JP2004271211A - Apparatus for measuring fluid characteristics - Google Patents

Apparatus for measuring fluid characteristics Download PDF

Info

Publication number
JP2004271211A
JP2004271211A JP2003058504A JP2003058504A JP2004271211A JP 2004271211 A JP2004271211 A JP 2004271211A JP 2003058504 A JP2003058504 A JP 2003058504A JP 2003058504 A JP2003058504 A JP 2003058504A JP 2004271211 A JP2004271211 A JP 2004271211A
Authority
JP
Japan
Prior art keywords
fluid
bead
inspected
electrode
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003058504A
Other languages
Japanese (ja)
Other versions
JP3773911B2 (en
Inventor
Hajime Kawasaki
元 川崎
Yoshihiro Yamamoto
良浩 山元
Hiroshi Kotani
博 小谷
Akihiko Morimoto
明彦 森本
Keisuke Oda
圭祐 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tacmina Corp
Original Assignee
Tacmina Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tacmina Corp filed Critical Tacmina Corp
Priority to JP2003058504A priority Critical patent/JP3773911B2/en
Publication of JP2004271211A publication Critical patent/JP2004271211A/en
Application granted granted Critical
Publication of JP3773911B2 publication Critical patent/JP3773911B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for measuring fluid characteristics, which can properly remove matters attaching to an electrode surface by using bead-like abrasive members, secure a wide flow channel for fluid to be tested, prevent suspended matters or the like form attaching thereto and prevent the bead-like abrasive members from flowing out of its system. <P>SOLUTION: The apparatus 4 for measuring the fluid characteristics is provided with a test container 41 having an inflow section 43 and an outflow section 44 for the fluid to be tested, a pair of electrode sections 42 measuring the characteristic of the fluid to be tested, and a plurality of bead-like abrasive members 49 carrying out a cleaning process for the electrode surface 42a. The test container 41 is made up so that the fluid to be tested moves and circulates the bead-like abrasive members 49 in up-and-down directions. The electrode section 42 is made up so that the electrode surface 42a which is expressed inside the test container 41, faces downward so as to come into contact with the circulated bead-like abrasive members 49. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、流体の性状を測定する流体性状測定装置に関するものである。
【0002】
【従来の技術】
上水処理あるいは下水処理の際には、塩素を用いた殺菌処理が義務付けられている。このような塩素殺菌処理を行う場合には、通常、液体の殺菌状態(いわゆる液体の残留塩素濃度の状態)を判断するために、定期的あるいは連続的に、液体(被検査流体)の性状の一つである残留塩素濃度の測定が行われている。
【0003】
残留塩素濃度を連続的に測定する方法としては、バッファ剤を加えて被検査流体のpHを3.0〜3.52に調整して測定する方法や、ヨウ化カリあるいは臭化カリ等を被検査流体に溶解させ通液し、また同時にバッファ剤として酢酸溶液を通液しながら、陽極電極および陰極電極を被検査流体中に設け、一定の直流電圧を印加して電解電流値を計測する方法が知られている。
【0004】
ここで、電解液としてヨウ化カリ溶液を用いた場合の電解反応を示すと、
2KI + Cl → 2KCl + I
となり、続いて電極面での反応を示すと
2H + 2e → 2H
+ 2H → 2HI (陰極反応)
2I + 2e → I (陽極反応)
となる。
【0005】
被検査流体中の残留塩素濃度が高い場合、または長時間に渡り連続的に測定する場合においては、陽極反応で生じたヨウ素が陽極電極表面に析出付着し、測定値の定量性に欠け、この陽極電極表面に析出付着したヨウ素は誤動作の原因ともなる。また、陽極反応で生成されたヨウ素が被検査流体に溶けて陰極に達すると、上記の陰極反応を起こし同様に電流が流れる。さらに、臭化カリ溶液を用いた場合も同様に臭素が陽極電極表面に付着して同様な現象を生じる。
【0006】
一方、無試薬にて(すなわち薬品を一切使用せずに)、上記と同様に陽極電極および陰極電極を被検査流体中に設け印加電圧を印加して残留塩素濃度を測定することも可能である。しかし、薬品を添加した場合には、印可電圧0.2V〜0.4Vの範囲で残留塩素濃度の測定が可能であったのに対して、無試薬の場合には、印可電圧を0.7V〜0.98V程度に上昇させなければ電流値が小さくなって測定誤差を生じやすくなる。
また、印可電圧を上昇させると、被検査流体中に含まれる微量の重金属や有機物等が電極表面の発生基の酸素(O)や発生基の水素(H)と反応し、例えば、陰極電極では微量の重金属が還元されその電極表面に付着する。さらに、陽極電極では、銅等の無電解で付着しやすい物質が、陽極酸化によって陽極電極表面に付着する場合がある。また、有機物等も同様に陽極酸化され、簡単に陽極電極表面に付着してしまい、電極反応を阻害し測定誤差の原因となっている。
【0007】
さて、温泉やスーパー銭湯に対しては、最近、厚生労働省生活衛生局長通達として、「公衆浴場における衛生等管理要領等の改正について」、公衆浴場および旅館業におけるレジオネラ症発生防止対策等、一層の衛生水準の維持、確保を図るため、「公衆浴場における水質基準に関する指針」、「公衆浴場における衛生など管理要領」および「旅館業における衛生等管理要領」の改正が行われた。
【0008】
温泉やスーパー銭湯等では、一般に循環式の浴槽が使用されている。循環式浴槽とは、温泉水や水道水の使用量を少なくする目的で、浴槽の湯をろ過器を通して循環させることにより、浴槽内の湯を清浄に保つ構造の浴槽を云う。このような循環式浴槽の中で「連日使用型循環浴槽」と呼ばれるものは、浴槽内の温水が浴槽底部から取り出されて、この取り出された温水が、循環配管中に設けられた集毛器(ヘアーキャッチャ)、循環ポンプ、消毒剤注入部、ろ過器、過熱器(熱交換器)を介して、再度浴槽中に注がれるように構成されている。すなわち、このような方式の浴槽は、浴槽内の温水を浄化しつつ適温に保つように構成されている。
【0009】
以上のように構成された浴槽においては、従来の施設設備の設置、管理方法では、消毒剤の注入箇所がろ過器の後(下流側)でもよかったが、上述したこの度の厚生労働省の通達では、「浴槽水の消毒に用いる塩素系薬剤の注入箇所は、浴槽水がろ過器に入る直前であることが望ましい」と改正された。すなわち、ろ過器はバイオフィルムの発生が懸念されるため、このろ過器内の殺菌が重要になっていると考えられる。
【0010】
浴槽水の消毒に用いる塩素系薬剤は、「浴槽水中の遊離残留塩素濃度を1日2時間以上0.2mg/L〜0.4mg/Lに保つことが望ましい」と義務付けられているため、ろ過器前の浴槽水についてこの値を維持しようとすれば、残留塩素濃度を測定可能な装置を用いて連続モニタリングを行い、浴槽水の残留塩素濃度を一定値に自動的に制御する必要がある。
【0011】
従来は、ろ過器の下流側の浴槽水を用いて残留塩素濃度を測定していたため、特に問題はなかったが、上述した改正が行われた後においては、ヘアーキャッチャを通過した後のろ過処理前の浴槽水を被検査流体として残留塩素測定装置に通液させなければならない。
浴槽水中にはたんぱく質や粒子状の浮遊物が多く含有されているため、従来用いられていた残留塩素測定装置では、これらの微粒子が装置内の流路に付着して必要とする通液量が得られず、測定誤差を生じるという問題があった。
【0012】
また、従来技術にかかる残留塩素測定装置としては、電極表面の洗浄等を行うために電極近傍にビーズを設けた構成の装置が知られている(例えば、特許文献1)。このような構成の装置においては、被検査流体の水流によってビーズが系外に飛び出すことを防止するために、SUS製の金網が設けられている。
このような構成の装置をろ過器の前に設けると、上述した浴槽水中のたんぱく質や粒子状の浮遊物が金網に付着し流路が閉塞状態となり、残留塩素濃度の測定を正確に行うことができないという問題が生じる。
【0013】
さらに、従来技術(例えば、特許文献1)にかかる残留塩素測定装置においては、電極が電極ホルダの下部に設けられているため、メンテナンス性が悪いという問題があった。
【0014】
【特許文献1】
特開2001−228116号公報
【0015】
【発明が解決しようとする課題】
そこで、本発明は、上記従来技術の問題を解決するためになされたもので、ビーズ状研磨体を用いて電極部表面の付着物質を適切に除去可能であって、被検査流体の流通経路を広く確保して浮遊物質等の付着を防ぎ、ビーズ状研磨体の系外への流出を防止することができる、流体性状測定装置を提供することを課題とする。つまり、本発明は、電極部表面への付着物質を除去して測定部における誤差をなくし、被検査流体の流通経路の閉塞を防止することによって必要量の被検査流体を確保して、安定した流体性状(例えば、残留塩素濃度)の測定を実施可能な流体性状測定装置を提供することを課題とする。
また、本発明は、メンテナンス性に優れた流体性状測定装置を提供することを課題とする。
【0016】
【課題を解決するための手段】
上記課題を解決するための本発明は、被検査流体の流入部および流出部を有する検査容器と、前記検査容器内に流入した前記被検査流体の性状を測定する一対の電極部と、前記電極部表面の洗浄処理を行う複数のビーズ状研磨体とを備えた流体性状測定装置であって、前記検査容器は、前記被検査流体を上下方向に循環させ、前記ビーズ状研磨体が前記被検査流体によって前記検査容器内を上下方向に循環運動するように構成されており、前記電極部は、前記検査容器内に表出した電極部表面と循環運動している前記ビーズ状研磨体とが接触するように、前記電極部表面が下方を向くように設けられていることを特徴としている。
【0017】
このような構成によれば、循環運動している前記ビーズ状研磨体が前記電極部表面に接触するように構成されているため、前記電極部表面の付着物質を適切に除去することができる。
また、本発明においては、前記ビーズ状研磨体が前記検査容器内を循環運動すべく構成されているため、前記ビーズ状研磨体は前記検査容器外に流出しない。したがって、本発明によれば、前記ビーズ状研磨体の流出を防止するための金網等を設ける必要がない。よって、従来のように、浮遊物等が金網に付着し流路が閉塞状態となることがなく、残留塩素濃度等の流体性状の測定を正確に行うことができる。
また、本発明においては、前記電極部表面が下方を向くように設けられている。すなわち、前記電極部が上から取り付けられているため、前記電極部を上から着脱することによって、より容易にメンテナンス処理を行うことができる。
【0018】
また、本発明にかかる流体性状測定装置においては、前記検査容器内には、前記ビーズ状研磨体を前記電極部表面に接触させるべく、前記被検査流体の動きを上方に向けるための流体制御部が設けられている構成が好ましい。
【0019】
この好ましい構成によれば、前記流体制御部によって前記ビーズ状研磨体が前記電極部表面方向に移動させられて前記電極部表面との接触状態が促進されるため、前記電極部表面における付着物の除去を効果的に行うことができる。
【0020】
また、本発明にかかる流体性状測定装置においては、前記検査容器の流入部には、前記被検査流体の流速を所定速度に保持すべく、定水槽が接続されている構成が好ましい。
【0021】
この好ましい構成によれば、前記定水槽によって前記検査容器に流入される前記被検査流体の流速が所定速度に保持されるため、前記検査容器内における前記ビーズ状研磨体の循環運動を安定化させ、前記ビーズ状研磨体の流出を確実に防止することができる。また、前記被検査流体の流速が所定速度に保持されるため、前記電極部にて測定する前記被検査流体の流量が略一定し、安定した残留塩素濃度の測定を行うことができる。
【0022】
また、本発明にかかる流体性状測定装置においては、前記ビーズ状研磨体の直径が0.5mm〜1.2mmである構成が好ましい。
【0023】
また、本発明にかかる流体性状測定装置においては、前記ビーズ状研磨体がセラミック、ガラス、およびアルミナの少なくとも一つを用いて形成されていることが好ましい。
【0024】
さらに、本発明にかかる流体性状測定装置においては、前記被検査流体の性状が、残留塩素濃度および二酸化塩素濃度の少なくとも一方であることが好ましい。
【0025】
【発明の実施の形態】
以下、図面に基づいて本発明の実施形態を説明する。
【0026】
図1は、後述する本発明の各実施形態にかかる残留塩素測定装置(流体性状測定装置)を適用して構成可能な連日使用型循環浴槽(以下、「循環浴槽」という。)の一例を示すシステムフロー図である。
図1に示された循環浴槽は、補給湯が随時補給可能な浴槽1を用いて構成されており、この浴槽1は、その底部1aから浴槽内の温水を導出させることができるように構成されている。そして、この循環浴槽は、浴槽1の底部1aから導出された温水が、循環ラインL1およびこの循環ラインL1に設けられた種々の装置を介して、再び浴槽1の循環導入口1bから導入されるように構成されている。
【0027】
循環ラインL1上には、集毛器2、ポンプ3、残留塩素測定装置4(流体性状測定装置)、ろ過器5、および加熱器6が設けられており、残留塩素測定装置4の下流側の循環ラインL14には、温水中に消毒薬剤を注入するための消毒薬剤注入装置7から薬剤を注入するための薬剤注入ラインL2が接続されている。
【0028】
本実施形態にかかる循環浴槽は、図1に示すように構成され、上記のように循環ラインL1および薬剤注入ラインL2には種々の装置が設けられているため、浴槽1の温水を適切に浄化して適温に保つことができる。
【0029】
また、本実施形態にかかる循環浴槽においては、先に説明した厚生労働省の通達を満足すべく、消毒薬剤の注入箇所は、温水がろ過器5に入る直前に設けられている。つまり、残留塩素測定装置4を用いてろ過器5に入る前の温水の残留塩素濃度が測定され、その測定結果に基づいて消毒薬剤注入装置7を制御し、薬剤注入ラインL2を介して残留塩素測定装置4の下流側循環ライン(ろ過器5の上流側循環ライン)L14に消毒薬剤が注入される。
【0030】
ろ過器5に入る前の温水中には、たんぱく質や粒子状の浮遊物質が存在しているため、従来技術にて説明したような電極部表面の洗浄用のビーズや金網等を有する残留塩素測定装置を用いたのでは、流路の閉塞等が生じて、残留塩素測定装置にて必要とされる被検査流体の流量を得ることができず、正確な残留塩素濃度(被検査流体の性状)の測定を行うことができない。
【0031】
そこで、本発明者らは、鋭意研究を重ねた結果、電極部表面に付着する付着物質の除去を行いつつ、流路の閉塞が起こらない構造を有し、安定して被検査流体を流通させつつ正確な残留塩素濃度(被検査流体の性状)の測定を実施可能な残留塩素測定装置(流体性状測定装置)を得るに至った。
以下、残留塩素測定装置の具体的な構成について説明する。
【0032】
<第一実施形態>
図2は、本発明の第一実施形態にかかる残留塩素測定装置(流体性状測定装置)の模式図を示したものである。また、図3は、この第一実施形態にかかる残留塩素測定装置(流体性状測定装置)の概略図を示したものである。図3(a)は、残留塩素測定装置の全体を示した概略断面図であり、図3(b)は、ビーズ状研磨体の挿入方法を説明するための概略図である。
【0033】
本実施形態にかかる残留塩素測定装置4は、先に説明した図1のポンプ3の下流側循環ラインL13と、ろ過器5の上流側循環ラインL14との間に設けられるものである。
なお、本実施形態においては、図1および図2に示すように、循環ラインL中に残留塩素測定装置4を設け、連続的に残留塩素濃度の測定を行い、この残留塩素測定装置4内を流通した温水を再度循環ラインLに戻す場合について示しているが、本発明はこの構成に限定されない。したがって、例えば、循環ラインLから定期的に温水をサンプリングして残留塩素濃度の測定を行い、残留塩素濃度の測定が行われた後は、「ドレン」として排出してもよい。つまり、循環されている温水の一部を被検査流体である「サンプル水」として抽出して、検査後は「ドレン」として系外に排出してもよい。
【0034】
図2および図3に示すように、本実施形態にかかる残留塩素測定装置4は、被検査流体の流入部43および流出部44を備えた検査容器41と、この検査容器41内に流入した被検査流体の残留塩素濃度を測定する一対の電極部を有する電極ホルダ42と、この電極ホルダ42から表出した一対の電極部表面42aに付着した付着物を除去するビーズ状研磨体49とを用いて構成されている。また、電極ホルダ42は検査容器41の電極ホルダ取付部41aに取り付けられており、流出部44の下流側には、検査容器41内を流通する被検査流体の流通量を調整する流量調整弁46が設けられている。電極ホルダ42は、その先端部の電極部表面42aが、下方に向くような状態で電極ホルダ取付部41aに取り付けられている。
【0035】
流入部43には、被検査流体を検査容器41内に噴出させる噴出孔43aが設けられている。この噴出孔43aは、噴出される被検査流体が検査容器41内において上下方向(縦方向)(矢印X方向、図2参照)に循環するように、流入部43から検査容器41の下方の底部45に向けて被検査流体が噴出されるように構成されている。そして、この検査容器41の底部45は、ビーズ状研磨体49を貯留可能な凹部形状を有し、この凹部形状を有する底部45は、被検査流体にて移動させられるビーズ状研磨体49が効果的に電極部表面42aに接触するような形状となっている。すなわち、この底部45が、本発明の「流体制御部」にも相当する。
【0036】
すなわち、本実施形態においては、検査容器41内に噴出された被検査流体は、噴出孔43aと底部45と電極部表面42aとを結んだ領域を中心として循環流Xを形成することとなり、ビーズ状研磨体49は、このような被検査流体の循環流Xによって、噴出孔43aと底部45と電極部表面42aとを結んだ領域を中心として循環運動することとなる。そして、このように循環運動するビーズ状研磨体49が上方へ移動中に電極部表面42aに連続的に衝突することによって、電極部表面42aの付着物等が適切に除去されることとなる。
【0037】
また、本実施形態においては、検査容器41内に流入した被検査流体を検査容器41外に流出させる流出部44が、検査容器41の上方部に設けられている。
つまり、本実施形態においては、検査容器41の下方部に流入部43が設けられ、この流入部43の噴出孔43aから噴出された被検査流体にて検査容器41の下方領域で循環流が形成され、検査容器41内の被検査流体は、上方部に設けられた流出部44を介して検査容器41外に排出されることとなる。
【0038】
本実施形態においては、上述したように、検査容器41の下方部に流入部43が設けられ、上方部に流出部44が設けられることによって、検査容器41の下方領域において被検査流体による循環流が形成され、被検査流体は上方から排出される。また、この際、検査容器41内を流通する被検査流体の流通量は、流出部44の下流側に設けられた流量調整弁46にて調整される。
したがって、本実施形態によれば、ビーズ状研磨体49の循環運動は、被検査流体の循環流に沿って、検査容器41の下方領域でのみ行われることとなるため、上方に位置する流出部44から系外(検査容器41外)にビーズ状研磨体49が流出することはない。つまり、検査容器41の高さ方向の寸法は、噴出孔43aの位置、流出部44の位置、および被検査流体の流通量等に基づいて、ビーズ状研磨体49が系外に流出しないように定められている。
【0039】
以上のように構成された本実施形態にかかる残留塩素装置4においては、以下のようにして、循環される温水(被検査流体)の残留塩素濃度(流体性状)の測定が行われる。
【0040】
まず、循環ラインL13を介して流入部43から被検査流体が導入され、流入部43の先端に設けられた噴出項43aから検査容器41内に噴出される。検査容器41内においては、この噴出された被検査流体によって、循環流Xが形成される。なお、この際、検査容器41内を流通する被検査流体の流量は、必要に応じて流量調整弁46によって調整される。
【0041】
次に、このようにして流入して循環している被検査流体によって、検査容器41内が満たされ、電極ホルダ42の先端部に表出している電極部表面42aも被検査流体に浸漬した状態となる。また、被検査流体の循環流Xによって、検査容器41の底部45に設けられていた複数のビーズ状研磨体49も循環運動することとなる。そうすると、残留塩素濃度の測定部位である電極部表面42a(露出端面)が、複数のビーズ状研磨体49と接触を繰り返すこととなり、電極部表面42a上における付着物質の除去を行うことができる。
【0042】
すなわち、本実施形態にかかる残留塩素測定装置によれば、電極部表面42aの状態を適切に保持しながら被検査流体に浸漬させることができるため、被検査流体の残留塩素濃度を正確に測定することができる。
【0043】
また、従来技術においては、ビーズが水流によって系外に流出しないように金網で蓋をしているが、このような構成の場合には先にも説明したように、ろ過器での処理を行う前の被検査流体を流入させると、被検査流体中のたんぱく質や粒子状の浮遊物が金網に付着して流路が閉塞状態となり、残留塩素濃度等の流体性状の測定を正確に行うことができなくなるという問題があった。
しかしながら、本実施形態においては、ビーズ状研磨体49は検査容器41の下方領域で循環運動をしているため、上方位置に設けられた流出部44からビーズ状研磨体49が流出することはなく、被検査流体を流通させる流通経路を広く確保することができ、従来技術のように金網を設ける必要がない。
【0044】
すなわち、本実施形態にかかる残留塩素測定装置4によれば、検査容器41内を流通する被検査流体の流通経路を広く確保することが可能となるため、検査容器41の如何なる箇所においても、たんぱく質や粒子状の浮遊物の付着等が起こらない。また、金網等を用いていないため、流通する被検査流体の流量変動が少なく、安定した測定を行うことができる。
【0045】
さらに、本実施形態においては、ビーズ状研磨体49が電極部表面42aに向けて縦方向に回転するように、噴出孔43aの位置や検査容器41の底部45(流体制御部)の形状が定められている。したがって、電極部表面42aの研磨状態(付着物の除去状態)が非常に良好となる。なお、テストのために、電極部表面42aを有機性のインキで塗り潰した後に、ビーズ状研磨体の添加量1g、流通量1L/minで検査容器41内へ被検査流体を流入させると、このインキは10min程度で略完全に剥離させることが可能であった。
【0046】
また、本実施形態においては、電極ホルダ42の端面に形成されている電極部表面42aが下方に向くように、検査容器41に設けられた電極ホルダ取付部41aの上方から、電極ホルダ42が取り付けられている。
したがって、本実施形態によれば、電極ホルダ42の交換等の際には、電極ホルダ取付部41aから電極ホルダ42を取り外すだけでよいため、従来よりも電極交換時のメンテナンス性を向上させることができる。
【0047】
さらに、本実施形態においては、図3(b)に示すように、検査容器41の底部45が、検査容器41から着脱自在な下方蓋部47に形成されている。つまり、本実施形態においては、底部45(流体制御部)が検査容器41から着脱自在であるため、ビーズ状研磨体49の交換等は、下方蓋部47のみを取り外すことによって行うことができる。また、この交換の際のビーズ状研磨体49の添加量等も、この下方蓋部47に形成された底部45形状を目安にして定めることができる。したがって、本実施形態によれば、ビーズ状研磨体49の交換時におけるメンテナンス性を向上させることができる。
【0048】
<第二実施形態>
図4は、本発明の第二実施形態にかかる残留塩素測定装置(流体性状測定装置)の概略図を示したものである。
本実施形態にかかる残留塩素測定装置4’は、第一実施形態にかかる残留塩素測定装置4と同様に、先に説明した図1のポンプ3の下流側循環ラインL13と、ろ過器5の上流側循環ラインL14との間に設けられるものである。
なお、本実施形態においても第一実施形態と同様に、以下の説明では、循環ラインL中に残留塩素測定装置4’を設け、連続的に残留塩素濃度の測定を行い、この残留塩素測定装置4’内を流通した温水を再度循環ラインLに戻す場合について示しているが、本発明はこの構成に限定されず、例えば、循環ラインLから定期的に温水をサンプリングして残留塩素濃度の測定を行い、循環されている温水の一部を被検査流体である「サンプル水」として抽出して、検査後は「ドレン」として系外に排出してもよい。
【0049】
図4に示すように、本実施形態にかかる残留塩素測定装置4’は、被検査流体の流入部53および流出部54を備えた検査容器51と、この検査容器51内に流入した被検査流体の残留塩素濃度を測定する一対の電極部を有する電極ホルダ52と、この電極ホルダ43から表出した一対の電極部表面52aに付着した付着物を除去するビーズ状研磨体59とを用いて構成されている。また、電極ホルダ52は検査容器51の電極ホルダ取付部51aに取り付けられており、流入部53の上流側あるいは流出部54の下流側には、検査容器51内を流通する被検査流体の流通量を調整する流量調整弁(図示省略)が設けられている。電極ホルダ52は、その先端部の電極部表面52aが、下方に向くような状態で電極ホルダ取付部51aに取り付けられている。
【0050】
さらに、本実施形態にかかる残留塩素測定装置4’を成す容器本体51には、流入された被検査流体およびビーズ状研磨体59を循環させるべく、循環経路55が形成されている。つまり、本実施形態においては、この循環経路55を用いて上下方向(縦方向)に被検査流体が循環するように検査容器51が構成され、この循環流によって検査容器51内に設けられているビーズ状研磨体59も循環運動することとなる。
【0051】
より具体的には、循環経路55には、ビーズ状研磨体59が一時的に貯留される貯留部55Bと吸い込み部55Cとが設けられており、流入部53から噴出された被検査流体の速度に応じて、貯留部55B内のビーズ状研磨体59が吸い込み部55Cから吸い込まれ、循環経路55中を循環運動することとなる。
ビーズ状研磨体59は、このような構成に基づいて検査容器51内の循環経路55中を連続して循環運動することとなるため、検査容器51の流出部54から被検査流体を流出させる場合であっても、上方に位置する流出部54から系外(検査容器51外)に流出することはない。
【0052】
また、循環経路55には、循環運動中のビーズ状研磨体59を効果的に電極部表面52aに接触させるために、流体制御部55Aが設けられている。この流体制御部55Aは、被検査流体およびビーズ状研磨体59の動きを上方に向けて、循環経路55に対して上方から表出している電極部表面52aに対して、ビーズ状研磨体59の接触状態をより向上させるべく設けられたものである。
ここで、流体制御部55Aとは、図4に示すように、電極部表面52aの少し上流側で循環経路55の流路径を広げた位置から、電極部表面52aの中間部近傍で循環経路55の流路径を狭めた(元に戻した)位置までの領域をいう。
【0053】
図4に示すように流体制御部55Aを設ければ、この流体制御部55Aにて、循環経路55を循環している被検査流体の流速が低下すると共に、流体圧力が向上する。したがって、この流体制御部55Aを経た被検査流体およびビーズ状研磨体59は、電極部表面52a方向に移動して、電極部表面52aの付着物等を適切に除去することができる。
電極部表面52aに接触した後のビーズ状研磨体59は、貯留部55Bに至り、その後再び吸い込み部55Cを介して循環経路55内を循環運動する。
【0054】
また、本実施形態においては、検査容器51内に流入した被検査流体を検査容器51外に流出させる流出部54は、検査容器51の上方部に設けられている。そして、上述したように、ビーズ状研磨体59は、検査容器51の循環経路55(貯留部55B、吸い込み部55C、および流体制御部55A)を循環する被検査流体によって循環運動させられる。
つまり、本実施形態においては、流出部54の下方位置においてビーズ状研磨体59が循環運動しているため、検査容器51の上方位置に設けられた流出部54から被検査流体が排出されても、それによってビーズ状研磨体59が系外に流出することはない。すなわち、検査容器51の高さ方向の各寸法は、流入部53の位置、循環経路55の位置、および被検査流体の流通量等に基づいて、ビーズ状研磨体59が系外に流出しないように定められている。
【0055】
以上のように構成された本実施形態にかかる残留塩素装置4’においては、以下のようにして、循環される温水(被検査流体)の残留塩素濃度(流体性状)の測定が行われる。
【0056】
まず、循環ラインL13を介して流入部53から被検査流体が導入され、この被検査流体が、流入部53の下流側に設けられた吸い込み部55Cでインジェクション効果にて貯留部55B内のビーズ状研磨体59を吸い込み、この被検査流体とビーズ状研磨体59とが循環経路55を循環する。なお、この際、検査容器51内を流通する被検査流体の流量は、必要に応じて流量調整弁によって調整される。
【0057】
次に、このようにして流入して循環している被検査流体によって、検査容器51内が満たされ、電極ホルダ52の先端部に表出している電極部表面52aも被検査流体に浸漬した状態となる。また、被検査流体と複数のビーズ状研磨体59とが循環経路55内を循環し、電極部表面52a近傍には流体制御部55Aが設けられているため、残留塩素濃度の測定部位である電極部表面52a(露出端面)が、複数のビーズ状研磨体59と接触を繰り返すこととなり、電極部表面52a上における付着物質の除去を行うことができる。
【0058】
すなわち、本実施形態にかかる残留塩素測定装置4’によれば、電極部表面52aの状態を適切に保持しながら被検査流体に浸漬させることができるため、被検査流体の残留塩素濃度を正確に測定することができる。
【0059】
また、従来技術においては、ビーズが水流によって系外に流出しないように金網で蓋をしているが、本実施形態にかかる残留塩素測定装置4’は、先に説明した第一実施形態と同様に、検査容器51の下方領域でビーズ状研磨体59が循環運動し、検査容器51の上方位置に流出部54が設けられているため、金網なしでビーズ状研磨体59の流出を防止することが可能である。よって、かかる構成に基づく種々の効果を、第一実施形態と同様に得ることができる。
【0060】
すなわち、本実施形態においても、第一実施形態と同様に、検査容器51内を流通する被検査流体の流通経路を広く確保することが可能となるため、検査容器51の如何なる箇所においても、たんぱく質や粒子状の浮遊物の付着等が起こらない。また、金網等を用いていないため、流通する被検査流体の流量変動が少なく、安定した測定を行うことができる。
【0061】
さらに、本実施形態においては、循環経路55中を流れる所定量の被検査流体と共にビーズ状研磨体59を循環運動させて、電極部表面52aを研磨して電極部表面52aを活性化させている。また、この循環経路55中の電極部表面52a近傍には流体制御部55Aが設けられているため、より効果的にビーズ状研磨体59を電極部表面52aに接触させることができる。また、電極部表面52aに接触するビーズ状研磨体59と被検査流体の流れとが一定化しているために、電極部表面52aの拡散層の厚みが一定となって、安定した残留塩素濃度(流体性状)の測定を行うことができる。
【0062】
また、本実施形態においては、電極ホルダ52の端面に形成されている電極部表面52aが下方に向くように、電極ホルダ取付部51aの上方から、電極ホルダ52が取り付けられている。
したがって、本実施形態によれば、電極ホルダ52の交換等の際には、電極ホルダ取付部51aから電極ホルダ52を取り外すだけでよいため、従来よりも電極交換時のメンテナンス性を向上させることができる。
【0063】
<第三実施形態>
図5は、本発明の第三実施形態にかかる残留塩素測定装置(流体性状測定装置)の模式図を示したものである。
本実施形態にかかる残留塩素測定装置4’’は、第一実施形態にて説明した装置(残留塩素測定装置4(図2参照))(本実施形態における以下の説明においては「測定部」という。)と、定水槽60とを用いて構成されたものであり、この残留塩素測定装置4’’も他の実施形態と同様に、先に説明した図1のポンプ3の下流側循環ラインL13と、ろ過器5の上流側循環ラインL14との間に設けられるものである。
つまり、本実施形態にかかる残留塩素測定装置4’’は、定水槽60を設けたこと意外は、第一実施形態と同様であるため、以下の説明においては、主に定水槽の構成および効果について説明する。
【0064】
なお、本実施形態においても第一および第二実施形態と同様に、以下の説明では、循環ラインL中に残留塩素測定装置4’’を設け、連続的に残留塩素濃度の測定を行い、この残留塩素測定装置4’’内を流通した温水を再度循環ラインLに戻す場合について示しているが、本発明はこの構成に限定されず、例えば、循環ラインLから定期的に温水をサンプリングして残留塩素濃度の測定を行い、循環されている温水の一部を被検査流体である「サンプル水」として抽出して、検査後は「ドレン」として系外に排出してもよい。
【0065】
本実施形態にかかる残留塩素測定装置4’’を成す定水槽60は、図5に示すように、本体容器61と、この本体容器61内に設けられた導入部62、導出部63、およびオーバーフロー管64とを用いて構成されている。
【0066】
このように構成されていることにより、本実施形態においては、導入部62から導入された被検査流体の水位が、本体容器61内の導出部63の開口部63aより高くなった段階で定水槽60から測定部4に対して被検査流体が送られる。そして、被検査流体の水位が、本体容器61内のオーバーフロー管64の開口部64aよりも高くなれば、高くなった分の被検査流体は、オーバーフロー管64を介して残留塩素測定装置4’’(を成す定水槽60)外に排出される。
【0067】
すなわち、本実施形態によれば、導入部62からの被検査流体の導入量にかかわらず、導出部63から測定部4に対しては、所定ヘッド内の圧力に調整された被検査流体が送られることとなる。また、オーバーフロー管64の長さを上下に調整することによって、測定部4に送られる被検査流体の搬送量を容易に調整することができる。
【0068】
以上のことから、本実施形態にかかる残留塩素測定装置4’’は、水量の多い箇所でのモニタリングに非常に有効であり、しかも測定部4に流れる被検査流体の流量が所定値内に制限可能であるため、安定した流体性状の測定を行うことができる。
【0069】
また、測定部4は図2等にて説明した装置と同様であるため、本実施形態にかかる残留塩素測定装置4’’においても、先に説明した装置4が有する種々の効果を当然の如く得ることができる。
【0070】
以上説明したように、本発明の各実施形態においては、被検査流体の流速を利用してビーズ状研磨体を上下方向に回転(循環運動)させることによって、ビーズ状研磨体の微細な動きを電極部表面にて生じさせ、電極部表面における付着物質の除去を行うことができる。
また、上述したように、各実施形態においては、被検査流体を流通させる流通経路を広く確保可能な構成を有しているため、たんぱく質や粒子状の浮遊物の付着を防止して、流通経路が閉塞しない流体性状測定装置を得ることができる。
【0071】
さらに、上記各実施形態においては、ビーズ状研磨体の形成材料および大きさについては特に言及しなかったが、これらは必要に応じて適宜選択可能である。ビーズ状研磨体の形成材料としては、例えば、セラミック、ガラス、およびアルミナが用いられる。また、ビーズ状研磨体は、例えば、その直径が0.5mm〜1.2mm程度に形成される。
【0072】
なお、本発明は上記各実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて、上述したもの以外に種々の変更を行うことが可能である。
【0073】
上記各実施形態においては、流体性状の一つとして「残留塩素濃度」の測定を行う場合について説明したが、本発明はこれに限定されるものではない。したがって、一対の電極を用いて測定可能である流体性状であれば、例えば、「二酸化塩素濃度」等の他の流体性状を測定するために各実施形態にかかる流体性状測定装置を用いてもよい。
【0074】
また、上記各実施形態においては、本発明にかかる流体性状測定装置が、「浴槽」内の温水中の残留塩素濃度を測定するものとして適用される場合について説明したが、本発明はこの構成に限定されず、必要に応じて、プールあるいは飲料水の貯水槽等内の被検査流体を測定する装置として用いられてもよい。
【0075】
【発明の効果】
以上説明したように、本発明によれば、ビーズ状研磨体を用いて電極部表面の付着物質を適切に除去可能であって、被検査流体の流通経路を広く確保して浮遊物質等の付着を防ぎ、ビーズ状研磨体の系外への流出を防止することができる、流体性状測定装置を得ることができる。
【図面の簡単な説明】
【図1】本発明の各実施形態にかかる残留塩素測定装置を適用して構成可能な連日使用型循環浴槽の一例を示すシステムフロー図である。
【図2】本発明の第一実施形態にかかる残留塩素測定装置の模式図である。
【図3】本発明の第一実施形態にかかる残留塩素測定装置の概略断面図である。
【図4】本発明の第二実施形態にかかる残留塩素測定装置の概略断面図である。
【図5】本発明の第三実施形態にかかる残留塩素測定装置の模式図である。
【符号の説明】
1…浴槽、1a…底部、2…集毛器、3…ポンプ、4,4’,4’’…残留塩素測定装置(流体性状測定装置)、5…ろ過器、6…加熱器6
41…検査容器、41a…電極ホルダ取付部、42…電極ホルダ、42a…電極部表面、43…流入部、43a…噴出孔、44…流出部、45…底部(流体制御部)、46…流量調整弁、47…下方蓋部、49…ビーズ状研磨体
51…検査容器、51a…電極ホルダ取付部、52…電極ホルダ、52a…電極部表面、53…流入部、54…流出部、55…循環経路、55A…流体制御部、55B…滞留部、55C…吸い込み部、59ビーズ状研磨体
60…定水槽、61…本体容器、62…導入部、63…導出部、63a…開口部、64…オーバーフロー管、64a…開口部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a fluid property measuring device for measuring properties of a fluid.
[0002]
[Prior art]
At the time of water treatment or sewage treatment, sterilization treatment using chlorine is required. When performing such a chlorine sterilization treatment, the properties of the liquid (fluid to be inspected) are regularly or continuously measured in order to judge the sterilization state of the liquid (the state of the residual chlorine concentration of the liquid). One type of measurement is the residual chlorine concentration.
[0003]
As a method for continuously measuring the residual chlorine concentration, a method for adjusting the pH of the fluid to be inspected to 3.0 to 3.52 by adding a buffer agent, or a method for measuring potassium iodide or potassium bromide is used. A method in which an anode electrode and a cathode electrode are provided in a test fluid while an acetic acid solution is passed through while being dissolved in a test fluid and at the same time, a constant DC voltage is applied to measure an electrolytic current value. It has been known.
[0004]
Here, when the electrolytic reaction when using a potassium iodide solution as the electrolytic solution is shown,
2KI + Cl2  → 2KCl + I2
And then the reaction on the electrode surface
2H+  + 2e → 2H
I2    + 2H+  → 2HI (Cathode reaction)
2I  + 2e → I2      (Anode reaction)
Becomes
[0005]
When the residual chlorine concentration in the test fluid is high or when measurement is performed continuously over a long period of time, iodine generated by the anodic reaction precipitates and adheres to the surface of the anodic electrode, and the measured value lacks in quantitativeness. Iodine deposited on the surface of the anode electrode causes a malfunction. Further, when iodine generated by the anodic reaction is dissolved in the fluid to be inspected and reaches the cathode, the above-described cathodic reaction is caused to flow similarly. Further, even when a potassium bromide solution is used, bromine similarly adheres to the surface of the anode electrode to cause a similar phenomenon.
[0006]
On the other hand, with no reagent (ie, without using any chemicals), it is also possible to measure the residual chlorine concentration by applying an applied voltage by providing an anode electrode and a cathode electrode in the test fluid in the same manner as described above. . However, when a chemical was added, the residual chlorine concentration could be measured in the range of applied voltage of 0.2 V to 0.4 V, whereas in the case of no reagent, the applied voltage was 0.7 V. Unless the voltage is increased to about 0.98 V, the current value becomes small, and a measurement error easily occurs.
When the applied voltage is increased, trace amounts of heavy metals and organic substances contained in the fluid to be tested react with oxygen (O) as a generating group and hydrogen (H) as a generating group on the electrode surface. A trace amount of heavy metal is reduced and adheres to the electrode surface. Further, in the anode electrode, a substance such as copper which is easily electrolessly adhered may adhere to the surface of the anode electrode by anodic oxidation. Also, organic substances and the like are similarly anodically oxidized and easily adhered to the surface of the anode electrode, hindering the electrode reaction and causing measurement errors.
[0007]
For hot springs and super public baths, recently, as a notice of the Ministry of Health, Labor and Welfare, Ministry of Health and Welfare, the Ministry of Health, Labor and Welfare issued a `` Revision of Public Health Management Guidelines '' and measures to prevent the occurrence of legionellosis in public baths and inns. The "Guidelines for Water Quality Standards in Public Baths", "Guidelines for Hygiene Management in Public Baths", and "Guidelines for Hygiene Management in Ryokan Business" have been revised to maintain and maintain sanitary standards.
[0008]
In hot springs and super public baths, a circulation type bathtub is generally used. The circulating bathtub is a bathtub having a structure in which hot water in the bathtub is kept clean by circulating hot water in the bathtub through a filter in order to reduce the amount of hot spring water or tap water used. Among such circulating bathtubs, a so-called "circulating bathtub for daily use" is a type in which hot water in the bathtub is taken out from the bottom of the bathtub, and the taken-out hot water is collected in a hair collector provided in a circulation pipe. (Hair catcher), a circulation pump, a disinfectant injecting section, a filter, and a superheater (heat exchanger) so as to be poured again into the bathtub. That is, such a bathtub is configured to keep the temperature of the bathtub at an appropriate temperature while purifying the hot water therein.
[0009]
In the bathtub configured as described above, the disinfectant injection point may be located after the filter (downstream side) in the conventional installation and management of facility facilities, but according to the above-mentioned notification of the Ministry of Health, Labor and Welfare, "It is desirable that the injection point of the chlorinated chemical used for disinfection of bathtub water should be immediately before bathtub water enters the filter." That is, it is considered that sterilization in the filter is important because the filter is likely to generate a biofilm.
[0010]
Chlorine-based chemicals used for bathtub water disinfection are required to maintain the free residual chlorine concentration in bathtub water at 0.2 mg / L to 0.4 mg / L for at least 2 hours a day. In order to maintain this value for the bathtub water in front of the vessel, it is necessary to perform continuous monitoring using a device capable of measuring the residual chlorine concentration and automatically control the residual chlorine concentration to a constant value.
[0011]
Conventionally, there was no problem because the residual chlorine concentration was measured using the bath water on the downstream side of the filter, but after the above-mentioned revision was made, the filtration treatment after passing through the hair catcher was performed. The bath water from the previous bath must be passed through the residual chlorine measuring device as the fluid to be inspected.
The bathtub water contains a large amount of protein and particulate suspended matter, so the conventionally used residual chlorine measuring device reduces the amount of liquid required when these fine particles adhere to the flow path in the device. There was a problem that measurement errors could not be obtained.
[0012]
As a residual chlorine measuring apparatus according to the related art, there is known an apparatus having a configuration in which beads are provided in the vicinity of an electrode in order to clean an electrode surface or the like (for example, Patent Document 1). In the apparatus having such a configuration, a SUS wire mesh is provided to prevent the beads from jumping out of the system due to the water flow of the fluid to be inspected.
When an apparatus having such a configuration is provided in front of the filter, the above-described protein or particulate suspended matter in the bath water adheres to the wire mesh, and the flow path is closed, so that the measurement of the residual chlorine concentration can be accurately performed. A problem arises that it is not possible.
[0013]
Further, in the residual chlorine measuring device according to the related art (for example, Patent Document 1), there is a problem that maintenance is poor because the electrode is provided below the electrode holder.
[0014]
[Patent Document 1]
JP 2001-228116 A
[0015]
[Problems to be solved by the invention]
Therefore, the present invention has been made to solve the above-mentioned problems of the prior art, and it is possible to appropriately remove the adhering substance on the surface of the electrode portion using a bead-shaped polishing body, and to set a flow path of the fluid to be inspected. It is an object of the present invention to provide a fluid property measuring device which can be widely secured to prevent adhesion of floating substances and the like and prevent a bead-shaped polishing body from flowing out of the system. In other words, the present invention secures a required amount of the fluid to be inspected by removing substances adhered to the surface of the electrode unit, eliminating errors in the measuring unit, and preventing blockage of the flow path of the fluid to be inspected, thereby ensuring a stable fluid. An object of the present invention is to provide a fluid property measuring device capable of measuring a fluid property (for example, residual chlorine concentration).
Another object of the present invention is to provide a fluid property measuring device that is excellent in maintainability.
[0016]
[Means for Solving the Problems]
The present invention for solving the above-mentioned problems has an inspection container having an inflow portion and an outflow portion of a fluid to be inspected, a pair of electrode portions for measuring properties of the fluid to be inspected flowing into the inspection container, and the electrode A fluid property measuring device comprising: a plurality of bead-shaped abrasive bodies for performing a cleaning process on a surface of a part, wherein the inspection container circulates the fluid to be inspected in a vertical direction, and The fluid is configured to circulate vertically in the test container by a fluid, and the electrode portion is brought into contact with the surface of the electrode portion exposed in the test container and the bead-shaped polishing body circulating. The electrode portion is provided so that the surface thereof faces downward.
[0017]
According to such a configuration, since the bead-shaped polishing body that is circulating is configured to contact the surface of the electrode portion, it is possible to appropriately remove the attached substance on the surface of the electrode portion.
Further, in the present invention, since the bead-shaped abrasive body is configured to circulate in the inspection container, the bead-shaped abrasive body does not flow out of the inspection container. Therefore, according to the present invention, there is no need to provide a wire net or the like for preventing the bead-shaped abrasive body from flowing out. Therefore, unlike the related art, the flow properties such as the residual chlorine concentration can be accurately measured without the suspended matter or the like adhering to the wire mesh and the flow path being not closed.
Further, in the present invention, the electrode portion is provided so that the surface thereof faces downward. That is, since the electrode section is attached from above, maintenance processing can be performed more easily by attaching and detaching the electrode section from above.
[0018]
Further, in the fluid property measuring device according to the present invention, in the test container, a fluid control unit for directing the movement of the fluid to be inspected upward so as to bring the bead-shaped abrasive body into contact with the surface of the electrode unit. Is preferably provided.
[0019]
According to this preferred configuration, the bead-shaped abrasive body is moved in the direction of the surface of the electrode portion by the fluid control portion to promote a contact state with the surface of the electrode portion. Removal can be performed effectively.
[0020]
In the fluid property measuring device according to the present invention, it is preferable that a constant-water tank is connected to an inflow portion of the test container so as to maintain a flow rate of the fluid to be tested at a predetermined speed.
[0021]
According to this preferred configuration, the flow rate of the fluid to be inspected flowing into the inspection container is maintained at a predetermined speed by the constant water tank, so that the circulating motion of the bead-shaped polishing body in the inspection container is stabilized. In addition, it is possible to reliably prevent the bead-shaped polishing body from flowing out. In addition, since the flow rate of the fluid to be inspected is maintained at a predetermined speed, the flow rate of the fluid to be inspected measured by the electrode unit is substantially constant, and stable measurement of the residual chlorine concentration can be performed.
[0022]
In the fluid property measuring device according to the present invention, it is preferable that the bead-shaped abrasive body has a diameter of 0.5 mm to 1.2 mm.
[0023]
Further, in the fluid property measuring device according to the present invention, it is preferable that the bead-shaped polishing body is formed using at least one of ceramic, glass, and alumina.
[0024]
Further, in the fluid property measuring device according to the present invention, it is preferable that the property of the fluid to be inspected is at least one of a residual chlorine concentration and a chlorine dioxide concentration.
[0025]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0026]
FIG. 1 shows an example of a circulating bath (hereinafter, referred to as a “circulating bath”) that can be configured by applying a residual chlorine measuring device (fluid property measuring device) according to each embodiment of the present invention described below. It is a system flow figure.
The circulating bathtub shown in FIG. 1 is configured using a bathtub 1 to which replenishing hot water can be replenished at any time. The bathtub 1 is configured so that hot water in the bathtub can be led out from the bottom 1a. ing. In this circulating tub, the hot water led out from the bottom 1a of the tub 1 is again introduced from the circulating inlet 1b of the tub 1 via the circulating line L1 and various devices provided in the circulating line L1. It is configured as follows.
[0027]
A hair collector 2, a pump 3, a residual chlorine measuring device 4 (fluid property measuring device), a filter 5, and a heater 6 are provided on the circulation line L1, and a downstream side of the residual chlorine measuring device 4 is provided. The circulation line L14 is connected to a medicine injection line L2 for injecting a medicine from the disinfectant medicine injection device 7 for injecting the disinfectant into warm water.
[0028]
The circulating tub according to the present embodiment is configured as shown in FIG. 1 and various devices are provided in the circulating line L1 and the medicine injection line L2 as described above, so that the hot water in the tub 1 is appropriately purified. And keep it at a suitable temperature.
[0029]
In the circulating tub according to the present embodiment, the disinfectant injection point is provided immediately before hot water enters the filter 5 in order to satisfy the above-mentioned notification of the Ministry of Health, Labor and Welfare. That is, the residual chlorine concentration of the warm water before entering the filter 5 is measured using the residual chlorine measuring device 4, and the disinfecting chemical injection device 7 is controlled based on the measurement result, and the residual chlorine concentration is measured via the chemical injection line L 2. The disinfectant is injected into the downstream circulation line L14 of the measurement device 4 (the upstream circulation line of the filter 5).
[0030]
Since proteins and particulate suspended substances are present in the warm water before entering the filter 5, the residual chlorine having beads or wire mesh for cleaning the electrode surface as described in the related art is measured. If the device is used, the flow path of the test fluid required by the residual chlorine measurement device cannot be obtained due to blockage of the flow path, etc., and the accurate residual chlorine concentration (properties of the test fluid) Measurement cannot be performed.
[0031]
Accordingly, the present inventors have conducted intensive studies and as a result, have a structure in which the flow path is not blocked while removing adhering substances adhering to the surface of the electrode portion, and allow the fluid to be inspected to flow stably. In addition, a residual chlorine measuring device (fluid property measuring device) capable of accurately measuring the residual chlorine concentration (the property of the fluid to be inspected) has been obtained.
Hereinafter, a specific configuration of the residual chlorine measuring device will be described.
[0032]
<First embodiment>
FIG. 2 is a schematic diagram of a residual chlorine measuring device (fluid property measuring device) according to the first embodiment of the present invention. FIG. 3 is a schematic diagram of a residual chlorine measuring device (fluid property measuring device) according to the first embodiment. FIG. 3A is a schematic cross-sectional view showing the entire residual chlorine measuring device, and FIG. 3B is a schematic diagram for explaining a method of inserting a bead-shaped abrasive body.
[0033]
The residual chlorine measuring device 4 according to the present embodiment is provided between the downstream circulation line L13 of the pump 3 and the upstream circulation line L14 of the filter 5 described above with reference to FIG.
In the present embodiment, as shown in FIGS. 1 and 2, a residual chlorine measuring device 4 is provided in the circulation line L, and the residual chlorine concentration is continuously measured. Although the case where the circulated warm water is returned to the circulation line L is shown, the present invention is not limited to this configuration. Therefore, for example, warm water may be periodically sampled from the circulation line L to measure the residual chlorine concentration, and after the residual chlorine concentration is measured, the residual chlorine concentration may be discharged as “drain”. That is, a part of the circulated hot water may be extracted as “sample water” as the fluid to be inspected, and after the inspection, may be discharged out of the system as “drain”.
[0034]
As shown in FIGS. 2 and 3, the residual chlorine measuring device 4 according to the present embodiment includes an inspection container 41 having an inflow portion 43 and an outflow portion 44 of a fluid to be inspected, and a measuring device that flows into the inspection container 41. An electrode holder 42 having a pair of electrodes for measuring the residual chlorine concentration of the test fluid, and a bead-shaped polishing body 49 for removing a substance attached to a pair of electrode surfaces 42a exposed from the electrode holder 42 are used. It is configured. The electrode holder 42 is attached to the electrode holder mounting portion 41 a of the test container 41, and a flow control valve 46 for adjusting the flow rate of the fluid to be inspected flowing in the test container 41 is provided downstream of the outflow portion 44. Is provided. The electrode holder 42 is attached to the electrode holder attaching portion 41a such that the electrode portion surface 42a at the tip thereof faces downward.
[0035]
The inflow portion 43 is provided with an ejection hole 43 a for ejecting the fluid to be inspected into the inspection container 41. The ejection hole 43a is formed from the inflow portion 43 to a bottom portion below the inspection container 41 so that the fluid to be inspected is circulated in the inspection container 41 in the vertical direction (vertical direction) (arrow X direction, see FIG. 2). The fluid to be inspected is ejected toward 45. The bottom 45 of the inspection container 41 has a concave shape capable of storing the bead-shaped abrasive body 49, and the bottom part 45 having the concave shape is effective for the bead-shaped abrasive body 49 moved by the fluid to be inspected. The shape is such that it comes into contact with the electrode portion surface 42a. That is, the bottom part 45 also corresponds to the “fluid control part” of the present invention.
[0036]
That is, in the present embodiment, the fluid to be inspected ejected into the inspection container 41 forms the circulating flow X centering on the region connecting the ejection hole 43a, the bottom 45, and the electrode surface 42a. The polishing body 49 is circulated by the circulating flow X of the fluid to be inspected around a region connecting the ejection hole 43a, the bottom 45, and the electrode surface 42a. Then, the beads-like polishing body 49 circulating in this manner continuously collides with the electrode portion surface 42a while moving upward, so that the deposits and the like on the electrode portion surface 42a are appropriately removed.
[0037]
Further, in the present embodiment, an outflow portion 44 that causes the fluid to be inspected flowing into the inspection container 41 to flow out of the inspection container 41 is provided above the inspection container 41.
That is, in the present embodiment, the inflow portion 43 is provided below the inspection container 41, and a circulating flow is formed in the region below the inspection container 41 by the fluid to be inspected ejected from the ejection holes 43 a of the inflow portion 43. Then, the fluid to be inspected in the inspection container 41 is discharged out of the inspection container 41 via the outflow portion 44 provided in the upper portion.
[0038]
In the present embodiment, as described above, the inflow portion 43 is provided in the lower portion of the test container 41 and the outflow portion 44 is provided in the upper portion. Is formed, and the fluid to be inspected is discharged from above. At this time, the flow rate of the fluid to be tested flowing in the test container 41 is adjusted by the flow rate control valve 46 provided on the downstream side of the outflow portion 44.
Therefore, according to the present embodiment, the circulating motion of the bead-shaped abrasive body 49 is performed only in the lower region of the test container 41 along the circulating flow of the fluid to be inspected. The bead-shaped abrasive body 49 does not flow out of the system (outside of the inspection container 41). That is, the height dimension of the inspection container 41 is determined based on the position of the ejection hole 43a, the position of the outflow portion 44, the flow rate of the fluid to be inspected, and the like so that the bead-shaped abrasive body 49 does not flow out of the system. Stipulated.
[0039]
In the residual chlorine device 4 according to the present embodiment configured as described above, the measurement of the residual chlorine concentration (fluid property) of the circulated hot water (fluid to be inspected) is performed as follows.
[0040]
First, the fluid to be inspected is introduced from the inflow portion 43 through the circulation line L13, and is ejected into the inspection container 41 from the ejection term 43a provided at the tip of the inflow portion 43. In the inspection container 41, a circulating flow X is formed by the ejected fluid to be inspected. At this time, the flow rate of the fluid to be inspected flowing in the inspection container 41 is adjusted by the flow rate adjusting valve 46 as necessary.
[0041]
Next, the inside of the test container 41 is filled with the fluid to be inspected and circulated in this manner, and the electrode surface 42a exposed at the tip of the electrode holder 42 is also immersed in the fluid to be inspected. It becomes. Further, the circulating flow X of the fluid to be inspected causes the plurality of bead-shaped polishing bodies 49 provided on the bottom 45 of the inspection container 41 to circulate. Then, the electrode portion surface 42a (exposed end surface), which is the measurement site of the residual chlorine concentration, comes into contact with the plurality of bead-shaped polishing bodies 49 repeatedly, so that the attached substance on the electrode portion surface 42a can be removed.
[0042]
That is, according to the residual chlorine measuring device according to the present embodiment, the residual chlorine concentration of the test fluid can be accurately measured because the apparatus can be immersed in the test fluid while appropriately maintaining the state of the electrode portion surface 42a. be able to.
[0043]
Further, in the prior art, the beads are covered with a wire mesh so that the beads do not flow out of the system due to the water flow. In the case of such a configuration, as described above, the treatment with the filter is performed. When the previous fluid to be inspected flows in, the protein and particulate suspended matter in the fluid to be inspected adhere to the wire mesh, and the flow path becomes closed, making it possible to accurately measure the fluid properties such as the residual chlorine concentration. There was a problem that it became impossible.
However, in the present embodiment, since the bead-shaped polishing body 49 is circulating in the lower region of the inspection container 41, the bead-shaped polishing body 49 does not flow out of the outflow portion 44 provided at the upper position. In addition, it is possible to secure a wide circulation path for circulating the fluid to be inspected, and it is not necessary to provide a wire net unlike the related art.
[0044]
That is, according to the residual chlorine measuring device 4 according to the present embodiment, it is possible to secure a wide circulation path of the fluid to be inspected flowing through the inside of the test container 41, and therefore, the protein can be provided at any part of the test container 41. And adhesion of particulate suspended matter does not occur. In addition, since a wire mesh or the like is not used, the flow rate of the fluid to be inspected flowing is small and stable measurement can be performed.
[0045]
Furthermore, in the present embodiment, the position of the ejection hole 43a and the shape of the bottom 45 (fluid control unit) of the inspection container 41 are determined so that the bead-shaped polishing body 49 rotates in the vertical direction toward the electrode unit surface 42a. Have been. Therefore, the polishing state of the electrode portion surface 42a (the state of removing the attached matter) is very good. For the test, after the electrode portion surface 42a is painted with an organic ink, the fluid to be inspected flows into the inspection container 41 at an addition amount of the bead-shaped abrasive body of 1 g and a circulation amount of 1 L / min. The ink could be almost completely removed in about 10 minutes.
[0046]
In the present embodiment, the electrode holder 42 is mounted from above the electrode holder mounting portion 41a provided on the inspection container 41 such that the electrode portion surface 42a formed on the end face of the electrode holder 42 faces downward. Have been.
Therefore, according to the present embodiment, when replacing the electrode holder 42 or the like, it is only necessary to remove the electrode holder 42 from the electrode holder mounting portion 41a. it can.
[0047]
Further, in the present embodiment, as shown in FIG. 3B, the bottom 45 of the test container 41 is formed on a lower lid 47 that is detachable from the test container 41. That is, in the present embodiment, since the bottom 45 (fluid control unit) is detachable from the inspection container 41, replacement of the bead-shaped abrasive body 49 can be performed by removing only the lower lid 47. In addition, the addition amount of the bead-shaped abrasive body 49 at the time of the replacement can be determined by using the shape of the bottom 45 formed on the lower lid 47 as a guide. Therefore, according to the present embodiment, it is possible to improve the maintainability when replacing the bead-shaped abrasive body 49.
[0048]
<Second embodiment>
FIG. 4 is a schematic diagram of a residual chlorine measuring device (fluid property measuring device) according to the second embodiment of the present invention.
The residual chlorine measuring device 4 ′ according to the present embodiment includes, similarly to the residual chlorine measuring device 4 according to the first embodiment, a downstream circulation line L 13 of the pump 3 of FIG. It is provided between the side circulation line L14.
In this embodiment, as in the first embodiment, in the following description, a residual chlorine measuring device 4 'is provided in the circulation line L, and the residual chlorine concentration is continuously measured. Although the case where the hot water circulating in 4 'is returned to the circulation line L is shown again, the present invention is not limited to this configuration. For example, the hot water is periodically sampled from the circulation line L to measure the residual chlorine concentration. May be performed, a part of the circulated warm water may be extracted as “sample water” that is the fluid to be inspected, and after the inspection, may be discharged out of the system as “drain”.
[0049]
As shown in FIG. 4, the residual chlorine measuring device 4 ′ according to the present embodiment includes an inspection container 51 having an inflow portion 53 and an outflow portion 54 of a fluid to be inspected, and a fluid to be inspected flowing into the inspection container 51. An electrode holder 52 having a pair of electrode parts for measuring the residual chlorine concentration of the electrode holder 43, and a bead-shaped abrasive body 59 for removing a substance attached to the pair of electrode part surfaces 52a exposed from the electrode holder 43. Have been. The electrode holder 52 is attached to the electrode holder mounting portion 51 a of the test container 51, and the flow rate of the fluid to be tested flowing in the test container 51 is located upstream of the inflow portion 53 or downstream of the outflow portion 54. Is provided with a flow control valve (not shown) for adjusting the pressure. The electrode holder 52 is attached to the electrode holder attaching portion 51a such that the electrode portion surface 52a at the tip thereof faces downward.
[0050]
Further, a circulation path 55 is formed in the container main body 51 constituting the residual chlorine measuring device 4 ′ according to the present embodiment so as to circulate the fluid to be inspected and the bead-shaped polishing body 59. That is, in the present embodiment, the inspection container 51 is configured so that the fluid to be inspected circulates in the vertical direction (longitudinal direction) using the circulation path 55, and is provided in the inspection container 51 by the circulating flow. The bead-shaped polishing body 59 also circulates.
[0051]
More specifically, the circulation path 55 is provided with a storage portion 55B in which the bead-shaped abrasive body 59 is temporarily stored and a suction portion 55C, and the speed of the fluid to be inspected ejected from the inflow portion 53 is provided. Accordingly, the bead-shaped abrasive body 59 in the storage section 55B is sucked from the suction section 55C, and circulates in the circulation path 55.
Since the bead-shaped abrasive body 59 continuously circulates in the circulation path 55 in the inspection container 51 based on such a configuration, when the fluid to be inspected flows out from the outflow portion 54 of the inspection container 51. However, it does not flow out of the system (outside the inspection container 51) from the outflow portion 54 located above.
[0052]
Further, the circulation path 55 is provided with a fluid control unit 55A in order to bring the bead-shaped polishing body 59 in circulation into effective contact with the electrode unit surface 52a. The fluid control unit 55A directs the movement of the fluid to be inspected and the bead-shaped polishing body 59 upward, and moves the bead-shaped polishing body 59 against the electrode portion surface 52a exposed from above with respect to the circulation path 55. It is provided to further improve the contact state.
Here, as shown in FIG. 4, the fluid control unit 55 </ b> A starts from a position where the flow path diameter of the circulation path 55 is slightly increased on the upstream side of the electrode part surface 52 a, near the middle part of the electrode part surface 52 a. Means the region up to the position where the flow path diameter is reduced (returned to the original position).
[0053]
If the fluid control unit 55A is provided as shown in FIG. 4, the fluid control unit 55A reduces the flow velocity of the test fluid circulating in the circulation path 55 and increases the fluid pressure. Therefore, the fluid to be inspected and the bead-shaped polishing body 59 that have passed through the fluid control unit 55A can move in the direction of the electrode unit surface 52a, and can appropriately remove deposits and the like on the electrode unit surface 52a.
The bead-shaped abrasive body 59 that has come into contact with the electrode portion surface 52a reaches the storage portion 55B, and then circulates again in the circulation path 55 via the suction portion 55C.
[0054]
In the present embodiment, the outflow portion 54 that causes the fluid to be inspected that has flowed into the inspection container 51 to flow out of the inspection container 51 is provided above the inspection container 51. Then, as described above, the bead-shaped abrasive body 59 is circulated by the fluid to be inspected circulating in the circulation path 55 (the storage section 55B, the suction section 55C, and the fluid control section 55A) of the inspection container 51.
That is, in the present embodiment, since the bead-shaped polishing body 59 circulates at a position below the outflow portion 54, even if the fluid to be inspected is discharged from the outflow portion 54 provided above the inspection container 51. Thereby, the bead-shaped abrasive body 59 does not flow out of the system. That is, each dimension in the height direction of the inspection container 51 is determined based on the position of the inflow portion 53, the position of the circulation path 55, the flow rate of the fluid to be inspected, and the like so that the bead-shaped abrasive body 59 does not flow out of the system. Stipulated in
[0055]
In the residual chlorine apparatus 4 'according to the present embodiment configured as described above, measurement of the residual chlorine concentration (fluid property) of the circulated hot water (fluid to be inspected) is performed as follows.
[0056]
First, a fluid to be inspected is introduced from the inflow portion 53 through the circulation line L13, and the fluid to be inspected is injected into the bead-like shape in the storage portion 55B by an injection effect at a suction portion 55C provided on the downstream side of the inflow portion 53. The polishing body 59 is sucked, and the fluid to be inspected and the bead-shaped polishing body 59 circulate in the circulation path 55. At this time, the flow rate of the fluid to be inspected flowing in the inspection container 51 is adjusted by a flow rate adjusting valve as needed.
[0057]
Next, the test container 51 is filled with the fluid to be inspected and circulated in this manner, and the electrode portion surface 52a exposed at the tip of the electrode holder 52 is also immersed in the fluid to be inspected. It becomes. In addition, since the fluid to be inspected and the plurality of bead-shaped polishing bodies 59 circulate in the circulation path 55, and the fluid control unit 55A is provided near the electrode unit surface 52a, the electrode which is the measurement site of the residual chlorine concentration is provided. The surface 52a (exposed end surface) is repeatedly contacted with the plurality of bead-shaped polishing bodies 59, so that the adhered substance on the electrode portion surface 52a can be removed.
[0058]
That is, according to the residual chlorine measuring device 4 ′ according to the present embodiment, since the electrode portion surface 52a can be immersed in the fluid to be inspected while appropriately maintaining the state thereof, the residual chlorine concentration of the fluid to be inspected can be accurately determined. Can be measured.
[0059]
Further, in the prior art, the beads are covered with a wire mesh so that the beads do not flow out of the system due to the water flow. However, the residual chlorine measuring device 4 ′ according to the present embodiment is the same as the first embodiment described above. In addition, since the bead-shaped polishing body 59 circulates in the lower region of the test container 51 and the outflow portion 54 is provided at a position above the test container 51, it is possible to prevent the bead-shaped polishing body 59 from flowing out without a wire mesh. Is possible. Therefore, various effects based on such a configuration can be obtained as in the first embodiment.
[0060]
That is, also in the present embodiment, as in the first embodiment, it is possible to ensure a wide circulation path of the fluid to be inspected flowing in the inspection container 51. And adhesion of particulate suspended matter does not occur. In addition, since a wire mesh or the like is not used, the flow rate of the fluid to be inspected flowing is small and stable measurement can be performed.
[0061]
Further, in the present embodiment, the bead-shaped polishing body 59 is circulated with a predetermined amount of the fluid to be inspected flowing in the circulation path 55 to polish the electrode portion surface 52a and activate the electrode portion surface 52a. . Further, since the fluid control unit 55A is provided near the electrode unit surface 52a in the circulation path 55, the bead-shaped polishing body 59 can be more effectively brought into contact with the electrode unit surface 52a. In addition, since the flow of the fluid to be inspected and the bead-shaped abrasive body 59 in contact with the electrode portion surface 52a are constant, the thickness of the diffusion layer on the electrode portion surface 52a is constant, and the stable residual chlorine concentration ( Fluid properties) can be measured.
[0062]
In the present embodiment, the electrode holder 52 is mounted from above the electrode holder mounting portion 51a such that the electrode portion surface 52a formed on the end face of the electrode holder 52 faces downward.
Therefore, according to the present embodiment, when replacing the electrode holder 52 or the like, it is only necessary to remove the electrode holder 52 from the electrode holder mounting portion 51a. it can.
[0063]
<Third embodiment>
FIG. 5 is a schematic view of a residual chlorine measuring device (fluid property measuring device) according to the third embodiment of the present invention.
The residual chlorine measuring device 4 ″ according to the present embodiment is the device (residual chlorine measuring device 4 (see FIG. 2) described in the first embodiment) (hereinafter, referred to as “measuring unit” in the present embodiment). ) And a constant water tank 60, and the residual chlorine measuring device 4 ″ is also the downstream circulation line L13 of the pump 3 of FIG. And an upstream circulation line L <b> 14 of the filter 5.
That is, the residual chlorine measuring apparatus 4 ″ according to the present embodiment is the same as the first embodiment except that the constant water tank 60 is provided. Therefore, in the following description, the configuration and effects of the constant water tank will be mainly described. Will be described.
[0064]
In the present embodiment, similarly to the first and second embodiments, in the following description, a residual chlorine measuring device 4 ″ is provided in the circulation line L to continuously measure the residual chlorine concentration. Although a case is shown in which the hot water flowing through the residual chlorine measuring device 4 ″ is returned to the circulation line L again, the present invention is not limited to this configuration. For example, hot water is periodically sampled from the circulation line L. The residual chlorine concentration may be measured, a part of the circulated hot water may be extracted as “sample water” as a fluid to be inspected, and after the inspection, discharged as “drain” outside the system.
[0065]
As shown in FIG. 5, the constant water tank 60 forming the residual chlorine measuring device 4 ″ according to the present embodiment includes a main body container 61, an introduction portion 62, an outlet portion 63 provided in the main body container 61, and an overflow. It is configured using a tube 64.
[0066]
With this configuration, in the present embodiment, the water tank at the stage when the level of the fluid to be inspected introduced from the introduction section 62 becomes higher than the opening 63 a of the outlet section 63 in the main body container 61. The fluid to be inspected is sent from 60 to the measuring section 4. Then, when the water level of the fluid to be inspected becomes higher than the opening 64 a of the overflow pipe 64 in the main body container 61, the fluid to be inspected, which has been increased, flows through the overflow pipe 64 and the residual chlorine measuring device 4 ″ It is discharged out of the (constant water tank 60 constituting).
[0067]
That is, according to this embodiment, regardless of the amount of the fluid to be inspected from the introduction unit 62, the fluid to be inspected adjusted to the pressure in the predetermined head is sent from the derivation unit 63 to the measurement unit 4. Will be done. In addition, by adjusting the length of the overflow pipe 64 up and down, the transport amount of the fluid to be inspected sent to the measuring section 4 can be easily adjusted.
[0068]
From the above, the residual chlorine measuring apparatus 4 ″ according to the present embodiment is very effective for monitoring in a place with a large amount of water, and furthermore, the flow rate of the fluid to be inspected flowing to the measuring section 4 is limited to a predetermined value. Since it is possible, stable measurement of the fluid property can be performed.
[0069]
Further, since the measuring section 4 is the same as the apparatus described with reference to FIG. 2 and the like, the residual chlorine measuring apparatus 4 ″ according to the present embodiment naturally has the various effects that the apparatus 4 described above has. Obtainable.
[0070]
As described above, in each embodiment of the present invention, the fine movement of the bead-shaped abrasive body is controlled by rotating (circulating) the bead-shaped abrasive body in the vertical direction using the flow rate of the fluid to be inspected. It is generated on the surface of the electrode part, and the attached substance on the surface of the electrode part can be removed.
In addition, as described above, in each embodiment, since the configuration has a configuration that can ensure a wide distribution channel through which the fluid to be inspected flows, adhesion of proteins and particulate suspended matter is prevented, and the distribution channel is prevented. A fluid property measuring device that does not cause blockage can be obtained.
[0071]
Further, in each of the above embodiments, the material and the size of the bead-shaped abrasive body are not particularly mentioned, but these can be appropriately selected as needed. As a material for forming the bead-shaped abrasive, for example, ceramic, glass, and alumina are used. The bead-shaped polishing body is formed, for example, to have a diameter of about 0.5 mm to 1.2 mm.
[0072]
The present invention is not limited to the above embodiments, and various changes other than those described above can be made without departing from the gist of the present invention.
[0073]
In each of the above embodiments, the case where the “residual chlorine concentration” is measured as one of the fluid properties has been described, but the present invention is not limited to this. Therefore, if the fluid property can be measured using a pair of electrodes, for example, the fluid property measuring device according to each embodiment may be used to measure another fluid property such as “chlorine concentration”. .
[0074]
Further, in each of the above embodiments, the case where the fluid property measuring device according to the present invention is applied as a device for measuring the residual chlorine concentration in the warm water in the “bath” has been described. The present invention is not limited thereto, and may be used as an apparatus for measuring a fluid to be inspected in a pool or a storage tank of drinking water as needed.
[0075]
【The invention's effect】
As described above, according to the present invention, it is possible to appropriately remove the adhering substance on the surface of the electrode portion using the bead-shaped abrasive body, secure a wide flow path of the fluid to be inspected, and adhere the adhering substance such as a floating substance. And a fluid property measuring device capable of preventing the bead-shaped polishing body from flowing out of the system.
[Brief description of the drawings]
FIG. 1 is a system flow diagram showing an example of a daily use type circulating bath that can be configured by applying the residual chlorine measuring device according to each embodiment of the present invention.
FIG. 2 is a schematic diagram of a residual chlorine measuring device according to the first embodiment of the present invention.
FIG. 3 is a schematic sectional view of the residual chlorine measuring device according to the first embodiment of the present invention.
FIG. 4 is a schematic sectional view of a residual chlorine measuring device according to a second embodiment of the present invention.
FIG. 5 is a schematic view of a residual chlorine measuring device according to a third embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Bathtub, 1a ... Bottom part, 2 ... Hair collector, 3 ... Pump, 4, 4 ', 4 "... Residual chlorine measuring device (fluid property measuring device), 5 ... Filter, 6 ... Heater 6
41: inspection container, 41a: electrode holder mounting part, 42: electrode holder, 42a: electrode part surface, 43: inflow part, 43a: ejection hole, 44: outflow part, 45: bottom part (fluid control part), 46: flow rate Adjusting valve, 47: Lower lid, 49: Bead-shaped abrasive body
51: inspection container, 51a: electrode holder mounting part, 52: electrode holder, 52a: electrode part surface, 53: inflow part, 54: outflow part, 55: circulation path, 55A: fluid control part, 55B: retention part, 55C ... Suction part, 59 beaded abrasive body
Reference numeral 60: water tank, 61: main body container, 62: introduction part, 63: derivation part, 63a: opening, 64: overflow pipe, 64a: opening

Claims (6)

被検査流体の流入部および流出部を有する検査容器と、前記検査容器内に流入した前記被検査流体の性状を測定する一対の電極部と、前記電極部表面の洗浄処理を行う複数のビーズ状研磨体とを備えた流体性状測定装置であって、
前記検査容器は、前記被検査流体を上下方向に循環させ、前記ビーズ状研磨体が前記被検査流体によって前記検査容器内を上下方向に循環運動するように構成されており、
前記電極部は、前記検査容器内に表出した電極部表面と循環運動している前記ビーズ状研磨体とが接触するように、前記電極部表面が下方を向くように設けられている
ことを特徴とする流体性状測定装置。
An inspection container having an inflow portion and an outflow portion of a fluid to be inspected, a pair of electrode portions for measuring properties of the fluid to be inspected flowing into the inspection container, and a plurality of beads for cleaning the surface of the electrode portion; A fluid property measuring device comprising a polishing body,
The test container is configured to circulate the test fluid in the vertical direction, the bead-shaped polishing body circulates vertically in the test container by the test fluid,
The electrode portion is provided so that the surface of the electrode portion faces downward so that the surface of the electrode portion exposed in the inspection container comes into contact with the circulating bead-shaped polishing body. Characteristic fluid property measurement device.
前記検査容器内には、前記ビーズ状研磨体を前記電極部表面に接触させるべく、前記被検査流体の動きを上方に向けるための流体制御部が設けられている
請求項1に記載の流体性状測定装置。
The fluid property according to claim 1, wherein a fluid control unit for directing the movement of the fluid to be inspected upward is provided in the inspection container so that the bead-shaped abrasive body comes into contact with the surface of the electrode unit. measuring device.
前記検査容器の流入部には、前記被検査流体の流速を所定速度に保持すべく、定水槽が接続されている
請求項1または2に記載の流体性状測定装置。
3. The fluid property measuring device according to claim 1, wherein a constant water tank is connected to an inflow portion of the test container so as to maintain a flow rate of the fluid to be tested at a predetermined speed. 4.
前記ビーズ状研磨体の直径が0.5mm〜1.2mmである
請求項1から3のいずれか1項に記載の流体性状測定装置。
The fluid property measuring device according to any one of claims 1 to 3, wherein a diameter of the bead-shaped polishing body is 0.5 mm to 1.2 mm.
前記ビーズ状研磨体がセラミック、ガラス、およびアルミナの少なくとも一つを用いて形成されている
請求項1から4のいずれか1項に記載の流体性状測定装置。
The fluid property measuring device according to any one of claims 1 to 4, wherein the bead-shaped polishing body is formed using at least one of ceramic, glass, and alumina.
前記被検査流体の性状が、残留塩素濃度および二酸化塩素濃度の少なくとも一方である
請求項1から5のいずれか1項に記載の流体性状測定装置。
The fluid property measuring device according to claim 1, wherein the property of the fluid to be inspected is at least one of a residual chlorine concentration and a chlorine dioxide concentration.
JP2003058504A 2003-03-05 2003-03-05 Fluid property measuring device Expired - Fee Related JP3773911B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003058504A JP3773911B2 (en) 2003-03-05 2003-03-05 Fluid property measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003058504A JP3773911B2 (en) 2003-03-05 2003-03-05 Fluid property measuring device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005377756A Division JP4185932B2 (en) 2005-12-28 2005-12-28 Fluid property measuring device

Publications (2)

Publication Number Publication Date
JP2004271211A true JP2004271211A (en) 2004-09-30
JP3773911B2 JP3773911B2 (en) 2006-05-10

Family

ID=33121601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003058504A Expired - Fee Related JP3773911B2 (en) 2003-03-05 2003-03-05 Fluid property measuring device

Country Status (1)

Country Link
JP (1) JP3773911B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100759531B1 (en) * 2007-08-02 2007-09-18 대윤계기산업 주식회사 Residual chlorine analyzer of ventilation form
KR100768340B1 (en) 2006-11-24 2007-10-17 대윤계기산업 주식회사 Residual chlorine analyzer of sampling form
WO2011124747A1 (en) * 2010-04-09 2011-10-13 Clewer Oy Arrangement and method for mechanical cleaning of a transparent surface of an optical instrument
WO2023149448A1 (en) * 2022-02-01 2023-08-10 株式会社堀場アドバンスドテクノ Measurement instrument, measurement device, measurement system, and measurement method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100768340B1 (en) 2006-11-24 2007-10-17 대윤계기산업 주식회사 Residual chlorine analyzer of sampling form
KR100759531B1 (en) * 2007-08-02 2007-09-18 대윤계기산업 주식회사 Residual chlorine analyzer of ventilation form
WO2011124747A1 (en) * 2010-04-09 2011-10-13 Clewer Oy Arrangement and method for mechanical cleaning of a transparent surface of an optical instrument
CN102947016A (en) * 2010-04-09 2013-02-27 克鲁尔公司 Arrangement and method for mechanical cleaning of transparent surface of optical instrument
JP2013523441A (en) * 2010-04-09 2013-06-17 クレワー・オサケユキテュア Arrangement and method for mechanical cleaning of transparent surfaces of optical instruments
AU2011237522B2 (en) * 2010-04-09 2014-05-29 Clewer Oy Arrangement and method for mechanical cleaning of a transparent surface of an optical instrument
US9205464B2 (en) 2010-04-09 2015-12-08 Oy, Clewer Arrangement and method for mechanical cleaning of a transparent surface of an optical instrument
EP2555882A4 (en) * 2010-04-09 2017-12-20 Clewer Oy Arrangement and method for mechanical cleaning of a transparent surface of an optical instrument
WO2023149448A1 (en) * 2022-02-01 2023-08-10 株式会社堀場アドバンスドテクノ Measurement instrument, measurement device, measurement system, and measurement method

Also Published As

Publication number Publication date
JP3773911B2 (en) 2006-05-10

Similar Documents

Publication Publication Date Title
JP2006322793A (en) Water quality measuring device and its method
JP3773911B2 (en) Fluid property measuring device
ATE11270T1 (en) DEVICE FOR INTERMITTENT ADDITION OF A LIQUID AGENT INTO A LIQUID STREAM.
JP4185932B2 (en) Fluid property measuring device
KR100768340B1 (en) Residual chlorine analyzer of sampling form
JP3823126B2 (en) Fluid property measuring device
KR20170098349A (en) Electrochemical TRO sensor
US20060070936A1 (en) Mineral water feeding apparatus
JP2000121628A (en) Water quality measuring device
JP2004223419A (en) Control device for concentration of chlorine
JP5547661B2 (en) Cleaning method of ozone water sensor
JP4150445B2 (en) Residual chlorine meter and liquid sterilizer using the same
JP6912987B2 (en) How to clean the watering filter and the watering filter
JP2007152272A (en) Immersed membrane filtration method and immersed membrane filtration apparatus
JP3701472B2 (en) Cleaning method of filtration membrane for capturing fine particles in ultrapure water
JP2008058025A (en) Residual chlorine concentration meter
JP3782071B2 (en) Residual chlorine concentration measurement equipment
JP3543365B2 (en) Ionized water generator and pH sensor cleaning method
JP5812249B2 (en) Sanitary washing device
JP5946020B2 (en) Sanitary washing device
JP2000126562A (en) Cleaning method for catching fine particle in ultrapure water, filter membrane for catching fine particle in ultrapure water and storage and carriage method for part
JP2000024469A (en) Device for cleaning membrane cartridge with liquid chemical
JP2000046794A (en) Apparatus for measuring residual chlorine concentration
JP2006337124A (en) Probe support for submersible pressure type water-level gauge
JP3559253B2 (en) Residual chlorine meter and liquid sterilizer using the same

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060215

R150 Certificate of patent or registration of utility model

Ref document number: 3773911

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100224

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110224

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120224

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130224

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140224

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees