KR100768340B1 - Residual chlorine analyzer of sampling form - Google Patents

Residual chlorine analyzer of sampling form Download PDF

Info

Publication number
KR100768340B1
KR100768340B1 KR1020060116670A KR20060116670A KR100768340B1 KR 100768340 B1 KR100768340 B1 KR 100768340B1 KR 1020060116670 A KR1020060116670 A KR 1020060116670A KR 20060116670 A KR20060116670 A KR 20060116670A KR 100768340 B1 KR100768340 B1 KR 100768340B1
Authority
KR
South Korea
Prior art keywords
measuring
tank
water
sensor
residual chlorine
Prior art date
Application number
KR1020060116670A
Other languages
Korean (ko)
Inventor
서인호
윤계호
최연규
박규성
Original Assignee
대윤계기산업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대윤계기산업 주식회사 filed Critical 대윤계기산업 주식회사
Priority to KR1020060116670A priority Critical patent/KR100768340B1/en
Application granted granted Critical
Publication of KR100768340B1 publication Critical patent/KR100768340B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/38Cleaning of electrodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/4166Systems measuring a particular property of an electrolyte
    • G01N27/4168Oxidation-reduction potential, e.g. for chlorination of water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/48Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • G01N33/182Specific anions in water

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

A system for measuring the residual quantity of chlorine using a sampling method is provided to improve measuring accuracy and to be adopted easily according to a site condition. A system for measuring the residual quantity of chlorine using a sampling method comprises a sampling unit(10), a measuring unit(20), and a measuring sensor(40). The sampling unit includes a water tank(12), a temperature sensor(13), a hydrogen ion concentration sensor(14), and an overflow pipe(12a). The water tank has an inlet port(11) through which measuring fluid flows in. The temperature sensor and the hydrogen ion concentration sensor are positioned at an upper part of the water tank. The overflow pipe is erected inside the water tank to penetrate the bottom surface. The measuring unit is connected with the overflow pipe of the sampling unit through a transfer pipe(21) having a fixed flow valve(21a). The measuring sensor is combined with a sensor combining pipe(23) and connected with an indication system(500).

Description

샘플링 방식의 잔류염소량 측정기{residual chlorine analyzer of sampling form}Residual chlorine analyzer of sampling form

도 1은 종래의 잔류염소량 측정기의 개략도,1 is a schematic diagram of a conventional residual chlorine measuring instrument,

도 2는 본 발명에 따른 샘플링방식의 잔류염소량 측정기의 구성도,2 is a configuration diagram of a residual chlorine measuring device of the sampling method according to the present invention,

도 3은 다른 실시 예에 따른 샘플링방식의 잔류염소량 측정기의 구성도,3 is a block diagram of a residual chlorine measuring device of the sampling method according to another embodiment,

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

도 4는 측정에 따른 잔류염소량의 분포를 나타낸 그래프도,4 is a graph showing the distribution of residual chlorine according to the measurement;

< 도면의 주요 부분에 대한 부호의 설명 ><Description of Symbols for Main Parts of Drawings>

10: 샘플링부 11: 유입구10: sampling section 11: inlet

12: 수조 12a: 오버플로어관12: water tank 12a: overflow pipe

13: 온도센서 14: 수소이온농도센서13: Temperature sensor 14: Hydrogen ion concentration sensor

20,30,70: 측정부 21,31: 이송관20,30,70: measuring section 21,31: transfer pipe

21a,31a,61c: 정유량밸브 22,32: 측정수조
23,33: 센서결합관 24,34: 외부수조
25: 드레인밸브 32a; 거름망
32b: 배수밸브 40: 측정센서
21a, 31a, 61c: Constant flow valves 22, 32: Measuring tank
23,33: sensor coupling pipe 24,34: external water tank
25: drain valve 32a; Strainer
32b: drain valve 40: measuring sensor

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

100,200: 측정기 500: 지시계
a: 세정입자
100,200 Meter 500: Indicator
a: cleaning particles

삭제delete

본 발명은 잔류염소량 측정기에 관한 것으로, 특히 격막방식을 형성된 측정센서를 이용하며, 폐수,오수,하수 등의 고농도와 상수, 정수, 수영장 등에 사용되는 물에 대한 저농도의 잔류염소량을 구분하여 측정할 수 있어 정확한 측정결과를 획득 가능하고, 샘플링 방식의 측정기를 이용하여 적용범위가 확대된 샘플링 방식의 잔류염소량 측정기에 관한 것이다.The present invention relates to a residual chlorine measuring device, in particular using a measuring sensor formed with a diaphragm method, and to measure the high concentrations of waste water, sewage, sewage, etc. and the low concentration of residual chlorine for water used in constant, purified water, swimming pool, etc. The present invention relates to a residual chlorine measuring device of a sampling method in which an accurate measurement result can be obtained, and an application range is expanded by using a sampling type measuring device.

일반적으로, 잔류염소란 유리 잔류염소라고도 하며, 물을 염소로 소독했을 때, 하이포아염소산과 하이포아염소산 이온의 형태로 존재하는 염소를 말한다. Generally, residual chlorine is also referred to as free residual chlorine, and refers to chlorine present in the form of hypochlorous acid and hypochlorous acid ions when water is disinfected with chlorine.

또한, 클로라민(chloramine)과 같은 결합잔류염소를 포함해서 말하는 경우도 있으며, 염소를 투입하여 일정시간 후 잔류하는 염소의 양을 ppm으로 표시한다. In addition, in some cases, it may include a combined residual chlorine such as chloramine, and the amount of chlorine remaining after a certain time by chlorine is expressed in ppm.

그리고, 잔류염소는 산화력을 가지며 염소 이온과는 화학적으로 성질이 다르다.Residual chlorine has an oxidizing power and is chemically different from chlorine ions.

그래서, 잔류염소는 살균력이 강하지만 대부분 배수관망에서 빠르게 소멸한다. Thus, residual chlorine is strong in sterilization but disappears quickly in most drainage networks.

이러한, 잔류염소의 살균효과에 영향을 미치는 인자로는 반응시간, 온도, 수소이온농도(pH), 염소를 소비하는 물질의 양 등을 들 수 있다.Factors affecting the sterilization effect of residual chlorine include reaction time, temperature, hydrogen ion concentration (pH), and the amount of chlorine consuming substance.

즉, 염소를 이용하여 물을 소독할 경우 수인성 전염병균(적리, 콜레라, 장티푸스, 파라티푸스 등)은 잔류염소량 0.02ppm에서 30분 후 완전히 소멸한다. In other words, when chlorine is used to disinfect water, water-borne infectious diseases (e.g., cholera, typhoid, paratypus, etc.) completely disappear after 30 minutes at 0.02 ppm of residual chlorine.

이러한, 염소의 장점은 수도관 파손으로 인한 미생물의 오염을 예방하거나 소독할 수 있고, 사용중에 오염되는 미생물도 소독할 수 있다는 점이다. The advantage of this chlorine is that it can prevent or disinfect microorganisms due to water pipe breakage, and can also sterilize microorganisms contaminated during use.

그러나, 잔류염소가 과량으로 존재할 때에는 염소냄새가 강하고, 금속 등을 부식시키며, 발암물질이 생성되는 문제가 있어 잔류염소량을 정확히 체크하며, 인체에 악영향을 미치는 허용농도를 초과하지 못하도록 규제하고 있다.However, when there is an excessive amount of residual chlorine, the smell of chlorine is strong, metals are corroded, and there is a problem that carcinogens are generated.

도 1에 도시된 바와 같이, 종래의 잔류염소량을 측정하는 잔류염소량측정기는 내부공간은 연통홀(1a)이 하부에 형성된 격벽(1)에 의해 양분되어 샘플링공간(2a)과 측정공간(2b)으로 형성되는 측정수조(2)와, 측정수조(2)의 샘플링공간(2a)에는 유입구(3)가 형성되며, 내부에는 오버플로어관(4)이 측정수조(2)의 바닥면을 관통하여 외부로 노출되게 형성되고, 측정공간(2b)에는 잔류염소량을 측정하는 측정센서(5) 및 온도센서(6)가 형성되며, 측정공간(2b)의 일측에 형성된 배수 구(7)는 오버플로어관(3)의 노출부분과 연결되어 측정수를 배수하도록 구성된다.As shown in FIG. 1, in the conventional residual chlorine measuring device for measuring the amount of residual chlorine, the internal space is divided by the partition wall 1 having the communication hole 1a formed at the lower portion thereof, so that the sampling space 2a and the measurement space 2b are provided. The inlet 3 is formed in the measuring tank 2 and the sampling space 2a of the measuring tank 2, and an overflow tube 4 penetrates the bottom surface of the measuring tank 2. It is formed to be exposed to the outside, the measuring sensor 5 and the temperature sensor 6 for measuring the amount of residual chlorine is formed in the measuring space (2b), the drain hole 7 formed on one side of the measuring space (2b) is overflowed It is connected to the exposed part of the pipe (3) is configured to drain the measured water.

이러한, 종래의 잔류염소량 측정기는 유입구(3)로부터 측정수를 공급받게 된다. Such a residual chlorine measuring device is supplied with the measurement water from the inlet (3).

이렇게, 유입된 측정수는 측정수조(2)의 샘플링공간(2a)에 유입될 때 발생되는 기포 등은 오버플로어관(4)을 통해 외부로 배수되는 동시에, 측정수는 연통홀(1a)을 통해 측정공간(2b)으로 유입된다.In this way, the introduced measuring water is bubbled, etc. generated when entering the sampling space (2a) of the measuring tank (2) is drained to the outside through the overflow pipe (4), while the measuring water to the communication hole (1a) It is introduced into the measurement space (2b) through.

이때, 측정센서(5)는 은을 염소처리한 은/염화은으로 형성된 양전극과, 백금 또는 금을 재질로 한 음전극이 사용되며, 양전극과 음전극의 주위에는 염화칼륨(KCl)의 수용액이 내부에 충진되며, 끝단부에는 격막을 이용하여 외부와 차단시키도록 구성된다.At this time, the measuring sensor 5 is a positive electrode formed of silver / silver chloride treated with silver chlorine, and a negative electrode made of platinum or gold, and the aqueous solution of potassium chloride (KCl) is filled inside the positive electrode and the negative electrode At the end, it is configured to block the outside by using a diaphragm.

더불어, 용액에서 전극전위를 측정하기 위해서는 전류신호를 받을 수 있는 작동전극(working electrode)과 보조전극(counter electrode;음전극), 작동전극의 전위를 측정하기위해 비교되어 지는 기준전극(reference electrode;양전극)으로 나누어질 수 있다. In addition, in order to measure the electrode potential in a solution, a working electrode (counter electrode) and a counter electrode (negative electrode) capable of receiving a current signal, and a reference electrode (positive electrode) which are compared to measure the potential of the working electrode are compared. Can be divided into

이러한, 보조전극인 음전극을 통하여 일정 전위를 인가하면 작동전극 표면에 염소가 환원반응이 일어나 반응한 만큼의 전류 신호를 얻게 된다. When a constant potential is applied through the negative electrode, which is an auxiliary electrode, a reduction reaction of chlorine occurs on the surface of the working electrode, thereby obtaining a current signal corresponding to the reaction.

그리고, 작동전극을 이용하여 미량의 전해를 시행하는 것으로 전류는 작동전극과 보조전극 사이를 흐른다. In addition, a small amount of electrolysis is performed using the working electrode, and current flows between the working electrode and the auxiliary electrode.

이때, 차아염소산(HOCl)은 작동전극에서 환원반응을 일으킬 수 있는 전위를 가하게 되면 차아염소산(HOCl)이 환원되면서 발생되는 전류량을 측정하게 된다.At this time, hypochlorous acid (HOCl) is applied to the potential to cause a reduction reaction in the working electrode to measure the amount of current generated while the hypochlorous acid (HOCl) is reduced.

아울러, 사용된 전류는 분석물질의 양과 비례하여 증가되기 때문에 이를 통해 차아염소산(HOCl)의 농도인 잔류염소량을 측정할 수 있다.In addition, since the current used increases in proportion to the amount of analyte, the amount of residual chlorine, which is the concentration of hypochlorous acid (HOCl), can be measured.

그러나, 종래의 잔류염소량 측정기는 샘플링 방식에 국한되어 유통형의 방식에는 적용이 불가능한 문제점이 있었으며, 측정센서를 세정하기 위하여 세정입자를 측정공간이 투입하였을 경우, 샘플링공간에서 측정공간으로 이동되는 측정수의 유속이 느려 세정입자의 유동력이 약해져 세정효율이 저하되는 문제점이 있었다.However, the conventional residual chlorine measuring device is limited to the sampling method, which is not applicable to the distribution type method, and when the cleaning particle is put in the cleaning space to clean the measuring sensor, the measurement moves from the sampling space to the measuring space. The flow rate of the water is low, the flow force of the cleaning particles is weak, there is a problem that the cleaning efficiency is lowered.

이로 인하여, 샘플링 방식, 그리고 농도에 따라 측정이 가능한 잔류염소의 측정기가 요구되고 있으며, 세정입자의 유동성을 증진시켜 세정효율이 뛰어난 잔류염소량 측정기가 절실히 요구되는 실정이다.For this reason, there is a demand for a measuring method of residual chlorine that can be measured according to a sampling method and concentration, and a situation in which a residual chlorine measuring device having excellent cleaning efficiency is urgently required by improving the fluidity of cleaning particles.

이에 본 발명은 상기와 같은 종래 기술의 문제점을 감안하여 안출한 것으로, 샘플링방식을 이용하여 각각 농도가 고농도인 폐수, 오수, 하수 등과 농도가 저농도인 상수, 정수, 수영장 물 등의 고농도와 저농도를 구분하여 측정함에 따라 정확한 측정이 가능한 샘플링 방식의 잔류염소 측정기를 제공하는데 목적이 있다.Accordingly, the present invention has been made in view of the problems of the prior art as described above, using a sampling method to determine the high concentrations and low concentrations of wastewater, sewage, sewage, etc., which have a high concentration, respectively, such as constant, purified water, and pool water. It is an object of the present invention to provide a residual chlorine measuring system of sampling type that can measure accurately according to the measurement.

그리고, 본 발명의 다른 목적은 샘플링부와 세정부를 세로방향으로 이격시킴에 따른 측정수의 낙수차 및 유입관과 드래인밸브의 직경 차이에 의해 발생되는 측정수의 와류작용에 의해 세정입자가 유동되며 측정센서를 조건에 따라 다른 방식으로 세정할 수 있도록 개선된 잔류염소 측정기를 제공하는데 목적이 있다.In addition, another object of the present invention is to clean the particles by the turbulence of the measured water generated by the difference in the diameter of the inlet pipe and the drain valve and the difference between the falling water of the measured water according to the separation of the sampling section and the cleaning section in the longitudinal direction It is an object to provide a residual chlorine meter that is flowable and improved to clean the sensor in different ways depending on the conditions.

상기한 목적을 달성하기 위하여 본 발명은 샘플링 방식으로 측정되는 잔류염 소량 측정기에 있어서, 측정수가 유입되는 유입구가 형성된 수조가 형성되고, 수조의 상부에는 온도센서 및 수소이온농도센서가 형성되며, 수조의 내부에는 바닥면을 관통하는 오버플로어관이 직립되게 형성된 샘플링부와,In order to achieve the above object, the present invention is a small amount of residual chlorine measuring device is measured by the sampling method, the water tank is formed in which the inlet for measuring water is formed, the temperature sensor and the hydrogen ion concentration sensor is formed on the top of the water tank, In the inside of the sampling unit formed so that the overflow pipe penetrating the bottom surface upright,

샘플링부의 오버플로어관에 정유량밸브가 형성된 이송관으로 연결되는 측정부와,A measurement unit connected to the transfer tube having the constant flow valve formed on the overflow tube of the sampling unit;

센서결합관에 결합되며, 지시계와 연결되는 측정센서로 구성되는 것을 특징으로 한다.It is coupled to the sensor coupling tube, characterized in that consisting of a measuring sensor connected to the indicator.

그리고, 상기 측정부는 이송관에 연결되어 측정수의 유입낙차에 의해 유동되는 세정입자가 담겨진 측정수조가 형성되고, 측정수조의 일측면에는 상부로 기울어진 센서결합관이 형성되며, 측정수조와 센서결합관을 감싸도록 형성된 외부수조가 형성되는 한편, 샘플링부와 수직방향으로 300~400mm로 이격되어 배치되며, 측정부의 측정수조는 바닥면에 수직되게 거름망이 형성된 배수밸브로 구성되는 것을 특징으로 한다. And, the measuring unit is connected to the conveying pipe is formed a measuring tank containing the cleaning particles flowing by the inflow of the measuring water is formed, one side of the measuring tank is formed with a sensor coupling tube inclined upwards, the measuring tank and the sensor While the outer tank is formed to surround the coupling tube is formed, it is disposed spaced apart 300 ~ 400mm in the vertical direction with the sampling unit, the measuring tank of the measuring unit is characterized in that consisting of a drain valve formed with a strainer perpendicular to the bottom surface .

아울러, 상기 샘플링부의 유입구에는 측정수에 함유된 이물질이나 부유물질을 여과하는 여과필터가 내부에 형성된 여과수조로 이루어지는 여과부가 연결되어 구성되는 것을 특징으로 한다.In addition, the inlet of the sampling unit is characterized in that the filtration unit consisting of a filtration water tank formed inside the filtration filter for filtering foreign matter or suspended matter contained in the measurement water.

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

아울러, 상기 측정수조와 센서결합관이 기울어져 형성되는 각도는 40~60°로 구성되는 것을 특징으로 한다.
더불어, 상기 측정부는 이송관에 연결되어 측정수의 유입낙차에 의해 유동되는 세정입자가 담겨진 측정수조가 형성되고, 측정수조의 일측면에는 상부로 기울어진 센서결합관이 형성되며, 측정수조와 센서결합관을 감싸도록 형성된 외부수조가 형성되는 한편, 센서결합관의 하부면에는 수직되게 외부수조의 바닥면을 관통하는 드레인밸브로 구성되는 것을 특징으로 한다.
In addition, the angle formed by tilting the measuring tank and the sensor coupling tube is characterized in that consisting of 40 ~ 60 °.
In addition, the measuring unit is connected to the conveying pipe is formed a measuring tank containing the cleaning particles flowing by the inflow drop of the measuring water, one side of the measuring tank is formed with a sensor coupling tube inclined upward, measuring tank and sensor The outer tank is formed to surround the coupling tube is formed, the lower surface of the sensor coupling tube is characterized in that it consists of a drain valve vertically penetrating the bottom surface of the outer tank.

이에 상기한 바와같은 본 발명의 바람직한 실시예를 첨부도면에 의거하여 상세히 설명하면 다음과 같다.The preferred embodiment of the present invention as described above will be described in detail based on the accompanying drawings.

첨부된 도 2는 본 발명에 따른 샘플링방식의 잔류염소량 측정기의 구성도이며, 도 3은 다른 실시 예에 따른 샘플링방식의 잔류염소량 측정기의 구성도이고, 도 4는 측정에 따른 잔류염소량의 분포를 나타낸 그래프이다.2 is a block diagram of the residual chlorine measuring device of the sampling method according to the present invention, Figure 3 is a block diagram of the residual chlorine measuring device of the sampling method according to another embodiment, Figure 4 is a distribution of the residual chlorine according to the measurement The graph shown.

삭제delete

도 2 내지 도 3에 도시된 바와 같이, 샘플링 방식을 이용하여 측정되는 잔류염소량 측정기를 살펴보면 다음과 같다.
측정수가 유입되는 유입구(11)가 형성된 수조(12)가 형성되고, 수조(12)의 상부에는 온도센서(13) 및 수소이온농도센서(14)가 형성되며, 수조(12)의 내부에는 바닥면을 관통하는 오버플로어관(12a)이 직립되게 형성된 샘플링부(10)와, 샘플링부(10)의 오버플로어관(12a)에 정유량밸브(21a,31a)가 형성된 이송관(21,31)으로 연결되는 측정부(20,30)와, 센서결합관(23,33)에 결합되며, 지시계(500)와 연결되는 측정센서(40)로 측정기(100,200)가 구성된다.
As shown in Figures 2 to 3, looking at the residual chlorine meter measured using a sampling method as follows.
A water tank 12 having an inlet 11 through which measurement water is introduced is formed, and a temperature sensor 13 and a hydrogen ion concentration sensor 14 are formed at an upper portion of the water tank 12, and a bottom is formed inside the water tank 12. Sampling part 10 formed so that the overflow pipe 12a penetrates the surface, and conveying pipes 21 and 31 in which the constant flow valves 21a and 31a are formed in the overflow pipe 12a of the sampling part 10. Measurement units 20 and 30 connected to the) and the sensor coupling pipes 23 and 33 are coupled to the measurement sensor 40 connected to the indicator 500.

삭제delete

여기서, 샘플링부(10)는 측정수가 유입되는 유입구(11)가 형성된 수조(12)가 형성되고, 수조(12)의 상부에는 온도센서(13) 및 수소이온농도센서(14)가 형성되며, 수조(12)의 내부에는 바닥면을 관통하는 오버플로어관(12a)이 직립되게 구성된다.Here, the sampling unit 10 is formed with a water tank 12 is formed with an inlet 11 through which the measurement water flows, the temperature sensor 13 and the hydrogen ion concentration sensor 14 is formed on the top of the water tank 12, The inside of the water tank 12 is comprised so that the overflow pipe 12a which penetrates the bottom surface may be upright.

그리고, 유입구(11)는 잔류염소량을 측정할 측정수가 저수된 저수조와 같은 외부 저장소에서 공급펌프(도면상 미도시)를 이용하여 공급되는 측정수가 유입되도록 구성된 것이다.In addition, the inlet 11 is configured such that the measurement water supplied by using a supply pump (not shown in the drawing) from an external reservoir such as a reservoir in which the measurement water for measuring residual chlorine is stored.

아울러, 온도센서(13)는 측정수의 온도를 측정하기 위한 것이며, 수소이온농도센서(14)는 측정수의 pH값 1~14의 각 구간 범위 내에서 잔류염소량의 변화량을 정확히 측정할 수 있도록 형성된 것이다.In addition, the temperature sensor 13 is for measuring the temperature of the measurement water, the hydrogen ion concentration sensor 14 to accurately measure the amount of change in the amount of residual chlorine within each interval range of the pH value 1-14 of the measurement water. Formed.

또한, 수조(12)에 형성된 오버플로어관(12a)은 측정수가 유입구(11)를 통해 유입되어 수조(12) 내부에 충만하게 되면 오버플로어관(12a)을 통해 넘쳐 흘러 측정부(20)로 이동되도록 구성된다.In addition, the overflow tube 12a formed in the water tank 12 is overflowed through the overflow pipe 12a when the measurement water is introduced through the inlet 11 and filled in the water tank 12 to the measuring unit 20. Configured to be moved.

이때, 오버플로어관(12a)은 수조(12)의 내부로 유입되는 측정수에 발생되는 기포를 제거하기 위하여 형성된 것으로, 수조(12)의 내부에 직립되어 형성되며, 수조(12)의 바닥면을 하부로 관통되도록 구성된 것이다.At this time, the overflow tube (12a) is formed to remove bubbles generated in the measurement water flowing into the water tank 12, is formed upright in the water tank 12, the bottom surface of the water tank 12 It is configured to penetrate downward.

아울러, 측정부(20)는 샘플링부(10)의 오버플로어관(12a)에 정유량밸브(21a)가 형성된 이송관(21)으로 연결된다.In addition, the measurement unit 20 is connected to the transfer pipe 21 in which the constant flow valve 21a is formed in the overflow pipe 12a of the sampling unit 10.

여기서, 정유량밸브(21a)는 수조(12)에 모아졌던 측정수가 일정량으로 이송관(21)을 통해 흘러 갈 수 있도록 구성된다.Here, the constant flow valve 21a is configured to allow the measurement water collected in the water tank 12 to flow through the feed pipe 21 in a predetermined amount.

그리고, 측정수조(22)는 이송관(21)을 통해 유입되는 측정수의 잔류염소량을 측정하기 위하여 형성된다.In addition, the measurement tank 22 is formed to measure the amount of residual chlorine in the measurement water flowing through the transfer pipe 21.

더불어, 측정수조(22)의 내부에는 측정수의 유입낙차에 의해 유동되는 세정입자(a)가 유입되어진다.In addition, the washing particles (a) flowing into the measurement tank 22 is introduced by the falling of the measurement water.

이러한, 세정입자(a)는 알루미나로 형성된 것이며, 측정수에 의해 유동하게 되며 측정센서(40)의 표면에 침착이나 고착되는 측정수에 함유된 이물질 및 부유물질을 접촉하는 접촉방식을 이용하여 세정하도록 구성된 것이다.This, the cleaning particles (a) is formed of alumina, and flows by the measuring water and is cleaned by using a contact method for contacting foreign matter and suspended solids contained in the measuring water deposited or fixed on the surface of the measuring sensor 40 It is configured to.

한편, 측정수조(22)의 일측면에는 상부로 기울어진 센서결합관(23)이 형성된다.On the other hand, one side of the measuring tank 22 is formed with a sensor coupling pipe 23 inclined upward.

즉, 측정수조(22)와 센서결합관(23)은 주조방식으로 일체로 제작된 것이며, 측정작업의 수행시 측정수의 유입과 배출 및 세정입자(a)의 세정작용을 확인할 수 있도록 내부가 투영가능한 투명의 재질로 구성된 것이다.That is, the measuring tank 22 and the sensor coupling pipe 23 are integrally manufactured by a casting method, and the inside of the measuring tank 22 and the sensor coupling pipe 23 are formed so that the inflow and outflow of the measuring water and the cleaning action of the cleaning particles (a) can be confirmed. It is composed of transparent material that can be projected.

또한, 외부수조(24)는 측정수조(22)와 센서결합관(23)을 감싸며 보호할 수 있도록 형성된 것으로, 측정수조(22)와 동일한 재질로 구성된다.In addition, the outer tank 24 is formed so as to surround and protect the measuring tank 22 and the sensor coupling pipe 23, it is made of the same material as the measuring tank (22).

아울러, 드레인밸브(25)는 센서결합관(23)의 하부면에 연통되는 동시에 수직되게 형성되어 외부수조(24)의 바닥면을 관통할 수 있도록 형성된다.In addition, the drain valve 25 is formed so as to communicate with the bottom surface of the sensor coupling pipe 23 and at the same time perpendicular to the bottom surface of the outer tank (24).

즉, 드레인밸브(25)는 유입구(11)의 직경보다 작게 형성되어, 유입구(11)를 통해 유입되는 측정수의 양을은 많고, 드레인밸브(25)를 통해 측정수가 모아진 저수조와 같은 장소로 배출되는 양은 적어 측정수조(22)의 내부에서 좁은 공간으로 배출하려는 빠른 유속에 의해 발생되는 와류현상으로 세정입자(a)는 활발하게 유동된다.That is, the drain valve 25 is formed to be smaller than the diameter of the inlet 11, the amount of the measured water flowing through the inlet 11 is large, and to the same place as the reservoir where the measured water collected through the drain valve 25 The amount of discharged is small, the washing particles (a) is actively flowed by the vortex generated by the high flow rate to discharge to the narrow space inside the measuring tank (22).

반면, 측정센서(40)는 센서결합관(23)에 삽입되는 방식을 이용하여 결합되며, 지시계(500)와 연결된다.On the other hand, the measuring sensor 40 is coupled using a method that is inserted into the sensor coupling pipe 23, it is connected to the indicator 500.

부연 설명하자면, 측정센서(40)는 센서결합관(23)에 결합되는 과정에서, 센 서결합관(23)의 입구부분과 측정센서(40)는 긴밀하게 끼임방식으로 측정수가 누수되지 않도록 결합된다.In detail, the measuring sensor 40 is coupled to the sensor coupling tube 23, and the inlet portion of the sensor coupling tube 23 and the measuring sensor 40 are coupled to each other so that the measurement water is not leaked in a tight fit. do.

그리고, 측정센서(40)의 전방부분은 센서결합관(23)의 내주면과 이격되어 측정수의 유입은 가능하고, 세정입자(a)의 유입을 차단하여 유실을 방질 할 수 있도록 틈새를 유지하며, 측정센서(40)의 끝단은 측정수조(22)의 내부공간으로 노출되도록 구성된 것이다.In addition, the front part of the measuring sensor 40 is spaced apart from the inner peripheral surface of the sensor coupling pipe 23 is possible to inflow of the measuring water, and maintains a gap to prevent the loss of water by blocking the inflow of cleaning particles (a) The end of the measuring sensor 40 is configured to be exposed to the internal space of the measuring tank 22.

이러한, 측정기(100)는 고농도의 잔류염소를 함유한 폐수, 오수, 하수와 같은 측정수의 잔류염소량을 측정하는데 사용된다.Such a measuring device 100 is used to measure the amount of residual chlorine in measurement water, such as wastewater, sewage, and sewage containing a high concentration of residual chlorine.

아울러, 다른 실시 예로서의 측정기(200)기는 측정기(100)와 유사한 구조로 형성된다.In addition, the meter 200 as another embodiment is formed in a structure similar to the meter 100.

그러나, 측정기(200)의 측정부(30)는 샘플링부(10)와 수직방향으로 300~400mm로 이격되어 형성된다.However, the measuring unit 30 of the measuring device 200 is formed spaced apart from the sampling unit 10 in the vertical direction 300 to 400mm.

그리고, 측정부(30)의 측정수조(32)는 바닥면에 수직되게 거름망(32a)이 형성된 배수밸브(32b)로 구성된다.In addition, the measuring tank 32 of the measuring unit 30 is composed of a drain valve 32b in which a strainer 32a is formed perpendicular to the bottom surface.

여기서, 측정부(30)와 샘플링부(10)의 수직 이격거리는 측정기(100)를 구성하는 측정부(20)와 샘플링부(10)가 이격된 거리보다 크게 형성된다.Here, the vertical separation distance between the measuring unit 30 and the sampling unit 10 is greater than the distance between the measuring unit 20 and the sampling unit 10 constituting the measuring device 100.

즉, 측정작업이 종료된 측정수가 배수되는 배수밸브(32b)의 직경은 유입구(11)의 직경과 동일하게 형성되어, 측정수조(32)의 내부로 유입되는 양과 배수밸브(32b)를 통해 배출되는 양이 동일하여 와류가 발생되는 않게 된다.That is, the diameter of the drain valve 32b through which the measured water after the measurement work is drained is formed to be the same as the diameter of the inlet 11, and discharged through the amount and the drain valve 32b introduced into the measuring tank 32. The amount is the same so that no vortex is generated.

더불어, 와류가 발생되지 않게 되면 세정입자(a)의 유동현상이 발생되지 않아 측정센서(40)의 세정효율이 저하되는 것을 방지하기 위하여, 낙수되는 측정수에 의해 세정입자(a)가 가장 활발하게 유동되는 수직높이를 여러 번의 실험으로 입증된 높이를 300~400mm로 형성하여 측정수의 낙수차에 의해 세정입자(a)가 활발하게 유동할 수 있도록 구성된 것이다.In addition, when the vortex does not occur, in order to prevent the flow phenomenon of the cleaning particles (a) from occurring and the cleaning efficiency of the measuring sensor 40 is lowered, the cleaning particles (a) are most active by the falling water. The height of the vertical height, which is proved by several experiments, is formed to be 300-400 mm, so that the washing particles (a) can actively flow due to the falling water of the measured water.

이러한, 측정기(200)는 저농도의 잔류염소를 함유한 상수, 정수, 수영장에 사용되는 물과 같은 측정수의 잔류염소량을 측정하는데 사용된다.Such a measuring device 200 is used to measure the amount of residual chlorine in the measurement water, such as a constant containing a low concentration of residual chlorine, purified water, water used in the swimming pool.

아울러, 측정기(100,200)에 측정의 정확성과 효율성을 증대시키기 위해 부가적으로 구성가능한 여과부(90)는 샘플링부(10)의 유입구(11)에는 측정수에 함유된 이물질이나 부유물질을 여과하는 여과필터(91)가 내부에 형성된 여과수조(92)로 이루어지는 여과부(90)가 연결되어 구성된다.In addition, the filter unit 90, which is additionally configurable to increase the accuracy and efficiency of the measurement in the measuring devices 100 and 200, filters the foreign matter or suspended matter contained in the measurement water at the inlet 11 of the sampling unit 10. The filtration part 90 which consists of the filtration water tank 92 in which the filtration filter 91 was formed is connected.

여기서, 여과부(90)는 내부가 투영되는 투명재질이며, 도면상 도시되지 않은 공급펌프를 이용하여 측정수를 펌핑하게 되면, 여과부(90)의 여과수조(92)로 유입되는 동시에, 여과필터(91)를 거쳐 부피가 큰 이물질, 부유물질, 오니 등이 걸러 진 후, 공급펌프의 지속적인 측정수 공급에 따른 펌핑작용으로 여과된 측정수가 샘플링부(10)로 이동되도록 구성된 것이다.Here, the filtration unit 90 is a transparent material projected inside, and when the measurement water is pumped by using a supply pump not shown in the drawing, the filtration unit 90 flows into the filtration water tank 92 of the filtration unit 90 and is filtered. After the bulky foreign matter, suspended matter, sludge, etc. are filtered through the filter 91, the measured water filtered by the pumping action according to the continuous supply of the measured water of the supply pump is configured to be moved to the sampling unit 10.

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

한편, 측정수조(22,32)와 센서결합관(23,33)이 기울기어져 형성되는 각도는 측정센서(40)의 측정효율이 가장 우수하며, 세정입자(a)의 유동성에 의해 접촉하기 용이한 각도로써, 여러 번의 시험결과 40~60°로 구성된 것이다.On the other hand, the angle formed by the inclination of the measuring tank (22, 32) and the sensor coupling pipe (23, 33) is the best measuring efficiency of the measuring sensor 40, easy to contact by the fluidity of the cleaning particles (a) At one angle, the test results consisted of 40 to 60 °.

즉, 센서결합관(23,33)에 결합되는 잔류염소량을 측정하는 측정센서(40)는 측정수조(22,32)의 세로중심선을 기준으로 40~60°기울어져 구성되어, 측정센서(40)의 하부면이 측정수조(22,32)의 바닥면을 향하도록 형성된 것이다.That is, the measuring sensor 40 for measuring the amount of residual chlorine coupled to the sensor coupling pipe (23, 33) is composed of 40 to 60 ° tilted relative to the longitudinal center line of the measuring tank (22, 32), measuring sensor (40) The lower surface of the) is formed to face the bottom surface of the measuring tank (22,32).

이로 인하여, 측정수에 의해 유동되는 세정입자(a)에 의해 세정효율을 극대화 되도록 구성된 것이다.Because of this, it is configured to maximize the cleaning efficiency by the cleaning particles (a) flowing by the measured water.

더불어, 본 발명에서는 폴라로그래피법, 갈바닉전지법, 전해전류법, 볼탄매트리법 등의 여러 가지 방식을 이용하여 잔류염소량을 측정가능하나 폴라그래피법을 이용하여 측정하는 예를 설명하기로 한다.In addition, in the present invention, the amount of residual chlorine can be measured using various methods such as the polarography method, the galvanic cell method, the electrolytic current method, the volcanic matrix method, but the example of measuring the polar chlorine method will be described.

여기서, 폴라로그래피법은 전해용기에 흐르는 전류는 전극반응의 속도와 전기화학적 활성종의 전극표면으로의 이동속도에 의존된다. 충분히 큰 음전하에서는 전극반응의 속도가 매우 빠르므로 전극표면으로 이동되는 물질 종의 이동속도가 전류의 결정인자로 된다. Here, in the polarography method, the current flowing in the electrolytic vessel depends on the speed of the electrode reaction and the moving speed of the electrochemically active species to the electrode surface. At sufficiently large negative charges, the rate of electrode reaction is very fast, and the rate of movement of the species of species moving to the electrode surface is the determinant of current.

또한, 폴라로그래피법은 시약을 변화시킴으로서 잔류염소와 유리유효염소를 분리하여 측정할 수 있는 장점이 있고, 정밀도와 재현성이 좋으나, 수소이온농도(pH)의 영향을 받기 때문에 수소이온농도(pH)의 구간에 따른 잔류염소량을 측정하는 방식으로 이용된다.In addition, the polarographic method has the advantage of separating and measuring residual chlorine and free effective chlorine by changing reagents, and having good precision and reproducibility, but because of the influence of hydrogen ion concentration (pH), It is used to measure the amount of residual chlorine in each section.

결론적으로, 측정센서(40)의 내부에는 은을 염소처리한 은/염화은으로 형성된 양전극과, 백금 또는 금을 재질로 한 음전극이 형성되며, 양전극과 음전극의 주위에는 전해액(염화칼륨,염화포타슘)의 수용액이 내부에 충진되며, 끝단부에는 격막을 이용하여 외부와 차단시키도록 구성된 것이다.
또한, 측정수의 농도가 고농도일 때에는 오염물질의 양이 많고 측정이 곤란하기 때문에 시료를 낙하시켜 드레인밸브를 통해 오염물질을 배출시키고, 측정수의 농도가 저농도일 때에는 배수밸브를 이용하여 오염물질을 배출시켜 안정된 측정수를 측정함으로써 정확한 잔류염소량을 측정하고자 구성된 것이다.
In conclusion, a positive electrode formed of silver / silver chloride treated with silver chlorine and a negative electrode made of platinum or gold is formed inside the measuring sensor 40, and an electrolyte solution (potassium chloride, potassium chloride) is formed around the positive electrode and the negative electrode. The aqueous solution is filled inside, the end is configured to block the outside using a diaphragm.
In addition, when the concentration of the measuring water is high, the amount of pollutant is high and it is difficult to measure. Therefore, the sample is dropped and the pollutant is discharged through the drain valve. When the concentration of the measuring water is low, the pollutant is discharged by using the drain valve. It is configured to measure the accurate amount of residual chlorine by measuring the number of stable measurement by discharging.

즉, 용액에서 전극전위를 측정하기 위해서는 전류신호를 받을 수 있는 작동전극(working electrode)과 보조전극(counter electrode;음전극), 작동전극의 전위 를 측정하기위해 비교되어 지는 기준전극(reference electrode;양전극)으로 나누어질 수 있다. That is, in order to measure the electrode potential in a solution, a working electrode (counting electrode) and a counter electrode (negative electrode) capable of receiving a current signal, and a reference electrode (positive electrode) which are compared to measure the potential of the working electrode are compared. Can be divided into

이러한, 보조전극인 음전극을 통하여 일정 전위를 인가하면 작동전극 표면에 염소가 환원반응이 일어나 반응한 만큼의 전류 신호를 얻게 된다. When a constant potential is applied through the negative electrode, which is an auxiliary electrode, a reduction reaction of chlorine occurs on the surface of the working electrode, thereby obtaining a current signal corresponding to the reaction.

그리고, 작동전극을 이용하여 미량의 전해를 시행하는 것으로 전류는 작동전극과 보조전극 사이를 흐른다. In addition, a small amount of electrolysis is performed using the working electrode, and current flows between the working electrode and the auxiliary electrode.

이때, 차아염소산(HOCl)은 작동전극에서 환원반응을 일으킬 수 있는 전위를 가하게 되면 차아염소산(HOCl)이 환원 되면서 발생되는 전류량을 측정하게 된다. At this time, hypochlorous acid (HOCl) is applied to the potential to cause a reduction reaction in the working electrode to measure the amount of current generated while the hypochlorous acid (HOCl) is reduced.

아울러, 사용된 전류는 분석물질의 양과 비례하여 증가되기 때문에 이를 통해 차아염소산(HOCl)의 농도를 확인 할 수 있다. 수질 속에 있는 총유리잔류염소(Cl2, HOCl, ClO-)의 존재 비율은 수소이온농도(pH)에 따라 일정한 비율을 갖고 있기 때문에 HOCl의 농도를 알게되면 총유리잔류염소량을 알 수 있게 된다.In addition, since the current used increases in proportion to the amount of analyte, the concentration of hypochlorous acid (HOCl) can be confirmed through this. Total free residual chlorine in the water (Cl 2, HOCl, ClO - ) when the ratio of the known concentration of HOCl because it has a constant rate according to the hydrogen ion concentration (pH) it is possible to know the total of free residual chlorine.

이로 인하여, 도 7에 도시된 바와 같이 화학식1,2,3을 얻을 수 있다.As a result, Chemical Formulas 1, 2, and 3 may be obtained as shown in FIG. 7.

Cl2 + 2e- → 2Cl- Cl 2 + 2e - → 2Cl -

HOCl + H+ + 2e- → H2O + Cl- HOCl + H + + 2e - → H 2 O + Cl -

ClO- + 2H+ + 2e- → H2O + Cl- ClO - + 2H + + 2e - → H 2 O + Cl -

이상에서는 본 발명을 특정의 바람직한 실시예를 예를들어 도시하고 설명하였으나, 본 발명은 상기한 실시예에 한정되지 아니하며 본 발명의 정신을 벗어나지 않는 범위내에서 당해 발명이 속하는 기술분야에서 통상의 지식을 가진자에 의해 다양한 변경과 수정이 가능할 것이다.In the above, the present invention has been illustrated and described with reference to specific preferred embodiments, but the present invention is not limited to the above-described embodiments and is not limited to the spirit of the present invention. Various changes and modifications can be made by those who have

이상에서와 같이 본 발명은 샘플링방식을 이용하여 각각 농도가 고농도인 폐수, 오수, 하수 등과 농도가 저농도인 상수, 정수, 수영장 물 등의 고농도와 저농도를 구분하여 측정함에 따라 정확한 측정이 가능하고, 현장여건에 따라 적용성이 우수하도록 개선되는 효과가 있다.As described above, the present invention can accurately measure high concentrations and low concentrations of wastewater, sewage, sewage, etc., each having a high concentration by using a sampling method, and separately measuring high concentrations and low concentrations such as constant, purified water, and pool water having low concentrations. It is effective to improve the applicability depending on the site conditions.

그리고, 샘플링부와 세정부를 세로방향으로 이격시킴에 따른 측정수의 낙수차 및 유입관과 드래인밸브의 직경 차이에 의해 발생되는 측정수의 와류작용에 의해 세정입자가 유동되며 측정센서를 조건에 따라 다른 방식으로 세정할 수 있도록 개선되는 효과가 있다.In addition, the cleaning particles are flowed by the turbulence action of the measured water caused by the falling water aberration of the measured water and the difference in diameter between the inlet pipe and the drain valve as the sampling part and the cleaning part are spaced in the longitudinal direction. As a result, there is an effect that can be improved to clean in different ways.

Claims (8)

샘플링 방식으로 측정되는 잔류염소량 측정기에 있어서,In the residual chlorine measuring device measured by the sampling method, 측정수가 유입되는 유입구(11)가 형성된 수조(12)가 형성되고, 수조(12)의 상부에는 온도센서(13) 및 수소이온농도센서(14)가 형성되며, 수조(12)의 내부에는 바닥면을 관통하는 오버플로어관(12a)이 직립되게 형성된 샘플링부(10)와,A water tank 12 having an inlet 11 through which measurement water is introduced is formed, and a temperature sensor 13 and a hydrogen ion concentration sensor 14 are formed at an upper portion of the water tank 12, and a bottom is formed inside the water tank 12. A sampling unit 10 formed so that the overflow tube 12a penetrating the surface is upright, 샘플링부(10)의 오버플로어관(12a)에 정유량밸브(21a,31a)가 형성된 이송관(21,31)으로 연결되는 측정부(20,30)와,Measurement units 20 and 30 connected to the overflow pipes 12a of the sampling unit 10 and the transfer pipes 21 and 31 in which the constant flow valves 21a and 31a are formed; 센서결합관(23,33)에 결합되며, 지시계(500)와 연결되는 측정센서(40)로 구성되는 것을 특징으로 하는 샘플링 방식의 잔류염소량 측정기.It is coupled to the sensor coupling pipe (23, 33), the residual chlorine measuring meter of the sampling method, characterized in that consisting of a measuring sensor 40 is connected to the indicator (500). 제 1항에 있어서, 상기 측정부(30)는 이송관(31)에 연결되어 측정수의 유입낙차에 의해 유동되는 세정입자(a)가 담겨진 측정수조(32)가 형성되고, 측정수조(32)의 일측면에는 상부로 기울어진 센서결합관(33)이 형성되며, 측정수조(32)와 센서결합관(33)을 감싸도록 형성된 외부수조(34)가 형성되는 한편, 샘플링부(10)와 수직방향으로 300~400mm로 이격되어 배치되며, 측정부(30)의 측정수조(32)는 바닥면에 수직되게 거름망(32a)이 형성된 배수밸브(32b)로 구성되는 것을 특징으로 하는 샘플링 방식의 잔류염소량 측정기.According to claim 1, wherein the measuring unit 30 is connected to the transfer pipe 31 is formed a measuring tank 32 containing the washing particles (a) flowing by the inflow of the measuring water, the measuring tank 32 The sensor coupling pipe 33 is inclined upward on one side of the), the outer tank 34 formed to surround the measuring tank 32 and the sensor coupling pipe 33 is formed, while the sampling unit 10 And spaced apart from each other by 300 to 400 mm in the vertical direction, and the measuring tank 32 of the measuring unit 30 is configured to include a drain valve 32b having a strainer 32a formed perpendicularly to the bottom surface. Residual chlorine meter. 제 1항에 있어서, 상기 샘플링부(10)의 유입구(11)에는 측정수에 함유된 이물질이나 부유물질을 여과하는 여과필터(91)가 내부에 형성된 여과수조(92)로 이루어지는 여과부(90)가 연결되어 구성되는 것을 특징으로 하는 샘플링 방식의 잔류염소량 측정기.The filter unit 90 of claim 1, wherein the inlet port 11 of the sampling unit 10 includes a filtration water tank 92 formed therein with a filtration filter 91 for filtering foreign matter or suspended matter contained in the measurement water. ) Is a residual chlorine measuring meter of the sampling method characterized in that the configuration. 삭제delete 삭제delete 제 1 항에 있어서, 상기 측정수조(22,32)와 센서결합관(23,33)이 기울어져 형성되는 각도는 40~60°로 구성되는 것을 특징으로 하는 샘플링 방식의 잔류염소량 측정기.The method of claim 1, wherein the measuring tank (22, 32) and the sensor coupling pipe (23, 33) is formed by the angle of the angle of the chlorine measuring method of the sampling method, characterized in that consisting of 40 to 60 °. 제 1항에 있어서, 상기 측정부(20)는 이송관(21)에 연결되어 측정수의 유입낙차에 의해 유동되는 세정입자(a)가 담겨진 측정수조(22)가 형성되고, 측정수조(22)의 일측면에는 상부로 기울어진 센서결합관(23)이 형성되며, 측정수조(22)와 센서결합관(23)을 감싸도록 형성된 외부수조(24)가 형성되는 한편, 센서결합관(23)의 하부면에는 수직되게 외부수조(24)의 바닥면을 관통하는 드레인밸브(25)로 구성되는 것을 특징으로 하는 샘플링 방식의 잔류염소량 측정기.According to claim 1, wherein the measuring unit 20 is connected to the transfer pipe 21 is formed a measuring tank 22 containing the cleaning particles (a) flowing by the inflow of the measuring water, the measuring tank 22 The sensor coupling pipe 23 is inclined upwardly on one side of the), and the outer tank 24 formed to surround the measuring tank 22 and the sensor coupling pipe 23 is formed, while the sensor coupling pipe 23 is formed. Residual chlorine level meter of the sampling method, characterized in that consisting of a drain valve (25) penetrating the bottom surface of the outer tank (24) perpendicular to the lower surface. 삭제delete
KR1020060116670A 2006-11-24 2006-11-24 Residual chlorine analyzer of sampling form KR100768340B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060116670A KR100768340B1 (en) 2006-11-24 2006-11-24 Residual chlorine analyzer of sampling form

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060116670A KR100768340B1 (en) 2006-11-24 2006-11-24 Residual chlorine analyzer of sampling form

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020070077852A Division KR100759531B1 (en) 2007-08-02 2007-08-02 Residual chlorine analyzer of ventilation form

Publications (1)

Publication Number Publication Date
KR100768340B1 true KR100768340B1 (en) 2007-10-17

Family

ID=38815190

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060116670A KR100768340B1 (en) 2006-11-24 2006-11-24 Residual chlorine analyzer of sampling form

Country Status (1)

Country Link
KR (1) KR100768340B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101246564B1 (en) 2011-10-12 2013-03-25 (주) 테크로스 Total residual oxidant measuring devices
KR101507331B1 (en) 2014-10-23 2015-03-31 길주형 Residual Chlorine Sensor
KR101507334B1 (en) 2014-10-23 2015-03-31 길주형 Dissolved Oxygen Sensor
KR101507330B1 (en) 2014-10-23 2015-03-31 길주형 Dissolved Oxygen Sensor
KR101942022B1 (en) 2018-07-05 2019-01-24 김시원 Chlorine Concentration Meter
KR102576588B1 (en) 2022-10-05 2023-09-07 김수영 Paper concentration measuring device and method for measuring residual chlorine concentration

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH042961A (en) * 1990-04-20 1992-01-07 Tokico Ltd Apparatus for measuring amount of chlorine
JPH11142370A (en) 1997-11-12 1999-05-28 Masaaki Amano Portable residual chlorine meter
JP2000009687A (en) 1998-06-29 2000-01-14 Takumina:Kk Residual chlorine meter and liquid sterilization apparatus using the same
JP2004271211A (en) 2003-03-05 2004-09-30 Tacmina Corp Apparatus for measuring fluid characteristics
JP2005114622A (en) 2003-10-09 2005-04-28 Sanyo Electric Co Ltd Device for detecting residual chlorine concentration
JP2005156426A (en) 2003-11-27 2005-06-16 Iwaki Co Ltd Residual chlorine measuring device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH042961A (en) * 1990-04-20 1992-01-07 Tokico Ltd Apparatus for measuring amount of chlorine
JPH11142370A (en) 1997-11-12 1999-05-28 Masaaki Amano Portable residual chlorine meter
JP2000009687A (en) 1998-06-29 2000-01-14 Takumina:Kk Residual chlorine meter and liquid sterilization apparatus using the same
JP2004271211A (en) 2003-03-05 2004-09-30 Tacmina Corp Apparatus for measuring fluid characteristics
JP2005114622A (en) 2003-10-09 2005-04-28 Sanyo Electric Co Ltd Device for detecting residual chlorine concentration
JP2005156426A (en) 2003-11-27 2005-06-16 Iwaki Co Ltd Residual chlorine measuring device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101246564B1 (en) 2011-10-12 2013-03-25 (주) 테크로스 Total residual oxidant measuring devices
KR101507331B1 (en) 2014-10-23 2015-03-31 길주형 Residual Chlorine Sensor
KR101507334B1 (en) 2014-10-23 2015-03-31 길주형 Dissolved Oxygen Sensor
KR101507330B1 (en) 2014-10-23 2015-03-31 길주형 Dissolved Oxygen Sensor
KR101942022B1 (en) 2018-07-05 2019-01-24 김시원 Chlorine Concentration Meter
KR102576588B1 (en) 2022-10-05 2023-09-07 김수영 Paper concentration measuring device and method for measuring residual chlorine concentration

Similar Documents

Publication Publication Date Title
KR100768340B1 (en) Residual chlorine analyzer of sampling form
CN107074594B (en) Sensor system and method for sensing chlorine concentration
US20190210897A1 (en) Electrochemical analysis device for reagentless detection
JP2013152146A (en) Water quality inspection device and water quality inspection method
JP2001066298A (en) Measuring apparatus for water quality
JP4243112B2 (en) Sample water analysis unit and sample water analyzer
KR100759531B1 (en) Residual chlorine analyzer of ventilation form
KR20170098349A (en) Electrochemical TRO sensor
KR101492393B1 (en) Total residual oxidant concentration measure module
KR100786883B1 (en) Deposition method sensor soaping machine
KR102618110B1 (en) Constant Flow Apparatus having Microbubble Removing Function
WO2023286400A1 (en) Electrochemical measurement device and electrochemical measurement method
US4441979A (en) Nutating probe for gas analysis
KR20160039854A (en) Sampling apparatus for tele-mornitoring system
KR100970306B1 (en) Sample holder structure having a residual chlorine sensor
US4680552A (en) Apparatus for measuring impurities in super-pure water without exposure to surrounding atmosphere
JP2000121628A (en) Water quality measuring device
KR19990037582A (en) Liquid fluorine dosing method and system
JPH11118750A (en) Apparatus for setting of reference electrode
KR101800793B1 (en) Sodium hypochlorite concentration measurement apparatus
JP2011179981A (en) Water quality sampling device and method of sampling water quality
CN217613464U (en) Circulation type sewage measuring tank
CN212904649U (en) Multi-parameter water quality monitoring device
JP2000009675A (en) Water quality detector
JPH10151462A (en) Electrolytic water forming apparatus

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
A107 Divisional application of patent
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121010

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20131010

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20141007

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20151013

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20160923

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20190920

Year of fee payment: 13