JP3823126B2 - Fluid property measuring device - Google Patents

Fluid property measuring device Download PDF

Info

Publication number
JP3823126B2
JP3823126B2 JP2003073258A JP2003073258A JP3823126B2 JP 3823126 B2 JP3823126 B2 JP 3823126B2 JP 2003073258 A JP2003073258 A JP 2003073258A JP 2003073258 A JP2003073258 A JP 2003073258A JP 3823126 B2 JP3823126 B2 JP 3823126B2
Authority
JP
Japan
Prior art keywords
fluid
inspected
beaded
electrode
outflow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003073258A
Other languages
Japanese (ja)
Other versions
JP2004279301A (en
Inventor
元 川崎
良浩 山元
博 小谷
明彦 森本
圭祐 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tacmina Corp
Original Assignee
Tacmina Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tacmina Corp filed Critical Tacmina Corp
Priority to JP2003073258A priority Critical patent/JP3823126B2/en
Publication of JP2004279301A publication Critical patent/JP2004279301A/en
Application granted granted Critical
Publication of JP3823126B2 publication Critical patent/JP3823126B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Optical Measuring Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、流体の性状を測定する流体性状測定装置に関するものである。
【0002】
【従来の技術】
上水処理あるいは下水処理の際には、塩素を用いた殺菌処理が義務付けられている。このような塩素殺菌処理を行う場合には、通常、液体の殺菌状態(いわゆる液体の残留塩素濃度の状態)を判断するために、定期的あるいは連続的に、液体(被検査流体)の性状の一つである残留塩素濃度の測定が行われている。
【0003】
残留塩素濃度を連続的に測定する方法としては、バッファ剤を加えて被検査流体のpHを3.0〜3.52に調整して測定する方法や、ヨウ化カリあるいは臭化カリ等を被検査流体に溶解させ通液し、また同時にバッファ剤として酢酸溶液を通液しながら、陽極電極および陰極電極を被検査流体中に設け、一定の直流電圧を印加して電解電流値を計測する方法が知られている。
【0004】
ここで、電解液としてヨウ化カリ溶液を用いた場合の電解反応を示すと、
2KI + Cl2 → 2KCl + I2
となり、続いて電極面での反応を示すと
2H+ + 2e → 2H
2 + 2H+ → 2HI (陰極反応)
2I- + 2e → I2 (陽極反応)
となる。
【0005】
被検査流体中の残留塩素濃度が高い場合、または長時間に渡り連続的に測定する場合においては、陽極反応で生じたヨウ素が陽極電極表面に析出付着し、測定値の定量性に欠け、この陽極電極表面に析出付着したヨウ素は誤動作の原因ともなる。また、陽極反応で生成されたヨウ素が被検査流体に溶けて陰極に達すると、上記の陰極反応を起こし同様に電流が流れる。さらに、臭化カリ溶液を用いた場合も同様に臭素が陽極電極表面に付着して同様な現象を生じる。
【0006】
一方、無試薬にて(すなわち薬品を一切使用せずに)、上記と同様に陽極電極および陰極電極を被検査流体中に設け印加電圧を印加して残留塩素濃度を測定することも可能である。しかし、薬品を添加した場合には、印可電圧0.2V〜0.4Vの範囲で残留塩素濃度の測定が可能であったのに対して、無試薬の場合には、印可電圧を0.7V〜0.98V程度に上昇させなければ電流値が小さくなって測定誤差を生じやすくなる。
また、印可電圧を上昇させると、被検査流体中に含まれる微量の重金属や有機物等が電極表面の発生基の酸素(O)や発生基の水素(H)と反応し、例えば、陰極電極では微量の重金属が還元されその電極表面に付着する。さらに、陽極電極では、銅等の無電解で付着しやすい物質が、陽極酸化によって陽極電極表面に付着する場合がある。また、有機物等も同様に陽極酸化され、簡単に陽極電極表面に付着してしまい、電極反応を阻害し測定誤差の原因となっている。
【0007】
さて、温泉やスーパー銭湯に対しては、最近、厚生労働省生活衛生局長通達として、「公衆浴場における衛生等管理要領等の改正について」、公衆浴場および旅館業におけるレジオネラ症発生防止対策等、一層の衛生水準の維持、確保を図るため、「公衆浴場における水質基準に関する指針」、「公衆浴場における衛生など管理要領」および「旅館業における衛生等管理要領」の改正が行われた。
【0008】
温泉やスーパー銭湯等では、一般に循環式の浴槽が使用されている。循環式浴槽とは、温泉水や水道水の使用量を少なくする目的で、浴槽の湯をろ過器を通して循環させることにより、浴槽内の湯を清浄に保つ構造の浴槽を云う。このような循環式浴槽の中で「連日使用型循環浴槽」と呼ばれるものは、浴槽内の温水が浴槽底部から取り出されて、この取り出された温水が、循環配管中に設けられた集毛器(ヘアーキャッチャ)、循環ポンプ、消毒剤注入部、ろ過器、過熱器(熱交換器)を介して、再度浴槽中に注がれるように構成されている。すなわち、このような方式の浴槽は、浴槽内の温水を浄化しつつ適温に保つように構成されている。
【0009】
以上のように構成された浴槽においては、従来の施設設備の設置、管理方法では、消毒剤の注入箇所がろ過器の後(下流側)でもよかったが、上述したこの度の厚生労働省の通達では、「浴槽水の消毒に用いる塩素系薬剤の注入箇所は、浴槽水がろ過器に入る直前であることが望ましい」と改正された。すなわち、ろ過器はバイオフィルムの発生が懸念されるため、このろ過器内の殺菌が重要になっていると考えられる。
【0010】
浴槽水の消毒に用いる塩素系薬剤は、「浴槽水中の遊離残留塩素濃度を1日2時間以上0.2mg/L〜0.4mg/Lに保つことが望ましい」と義務付けられているため、ろ過器前の浴槽水についてこの値を維持しようとすれば、残留塩素濃度を測定可能な装置を用いて連続モニタリングを行い、浴槽水の残留塩素濃度を一定値に自動的に制御する必要がある。
【0011】
従来は、ろ過器の下流側の浴槽水を用いて残留塩素濃度を測定していたため、特に問題はなかったが、上述した改正が行われた後においては、ヘアーキャッチャを通過した後のろ過処理前の浴槽水を被検査流体として残留塩素測定装置に通液させなければならない。
浴槽水中にはたんぱく質や粒子状の浮遊物が多く含有されているため、従来用いられていた残留塩素測定装置では、これらの微粒子が装置内の流路に付着して必要とする通液量が得られず、測定誤差を生じるという問題があった。
【0012】
また、従来技術にかかる残留塩素測定装置としては、電極表面の洗浄等を行うために電極近傍にビーズを設けた構成の装置が知られている(例えば、特許文献1)。このような構成の装置においては、被検査流体の水流によってビーズが系外に飛び出すことを防止するために、メッシュ状の部材(例えば、金網を用いたビーズ流出防止部材)が設けられている。
このような構成の装置をろ過器の前に設けると、上述した浴槽水中のたんぱく質や粒子状の浮遊物が金網に付着し流路が閉塞状態となり、残留塩素濃度の測定を正確に行うことができないという問題が生じる。
【0013】
【特許文献1】
特開2001−228116号公報
【0014】
【発明が解決しようとする課題】
そこで、本発明は、上記従来技術の問題を解決するためになされたもので、ビーズ状研磨体を用いて電極部表面の付着物質を適切に除去可能であって、被検査流体の流通経路を広く確保して浮遊物質等の付着を防ぎ、ビーズ状研磨体の系外への流出を防止することができる、流体性状測定装置を提供することを課題とする。つまり、本発明は、電極部表面への付着物質を除去して測定部における誤差をなくし、被検査流体の流通経路の閉塞を防止することによって必要量の被検査流体を確保して、安定した流体性状(例えば、残留塩素濃度)の測定を実施可能な流体性状測定装置を提供することを課題とする。
【0015】
【課題を解決するための手段】
上記課題を解決するための本発明は、
被検査流体の流入部および流出部を有する検査容器と、前記検査容器内に流入した前記被検査流体の性状を測定すべく一対の電極部を有する測定部と、前記電極部表面の洗浄処理を行う複数のビーズ状研磨体とを備えた流体性状測定装置であって、
前記測定部は、前記一対の電極部が前記検査容器の底部に位置すべく配設され、前記一対の電極部の上方位置には、前記ビーズ状研磨体を攪拌する攪拌翼を備える攪拌手段が設けられており、
前記流入部および前記流出部を介して前記検査容器内を流通する前記被検査流体によって、前記ビーズ状研磨体が前記検査容器の底部側に移動するように、前記攪拌翼よりも上方位置に前記流入部および前記流出部が設けられている
ことを特徴としている。
【0016】
このような構成によれば、前記ビーズ状研磨体は、前記被検査流体によって前記検査容器の底部側に押さえ付けられると共に、前記攪拌手段によって前記底部にて攪拌される。つまり、前記検査容器の底部において、表出している前記一対の電極部と前記ビーズ状研磨体とが接触を繰り返すこととなるため、前記電極部表面に付着している付着物を前記ビーズ状研磨体によって適切に除去することができる。
また、このような構成によれば、前記ビーズ状研磨体が前記被検査流体によって前記検査容器の底部側に移動すべく、前記流入部および前記流出部が配設されている。つまり、前記検査容器内を前記被検査流体が流通している場合、前記検査容器内にて攪拌されている前記ビーズ状研磨体には、底部方向(下方向)への力が作用していることとなるため、前記ビーズ状研磨体が前記検査容器外に流出することはない。したがって、本発明によれば、前記ビーズ状研磨体の流出を防止するための金網等を設ける必要がない。よって、従来のように、浮遊物等が金網に付着し流路が閉塞状態となることがなく、残留塩素濃度等の流体性状の測定を正確に行うことができる。
さらに、このような構成によれば、前記一対の電極部よりも上方位置に、前記流入部および前記流出部が設けられることとなるため、前記流入部からの前記被検査流体の流入量が変化した場合であっても、前記測定部によって安定した流体性状の測定を行うことができる。これは、前記被検査流体に流量変化が生じたとしても、前記流入部および前記流出部が前記検査容器の上方位置に設けられていることによって、前記検査容器内には常に所定量(前記流入部および流出部の低い位置に設けられている方から前記電極部表面までの量)の前記被検査流体が存在し、前記一対の電極部表面の拡散層の厚みが略一定となるからである。つまり、本発明にかかる検査容器は、定水槽としての役割も有することとなる。
【0017】
また、本発明にかかる流体性状測定装置においては、前記攪拌手段が、前記検査容器内にて回転駆動する駆動軸と、前記駆動軸の先端部に設けられた攪拌翼とを用いて構成されることが好ましい。また、この攪拌翼は、前記ビーズ状研磨体の損傷を防ぐべく、例えば、スチレンゴム、ポリクロロプレンゴム、フッ素ゴム、シリコンゴム、四フッ化エチレン樹脂等を用いて形成されている。
【0018】
この好ましい構成によれば、モータ等の駆動手段に接続された前記駆動軸にて前記攪拌翼が回転駆動させられるため、前記ビーズ状研磨体の流速が一定し、前記電極部表面に形成される拡散層の厚みを一定にすることができる。したがって、安定した測定結果を得ることが可能となる。
【0019】
また、本発明にかかる流体性状測定装置においては、前記流入部および前記流出部が、前記検査容器の高さ方向において前記攪拌翼よりも上方位置に設けられている構成が好ましい。
【0020】
この好ましい構成によれば、前記ビーズ状研磨体を攪拌させる前記攪拌翼よりも上方に前記流入部および前記流出部が設けられているため、前記被検査流体の流通経路が前記攪拌翼よりも上方に位置することとなる。したがって、この構成によれば、前記被検査流体の水流および流速による前記一対の電極部表面(の拡散層)への影響を防止し、安定した電極反応とこれに基づく正確な測定結果を得ることができる。
【0021】
また、例えば、前記流入部および前記流出部が、前記攪拌翼の上方であって前記検査容器の高さ方向において略同様の位置に設けられている構成が好ましい。さらに、例えば、前記流入部および前記流出部が、前記検査容器の左右対称位置に設けられた構成が好ましい。
上記のような好ましい構成によれば、前記流入部、前記流出部、および前記検査容器によって、前記被検査流体を流通させる安定した流通経路が形成されることとなる。そして、この流通経路の下方側領域(前記流入部および前記流出部から前記電極部表面までの領域)は、定水槽として機能することとなる。したがって、このような構成によれば、被検査流体の流量変化が多い場所や被検査流体の流量が僅かしか採取できない場所であっても、これら被検査流体の流量の影響を受けることなく、良好で安定した流体性状の測定を行うことができる。
さらに、上記のように、前記流入部および前記流出部を左右対称に設けることによって、前記ビーズ状研磨体は適切に前記電極部表面に押さえ付けられ、より効果的に前記電極部表面の研磨を実施することができる。また、このような構成によれば、前記ビーズ状研磨体が前記流出部を介して系外に流出することも適切に防止できる。
【0022】
また、本発明にかかる流体性状測定装置においては、前記検査容器の内壁と前記攪拌手段の外端部との間隔t1と、前記ビーズ状研磨体の直径Bとが、以下の数式の関係を有する構成が好ましい。
B ≦ t1 ≦ 3B
【0023】
本発明にかかる流体性状測定装置によれば、間隔t1が上記数式の範囲を外れ、例えば、間隔t1が小さい場合(前記ビーズ状研磨体の直径Bよりも小さい場合)には、前記被検査流体の流通状態が阻害される。また、間隔t1が大きい場合(前記ビーズ状研磨体の直径Bの3倍よりも大きい場合)には、攪拌翼によってビーズ状研磨体がはじき出されて流出するおそれがある。したがって、本発明にかかる流体性状測定装置は、上記数式に示すような関係を有することが好ましい。
【0024】
なお、本発明において、間隔t1は、
1.5B ≦ t1 ≦ 2.5B
という範囲に設定することがより好ましい。
このような構成によれば、より効果的に、上述した流通状態の阻害をなくしつつ、ビーズ状研磨体の流出を防止することができる。
【0025】
また、本発明にかかる流体性状測定装置においては、前記一対の電極部の表面と前記攪拌手段の先端部との間隔t2と、前記ビーズ状研磨体の直径Bとが、以下の数式の関係を有する構成が好ましい。
2B ≦ t2 ≦ 5B
【0026】
本発明にかかる流体性状測定装置によれば、間隔t2が上記数式の範囲を外れ、例えば、間隔t2が小さい場合(前記ビーズ状研磨体の直径Bの2倍よりも小さい場合)には、前記電極部の表面を傷めるおそれがあり、間隔t2が大きい場合(前記ビーズ状研磨体の直径の5倍よりも大きい場合)には、前記電極部の表面の研磨不足が生ずるおそれがある。したがって、本発明にかかる流体性状測定装置は、上記数式に示すような関係を有することが好ましい。
【0027】
なお、本発明において、間隔t2は、
2.5B ≦ t2 ≦ 4B
という範囲に設定することがより好ましい。
このような構成によれば、より効果的に、前記電極部表面を傷つけずに、付着物の除去を行うことができる。
【0028】
また、本発明にかかる流体性状測定装置においては、前記ビーズ状研磨体の直径が0.5mm〜1.2mmである構成が好ましい。
【0029】
また、本発明にかかる流体性状測定装置においては、前記ビーズ状研磨体がセラミック、ガラス、およびアルミナの少なくとも一つを用いて形成されていることが好ましい。
【0030】
さらに、本発明にかかる流体性状測定装置においては、前記被検査流体の性状が、残留塩素濃度および二酸化塩素濃度の少なくとも一方であることが好ましい。
【0031】
【発明の実施の形態】
以下、図面に基づいて本発明の実施形態を説明する。
【0032】
図1は、後述する本発明の実施形態にかかる残留塩素測定装置(流体性状測定装置)を適用して構成可能な連日使用型循環浴槽(以下、「循環浴槽」という。)の一例を示すシステムフロー図である。
図1に示された循環浴槽は、補給湯が随時補給可能な浴槽1を用いて構成されており、この浴槽1は、その底部1aから浴槽内の温水を導出させることができるように構成されている。そして、この循環浴槽は、浴槽1の底部1aから導出された温水が、循環ラインL1およびこの循環ラインL1に設けられた種々の装置を介して、再び浴槽1の循環導入口1bから導入されるように構成されている。
【0033】
循環ラインL1上には、集毛器2、ポンプ3、残留塩素測定装置4(流体性状測定装置)、ろ過器5、および加熱器6が設けられており、残留塩素測定装置4の下流側の循環ラインL14には、温水中に消毒薬剤を注入するための消毒薬剤注入装置7から薬剤を注入するための薬剤注入ラインL2が接続されている。
【0034】
本実施形態にかかる循環浴槽は、図1に示すように構成され、上記のように循環ラインL1および薬剤注入ラインL2には種々の装置が設けられているため、浴槽1の温水を適切に浄化して適温に保つことができる。
【0035】
また、本実施形態にかかる循環浴槽においては、先に説明した厚生労働省の通達を満足すべく、消毒薬剤の注入箇所は、温水がろ過器5に入る直前に設けられている。つまり、残留塩素測定装置4を用いてろ過器5に入る前の温水の残留塩素濃度が測定され、その測定結果に基づいて消毒薬剤注入装置7を制御し、薬剤注入ラインL2を介して残留塩素測定装置4の下流側循環ライン(ろ過器5の上流側循環ライン)L14に消毒薬剤が注入される。
【0036】
ろ過器5に入る前の温水中には、たんぱく質や粒子状の浮遊物質が存在しているため、従来技術にて説明したような電極部表面の洗浄用のビーズやメッシュ状部材(金網等)を有する残留塩素測定装置を用いたのでは、流路の閉塞等が生じて、残留塩素測定装置にて必要とされる被検査流体の流量を得ることができず、正確な残留塩素濃度(被検査流体の性状)の測定を行うことができない。
【0037】
そこで、本発明者らは、鋭意研究を重ねた結果、電極部表面に付着する付着物質の除去を行いつつ、流路の閉塞が起こらない構造を有し、安定して被検査流体を流通させつつ正確な残留塩素濃度(被検査流体の性状)の測定を実施可能な残留塩素測定装置(流体性状測定装置)を得るに至った。
以下、残留塩素測定装置の具体的な構成について説明する。
【0038】
図2は、本発明の実施形態にかかる残留塩素測定装置(流体性状測定装置)の概略断面図を示したものである。
【0039】
本実施形態にかかる残留塩素測定装置4は、先に説明した図1のポンプ3の下流側循環ラインL13と、ろ過器5の上流側循環ラインL14との間に設けられるものである。
なお、本実施形態においては、図1および図2に示すように、循環ラインL中に残留塩素測定装置4を設け、連続的に残留塩素濃度の測定を行い、この残留塩素測定装置4内を流通した温水を再度循環ラインLに戻す場合について示しているが、本発明はこの構成に限定されない。したがって、例えば、循環ラインLから定期的に温水をサンプリングして残留塩素濃度の測定を行い、残留塩素濃度の測定が行われた後は、「ドレン」として排出してもよい。つまり、循環されている温水の一部を被検査流体である「サンプル水」として抽出して、検査後は「ドレン」として系外に排出してもよい。または、循環ラインLから分岐したバイパスラインを設け、そのバイパスライン上に前記残留塩素測定装置4を設けるように構成してもよい。
【0040】
図2に示すように、本実施形態にかかる残留塩素測定装置4は、被検査流体の流入出を行ってその内部において残留塩素濃度の測定を行う検査容器41と、この検査容器41内に流出した被検査流体の残留塩素濃度を測定する一対の電極部42aを備えた測定部として機能する電極ホルダ42と、検査容器41に被検査流体を流入させるべく設けられた流入部43と、検査容器41から被検査流体を流出させるべく設けられた流出部44と、電極ホルダ42から表出した一対の電極部表面42aに付着した付着物を除去するビーズ状研磨体49と、このビーズ状研磨体49を攪拌させる攪拌翼45を備えた攪拌手段とを用いて構成されている。
【0041】
検査容器41は、例えば、透明なアクリル樹脂等を用いて構成されており、この検査容器41には、電極ホルダ42を取り付けるためのホルダ取付部41a、流入部43を取り付けるための第一取付部41b、流出部44を取り付けるための第二取付部41c、および攪拌翼45を備えた攪拌手段を取り付けるための攪拌手段取付部41dが形成されている。なお、検査容器41の形成材料は、アクリル樹脂に限定されず、例えば、硬質塩化ビニール樹脂、フッ素樹脂、ステンレス鋼(SUS)等を用いてもよい。
【0042】
電極ホルダ42は、検査容器41のホルダ取付部41aに着脱可能に構成されている。この電極ホルダ42は、検査容器41内に形成された被検査流体の流通領域41Aに対して、その先端部の一対の電極部表面42aが表出するように、検査容器41に取り付け可能に構成されている。つまり、図2に示すように、電極部表面42aが上方を向くような状態で、電極ホルダ42がホルダ取付部41aに取り付けられている。
【0043】
流入部43は、その一端部である流入口43aが検査容器41の第一取付部41bに着脱可能に構成されており、他端部が循環ラインL13に接続されている。また、流出部44は、その一端部である流出口44aが検査容器41の第二取付部41cに着脱可能に構成されており、他端部が循環ラインL14に接続されている。
【0044】
本実施形態においては、図2に示すように、流入部43および流出部44が、攪拌翼45およびビーズ状研磨体49よりも上方であって、検査容器41の高さ方向において略同様の位置に設けられている。また、これらの流入部43および流出部44は、検査容器41を中心として左右対称位置に設けられている。
したがって、検査容器41の流通領域41Aにおいて、流入部43と流出部44とを結んだ直線状の領域が、被検査流体が主に流通する流通経路を構成することとなる。
【0045】
攪拌手段は、攪拌翼45、この攪拌翼45を回転駆動させる駆動軸46、駆動軸46と攪拌翼45との間に設けられたフード部47、および駆動軸46を回転駆動可能に保持した駆動軸ホルダ48等を用いて構成されている。
【0046】
攪拌翼45は、駆動軸46の先端部に板状部材を設けて構成されており、図2の実線にて側面端部が示され、図2の二点鎖線(仮想線)にて平面部が示されている。つまり、攪拌翼45を図2の実線にて示された状態から、駆動軸46によって略90°回転させた状態が、図2の二点鎖線にて示されている。なお、攪拌翼45は、例えば、スチレンゴム、ポリクロロプレンゴム、フッ素ゴム、シリコンゴム、四フッ化エチレン樹脂等にて構成されている。
フード部47は、駆動軸46に取り付けられた部分から攪拌翼45側にテーパ状に形成されている。
この図2においては省略しているが、駆動軸46は電動モータ等の回転駆動手段に接続されており、必要に応じて、所定速度で回転可能に構成されている。
【0047】
検査容器41の底部に表出した電極部表面42aの上部には、複数のビーズ状研磨体49が設けられている。このビーズ状研磨体49の形成材料および大きさは適宜選択可能であって、形成材料としては、例えば、セラミック、ガラス、およびアルミナが用いられる。また、ビーズ状研磨体49は、例えば、その直径が0.5mm〜1.2mm程度に形成される。
【0048】
以上のように構成された本実施形態にかかる残留塩素測定装置4においては、以下のようにして、循環される温水(被検査流体)の残留塩素濃度(流体性状)の測定が行われる。
【0049】
まず、循環ラインL13を介して流入部43の流入口43aから検査容器41内に被検査流体が導入される。導入された被検査流体が検査容器41の流通領域41A内を満たすと、被検査流体は、流出部44の流出口44aを介して循環ラインL14に導出される。
【0050】
このように、流通領域41A内外に被検査流体が導入出される状態において、検査容器41内に設けられた攪拌翼45は、駆動軸46からの駆動力に基づき所定速度(例えば、200rpm〜500rpm)で回転駆動させられる。
【0051】
つまり、本実施形態にかかる残留塩素測定装置4においては、被検査流体の流入出と攪拌翼45の回転駆動とを行うことによって、複数のビーズ状研磨体49と電極部表面42aとの接触を繰り返し実施させつつ、検査容器41の底部に設けられた一対の電極部によって、被検査流体の残留塩素濃度の測定が行われる。このような構成とすれば、複数のビーズ状研磨体49によって電極部表面42a上の付着物質の除去を行うことができるため、安定した残留塩素濃度の測定を実施可能である。
【0052】
さて、流通領域41A内に導入された被検査流体は、流入口43aからの流速と、攪拌翼45の攪拌力とによって、流通領域41Aを適度に循環しつつ、大半の被検査流体は、流入部43から流出部44に対して直線的な移動を行う。
【0053】
したがって、本実施形態においては、流入部43および流出部44を用いて被検査流体を直線的(流入部43から流出部44に対して直線的)に流通させる安定した流通経路が形成されることとなるため、その下方に位置するビーズ状研磨体49は、この被検査流体の流れによって流通領域41Aの底部側に押さえ付けられる。よって、本実施形態によれば、従来のようにビーズ状研磨体の流出防止用の金網等を設けずとも、流出部44からのビーズ状研磨体49の流出を適切に防止することができる。
【0054】
また、本実施形態においては、上述したように流入部43および流出部44を用いて安定した流通経路が構成され、検査容器41内には、流入出部43,44から下方に常に所定量の被検査流体が存在することとなる。つまり、本実施形態にかかる残留塩素測定装置4は、「定水槽」的に機能する検査容器41を有している。
したがって、本実施形態によれば、流入部43からの被検査流体の流入量が変化した場合であっても、被検査流体の水流および流速による一対の電極部表面42aの拡散層への影響を防止し(すなわち、電極部表面42aの拡散層の厚みを略一定とし)、安定した電極反応とこれに基づく正確な測定結果を得ることができる。よって、被検査流体の流量変化が多い場所や被検査流体の流量が僅かしか採取できない場所であっても、これら被検査流体の流量の影響を受けることなく、良好で安定した残留塩素濃度(流体性状)の測定を行うことができる。
【0055】
さらに、本実施形態においては、流入部43および流出部44を左右対称に設けることによって、ビーズ状研磨体49を適切に電極部表面42a側に押さえ付け、より効果的に電極部表面42aの研磨を実施することができる。また、このような構成によれば、ビーズ状研磨体49が流出部44を介して系外に流出することも適切に防止できる。
【0056】
また、本実施形態においては、検査容器41の内壁と攪拌手段の外端部との間隔t1と、ビーズ状研磨体49の直径Bとが、以下の数1の関係を有するように構成されている。
【数1】
B ≦ t1 ≦ 3B
本実施形態にかかる残留塩素測定装置4において、「攪拌手段の外端部」とは、フード部47あるいは攪拌翼45の外端部のことである。
【0057】
本実施形態においては、上記数1の関係を有すると共に、駆動軸46に取り付けられたフード部47が上方から下方に向けてテーパ状に広がっているため、被検査流体が上方から下方に移動する際、その速度は、この間隔t1の部分で最速となる。したがって、このような構成によれば、ビーズ状研磨体49はフード部47より上方には殆ど移動することがなくなるため、流出部44からのビーズ状研磨体49の流出を適切に防止することができる。つまり、換言すれば、間隔t1が大きい場合(ビーズ状研磨体49の直径Bの3倍よりも大きい場合)には、攪拌翼45によってビーズ状研磨体49がはじき出されて流出するおそれがある。
また、間隔t1が小さい場合(ビーズ状研磨体49の直径Bよりも小さい場合)には、被検査流体の流通状態が阻害されるおそれがある。
【0058】
なお、検査容器41の内壁と攪拌手段の外端部との間隔t1と、ビーズ状研磨体49の直径Bとの関係は、上記数1に限定されず、例えば、以下の数2の関係を有してもよい。
【数2】
1.5B ≦ t1 ≦ 2.5B
【0059】
上記数2の関係を有する場合には、数1の関係を有する場合よりも、より効果的に、上述した流通状態の阻害をなくしつつ、ビーズ状研磨体49の流出を防止することができる。
【0060】
さらに、本実施形態においては、検査容器41の底部に表出している電極部表面42aと攪拌手段の先端部との間隔t2と、ビーズ状研磨体49の直径Bとが、以下の数3の関係を有するように構成されている。
【数3】
2B ≦ t2 ≦ 5B
本実施形態にかかる残留塩素測定装置4において、「攪拌手段の先端部」とは、攪拌翼45の下方先端部のことである。
【0061】
本実施形態によれば、間隔t2を上記数3に示すような関係に維持しているため、ビーズ状研磨体49および電極部表面42aに対する負荷(摩擦等)を適度に抑えることが可能となる。つまり、ビーズ状研磨体49にて電極部表面42aの研磨処理を行うが、それによって、ビーズ状研磨体49および電極部表面42aの破損等が生じない程度に間隔とすることが可能となる。すなわち、間隔t2が小さい場合(ビーズ状研磨体49の直径Bの2倍よりも小さい場合)には、電極部表面42aを傷めるおそれがあり、間隔t2が大きい場合(ビーズ状研磨体49の直径の5倍よりも大きい場合)には、電極部表面42aの研磨不足が生ずるおそれがある。
【0062】
なお、間隔t2と、ビーズ状研磨体49の直径Bとの関係は、上記数3に限定されず、例えば、以下の数4の関係を有してもよい。
【数4】
2.5B ≦ t2 ≦ 4B
【0063】
上記数4の関係を有する場合には、数3の関係を有する場合よりも、より効果的に、前記電極部表面42aを傷つけずに付着物の除去を行うことができる。
【0064】
以上説明したように、本発明の実施形態においては、被検査流体の流速および攪拌手段を利用してビーズ状研磨体49を流動させることによって、ビーズ状研磨体49の微細な動きを電極部表面42aにて生じさせ、電極部表面42aにおける付着物質の除去を行うことができる。したがって、安定した残留塩素濃度の測定を実施可能となる。
【0065】
また、従来技術においては、ビーズが水流によって系外に流出しないように金網等で蓋をしているが、このような構成の場合には先にも説明したように、ろ過器での処理を行う前の被検査流体を流入させると、被検査流体中のたんぱく質や粒子状の浮遊物が金網に付着して流路が閉塞状態となり、残留塩素濃度等の流体性状の測定を正確に行うことができなくなるという問題があった。
しかしながら、本実施形態においては、ビーズ状研磨体49はフード部47の下方領域で循環運動をしているため、フード部47よりも上方に設けられた流出部44からビーズ状研磨体49が流出することはなく、検査容器41内における被検査流体を流通させる流通経路を広く確保することができ、従来技術のように金網を設ける必要がない。
すなわち、本実施形態にかかる残留塩素測定装置4によれば、検査容器41内を流通する被検査流体の流通経路を広く確保することが可能となるため、検査容器41の如何なる箇所においても、たんぱく質や粒子状の浮遊物の付着等が起こらない。また、金網等を用いていないため、流通する被検査流体の流量変動が少なく、安定した測定を行うことができる。
【0066】
さらに、本実施形態においては、上述したように、流入部43および流出部44を、電極部表面42aおよびビーズ状研磨体49の循環運動領域よりも上方位置に設けている。よって、本実施形態によれば、検査容器41における流入出部43,44の下方領域が定水槽として機能する。
したがって、本実施形態にかかる電極部表面42aには常時安定した拡散層が形成されることとなるため、被検査流体の流量変化が多い場所や被検査流体の流量が僅かしか採取できない場所であっても、これら被検査流体の流量の影響を受けることなく、良好で安定した流体性状の測定を行うことができる。
【0067】
なお、本発明は上記各実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて、上述したもの以外に種々の変更を行うことが可能である。
【0068】
上記実施形態においては、流入部43と流出部44とが略同様の高さで、検査容器41の左右対称位置に設けられた場合について説明したが、本発明はこの構成に限定されず、被検査流体によってビーズ状研磨体49を適切に電極部表面42a側に押さえ、電極部表面42aの研磨処理と、ビーズ状研磨体49の流出防止とを実施可能であれば、その配設位置は他の箇所でもよい。したがって、流入部と流出部とを異なる高さに設けても(例えば、流入部よりも流出部を高く設けても)、あるいは流入部と流出部とを検査容器を中心にして90°異なる位置に設けてもよい。
【0069】
また、上記実施形態においては、検査容器41が一体的に構成された場合について説明したが、本発明はこの構成に限定されず、必要に応じて、上下あるいは左右に分割可能に構成されてもよい。したがって、例えば、フード部47の位置から上下に二分割することができるように構成してもよい。
このような構成によれば、ビーズ状研磨体49の充填作業や、攪拌翼45のメンテナンス作業等をより容易に実施することができる。
【0070】
また、上記実施形態においては、流体性状の一つとして「残留塩素濃度」の測定を行う場合について説明したが、本発明はこれに限定されるものではない。したがって、一対の電極を用いて測定可能である流体性状であれば、例えば、「二酸化塩素濃度」等の他の流体性状を測定するために各実施形態にかかる流体性状測定装置を用いてもよい。
【0071】
また、上記実施形態においては、本発明にかかる流体性状測定装置が、「浴槽」内の温水中の残留塩素濃度を測定するものとして適用される場合について説明したが、本発明はこの構成に限定されず、必要に応じて、プールあるいは飲料水の貯水槽等内の被検査流体を測定する装置として用いられてもよい。
【0072】
【発明の効果】
以上説明したように、本発明によれば、ビーズ状研磨体を用いて電極部表面の付着物質を適切に除去可能であって、被検査流体の流通経路を広く確保して浮遊物質等の付着を防ぎ、ビーズ状研磨体の系外への流出を防止することができる、流体性状測定装置を得ることができる。また、本発明によれば、被検査流体の流量変化が多い場合や流量が少ない場合であっても、安定した流体性状の測定を実施可能な流体性状測定装置を得ることができる。
【図面の簡単な説明】
【図1】本発明の実施形態にかかる残留塩素測定装置を適用して構成可能な連日使用型循環浴槽の一例を示すシステムフロー図である。
【図2】本発明の実施形態にかかる残留塩素測定装置の概略断面図である。
【符号の説明】
1…浴槽、1a…底部、2…集毛器、3…ポンプ、4…残留塩素測定装置(流体性状測定装置)、5…ろ過器、6…加熱器6
41…検査容器、41a…ホルダ取付部、41b…第一取付部、41c…第二取付部、41d…攪拌手段取付部、42…電極ホルダ、42a…電極部表面、43…流入部、43a…流入口、44…流出部、44a…流出口、45…攪拌翼、46…駆動軸、47…フード部、48…駆動軸ホルダ、49…ビーズ状研磨体
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fluid property measuring apparatus for measuring fluid properties.
[0002]
[Prior art]
In the case of water treatment or sewage treatment, sterilization treatment using chlorine is required. When performing such chlorination treatment, the liquid (inspected fluid) property is usually periodically or continuously determined in order to determine the sterilization state of the liquid (so-called residual chlorine concentration state). One residual chlorine concentration is being measured.
[0003]
As a method for continuously measuring the residual chlorine concentration, a buffer agent is added to adjust the pH of the fluid to be inspected to 3.0 to 3.52, and a method of measuring potassium iodide or potassium bromide is used. A method in which an electrolytic electrode value is measured by applying a constant DC voltage while providing an anode electrode and a cathode electrode in a fluid to be inspected while dissolving and flowing in a test fluid and simultaneously passing an acetic acid solution as a buffer agent. It has been known.
[0004]
Here, when an electrolytic reaction in the case of using a potassium iodide solution as an electrolytic solution is shown,
2KI + Cl 2 → 2KCl + I 2
Then, when the reaction on the electrode surface is shown, 2H + + 2e → 2H
I 2 + 2H + → 2HI (cathode reaction)
2I - + 2e → I 2 (anode reaction)
It becomes.
[0005]
When the residual chlorine concentration in the fluid to be inspected is high, or when measuring continuously over a long period of time, iodine produced by the anodic reaction deposits and adheres to the surface of the anodic electrode, and the measured value is not quantitative. Iodine deposited on the surface of the anode electrode may cause malfunction. Moreover, when the iodine produced | generated by the anodic reaction melt | dissolves in to-be-tested fluid and reaches a cathode, said cathode reaction will be raise | generated and an electric current will flow similarly. Further, when a potassium bromide solution is used, bromine adheres to the surface of the anode electrode and the same phenomenon occurs.
[0006]
On the other hand, it is also possible to measure the residual chlorine concentration by applying an applied voltage by providing an anode electrode and a cathode electrode in a fluid to be inspected in the same manner as described above without using any reagent (that is, without using any chemicals). . However, when chemicals were added, the residual chlorine concentration could be measured in the range of applied voltage of 0.2 V to 0.4 V, whereas in the case of no reagent, the applied voltage was 0.7 V. Unless the voltage is raised to about .about.0.98 V, the current value becomes small and a measurement error tends to occur.
Further, when the applied voltage is increased, a small amount of heavy metal or organic matter contained in the fluid to be inspected reacts with oxygen (O) of the generated group on the surface of the electrode or hydrogen (H) of the generated group. A trace amount of heavy metal is reduced and adheres to the electrode surface. Further, in the anode electrode, a substance that easily adheres without electrolysis such as copper may adhere to the surface of the anode electrode by anodic oxidation. In addition, organic substances and the like are similarly anodized and easily attached to the surface of the anode electrode, which hinders electrode reactions and causes measurement errors.
[0007]
Now, for hot springs and super public baths, as the Director General of the Health Sanitation Bureau of the Ministry of Health, Labor and Welfare, “Revisions to the management guidelines for hygiene, etc. in public baths”, further measures to prevent the occurrence of Legionella in public baths and inns. In order to maintain and ensure the level of sanitation, the “Guidelines for Water Quality Standards at Public Baths”, “Management Guidelines for Hygiene at Public Baths” and “Guidelines for Management of Hygiene at Ryokan Business” were revised.
[0008]
Circulating bathtubs are generally used in hot springs and super public baths. The circulation type bathtub is a bathtub having a structure in which the hot water in the bathtub is kept clean by circulating hot water in the bathtub through a filter for the purpose of reducing the amount of hot spring water and tap water used. Among such circulation type bathtubs, what is called a "continuous use type circulation bathtub" is a hair collector in which the hot water in the bathtub is taken out from the bottom of the bathtub and the hot water taken out is provided in the circulation pipe. (Hair catcher), circulation pump, disinfectant injection section, filter, and superheater (heat exchanger) are configured to be poured again into the bathtub. That is, the bathtub of such a system is configured to keep an appropriate temperature while purifying the hot water in the bathtub.
[0009]
In the bathtub constructed as described above, in the conventional facility equipment installation and management method, the injection point of the disinfectant may be after the filter (downstream side), but in the notification of the Ministry of Health, Labor and Welfare mentioned above, “It is desirable that the chlorinated chemical injection point used for disinfecting bath water should be immediately before the bath water enters the filter”. That is, since there is a concern about the generation of biofilm in the filter, it is considered that sterilization in the filter is important.
[0010]
Chlorine chemicals used for bath water disinfection are obliged to maintain a free residual chlorine concentration in bath water of 0.2 mg / L to 0.4 mg / L for 2 hours or more per day. If this value is to be maintained for the bath water in front of the vessel, it is necessary to perform continuous monitoring using a device capable of measuring the residual chlorine concentration and automatically control the residual chlorine concentration in the bath water to a constant value.
[0011]
Conventionally, since the residual chlorine concentration was measured using the bath water downstream of the filter, there was no particular problem, but after the above-mentioned revision was made, the filtration process after passing through the hair catcher The previous bath water must be passed through the residual chlorine measuring device as the fluid to be inspected.
Since the bath water contains a lot of protein and particulate suspended matter, in the conventional residual chlorine measuring device, these fine particles adhere to the flow path in the device and the required amount of liquid flow is required. There was a problem in that it was not obtained and a measurement error occurred.
[0012]
Further, as a residual chlorine measuring apparatus according to the conventional technique, an apparatus having a configuration in which beads are provided in the vicinity of an electrode in order to perform cleaning or the like of the electrode surface is known (for example, Patent Document 1). In the apparatus having such a configuration, a mesh-like member (for example, a bead outflow prevention member using a wire mesh) is provided in order to prevent the beads from jumping out of the system due to the water flow of the fluid to be inspected.
When the device having such a configuration is provided in front of the filter, the protein or particulate suspended matter in the bath water described above adheres to the wire mesh, the channel is blocked, and the residual chlorine concentration can be accurately measured. The problem that it is not possible arises.
[0013]
[Patent Document 1]
[Patent Document 1] Japanese Patent Laid-Open No. 2001-228116
[Problems to be solved by the invention]
Therefore, the present invention has been made to solve the above-described problems of the prior art, and it is possible to appropriately remove the adhered substances on the surface of the electrode portion using a bead-shaped abrasive body, and to provide a flow path for the fluid to be inspected. It is an object of the present invention to provide a fluid property measuring apparatus that can be widely secured to prevent adhesion of suspended substances and the like, and to prevent the beaded abrasive from flowing out of the system. That is, the present invention eliminates an error in the measurement part by removing the substances attached to the surface of the electrode part, and prevents the blockage of the flow path of the fluid to be inspected, thereby securing a necessary amount of fluid to be inspected and stable. It is an object of the present invention to provide a fluid property measuring apparatus capable of measuring fluid properties (for example, residual chlorine concentration).
[0015]
[Means for Solving the Problems]
The present invention for solving the above problems is as follows.
A test container having an inflow part and an outflow part for a fluid to be inspected, a measuring part having a pair of electrode parts for measuring the properties of the fluid to be inspected flowing into the test container, and a cleaning process for the surface of the electrode part A fluid property measuring device comprising a plurality of bead-shaped abrasives to be performed,
The measuring unit is arranged so that the pair of electrode units is positioned at the bottom of the cuvette, and an agitation unit including an agitating blade for agitating the bead-like abrasive body above the pair of electrode units Provided,
The beaded abrasive is moved to a position above the agitating blade so that the bead-like abrasive is moved to the bottom side of the cuvette by the fluid to be inspected flowing through the cuvette through the inflow part and the outflow part. An inflow portion and the outflow portion are provided.
[0016]
According to such a configuration, the beaded abrasive is pressed against the bottom side of the cuvette by the fluid to be inspected and is agitated at the bottom by the agitation means. That is, at the bottom of the cuvette, the exposed pair of electrode parts and the beaded polishing body are repeatedly in contact with each other. It can be removed properly by the body.
Further, according to such a configuration, the inflow portion and the outflow portion are disposed so that the beaded polishing body moves to the bottom side of the cuvette by the fluid to be inspected. That is, when the fluid to be inspected flows through the inspection container, a force in the bottom direction (downward direction) acts on the bead-like abrasive that is stirred in the inspection container. As a result, the beaded abrasive body does not flow out of the cuvette. Therefore, according to the present invention, there is no need to provide a wire mesh or the like for preventing the beaded abrasive from flowing out. Therefore, unlike the conventional case, suspended matter or the like does not adhere to the wire mesh and the flow path is not blocked, and fluid properties such as residual chlorine concentration can be accurately measured.
Furthermore, according to such a configuration, since the inflow portion and the outflow portion are provided at a position above the pair of electrode portions, the inflow amount of the fluid to be inspected from the inflow portion changes. Even in such a case, stable measurement of fluid properties can be performed by the measurement unit. This is because even if a flow rate change occurs in the fluid to be inspected, the inflow portion and the outflow portion are provided above the cuvette, so that a predetermined amount (the inflow This is because the fluid to be inspected exists in an amount from the side provided at a lower position of the part and the outflow part to the surface of the electrode part), and the thickness of the diffusion layer on the surface of the pair of electrode parts is substantially constant. . That is, the inspection container according to the present invention also has a role as a constant water tank.
[0017]
Moreover, in the fluid property measuring apparatus according to the present invention, the stirring means is configured using a drive shaft that is rotationally driven in the cuvette and a stirring blade provided at the tip of the drive shaft. It is preferable. The stirring blade is formed using, for example, styrene rubber, polychloroprene rubber, fluorine rubber, silicon rubber, tetrafluoroethylene resin, or the like, in order to prevent damage to the bead-shaped abrasive.
[0018]
According to this preferred configuration, since the stirring blade is driven to rotate by the drive shaft connected to a driving means such as a motor, the flow rate of the bead-like abrasive is constant and formed on the surface of the electrode portion. The thickness of the diffusion layer can be made constant. Therefore, it is possible to obtain a stable measurement result.
[0019]
Moreover, in the fluid property measuring apparatus according to the present invention, it is preferable that the inflow portion and the outflow portion are provided at a position above the stirring blade in the height direction of the cuvette.
[0020]
According to this preferred configuration, since the inflow portion and the outflow portion are provided above the stirring blade that stirs the beaded abrasive, the flow path of the fluid to be inspected is above the stirring blade. Will be located. Therefore, according to this configuration, the influence of the water flow and flow velocity of the fluid to be inspected on the surface of the pair of electrode portions (diffusion layer thereof) can be prevented, and a stable electrode reaction and an accurate measurement result based on the electrode reaction can be obtained. Can do.
[0021]
Further, for example, a configuration in which the inflow portion and the outflow portion are provided at substantially the same position in the height direction of the cuvette above the stirring blade is preferable. Furthermore, for example, a configuration in which the inflow portion and the outflow portion are provided at symmetrical positions of the cuvette is preferable.
According to the preferable configuration as described above, the inflow portion, the outflow portion, and the test container form a stable flow path through which the fluid to be tested is circulated. And the lower region (region from the inflow portion and the outflow portion to the surface of the electrode portion) of this flow path functions as a constant water tank. Therefore, according to such a configuration, even in a place where there is a large change in the flow rate of the fluid to be inspected or a location where the flow rate of the fluid to be tested can be collected only slightly, the flow rate of the fluid to be tested is not affected And stable fluid properties can be measured.
Further, as described above, by providing the inflow portion and the outflow portion symmetrically, the bead-like polishing body is appropriately pressed against the electrode portion surface, and more effectively polishing the electrode portion surface. Can be implemented. In addition, according to such a configuration, it is possible to appropriately prevent the beaded polishing body from flowing out of the system through the outflow portion.
[0022]
In the fluid property measuring apparatus according to the present invention, the interval t1 between the inner wall of the cuvette and the outer end of the stirring means and the diameter B of the beaded abrasive body have the following mathematical relationship. A configuration is preferred.
B ≤ t1 ≤ 3B
[0023]
According to the fluid property measuring apparatus of the present invention, when the interval t1 is out of the range of the above formula, for example, when the interval t1 is small (smaller than the diameter B of the beaded abrasive), the fluid to be inspected The distribution state of is disturbed. When the interval t1 is large (when it is larger than 3 times the diameter B of the beaded polishing body), the beaded polishing body may be ejected by the stirring blade and flow out. Therefore, it is preferable that the fluid property measuring apparatus according to the present invention has a relationship as shown in the above mathematical formula.
[0024]
In the present invention, the interval t1 is
1.5B ≤ t1 ≤ 2.5B
It is more preferable to set the range.
According to such a configuration, it is possible to more effectively prevent the beaded polishing body from flowing out while eliminating the above-described inhibition of the flow state.
[0025]
In the fluid property measuring apparatus according to the present invention, the distance t2 between the surface of the pair of electrode portions and the tip of the stirring means and the diameter B of the bead-like abrasive body have the following mathematical relationship. The structure which has is preferable.
2B ≤ t2 ≤ 5B
[0026]
According to the fluid property measuring apparatus of the present invention, when the interval t2 is out of the range of the above formula, for example, when the interval t2 is small (when it is smaller than twice the diameter B of the beaded abrasive), There is a risk of damaging the surface of the electrode part, and when the distance t2 is large (when the diameter is larger than 5 times the diameter of the beaded abrasive), the surface of the electrode part may be insufficiently polished. Therefore, it is preferable that the fluid property measuring apparatus according to the present invention has a relationship as shown in the above mathematical formula.
[0027]
In the present invention, the interval t2 is
2.5B ≤ t2 ≤ 4B
It is more preferable to set the range.
According to such a configuration, it is possible to remove the deposits more effectively without damaging the surface of the electrode part.
[0028]
Moreover, in the fluid property measuring apparatus according to the present invention, it is preferable that the beaded abrasive has a diameter of 0.5 mm to 1.2 mm.
[0029]
In the fluid property measuring apparatus according to the present invention, it is preferable that the bead-like abrasive is formed using at least one of ceramic, glass, and alumina.
[0030]
Furthermore, in the fluid property measuring apparatus according to the present invention, the property of the fluid to be inspected is preferably at least one of a residual chlorine concentration and a chlorine dioxide concentration.
[0031]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0032]
FIG. 1 is a system showing an example of a daily use circulation bath (hereinafter referred to as “circulation bath”) that can be configured by applying a residual chlorine measurement device (fluid property measurement device) according to an embodiment of the present invention to be described later. FIG.
The circulation bathtub shown in FIG. 1 is configured by using a bathtub 1 that can be replenished with hot water as needed, and this bathtub 1 is configured so that hot water in the bathtub can be led out from the bottom 1a. ing. And in this circulation bathtub, the hot water led out from the bottom 1a of the bathtub 1 is again introduced from the circulation inlet 1b of the bathtub 1 through the circulation line L1 and various devices provided in the circulation line L1. It is configured as follows.
[0033]
On the circulation line L 1, a hair collector 2, a pump 3, a residual chlorine measuring device 4 (fluid property measuring device), a filter 5, and a heater 6 are provided, on the downstream side of the residual chlorine measuring device 4. The circulation line L14 is connected to a drug injection line L2 for injecting a drug from the disinfectant drug injection device 7 for injecting the disinfectant drug into the warm water.
[0034]
The circulation bathtub according to the present embodiment is configured as shown in FIG. 1, and various devices are provided in the circulation line L1 and the medicine injection line L2 as described above. Therefore, the hot water in the bathtub 1 is appropriately purified. Can be kept at an appropriate temperature.
[0035]
Moreover, in the circulation bathtub concerning this embodiment, in order to satisfy the notification of Ministry of Health, Labor and Welfare demonstrated previously, the injection | pouring location of the disinfection chemical | medical agent is provided just before warm water enters the filter 5. FIG. That is, the residual chlorine concentration before entering the filter 5 is measured using the residual chlorine measuring device 4, and the disinfecting chemical injection device 7 is controlled based on the measurement result, and the residual chlorine is supplied via the chemical injection line L2. A disinfectant is injected into the downstream circulation line (upstream circulation line of the filter 5) L14 of the measuring device 4.
[0036]
In the warm water before entering the filter 5, there are proteins and particulate suspended solids. Therefore, as described in the prior art, beads for cleaning the surface of the electrode section and mesh members (such as wire mesh) If a residual chlorine measuring device with a flow rate is used, the flow rate of the fluid under test required by the residual chlorine measuring device cannot be obtained due to blockage of the flow path, etc. The property of the test fluid cannot be measured.
[0037]
Therefore, as a result of intensive studies, the present inventors have a structure that does not cause blockage of the flow path while removing the adhering substances adhering to the surface of the electrode part, and allows the fluid to be inspected to flow stably. Thus, a residual chlorine measuring device (fluid property measuring device) capable of accurately measuring the residual chlorine concentration (the property of the fluid to be inspected) has been obtained.
Hereinafter, a specific configuration of the residual chlorine measuring device will be described.
[0038]
FIG. 2 is a schematic cross-sectional view of a residual chlorine measuring device (fluid property measuring device) according to an embodiment of the present invention.
[0039]
The residual chlorine measuring device 4 according to this embodiment is provided between the downstream circulation line L13 of the pump 3 described above and the upstream circulation line L14 of the filter 5 described above.
In this embodiment, as shown in FIGS. 1 and 2, a residual chlorine measuring device 4 is provided in the circulation line L, and the residual chlorine concentration is continuously measured. Although the case where the circulated hot water is returned to the circulation line L is shown, the present invention is not limited to this configuration. Therefore, for example, the hot water is periodically sampled from the circulation line L to measure the residual chlorine concentration, and after the residual chlorine concentration is measured, it may be discharged as “drain”. That is, a part of the circulated hot water may be extracted as “sample water” which is a fluid to be inspected, and discharged as “drain” after the inspection. Alternatively, a bypass line branched from the circulation line L may be provided, and the residual chlorine measuring device 4 may be provided on the bypass line.
[0040]
As shown in FIG. 2, the residual chlorine measuring device 4 according to the present embodiment includes an inspection container 41 that performs inflow and outflow of a fluid to be inspected and measures the residual chlorine concentration therein, and flows into the inspection container 41. An electrode holder 42 that functions as a measurement unit having a pair of electrode units 42a for measuring the residual chlorine concentration of the fluid to be inspected, an inflow portion 43 provided to allow the fluid to be inspected to flow into the inspection container 41, and an inspection container 41, an outflow portion 44 provided to allow the fluid to be inspected to flow out, a bead-like polishing body 49 for removing deposits adhering to the pair of electrode portion surfaces 42a exposed from the electrode holder 42, and the bead-like polishing body And a stirring means provided with a stirring blade 45 for stirring 49.
[0041]
The cuvette 41 is configured using, for example, a transparent acrylic resin, and the cuvette 41 includes a holder mounting portion 41 a for mounting the electrode holder 42 and a first mounting portion for mounting the inflow portion 43. 41b, the 2nd attachment part 41c for attaching the outflow part 44, and the stirring means attachment part 41d for attaching the stirring means provided with the stirring blade 45 are formed. The forming material of the cuvette 41 is not limited to acrylic resin, and for example, hard vinyl chloride resin, fluororesin, stainless steel (SUS) or the like may be used.
[0042]
The electrode holder 42 is configured to be attachable to and detachable from the holder mounting portion 41a of the cuvette 41. The electrode holder 42 is configured to be attachable to the cuvette 41 so that a pair of electrode part surfaces 42a at the front end thereof are exposed to a fluid flow region 41A formed in the cuvette 41. Has been. That is, as shown in FIG. 2, the electrode holder 42 is attached to the holder attachment portion 41 a with the electrode portion surface 42 a facing upward.
[0043]
The inflow portion 43 is configured such that an inlet 43a, which is one end thereof, is detachable from the first attachment portion 41b of the cuvette 41, and the other end is connected to the circulation line L13. Moreover, the outflow part 44 is comprised so that the outflow port 44a which is the one end part can be attached or detached to the 2nd attachment part 41c of the test container 41, and the other end part is connected to the circulation line L14.
[0044]
In the present embodiment, as shown in FIG. 2, the inflow portion 43 and the outflow portion 44 are located above the stirring blade 45 and the beaded polishing body 49, and in substantially the same position in the height direction of the cuvette 41. Is provided. Further, the inflow portion 43 and the outflow portion 44 are provided at symmetrical positions with the cuvette 41 as the center.
Accordingly, in the circulation region 41A of the cuvette 41, a linear region connecting the inflow portion 43 and the outflow portion 44 constitutes a distribution path through which the fluid to be inspected mainly circulates.
[0045]
The stirring means includes a stirring blade 45, a drive shaft 46 that rotationally drives the stirring blade 45, a hood portion 47 provided between the drive shaft 46 and the stirring blade 45, and a drive that holds the drive shaft 46 so as to be rotationally driven. The shaft holder 48 is used.
[0046]
The stirring blade 45 is configured by providing a plate-like member at the tip of the drive shaft 46, the side end is indicated by the solid line in FIG. 2, and the plane portion is indicated by the two-dot chain line (virtual line) in FIG. It is shown. That is, a state in which the stirring blade 45 is rotated approximately 90 ° by the drive shaft 46 from the state indicated by the solid line in FIG. 2 is indicated by the two-dot chain line in FIG. The stirring blade 45 is made of, for example, styrene rubber, polychloroprene rubber, fluorine rubber, silicon rubber, or tetrafluoroethylene resin.
The hood portion 47 is formed in a tapered shape from the portion attached to the drive shaft 46 toward the stirring blade 45.
Although omitted in FIG. 2, the drive shaft 46 is connected to a rotational drive means such as an electric motor, and is configured to be rotatable at a predetermined speed as required.
[0047]
A plurality of bead-like polishing bodies 49 are provided on the upper portion of the electrode portion surface 42 a exposed at the bottom of the cuvette 41. The forming material and size of the bead-like abrasive 49 can be selected as appropriate. For example, ceramic, glass, and alumina are used as the forming material. Moreover, the bead-shaped abrasive | polishing body 49 is formed in the diameter about 0.5 mm-1.2 mm, for example.
[0048]
In the residual chlorine measuring device 4 according to the present embodiment configured as described above, the residual chlorine concentration (fluid property) of the circulated hot water (fluid to be tested) is measured as follows.
[0049]
First, the fluid to be inspected is introduced into the cuvette 41 from the inlet 43a of the inflow portion 43 via the circulation line L13. When the introduced fluid to be inspected fills the circulation region 41A of the cuvette 41, the fluid to be inspected is led out to the circulation line L14 via the outlet 44a of the outflow portion 44.
[0050]
In this way, in a state where the fluid to be inspected is introduced into and out of the circulation region 41A, the stirring blade 45 provided in the inspection container 41 has a predetermined speed (for example, 200 rpm to 500 rpm) based on the driving force from the driving shaft 46. Can be driven to rotate.
[0051]
That is, in the residual chlorine measuring device 4 according to the present embodiment, the contact between the plurality of bead-shaped abrasive bodies 49 and the electrode surface 42a is achieved by performing inflow and outflow of the fluid to be inspected and rotational driving of the stirring blade 45. While being repeatedly performed, the residual chlorine concentration of the fluid to be inspected is measured by the pair of electrode portions provided at the bottom of the cuvette 41. With such a configuration, the adhered substance on the electrode portion surface 42a can be removed by the plurality of bead-like polishing bodies 49, so that stable residual chlorine concentration can be measured.
[0052]
Now, the fluid to be inspected introduced into the circulation region 41A is appropriately circulated through the circulation region 41A by the flow velocity from the inlet 43a and the stirring force of the stirring blade 45, while most of the fluid to be tested flows in. A linear movement is performed from the portion 43 to the outflow portion 44.
[0053]
Therefore, in the present embodiment, a stable flow path is formed that allows the fluid to be inspected to flow linearly (linearly from the inflow portion 43 to the outflow portion 44) using the inflow portion 43 and the outflow portion 44. Therefore, the bead-shaped polishing body 49 positioned below the pressing body 49 is pressed against the bottom side of the circulation region 41A by the flow of the fluid to be inspected. Therefore, according to the present embodiment, the outflow of the bead-shaped polishing body 49 from the outflow portion 44 can be appropriately prevented without providing a wire net or the like for preventing the outflow of the bead-shaped polishing body as in the prior art.
[0054]
Further, in the present embodiment, as described above, a stable flow path is configured using the inflow portion 43 and the outflow portion 44, and a predetermined amount is always provided downward from the inflow / outflow portions 43, 44 in the cuvette 41. There will be a fluid to be inspected. That is, the residual chlorine measuring device 4 according to the present embodiment includes the inspection container 41 that functions like a “constant water tank”.
Therefore, according to the present embodiment, even when the inflow amount of the fluid to be inspected from the inflow portion 43 changes, the influence of the water flow and the flow velocity of the fluid to be inspected on the diffusion layer of the pair of electrode surface 42a is affected. (That is, the thickness of the diffusion layer on the electrode portion surface 42a is made substantially constant), and a stable electrode reaction and an accurate measurement result based on this can be obtained. Therefore, even in places where the flow rate of the fluid to be inspected is large or where the flow rate of the fluid to be inspected can be collected only slightly, the residual chlorine concentration (fluid) is not affected by the flow rate of the fluid to be inspected. Property) can be measured.
[0055]
Furthermore, in this embodiment, by providing the inflow portion 43 and the outflow portion 44 symmetrically, the bead-like polishing body 49 is appropriately pressed against the electrode portion surface 42a side, and the electrode portion surface 42a is polished more effectively. Can be implemented. Further, according to such a configuration, it is possible to appropriately prevent the bead-like polishing body 49 from flowing out of the system through the outflow portion 44.
[0056]
Further, in the present embodiment, the interval t1 between the inner wall of the cuvette 41 and the outer end of the stirring means and the diameter B of the beaded abrasive 49 are configured to have the following relationship: Yes.
[Expression 1]
B ≤ t1 ≤ 3B
In the residual chlorine measuring device 4 according to the present embodiment, the “outer end portion of the stirring means” is the outer end portion of the hood portion 47 or the stirring blade 45.
[0057]
In the present embodiment, the fluid to be inspected moves from the upper side to the lower side because the hood part 47 attached to the drive shaft 46 has a taper shape from the upper side to the lower side while having the relationship of the above formula 1. In this case, the speed is the fastest at the interval t1. Therefore, according to such a configuration, the bead-like polishing body 49 hardly moves above the hood portion 47, so that the outflow of the bead-like polishing body 49 from the outflow portion 44 can be appropriately prevented. it can. That is, in other words, when the interval t1 is large (when it is larger than 3 times the diameter B of the bead-shaped abrasive body 49), the bead-shaped abrasive body 49 may be ejected by the stirring blade 45 and flow out.
In addition, when the interval t1 is small (when it is smaller than the diameter B of the beaded polishing body 49), there is a possibility that the flow state of the fluid to be inspected is hindered.
[0058]
Note that the relationship between the interval t1 between the inner wall of the cuvette 41 and the outer end of the stirring means and the diameter B of the beaded polishing body 49 is not limited to the above equation 1, and for example, the relationship of the following equation 2 You may have.
[Expression 2]
1.5B ≤ t1 ≤ 2.5B
[0059]
In the case of having the relationship of the above formula 2, it is possible to prevent the bead-like polishing body 49 from flowing out more effectively than in the case of having the relationship of the formula 1, while eliminating the above-described inhibition of the flow state.
[0060]
Furthermore, in the present embodiment, the distance t2 between the electrode surface 42a exposed on the bottom of the cuvette 41 and the tip of the stirring means, and the diameter B of the beaded abrasive 49 are given by It is configured to have a relationship.
[Equation 3]
2B ≤ t2 ≤ 5B
In the residual chlorine measuring device 4 according to the present embodiment, the “tip portion of the stirring means” is the lower tip portion of the stirring blade 45.
[0061]
According to the present embodiment, since the distance t2 is maintained in the relationship shown in the above formula 3, it is possible to moderately suppress the load (friction, etc.) on the bead-like polishing body 49 and the electrode surface 42a. . That is, the electrode portion surface 42a is polished by the bead-like polishing body 49, and the interval can be set to such an extent that the bead-like polishing body 49 and the electrode portion surface 42a are not damaged. That is, when the interval t2 is small (when it is smaller than twice the diameter B of the beaded abrasive 49), the electrode surface 42a may be damaged. When the interval t2 is large (the diameter of the beaded abrasive 49). In the case where it is larger than 5 times, the electrode part surface 42a may be insufficiently polished.
[0062]
Note that the relationship between the interval t2 and the diameter B of the bead-like polishing body 49 is not limited to the above Equation 3, and for example, the relationship of the following Equation 4 may be provided.
[Expression 4]
2.5B ≤ t2 ≤ 4B
[0063]
In the case where the relationship of Equation 4 is satisfied, the deposits can be removed more effectively without damaging the electrode surface 42a than in the case of the relationship of Equation 3.
[0064]
As described above, in the embodiment of the present invention, the fine movement of the bead-shaped polishing body 49 is caused to flow by using the flow rate of the fluid to be inspected and the stirring means to flow the bead-shaped polishing body 49. It is possible to remove the adhered substance on the electrode portion surface 42a. Therefore, it is possible to perform stable measurement of residual chlorine concentration.
[0065]
Moreover, in the prior art, the beads are covered with a wire mesh or the like so that the beads do not flow out of the system due to the water flow. In such a configuration, as described above, the processing with the filter is performed. When the fluid to be inspected before flowing in, the protein or particulate suspended matter in the fluid to be inspected adheres to the wire mesh and the flow path becomes clogged, and the fluid properties such as residual chlorine concentration are accurately measured. There was a problem that could not be.
However, in this embodiment, since the bead-like polishing body 49 circulates in the region below the hood portion 47, the bead-like polishing body 49 flows out from the outflow portion 44 provided above the hood portion 47. The flow path through which the fluid to be inspected is circulated in the cuvette 41 can be secured widely, and there is no need to provide a wire mesh as in the prior art.
That is, according to the residual chlorine measuring device 4 according to the present embodiment, it is possible to secure a wide flow path of the fluid to be inspected that circulates in the cuvette 41. Therefore, the protein can be obtained at any location of the cuvette 41. And no attachment of particulate suspended matter. In addition, since no wire mesh or the like is used, there is little fluctuation in the flow rate of the fluid to be inspected and stable measurement can be performed.
[0066]
Furthermore, in the present embodiment, as described above, the inflow portion 43 and the outflow portion 44 are provided above the electrode portion surface 42 a and the circulation motion region of the bead-like polishing body 49. Therefore, according to this embodiment, the area | region below the inflow / outflow parts 43 and 44 in the test | inspection container 41 functions as a constant water tank.
Therefore, since a stable diffusion layer is always formed on the electrode surface 42a according to the present embodiment, it is a place where the flow rate of the fluid to be inspected is large and where the flow rate of the fluid to be examined can be collected only slightly. However, good and stable fluid property measurement can be performed without being affected by the flow rate of the fluid to be inspected.
[0067]
The present invention is not limited to the above-described embodiments, and various modifications other than those described above can be made without departing from the spirit of the present invention.
[0068]
In the above embodiment, the case where the inflow portion 43 and the outflow portion 44 have substantially the same height and are provided at symmetrical positions of the cuvette 41 has been described, but the present invention is not limited to this configuration, If the beaded abrasive body 49 is appropriately pressed to the electrode surface 42a side by the inspection fluid, and the polishing treatment of the electrode surface 42a and the prevention of the outflow of the beaded abrasive body 49 can be carried out, the arrangement position thereof is other. It may be the part. Therefore, even if the inflow part and the outflow part are provided at different heights (for example, the outflow part is provided higher than the inflow part), or the inflow part and the outflow part are different from each other by 90 ° around the cuvette. May be provided.
[0069]
Moreover, in the said embodiment, although the case where the test container 41 was comprised integrally was demonstrated, this invention is not limited to this structure, It may be comprised so that it can divide up and down or right and left as needed. Good. Therefore, for example, it may be configured such that it can be divided vertically from the position of the hood portion 47.
According to such a configuration, the filling operation of the bead-like polishing body 49, the maintenance operation of the stirring blade 45, and the like can be performed more easily.
[0070]
In the above embodiment, the case where the “residual chlorine concentration” is measured as one of the fluid properties has been described, but the present invention is not limited to this. Therefore, the fluid property measuring device according to each embodiment may be used to measure other fluid properties such as “chlorine dioxide concentration” as long as the fluid property can be measured using a pair of electrodes. .
[0071]
Moreover, in the said embodiment, although the fluid property measuring device concerning this invention demonstrated as a thing applied as what measures the residual chlorine concentration in the warm water in a "bathtub", this invention is limited to this structure. Instead, it may be used as a device for measuring a fluid to be inspected in a pool or a drinking water reservoir, if necessary.
[0072]
【The invention's effect】
As described above, according to the present invention, it is possible to appropriately remove the adhered substance on the surface of the electrode portion using a bead-like abrasive body, and to secure a wide flow path of the fluid to be inspected and adhere floating substances and the like. It is possible to obtain a fluid property measuring device that can prevent the outflow of the bead-like abrasive from the system. Further, according to the present invention, it is possible to obtain a fluid property measuring apparatus capable of performing stable fluid property measurement even when the flow rate change of the fluid to be inspected is large or the flow rate is small.
[Brief description of the drawings]
FIG. 1 is a system flow diagram showing an example of a daily use circulation bath that can be configured by applying a residual chlorine measuring device according to an embodiment of the present invention.
FIG. 2 is a schematic sectional view of a residual chlorine measuring apparatus according to an embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Bathtub, 1a ... Bottom part, 2 ... Hair collector, 3 ... Pump, 4 ... Residual chlorine measuring device (fluid property measuring device), 5 ... Filter, 6 ... Heater 6
41 ... Inspection container, 41a ... Holder attachment part, 41b ... First attachment part, 41c ... Second attachment part, 41d ... Stirring means attachment part, 42 ... Electrode holder, 42a ... Electrode part surface, 43 ... Inflow part, 43a ... Inlet, 44 ... Outlet, 44a ... Outlet, 45 ... Stirrer blade, 46 ... Drive shaft, 47 ... Hood, 48 ... Drive shaft holder, 49 ... Beaded abrasive

Claims (9)

被検査流体の流入部および流出部を有する検査容器と、前記検査容器内に流入した前記被検査流体の性状を測定すべく一対の電極部を有する測定部と、前記電極部表面の洗浄処理を行う複数のビーズ状研磨体とを備えた流体性状測定装置であって、
前記測定部は、前記一対の電極部が前記検査容器の底部に位置すべく配設され、前記一対の電極部の上方位置には、前記ビーズ状研磨体を攪拌する攪拌翼を備える攪拌手段が設けられており、
前記流入部および前記流出部を介して前記検査容器内を流通する前記被検査流体によって、前記ビーズ状研磨体が前記検査容器の底部側に移動するように、前記攪拌翼よりも上方位置に前記流入部および前記流出部が設けられている
ことを特徴とする流体性状測定装置。
A test container having an inflow part and an outflow part for a fluid to be inspected, a measuring part having a pair of electrode parts for measuring properties of the fluid to be inspected flowing into the test container, and a cleaning process for the surface of the electrode part A fluid property measuring device comprising a plurality of bead-shaped abrasives to be performed,
The measuring unit is arranged such that the pair of electrode parts is positioned at the bottom of the cuvette, and an agitation unit provided with an agitating blade for agitating the bead-like abrasive body above the pair of electrode parts Provided,
The beaded abrasive is moved to a position above the agitating blade so that the bead-like abrasive is moved to the bottom side of the cuvette by the fluid to be inspected flowing through the cuvette through the inflow part and the outflow part. An inflow portion and the outflow portion are provided.
被検査流体の流入部および流出部を有する検査容器と、前記検査容器内に流入した前記被検査流体の性状を測定すべく一対の電極部を有する測定部と、前記電極部表面の洗浄処理を行う複数のビーズ状研磨体とを備えた流体性状測定装置であって、A test container having an inflow part and an outflow part for a fluid to be inspected, a measuring part having a pair of electrode parts for measuring the properties of the fluid to be inspected flowing into the test container, and a cleaning process for the surface of the electrode part A fluid property measuring device comprising a plurality of bead-shaped abrasives to be performed,
前記測定部は、前記一対の電極部が前記検査容器の底部に位置すべく配設され、前記一対の電極部の上方位置には、前記ビーズ状研磨体を攪拌する攪拌手段が設けられており、  The measurement unit is disposed so that the pair of electrode units is positioned at the bottom of the cuvette, and a stirring means for stirring the beaded abrasive is provided above the pair of electrode units. ,
前記流入部および前記流出部を介して前記検査容器内を流通する前記被検査流体によって、前記ビーズ状研磨体が前記検査容器の底部側に移動するように、前記ビーズ状研磨体の上方位置に前記流入部および前記流出部が設けられており、  The beaded polishing body is moved to a position above the beaded polishing body such that the beaded polishing body moves to the bottom side of the inspection container by the fluid to be inspected flowing through the inspection container through the inflow portion and the outflow portion. The inflow portion and the outflow portion are provided,
前記検査容器の内壁と前記攪拌手段の外端部との間隔と、前記ビーズ状研磨体の直径とが、以下の数式の関係を有する  The interval between the inner wall of the cuvette and the outer end of the stirring means and the diameter of the beaded abrasive body have the following mathematical relationship:
ことを特徴とする流体性状測定装置。A fluid property measuring apparatus.
B ≦ t1 ≦ 3B                      B ≤ t1 ≤ 3B
t1:検査容器の内壁と攪拌手段の外端部との間隔            t1: Distance between the inner wall of the cuvette and the outer end of the stirring means
B :ビーズ状研磨体の直径            B: Diameter of the beaded abrasive
被検査流体の流入部および流出部を有する検査容器と、前記検査容器内に流入した前記被検査流体の性状を測定すべく一対の電極部を有する測定部と、前記電極部表面の洗浄処理を行う複数のビーズ状研磨体とを備えた流体性状測定装置であって、A test container having an inflow part and an outflow part for a fluid to be inspected, a measuring part having a pair of electrode parts for measuring the properties of the fluid to be inspected flowing into the test container, and a cleaning process for the surface of the electrode part A fluid property measuring device comprising a plurality of bead-shaped abrasives to be performed,
前記測定部は、前記一対の電極部が前記検査容器の底部に位置すべく配設され、前記一対の電極部の上方位置には、前記ビーズ状研磨体を攪拌する攪拌手段が設けられており、  The measurement unit is disposed so that the pair of electrode units is positioned at the bottom of the cuvette, and a stirring means for stirring the beaded abrasive is provided above the pair of electrode units. ,
前記流入部および前記流出部を介して前記検査容器内を流通する前記被検査流体によって、前記ビーズ状研磨体が前記検査容器の底部側に移動するように、前記ビーズ状研磨体の上方位置に前記流入部および前記流出部が設けられており、  The beaded polishing body is moved to a position above the beaded polishing body such that the beaded polishing body moves to the bottom side of the inspection container by the fluid to be inspected flowing through the inspection container through the inflow portion and the outflow portion. The inflow portion and the outflow portion are provided,
前記一対の電極部の表面と前記攪拌手段の先端部との間隔と、前記ビーズ状研磨体の直径とが、以下の数式の関係を有する  The distance between the surface of the pair of electrode parts and the tip of the stirring means and the diameter of the beaded polishing body have the following mathematical relationship:
ことを特徴とする流体性状測定装置。A fluid property measuring apparatus.
2B ≦ t2 ≦ 5B                      2B ≤ t2 ≤ 5B
t2:一対の電極部の表面と攪拌手段の先端部との間隔            t2: Distance between the surface of the pair of electrode portions and the tip of the stirring means
B :ビーズ状研磨体の直径            B: Diameter of the beaded abrasive
前記被検査流体の流入部および流出部は、検査容器の高さ方向において略同様の位置に設けられているThe inflow part and the outflow part of the fluid to be inspected are provided at substantially the same position in the height direction of the inspection container.
請求項1から3のいずれか1項に記載の流体性状測定装置。The fluid property measuring apparatus according to any one of claims 1 to 3.
前記被検査流体の流入部および流出部は、検査容器を挟んで対向する位置に設けられているThe inflow part and the outflow part of the fluid to be inspected are provided at positions facing each other across the inspection container.
請求項1から4のいずれか1項に記載の流体性状測定装置。The fluid property measuring apparatus according to any one of claims 1 to 4.
前記攪拌手段は、前記ビーズ状研磨体の流出を防止すべく、前記被検査流体の流入部および流出部よりも下方にフード部を備えているThe stirring means includes a hood portion below the inflow portion and the outflow portion of the fluid to be inspected in order to prevent the beaded abrasive from flowing out.
請求項1から5のいずれか1項に記載の流体性状測定装置。The fluid property measuring apparatus according to any one of claims 1 to 5.
前記ビーズ状研磨体の直径が0.5mm〜1.2mmである
請求項1からのいずれか1項に記載の流体性状測定装置。
The fluid property measuring device according to any one of claims 1 to 6 , wherein a diameter of the bead-shaped abrasive is 0.5 mm to 1.2 mm.
前記ビーズ状研磨体がセラミック、ガラス、およびアルミナの少なくとも一つを用いて形成されている
請求項1からのいずれか1項に記載の流体性状測定装置。
The fluid property measuring apparatus according to any one of claims 1 to 7 , wherein the bead-like polishing body is formed using at least one of ceramic, glass, and alumina.
前記被検査流体の性状が、残留塩素濃度および二酸化塩素濃度の少なくとも一方である
請求項1からのいずれか1項に記載の流体性状測定装置。
The fluid property measuring device according to any one of claims 1 to 8 , wherein the property of the fluid to be inspected is at least one of a residual chlorine concentration and a chlorine dioxide concentration.
JP2003073258A 2003-03-18 2003-03-18 Fluid property measuring device Expired - Lifetime JP3823126B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003073258A JP3823126B2 (en) 2003-03-18 2003-03-18 Fluid property measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003073258A JP3823126B2 (en) 2003-03-18 2003-03-18 Fluid property measuring device

Publications (2)

Publication Number Publication Date
JP2004279301A JP2004279301A (en) 2004-10-07
JP3823126B2 true JP3823126B2 (en) 2006-09-20

Family

ID=33289199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003073258A Expired - Lifetime JP3823126B2 (en) 2003-03-18 2003-03-18 Fluid property measuring device

Country Status (1)

Country Link
JP (1) JP3823126B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009168694A (en) * 2008-01-18 2009-07-30 Yokogawa Electric Corp Chlorine meter

Also Published As

Publication number Publication date
JP2004279301A (en) 2004-10-07

Similar Documents

Publication Publication Date Title
JPWO2002090266A1 (en) Water treatment equipment
JP6856867B2 (en) Reagent-free free residual chlorine measuring device and reagent-free free residual chlorine measuring method
CA2580793A1 (en) Method and apparatus for conditioning a sensor for measuring oxidation reduction potential
JP3823126B2 (en) Fluid property measuring device
JP3773911B2 (en) Fluid property measuring device
JP2016080573A (en) Free residual chlorine measurement device
US20190178834A1 (en) Bead Mixer / Cleaner For Use With Sensor Devices
JP4185932B2 (en) Fluid property measuring device
JP4217309B2 (en) Water quality measuring device
KR20170098349A (en) Electrochemical TRO sensor
JP2004223419A (en) Control device for concentration of chlorine
JP4502643B2 (en) Chlorination apparatus and chlorination method
JP5547661B2 (en) Cleaning method of ozone water sensor
JP3497806B2 (en) Water quality monitoring device
JP2007152272A (en) Immersed membrane filtration method and immersed membrane filtration apparatus
JP3612902B2 (en) Electrolyzed water generator
JP3782071B2 (en) Residual chlorine concentration measurement equipment
JPH07181130A (en) Washer for turbidimeter
JP2001050927A (en) Cleaning apparatus for residual chlorine analyzer of discharge water in sewer
JP4150445B2 (en) Residual chlorine meter and liquid sterilizer using the same
JPH1128474A (en) Method for evaluating slime generation condition of paper pulp production process and slime control method therefor
JP3702125B2 (en) Equipment for measuring residual chlorine in sewage treated water
JP2004223466A (en) Cleaning device
JP3139292B2 (en) Method for controlling slime adhesion on flow cell of biosensor
JP4406867B2 (en) Salt water treatment equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060424

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3823126

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100707

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110707

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120707

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120707

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130707

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term