JP4352367B2 - Electrode cleaning method and residual chlorine meter - Google Patents

Electrode cleaning method and residual chlorine meter Download PDF

Info

Publication number
JP4352367B2
JP4352367B2 JP2001293274A JP2001293274A JP4352367B2 JP 4352367 B2 JP4352367 B2 JP 4352367B2 JP 2001293274 A JP2001293274 A JP 2001293274A JP 2001293274 A JP2001293274 A JP 2001293274A JP 4352367 B2 JP4352367 B2 JP 4352367B2
Authority
JP
Japan
Prior art keywords
electrode
wall surface
side wall
counter electrode
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001293274A
Other languages
Japanese (ja)
Other versions
JP2003098143A (en
Inventor
武志 植田
順子 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2001293274A priority Critical patent/JP4352367B2/en
Publication of JP2003098143A publication Critical patent/JP2003098143A/en
Application granted granted Critical
Publication of JP4352367B2 publication Critical patent/JP4352367B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、電極洗浄方法及び残留塩素計に関するものであり、詳しくは水中の残留塩素を測定する際に使用する電極を洗浄する構造を備えた電極洗浄方法及び残留塩素計に関する。
【0002】
【従来の技術】
従来技術における残留塩素計において、電極を洗浄するようにした残留塩素計は、種々のものがある。
【0003】
第1の具体例の電極を洗浄する構造は、図2に示すように、回転金属棒を用いたポーラログラフ方式で、ガラスビーズの中で回転させ、連続自動洗浄をしながら長期安定した測定を可能にするものであり、検水を流すための容器を2部屋に分離し、一方の部屋11aに対極12を配置し、もう1つの他方の部屋11bに2個の電極、即ち、作用極13と、その設置した作用極13に対峙した状態で回転電極14とを配置し、その他方の部屋11bに設けた作用極13の底部は傾斜させた構造にし、そこに回転電極14の先端部位にあたる位置に所定量のガラスビーズ15を敷き詰めた構造になっている。
【0004】
このような構造の電極において、回転電極14は回転しているため、検水16中のガラスビーズ15がこの回転電極14に接触することにより電極の洗浄を行う。
【0005】
第2の具体例の電極を洗浄する構造は、図3に示すように、電極25を固定し、小さなガラスビーズ26を水流で動かし、先端の金電極にぶつけるようにした構造の小型化したものである。その構造は、検水16を入力する容器21内に検水16を入力する細管22を容器21の底部近傍にまで伸びるように配置し、容器21底部は円錐形状23に形成し、この円錐形状23に形成した底部に向かう方向に先端が金電極24の電極25を配置する。そして、この円錐形状23の底部に一定量のガラスビーズ26を敷き詰める。又、容器21の上方向に検水を排出するオーバーフロー出口27を設けた構造にする。
【0006】
このような構造の電極においては、細管22にて供給される検水16が円錐形状23の底部の底面にあたると反転する。この時、ガラスビーズ26を巻き込んで電極25の先端にある金電極24にあたり汚れを落とす構造となっている。
【0007】
第3の具体例の電極を洗浄する構造は、図4に示すように、検水16を入力する容器31の底部に電極32を配置し、その臨んだ状態の電極32に対して、横方向から検水を入力する検水入口部33を備えた構造にし、その底部に臨んだ電極32上部にガラスビーズ34を敷き詰めた構造となっている。
【0008】
このように、常時ガラスビーズ34を電極32に接触するようにして、底面横方向に設けた検水入口部33から検水16を給水すると、ガラスビーズ34が電極32に接触しながら巻き上がり、検水16の渦に混じってガラスビーズ34が電極32にぶつかることにより電極32の先端部位の洗浄が行われる。
【0009】
第4の具体例の電極を洗浄する構造は、図5に示すように、検水の容器35の底部37に検水16を入力する検水入口部36を配置し、その底部37に設けた検水入口部36に対して所定距離上方向の位置に電極38を配置し、底部37の検水入口部36にメッシュ39を配置して、その底部37に所定量のガラスビーズ40を敷き詰めた構造となっている。
【0010】
このように、ガラスビーズ40を検水入口部36の底部37から所定距離の上部位置の電極38に接触するようにする。即ち、底部37から検水16を給水すると、ガラスビーズ40が噴水のように吹き上げ、対局する電極38にぶつかることにより電極38の洗浄が行われる。
【0011】
【発明が解決しようとする課題】
しかしながら、従来技術で説明した種々の電極を洗浄する手法において、検水の流量が少ないため、微細なガラスビーズ(洗浄ビーズ)しか掻き回すことができないという問題がある。
【0012】
又、流量及び流速が変動するとガラスビーズの動きが変わり、洗浄効果が一定せず洗浄力が弱くなるという問題もある。
【0013】
更に、電極をガラスビーズの中で回転させる回転電極の場合には、検水が河川水のような汚れた水の中でも洗浄効果が期待できるが、大きなパワーと回転電極から小さな接触抵抗で信号を取り出す機能が必要になり、構成及び構造的に複雑になるという問題もある。
【0014】
従って、ガラスビーズを使用した電極の洗浄構造において、検水の流動や流速の影響を受けにくい構造にして洗浄効果を醸し出す構造、構成に解決しなければならない課題を有する。
【0015】
【課題を解決するための手段】
上記課題を解決するために、本発明に係る電極洗浄方法及び残留塩素計は、次に示す構成にすることである。
【0016】
(1) 作用極、対極及び比較極を備えると共に検水を収容する有底筒体において、その底部側側壁面と前記対極との形状を上下方向に凹凸の関係にし且つ所定間隔の隙間を維持して沿面距離を稼ぐとともに、前記作用極の先端を前記側壁面と前記対極で形成された隙間に配置し、前記隙間の下部横方向から上部横方向に検水と共に洗浄ビーズを流して前記対極と作用極を洗浄するようにし、前記比較極は前記ビーズによる洗浄をしないようにしたことを特徴とする電極洗浄方法。
(2) 前記有底筒体の側壁面の形状と前記電極の形状は、同一形状の半円形状と円形状に形成したことを特徴とする(1)に記載の電極洗浄方法。
【0017】
(3) 検水が収容される有底筒体と、該有底筒体内部に設置した作用極、対極及び比較極と、検水の流れに従って流れる洗浄ビーズにより前記作用極と対極を洗浄する電極洗浄手段とを備えた残留塩素計であって、
前記有底筒体の底部側の側壁面を上下方向に凹曲面形状に形成した前記対極設置部と、前記側壁面と前記対極で形成された隙間に先端が配置された前記作用極と、
前記凹曲面形状の側壁面と所定間隔の隙間を形成し且つ所定の沿面距離を稼ぐようにして配置した凸曲面形状の対極と、
前記凹曲面形状の側壁面と前記対極との下部側の隙間から上部側の隙間に向かって検水が流れるように検水排出口を配置した検水導入管と、
前記凹曲面形状の側壁面と前記対極との隙間を通過できる大きさに形成し、且つ検水よりも比重が重い部材で形成した複数個の洗浄ビーズと、前記対極と前記検水排出口との間であって底部に前記洗浄ビーズが貯留できるスペースと、を備えたことを特徴とする残留塩素計。
(4) 前記凹面形状の側壁面は半円形状であり、前記第2の電極は該半円形状の側壁面と同一形状を有する円形状に形成したことを特徴とする(3)に記載の残留塩素計。
【0018】
このように、電極の形状と側壁面の形状を同じ形状にして、所定の間隔の隙間を維持し且つ沿面距離を稼ぐ構造にし、その隙間に下部方向から検水と共に洗浄ビーズを流し込んで電極を洗浄させるようにしたことにより、電極を洗浄するための洗浄ビーズが当接する距離を多くすることができるため、比較的簡単な構造であっても効率のよい洗浄を行うことが可能である。
【0019】
【発明の実施の形態】
次に、本発明に係る電極洗浄方法及び残留塩素計の実施形態について、図面を参照して説明する。
【0020】
本願発明の残留塩素計は、その残留塩素の測定手法としての一般的なポーラログラフ法による構造となっており、それは作用極と比較極に印加電圧を加え、作用極と対極間に流れる電流が残留塩素の濃度に比例することで測定するものである。
【0021】
このポーラログラフ法による電流iは、次の式(1)で求めることができる。
【0022】
i=nFDA×(C/δ)・・・・・・…式(1)
n:反応物質の価数
F:ファラデー定数
D:反応物質の拡散係数
A:作用電極の面積
C:反応物質の濃度
δ:拡散層の厚さ
【0023】
この式(1)からわかるように、流れる電流iは作用極の面積にも比例するので汚れなどによる影響を受ける。このため、作用極の電極面が汚れないように常に清掃にし、汚れないように保つ必要がある。そのため、本発明においては、この作用極の露出している面にガラスビーズ(洗浄ビーズ)を長い間当接する構造にし、しかも拡散層の厚さを一定に保持した状態にして、ガラスビーズによる洗浄も行える構造にした点に特徴を有する。
【0024】
本発明の電極洗浄方法を具現化することができる残留塩素計は、図1に示すように、検水が収容される有底筒体51と、この有底筒体51の底部側の側壁面52を上下方向に凹曲面形状に形成した電極設置部53と、この凹曲面形状の側壁面52の所定位置に設けた第1の電極である作用極54と、凹曲面形状の側壁面52と所定間隔の隙間を形成し且つ所定の沿面距離を稼ぐようにして配置した凸曲面形状の第2の電極である対極56と、この凹曲面形状の側壁面52と対極56との下部側の隙間55から上部側の隙間55に向かって検水が流れるように検水排出口57を配置した検水導入管58と、この凹曲面形状の側壁面52と対極56との隙間55を通過できる大きさに形成し、且つ検水よりも比重が重い部材で形成した複数個の洗浄ビーズ59と、対極56と検水排出口57との間であって底部に洗浄ビーズ59が貯留できるスペース60と、比較極61と、検水を排出するオーバーフロー出口62と、測定部63とからなる。
【0025】
凹面形状の側壁面52は半円形状であり、対極56は半円形状の側壁面52と同一形状を有する円形状に形成した構造になっている。
【0026】
このような構造からなる残留塩素計において、検水導入管58に検水を流し込むと検水排出口57から検水が流れ、底部のスペース60に貯留している洗浄ビーズ59を巻き込んで下部横方向の隙間55に流れこみ、対極56の表面及び作用極54に当りながら、上部隙間55方向に流れ、上部の隙間55から飛び出した洗浄ビーズ59は、自重によりスペース60の部分に降りる。そして、検水が流れていれば再度下部横方向の隙間55に入りこみ、上部隙間55から出るという旋回運動する。
【0027】
従って、対極56の作用極54側の面が隙間55を通過する洗浄ビーズ59により洗浄される。それも、洗浄ビーズ59が通過する隙間55の大きさを限定すると共に、対極56への沿面距離を長くする構造、即ち、円形状の隙間55にしたことにより電極面に接触する距離が多きくなるため、効率良く洗浄することができるのである。
【0028】
【発明の効果】
以上説明したように、本発明に係る電極洗浄方法及び残留塩素計は、電極と検水を収容する有底筒体の側壁面とを上下方向に凹凸の関係、具体的には中心位置を同じくした円形状と半円形状に形成して、その隙間に検水と共に洗浄ビーズを流し込んで電極を洗浄するようにしたことにより、洗浄する面積が広くとれると共に洗浄する時間が多くとれ、検水の流速を強くすることなく電極の洗浄効率を向上させることができるという効果がある。
【図面の簡単な説明】
【図1】本発明に係る残留塩素計の電極構造を示した断面図である。
【図2】従来技術における第1の具体例の残留塩素計の電極の構造の断面図である。
【図3】従来技術における第2の具体例の残留塩素計の電極の構造の断面図である。
【図4】従来技術における第3の具体例の残留塩素計の電極の構造の断面図である。
【図5】従来技術における第4の具体例の残留塩素計の電極の構造の断面図である。
【符号の説明】
51 有底筒体
52 側壁面
53 電極設置部
54 作用極(第1の電極)
55 隙間
56 対極(第2の電極)
57 検水排出口
58 検水導入管
59 洗浄ビーズ
60 スペース
61 比較極
62 オーバーフロー出口
63 測定部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrode cleaning method and a residual chlorine meter, and more particularly to an electrode cleaning method and a residual chlorine meter provided with a structure for cleaning an electrode used when measuring residual chlorine in water.
[0002]
[Prior art]
There are various residual chlorine meters in the prior art in which electrodes are cleaned.
[0003]
The structure for cleaning the electrode of the first specific example is a polarographic method using a rotating metal rod as shown in FIG. 2, and can rotate in glass beads and perform long-term stable measurement while performing continuous automatic cleaning. The container for flowing test water is divided into two rooms, the counter electrode 12 is arranged in one room 11a, and two electrodes, that is, the working electrode 13 and the other room 11b, The rotating electrode 14 is arranged facing the installed working electrode 13, and the bottom of the working electrode 13 provided in the other chamber 11 b is inclined, and the position corresponding to the tip portion of the rotating electrode 14 there. In this structure, a predetermined amount of glass beads 15 are spread.
[0004]
In the electrode having such a structure, since the rotating electrode 14 is rotating, the glass beads 15 in the test water 16 come into contact with the rotating electrode 14 to clean the electrode.
[0005]
As shown in FIG. 3, the structure for cleaning the electrode of the second specific example is a miniaturized structure in which the electrode 25 is fixed, the small glass beads 26 are moved by water flow, and hit against the gold electrode at the tip. It is. The structure is such that a narrow tube 22 for inputting the test water 16 is disposed in the container 21 for inputting the test water 16 so as to extend to the vicinity of the bottom of the container 21, and the bottom of the container 21 is formed in a conical shape 23. An electrode 25 having a gold electrode 24 at the tip is disposed in a direction toward the bottom formed on the electrode 23. Then, a certain amount of glass beads 26 are spread on the bottom of the conical shape 23. In addition, an overflow outlet 27 is provided in the upper direction of the container 21 to discharge the test water.
[0006]
In the electrode having such a structure, when the test water 16 supplied by the narrow tube 22 hits the bottom surface of the bottom of the conical shape 23, the electrode is reversed. At this time, the glass beads 26 are rolled up and the dirt is removed by hitting the gold electrode 24 at the tip of the electrode 25.
[0007]
As shown in FIG. 4, the structure for cleaning the electrode of the third specific example is such that an electrode 32 is arranged at the bottom of the container 31 for inputting the test water 16, and the lateral direction with respect to the electrode 32 in the faced state. In this structure, a water sample inlet 33 for inputting water is provided, and glass beads 34 are laid on the upper portion of the electrode 32 facing the bottom.
[0008]
Thus, when the test water 16 is supplied from the test water inlet portion 33 provided in the lateral direction of the bottom surface so that the glass beads 34 are always in contact with the electrode 32, the glass beads 34 are rolled up while being in contact with the electrode 32, When the glass beads 34 collide with the electrode 32 in the vortex of the test water 16, the tip portion of the electrode 32 is washed.
[0009]
As shown in FIG. 5, the structure for cleaning the electrode of the fourth specific example is provided at the bottom 37 of the water sample inlet 36 for inputting the water 16 to the bottom 37 of the water sample container 35. An electrode 38 is disposed at a position a predetermined distance above the test water inlet 36, a mesh 39 is disposed at the water test inlet 36 of the bottom 37, and a predetermined amount of glass beads 40 are spread on the bottom 37. It has a structure.
[0010]
In this way, the glass beads 40 are brought into contact with the electrode 38 at an upper position at a predetermined distance from the bottom 37 of the water sampling inlet 36. That is, when the test water 16 is supplied from the bottom 37, the glass beads 40 are blown up like a fountain, and the electrodes 38 are washed by colliding with the opposing electrodes 38.
[0011]
[Problems to be solved by the invention]
However, in the method for cleaning various electrodes described in the prior art, there is a problem that only the fine glass beads (washing beads) can be stirred because the flow rate of the test water is small.
[0012]
In addition, when the flow rate and flow rate fluctuate, the movement of the glass beads changes, resulting in a problem that the cleaning effect is not constant and the cleaning power is weakened.
[0013]
Furthermore, in the case of a rotating electrode that rotates the electrode in a glass bead, the test water can be expected to have a cleaning effect even in dirty water such as river water, but a signal can be output from the rotating electrode with a small contact resistance. There is also a problem that the function of taking out is required and the structure and structure become complicated.
[0014]
Therefore, in the electrode cleaning structure using glass beads, there is a problem that must be solved by a structure and structure that brings about a cleaning effect by making the structure less susceptible to the flow and flow rate of test water.
[0015]
[Means for Solving the Problems]
In order to solve the above problems, an electrode cleaning method and a residual chlorine meter according to the present invention are configured as follows.
[0016]
(1) In a bottomed cylindrical body that has a working electrode, a counter electrode, and a comparison electrode and accommodates test water, the shape of the bottom side wall surface and the counter electrode is made uneven in the vertical direction and a gap of a predetermined interval is maintained. The tip of the working electrode is disposed in a gap formed by the side wall surface and the counter electrode, and cleaning beads are flowed along with water from the lower lateral direction to the upper lateral direction of the gap. The working electrode is washed, and the comparative electrode is not washed with the beads.
(2) The electrode cleaning method according to (1), wherein the shape of the side wall surface of the bottomed cylindrical body and the shape of the electrode are formed in the same semicircular shape and circular shape.
[0017]
(3) Washing the working electrode and the counter electrode with a bottomed cylinder in which the test water is accommodated, a working electrode, a counter electrode and a comparison electrode installed in the bottomed cylinder, and cleaning beads flowing according to the flow of the water sample A residual chlorine meter equipped with electrode cleaning means,
The counter electrode installation portion in which the side wall surface on the bottom side of the bottomed cylindrical body is formed in a concave curved shape in the vertical direction; and the working electrode having a tip disposed in a gap formed by the side wall surface and the counter electrode;
Convex-curved counter electrode arranged so as to form a gap at a predetermined interval with the concave-curved side wall surface and obtain a predetermined creepage distance;
A water sample introduction pipe in which a water sample discharge port is arranged so that water flows from the lower side gap between the concave curved side wall surface and the counter electrode toward the upper side gap,
A plurality of cleaning beads formed of a member having a size that can pass through a gap between the concave curved side wall surface and the counter electrode and having a specific gravity heavier than test water, the counter electrode and the test water discharge port, And a space for storing the washing beads at the bottom.
(4) The concave side wall surface has a semicircular shape, and the second electrode is formed in a circular shape having the same shape as the semicircular side wall surface. Residual chlorine meter.
[0018]
In this way, the shape of the electrode and the shape of the side wall surface are made the same shape to maintain a gap of a predetermined interval and increase the creepage distance, and the cleaning beads are poured into the gap together with the test water from the lower direction. By performing the cleaning, it is possible to increase the distance that the cleaning beads for cleaning the electrode come into contact with each other. Therefore, it is possible to perform efficient cleaning even with a relatively simple structure.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Next, an embodiment of an electrode cleaning method and a residual chlorine meter according to the present invention will be described with reference to the drawings.
[0020]
The residual chlorine meter of the present invention has a structure based on a general polarographic method as a method for measuring the residual chlorine, in which an applied voltage is applied to the working electrode and the reference electrode, and a current flowing between the working electrode and the counter electrode remains. It is measured by being proportional to the concentration of chlorine.
[0021]
The current i by the polarographic method can be obtained by the following equation (1).
[0022]
i = nFDA × (C / δ) (1)
n: valence of reactant F: Faraday constant D: diffusion coefficient of reactant A: area of working electrode C: concentration of reactant δ: thickness of diffusion layer
As can be seen from this equation (1), the flowing current i is also proportional to the area of the working electrode, and therefore is affected by dirt and the like. For this reason, it is necessary to always clean the electrode surface of the working electrode so as not to get dirty and to keep it from getting dirty. Therefore, in the present invention, the glass beads (washing beads) are in contact with the exposed surface of the working electrode for a long time, and the thickness of the diffusion layer is kept constant, and the glass beads are washed. It is also characterized by a structure that can also be used.
[0024]
As shown in FIG. 1, a residual chlorine meter that can embody the electrode cleaning method of the present invention includes a bottomed cylinder 51 in which water is stored, and a side wall surface on the bottom side of the bottomed cylinder 51. An electrode installation portion 53 formed in a concave curved surface shape in the vertical direction, a working electrode 54 as a first electrode provided at a predetermined position of the concave curved side wall surface 52, and a concave curved side wall surface 52; A counter electrode 56 that is a convex-curved second electrode arranged so as to form a gap of a predetermined interval and gain a predetermined creepage distance, and a gap on the lower side between the concave-curved side wall surface 52 and the counter electrode 56 The test water introduction pipe 58 in which the test water discharge port 57 is arranged so that the test water flows from 55 to the upper gap 55 and the gap 55 between the concave curved side wall surface 52 and the counter electrode 56 can pass through. A plurality of washing members formed of members having a specific gravity greater than that of the test water. From the bead 59, the space 60 between the counter electrode 56 and the test water discharge port 57 where the cleaning bead 59 can be stored at the bottom, the comparison electrode 61, the overflow outlet 62 for discharging the test water, and the measurement unit 63 Become.
[0025]
The concave side wall surface 52 has a semicircular shape, and the counter electrode 56 has a structure formed in a circular shape having the same shape as the semicircular side wall surface 52.
[0026]
In the residual chlorine meter having such a structure, when the test water is poured into the test water introduction pipe 58, the test water flows from the test water discharge port 57, and the cleaning beads 59 stored in the space 60 at the bottom are rolled up, The cleaning beads 59 that flow into the gap 55 in the direction and flow in the direction of the upper gap 55 while hitting the surface of the counter electrode 56 and the working electrode 54 and jump out of the upper gap 55 descend to the space 60 due to their own weight. Then, if the test water is flowing, a swiveling motion is made such that the water enters the lower lateral gap 55 again and exits from the upper gap 55.
[0027]
Therefore, the surface on the working electrode 54 side of the counter electrode 56 is cleaned by the cleaning beads 59 that pass through the gap 55. In addition, the size of the gap 55 through which the cleaning beads 59 pass is limited, and the creeping distance to the counter electrode 56 is increased, that is, the circular gap 55 makes the distance in contact with the electrode surface larger. Therefore, it can wash | clean efficiently.
[0028]
【The invention's effect】
As described above, the electrode cleaning method and the residual chlorine meter according to the present invention have the same unevenness in the vertical direction between the electrode and the side wall surface of the bottomed cylindrical body containing the test water, specifically, the center position is the same. Since the electrodes are washed by pouring wash beads with test water into the gap between the circular shape and semicircular shape, the washing area can be increased and the time for washing can be increased. There is an effect that the cleaning efficiency of the electrode can be improved without increasing the flow velocity.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an electrode structure of a residual chlorine meter according to the present invention.
FIG. 2 is a cross-sectional view of the structure of an electrode of a residual chlorine meter of a first specific example in the prior art.
FIG. 3 is a cross-sectional view of a structure of an electrode of a residual chlorine meter of a second specific example in the prior art.
FIG. 4 is a cross-sectional view of the electrode structure of a residual chlorine meter according to a third specific example in the prior art.
FIG. 5 is a cross-sectional view of the electrode structure of a residual chlorine meter according to a fourth specific example in the prior art.
[Explanation of symbols]
51 Bottomed cylinder 52 Side wall surface 53 Electrode installation portion 54 Working electrode (first electrode)
55 Clearance 56 Counter electrode (second electrode)
57 Test water outlet 58 Test water introduction pipe 59 Washing beads 60 Space 61 Reference electrode 62 Overflow outlet 63 Measuring section

Claims (4)

作用極、対極及び比較極を備えると共に検水を収容する有底筒体において、その底部側側壁面と前記対極との形状を上下方向に凹凸の関係にし且つ所定間隔の隙間を維持して沿面距離を稼ぐとともに、前記作用極の先端を前記側壁面と前記対極で形成された隙間に配置し、前記隙間の下部横方向から上部横方向に検水と共に洗浄ビーズを流して前記対極と作用極を洗浄するようにし、前記比較極は前記ビーズによる洗浄をしないようにしたことを特徴とする電極洗浄方法。In a bottomed cylindrical body that includes a working electrode, a counter electrode, and a comparison electrode and accommodates water, the shape of the bottom side wall surface and the counter electrode is uneven in the vertical direction and the creepage is maintained while maintaining a gap of a predetermined interval. The distance between the counter electrode and the working electrode is increased by arranging the tip of the working electrode in the gap formed by the side wall surface and the counter electrode, and flowing cleaning beads together with the test water from the lower lateral direction to the upper lateral direction of the gap. The electrode cleaning method is characterized in that the reference electrode is not cleaned with the beads. 前記有底筒体の側壁面の形状と前記対極の形状は、同一形状の半円形状と円形状に形成したことを特徴とする請求項1に記載の電極洗浄方法。  2. The electrode cleaning method according to claim 1, wherein the shape of the side wall surface of the bottomed cylindrical body and the shape of the counter electrode are the same semicircular shape and circular shape. 検水が収容される有底筒体と、該有底筒体内部に設置した作用極、対極及び比較極と、検水の流れに従って流れる洗浄ビーズにより前記作用極と対極を洗浄する電極洗浄手段とを備えた残留塩素計であって、
前記有底筒体の底部側の側壁面を上下方向に凹曲面形状に形成した前記対極設置部と、前記側壁面と前記対極で形成された隙間に先端が配置された前記作用極と、
前記凹曲面形状の側壁面と所定間隔の隙間を形成し且つ所定の沿面距離を稼ぐようにして配置した凸曲面形状の対極と、
前記凹曲面形状の側壁面と前記対極との下部側の隙間から上部側の隙間に向かって検水が流れるように検水排出口を配置した検水導入管と、
前記凹曲面形状の側壁面と前記対極との隙間を通過できる大きさに形成し、且つ検水よりも比重が重い部材で形成した複数個の洗浄ビーズと、前記対極と前記検水排出口との間であって底部に前記洗浄ビーズが貯留できるスペースと、を備えたことを特徴とする残留塩素計。
Electrode cleaning means for cleaning the working electrode and the counter electrode with a bottomed cylinder in which the test water is accommodated, a working electrode, a counter electrode and a comparison electrode installed in the bottomed cylinder, and cleaning beads flowing according to the flow of the test water A residual chlorine meter with
The counter electrode installation portion in which the side wall surface on the bottom side of the bottomed cylindrical body is formed in a concave curved shape in the vertical direction; and the working electrode having a tip disposed in a gap formed by the side wall surface and the counter electrode;
Convex-curved counter electrode arranged so as to form a gap at a predetermined interval with the concave-curved side wall surface and obtain a predetermined creepage distance;
A water sample introduction pipe in which a water sample discharge port is arranged so that water flows from the lower side gap between the concave curved side wall surface and the counter electrode toward the upper side gap,
A plurality of cleaning beads formed of a member having a size that can pass through a gap between the concave curved side wall surface and the counter electrode and having a specific gravity heavier than test water, the counter electrode and the test water discharge port, And a space for storing the washing beads at the bottom.
前記凹面形状の側壁面は半円形状であり、前記第2の電極は該半円形状の側壁面と同一形状を有する円形状に形成したことを特徴とする請求項3に記載の残留塩素計。  The residual chlorine meter according to claim 3, wherein the concave side wall surface is semicircular, and the second electrode is formed in a circular shape having the same shape as the semicircular side wall surface. .
JP2001293274A 2001-09-26 2001-09-26 Electrode cleaning method and residual chlorine meter Expired - Fee Related JP4352367B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001293274A JP4352367B2 (en) 2001-09-26 2001-09-26 Electrode cleaning method and residual chlorine meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001293274A JP4352367B2 (en) 2001-09-26 2001-09-26 Electrode cleaning method and residual chlorine meter

Publications (2)

Publication Number Publication Date
JP2003098143A JP2003098143A (en) 2003-04-03
JP4352367B2 true JP4352367B2 (en) 2009-10-28

Family

ID=19115102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001293274A Expired - Fee Related JP4352367B2 (en) 2001-09-26 2001-09-26 Electrode cleaning method and residual chlorine meter

Country Status (1)

Country Link
JP (1) JP4352367B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI20105363A0 (en) * 2010-04-09 2010-04-09 Clewer Oy Arrangement and method for mechanically cleaning the instrument surface
WO2023149448A1 (en) * 2022-02-01 2023-08-10 株式会社堀場アドバンスドテクノ Measurement instrument, measurement device, measurement system, and measurement method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3361237B2 (en) * 1996-09-05 2003-01-07 株式会社メルス技研 Residual chlorine measuring method and apparatus and residual chlorine detecting probe
JP4174981B2 (en) * 2001-08-31 2008-11-05 横河電機株式会社 Water quality meter

Also Published As

Publication number Publication date
JP2003098143A (en) 2003-04-03

Similar Documents

Publication Publication Date Title
WO1996014583A1 (en) Surfactant monitoring by foam generation
CN202393930U (en) Overturning skip type udometer
JP2009503464A5 (en)
JP4352367B2 (en) Electrode cleaning method and residual chlorine meter
CN109752053A (en) The inlet for stom water flow measurement device of energy auto-flushing
CN216013716U (en) City inlet for stom water flow automatic monitoring device based on suspension type tipping bucket
JP6879313B2 (en) Analytical instrument probe cleaning station
JP3724735B2 (en) Cleaning method for working electrode of residual chlorine meter and residual chlorine meter
JPH09243758A (en) Tipping-bucket rain gauge
CN201110840Y (en) PH value on-line measuring apparatus with self cleaning function
JP4174981B2 (en) Water quality meter
JP4174826B2 (en) Residual chlorine meter
JP4153459B2 (en) Residual chlorine measuring device
US3464908A (en) Apparatus for measuring hydrogen ion concentration of a slurry
CN217931807U (en) Conductivity meter electrometer measuring device
CN207462979U (en) A kind of acid mist catalytic converter
JP3577824B2 (en) pH sensor and ion water generator
JP2011027584A (en) Water quality measuring device
JPS6241240Y2 (en)
EP1524358B1 (en) A washing machine capable of measuring properties of liquids, and process for detecting such properties
JP3051921U (en) Residual chlorine concentration measurement sensor
JPH0611469A (en) Water content measuring method
CN214748301U (en) Anti-scaling structure for high-liquid-level tuning fork of container
JPH07120282A (en) Capacitance-type electromagnetic flowmeter
RU2284380C1 (en) Device for supply of water to rinse bath of electrodeposition process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090716

R150 Certificate of patent or registration of utility model

Ref document number: 4352367

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130807

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140807

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees