode cleaning method and residual chlorine meter
JP4053954B2 (en) Residual chlorine concentration detector
JP6179192B2 (en) Concentrated solution manufacturing method and solution concentration container
JP2018025061A (en) Private part washing device
WO2023149448A1 (en) Measurement instrument, measurement device, measurement system, and measurement method
KR102532710B1 (en) System for measuring turbidity and residual chlorine
JPH079083Y2 (en) Redox current measuring device
JP2004053548A (en) Residual chlorine measuring method and residual chlorine analyzer
JP3724735B2 (en) Cleaning method for working electrode of residual chlorine meter and residual chlorine meter

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080515

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080701

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080703

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4153459

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term