JP4152221B2 - Absorption heat source machine - Google Patents

Absorption heat source machine Download PDF

Info

Publication number
JP4152221B2
JP4152221B2 JP2003055891A JP2003055891A JP4152221B2 JP 4152221 B2 JP4152221 B2 JP 4152221B2 JP 2003055891 A JP2003055891 A JP 2003055891A JP 2003055891 A JP2003055891 A JP 2003055891A JP 4152221 B2 JP4152221 B2 JP 4152221B2
Authority
JP
Japan
Prior art keywords
regenerator
cooling operation
path
liquid
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003055891A
Other languages
Japanese (ja)
Other versions
JP2004263965A (en
Inventor
明夫 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma KK
Original Assignee
Takuma KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma KK filed Critical Takuma KK
Priority to JP2003055891A priority Critical patent/JP4152221B2/en
Publication of JP2004263965A publication Critical patent/JP2004263965A/en
Application granted granted Critical
Publication of JP4152221B2 publication Critical patent/JP4152221B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1417Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with liquid hygroscopic desiccants

Description

【0001】
【発明の属する技術分野】
本発明は吸収器、蒸発器、再生器、および、凝縮器を有する冷房運転経路を備え、前記再生器の加熱手段が、排ガス発生装置からの排ガスにより加熱されるように構成され、その排ガスを前記加熱手段に供給する加熱状態と非加熱状態とに切り換えるダンパが設けられている吸収式熱源機に関する。
【0002】
【従来の技術】
このような吸収式熱源機は、例えば、一般の空調設備や産業用の冷熱利用設備などに冷熱を供給するためのもので、排ガス発生装置としてコージェネレーションシステムにおけるガスタービンやディーゼル発電機などが使用される。
コージェネレーションシステムは、電気エネルギーと熱エネルギーを供給するもので、電気エネルギーの需要量が比較的安定して変動が少ないのに対し、熱エネルギーの需要量は季節や時間によって大幅に変動する。
そのため、従来では、排ガス発生装置からの排ガス経路にダンパを設け、吸収式熱源機の非運転時には、そのダンパの切り換え操作によって、排ガスが再生器の加熱手段側へ流入しないように構成されていた(実際に実施されてはいるが、ダンパについて詳しく言及した特許文献などは見当たらない)。
【0003】
【発明が解決しようとする課題】
しかし、上述した従来技術では、ダンパが高温の排ガスに曝されて熱変形するため、たとえ排ガスが加熱手段側へ流入しないように切り換えても、加熱手段側への排ガスのリークを完全に阻止するのはむずかしい。
排ガスが加熱手段側へリークすると、時間の経過に伴って再生器内の吸収液が加熱されて沸騰し、吸収液の濃度が高くなるとともに、その高濃度の吸収液が吸収器側へ流出し、最終的には、吸収剤(例えば、臭化リチウム)が析出して吸収器への配管系などに詰まるおそれがある。
このようなトラブルは、ダンパを高精度にすることで回避可能ではあるが、排ガスのリークを完全に阻止するには、かなり高精度で高価なダンパ装置が必要となる。
【0004】
本発明は、このような従来の問題点に着目したもので、その目的は、高価なダンパ装置を必要とすることなく、吸収式熱源機の非運転時において、吸収液からの吸収剤の析出を防止して、配管系などへの詰まり発生を確実に回避することのできる吸収式熱源機を提供することである。
【0005】
【課題を解決するための手段】
請求項1の発明の特徴構成は、吸収器、蒸発器、再生器、および、凝縮器を有する冷房運転経路を備え、前記再生器の加熱手段が、排ガス発生装置からの排ガスにより加熱されるように構成され、その排ガスを前記加熱手段に供給する加熱状態と非加熱状態とに切り換えるダンパが設けられている吸収式熱源機であって、前記再生器内の吸収液を循環させる循環ポンプを備えた液循環路と、前記再生器内の冷媒蒸気を冷却して再生器内に戻す蒸気循環路からなる非冷房運転経路が、前記冷房運転経路とは別に設けられ、前記再生器内の吸収液と冷媒蒸気を前記冷房運転経路に供給する運転状態と前記非冷房運転経路に供給する非運転状態とに切り換える切り換え手段が設けられているところにある。
【0006】
請求項1の発明の特徴構成によれば、再生器内の吸収液を循環させる循環ポンプを備えた液循環路と、再生器内の冷媒蒸気を冷却して再生器内に戻す蒸気循環路からなる非冷房運転経路が、吸収器、蒸発器、再生器、および、凝縮器を有する冷房運転経路とは別に設けられ、再生器内の吸収液と冷媒蒸気を冷房運転経路に供給する運転状態と非冷房運転経路に供給する非運転状態とに切り換える切り換え手段が設けられているので、吸収式熱源機の運転時には、再生器内の吸収液と冷媒蒸気を冷房運転経路に供給して所望どおりの冷房運転を実行することができ、吸収式熱源機の非運転時には、再生器内の吸収液と冷媒蒸気を非冷房運転経路に供給することができる。
【0007】
すなわち、吸収式熱源機の非運転時において、たとえ排ガス発生装置からの排ガスが再生器の加熱手段側へリークして吸収液が加熱されても、吸収液は液循環路と再生器の間で循環され、加熱により発生した冷媒蒸気は、蒸気循環路によって冷却されて再生器内に戻されるので、再生器における吸収液の濃度はほぼ一定の範囲内に維持され、少なくとも、高濃度となって吸収剤が析出するようなことはない。
したがって、殊更、高精度で高価なダンパ装置を必要とすることもなく、吸収式熱源機の非運転時において、吸収液からの吸収剤の析出を防止して、配管系などへの詰まり発生を確実に回避することができる。
【0008】
請求項2の発明の特徴構成は、前記切り換え手段が、前記冷房運転経路と非冷房運転経路に設けられた複数のバルブで構成され、それらバルブの開閉と前記ダンパの切り換え作動を制御する制御手段が設けられているところにある。
【0009】
請求項2の発明の特徴構成によれば、前記切り換え手段が、冷房運転経路と非冷房運転経路に設けられた複数のバルブで構成されているので、比較的簡単な構造で入手も容易なバルブにより切り換え手段を安価に製作できるとともに、それらバルブの開閉とダンパの切り換え作動が制御手段により制御されるので、バルブの開閉とダンパの切り換えが所望どおりに実行されて、誤作動の危険性が回避される。
【0010】
【発明の実施の形態】
本発明による吸収式熱源機の実施の形態を図面に基づいて説明する。
この吸収式熱源機は、例えば、一般の空調設備や産業用の冷熱利用設備などに冷熱を供給するためのもので、通常、冷房用の冷熱と暖房用の温熱を択一的に供給することが可能な吸収式冷温水機として構成される。
一重効用式の吸収式冷温水機であれば、図1に示すように、吸収器1、蒸発器2、再生器3、および、凝縮器4を有し、吸収器1には、吸収器用伝熱管1aが配設され、凝縮器4には、凝縮器用伝熱管4aが配設されていて、図外の冷却塔からの冷却水が、吸収器用伝熱管1aを通流した後、凝縮器用伝熱管4aを通流するように、冷却塔との間で循環するように構成されている。
【0011】
吸収器1の下部には、低濃度の吸収液である稀液用の稀液配管5が接続され、その稀液配管5が、熱交換器6を通って再生器3の下部に接続されて、稀液配管5には、稀液用ポンプ7と逆止弁8が介装されている。
再生器3は、その上部に気液分離部3aを備え、かつ、加熱手段としての加熱用伝熱管9を有していて、その加熱用伝熱管9に対し、図外のコージェネレーションシステムにおけるガスタービンやディーゼル発電機などの排ガス発生装置10からの排ガスがダンパ装置11を介して供給されるように構成されている。
そのダンパ装置11は、回動自在なダンパ11aを備えていて、図示のように上方へ回動操作することにより、排ガスを加熱用伝熱管9に供給して再生器3内の吸収液を加熱する加熱状態と、下方へ回動操作することにより、排ガスを外部へ排出する非加熱状態とに切り換え自在に構成されている。
【0012】
再生器3において、その気液分離部3aの上部には、冷媒蒸気を移送する蒸気配管12が接続され、それが凝縮器4に接続されるとともに、気液分離部3aの下部には、高濃度の吸収液である濃液用の濃液配管13が接続され、その濃液配管13が、熱交換器6を通って吸収器1の上部に配置された散布具(図示せず)に接続されている。
凝縮器4には、冷媒水を移送する冷媒配管14が接続され、その冷媒配管14が、蒸発器2の上部に配置された散布具(図示せず)に接続され、蒸発器2の下部と冷媒配管14とが、冷媒ポンプ15を有する冷媒用の循環配管16により接続されている。
そして、蒸発器2には、蒸発器用伝熱管2aが配設され、冷房運転時には冷水を、暖房運転時には温水を図外の熱交換器に移送して、冷房運転または暖房運転を実行するように構成されている。
【0013】
以上のようにして、吸収器1、蒸発器2、再生器3、および、凝縮器4を有する冷房運転経路Aが構成され、さらに、再生器3の気液分離部3aの下部と蒸発器2の上部との間には、暖房弁17を有する暖房配管18が配設されて、暖房運転も兼用できるように構成されている。
そして、冷房運転経路Aを構成する再生器3には、冷房運転経路Aとは別に非冷房運転経路Bが設けられ、その非冷房運転経路Bは、再生器3内の吸収液を循環させる循環ポンプ19を備えた液循環路20と、再生器3内の冷媒蒸気を冷却する冷却器21を備えて再生器3内の冷媒蒸気を冷却して再生器3内に戻す蒸気循環路22により構成されている。
【0014】
すなわち、液循環路20は、再生器3の中間部と下部を接続するように配設され、再生器3の下部近くに配設された循環ポンプ19によって、再生器3内の吸収液を循環させるように構成されている。また、蒸気循環路22は、再生器3の気液分離部3aの上部に接続され、液循環路20の一部を兼用する状態で再生器3の下部に接続され、気液分離部3aの近くに空冷式の冷却器21が設けられている。
そして、液循環路20において、蒸気循環路22との接続箇所より上手側に第1電磁バルブV1が、循環ポンプ19より下手側に第2電磁バルブV2が設けられ、また、蒸気循環路22において、冷却器21の上手側に第3電磁バルブV3が設けられ、さらに、冷房運転経路Aにおいて、蒸気配管12に第4電磁バルブV4が、濃液配管13に第5電磁バルブV5が設けられている。
【0015】
これら第1〜第5電磁バルブV1〜V5は、再生器3内の吸収液と冷媒蒸気を冷房運転経路Aに供給する運転状態と、その吸収液と冷媒蒸気を非冷房運転経路Bに供給する非運転状態とに切り換え操作するための切り換え手段23として機能するもので、制御手段としての制御器24により開閉制御されるように構成されている。
そして、ダンパ装置11のダンパ11aと循環ポンプ19も制御器24により制御され、排ガス発生装置10からの排ガスが加熱用伝熱管9に供給される加熱状態では、ダンパ11aが上方へ回動制御され、第1〜第3電磁バルブV1〜V3が閉弁制御されて循環ポンプ19が停止され、第4と第5電磁バルブV4,V5が開弁制御される。また、非加熱状態では、ダンパ11aが下方へ回動制御され、第1〜第3電磁バルブV1〜V3が開弁制御されて循環ポンプ19が作動されるとともに、第4と第5電磁バルブV4,V5が閉弁制御されるのである。
なお、図中25は、再生器3における液面検出器である。
【0016】
したがって、ダンパ11aが上方へ回動された加熱状態では、冷房運転経路Aによって所望どおりの冷房運転が実行され、また、暖房運転も実行可能となる。暖房運転時の開閉弁制御は前記冷房運転時の開閉弁制御に加え、加熱状態では、暖房弁17が開弁制御され、非加熱状態では、暖房弁17が閉弁制御される。
そして、ダンパ11aが下方へ回動された非加熱状態では、第4と第5電磁バルブV4,V5が閉弁され、第1〜第3電磁バルブV1〜V3が開弁され、かつ、循環ポンプ19が作動される。
そのため、排ガス発生装置10からの排ガスが再生器3の加熱用伝熱管9側へリークして、再生器3内の吸収液が加熱されても、吸収液や冷媒蒸気が冷房運転経路A側へ流出することはなく、吸収液は液循環路20によって再生器3との間で循環され、冷媒蒸気は冷却器21で冷却され、冷媒水となって再生器3へ戻されるので、再生器3内の吸収液が濃縮されることはなく、吸収剤の析出は確実に防止される。
【0017】
〔別実施形態〕
(1)先の実施形態では、吸収式熱源機の一例として一重効用式の吸収式冷温水機を示したが、高温再生器と低温再生器を備えた二重効用式の吸収式冷温水機にも適用できるのは勿論のこと、暖房運転機能を備えていない冷房専用の吸収式冷凍機にも適用可能である。
また、非冷房運転経路Bを構成する蒸気循環路22に空冷式の冷却器21を設けた例を示したが、冷却器21は空冷式に限るものではなく、水冷式などの各種の冷却器を使用することができる。
【0018】
(2)先の実施形態では、制御手段としての制御器24によって、第1〜第5電磁バルブV1〜V5の開閉作動とダンパ11aの切り換え作動を制御する構成を示したが、例えば、電磁バルブV1〜V5に代えて手動操作式のバルブを使用し、そのバルブとダンパ11aとを手動により各別に切り換え操作するように構成することもできる。
【図面の簡単な説明】
【図1】吸収式冷温水機の概略ブロック図
【符号の説明】
1 吸収器
2 蒸発器
3 再生器
4 凝縮器
9 加熱手段
10 排ガス発生装置
11a ダンパ
19 循環ポンプ
20 液循環路
22 蒸気循環路
23 切り換え手段
24 制御手段
A 冷房運転経路
B 非冷房運転経路
V1〜V5 バルブ
[0001]
BACKGROUND OF THE INVENTION
The present invention includes a cooling operation path having an absorber, an evaporator, a regenerator, and a condenser, and the heating means of the regenerator is configured to be heated by the exhaust gas from the exhaust gas generator, The present invention relates to an absorption heat source apparatus provided with a damper for switching between a heating state supplied to the heating means and a non-heating state.
[0002]
[Prior art]
Such absorption heat source equipment is for supplying cold heat to, for example, general air-conditioning equipment and industrial cold-use equipment, and is used by gas turbines and diesel generators in cogeneration systems as exhaust gas generators. Is done.
The cogeneration system supplies electric energy and heat energy. The demand amount of electric energy is relatively stable and hardly fluctuated, whereas the demand amount of heat energy varies greatly depending on the season and time.
Therefore, conventionally, a damper is provided in the exhaust gas path from the exhaust gas generator, and when the absorption heat source unit is not in operation, the damper is switched so that the exhaust gas does not flow into the heating means side of the regenerator. (Although it is actually implemented, there is no patent document that specifically mentions the damper).
[0003]
[Problems to be solved by the invention]
However, in the above-described conventional technology, the damper is exposed to high-temperature exhaust gas and thermally deforms. Therefore, even if the exhaust gas is switched so as not to flow into the heating means side, exhaust gas leakage to the heating means side is completely prevented. It is difficult.
If the exhaust gas leaks to the heating means side, the absorption liquid in the regenerator is heated and boiled as time passes, and the concentration of the absorption liquid increases and the high concentration absorption liquid flows out to the absorber side. Eventually, an absorbent (for example, lithium bromide) may be deposited and clog the piping system to the absorber.
Such troubles can be avoided by making the damper highly accurate, but in order to completely prevent the leakage of exhaust gas, a highly accurate and expensive damper device is required.
[0004]
The present invention pays attention to such a conventional problem, and the purpose thereof is not to require an expensive damper device, and the precipitation of the absorbent from the absorbing liquid when the absorption heat source machine is not operated. It is an object of the present invention to provide an absorption heat source device that can prevent the occurrence of clogging in a piping system and the like.
[0005]
[Means for Solving the Problems]
The characteristic configuration of the invention of claim 1 includes a cooling operation path having an absorber, an evaporator, a regenerator, and a condenser, and the heating means of the regenerator is heated by the exhaust gas from the exhaust gas generator. An absorption heat source machine provided with a damper that switches between a heated state and a non-heated state in which the exhaust gas is supplied to the heating means, and includes a circulation pump that circulates the absorbing liquid in the regenerator A non-cooling operation path comprising a liquid circulation path and a steam circulation path for cooling the refrigerant vapor in the regenerator and returning it to the regenerator is provided separately from the cooling operation path, and the absorbing liquid in the regenerator And a switching means for switching between an operation state in which the refrigerant vapor is supplied to the cooling operation path and a non-operation state in which the refrigerant vapor is supplied to the non-cooling operation path.
[0006]
According to the characteristic configuration of the invention of the first aspect, the liquid circulation path including the circulation pump for circulating the absorption liquid in the regenerator, and the steam circulation path for cooling the refrigerant vapor in the regenerator and returning it to the regenerator The non-cooling operation path is provided separately from the cooling operation path having the absorber, the evaporator, the regenerator, and the condenser, and the operation state for supplying the absorption liquid and the refrigerant vapor in the regenerator to the cooling operation path; Since switching means for switching to the non-operating state to be supplied to the non-cooling operation path is provided, during operation of the absorption heat source machine, the absorption liquid and refrigerant vapor in the regenerator are supplied to the cooling operation path to perform as desired. The cooling operation can be executed, and the absorption liquid and the refrigerant vapor in the regenerator can be supplied to the non-cooling operation path when the absorption heat source device is not operating.
[0007]
That is, even when the absorption heat source machine is not in operation, even if the exhaust gas from the exhaust gas generator leaks to the heating device side of the regenerator and the absorbing liquid is heated, the absorbing liquid is between the liquid circulation path and the regenerator. Since the refrigerant vapor circulated and generated by heating is cooled by the vapor circulation path and returned to the regenerator, the concentration of the absorbing liquid in the regenerator is maintained within a substantially constant range, and at least becomes a high concentration. The absorbent does not precipitate.
Therefore, there is no need for a highly accurate and expensive damper device, and when the absorption heat source machine is not in operation, it prevents the absorbent from precipitating from the absorbent and prevents clogging in the piping system. It can be avoided reliably.
[0008]
The characteristic configuration of the invention of claim 2 is that the switching means comprises a plurality of valves provided in the cooling operation path and the non-cooling operation path, and controls the opening and closing of the valves and the switching operation of the damper. Is in place.
[0009]
According to the characteristic configuration of the invention of claim 2, since the switching means is composed of a plurality of valves provided in the cooling operation path and the non-cooling operation path, the valve can be easily obtained with a relatively simple structure. The switching means can be manufactured inexpensively, and the opening and closing of the valves and the switching operation of the damper are controlled by the control means, so that the opening and closing of the valve and the switching of the damper are performed as desired, thereby avoiding the risk of malfunction. Is done.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of an absorption heat source machine according to the present invention will be described with reference to the drawings.
This absorption heat source machine is for supplying cold heat to, for example, general air-conditioning equipment and industrial cold-use equipment, and usually supplies cooling heat and heating heat alternatively. It is configured as an absorption chiller / heater that can
As shown in FIG. 1, the single-effect absorption chiller / heater has an absorber 1, an evaporator 2, a regenerator 3, and a condenser 4. A heat pipe 1a is provided, and the condenser 4 is provided with a condenser heat transfer pipe 4a. After cooling water from a cooling tower (not shown) flows through the absorber heat transfer pipe 1a, the condenser heat transfer pipe 1a is provided. It is comprised so that it may circulate between cooling towers so that heat pipe 4a may flow.
[0011]
A dilute solution pipe 5 for dilute liquid, which is a low concentration absorbent, is connected to the lower part of the absorber 1, and the dilute liquid pipe 5 is connected to the lower part of the regenerator 3 through the heat exchanger 6. The dilute liquid pipe 5 is provided with a dilute liquid pump 7 and a check valve 8.
The regenerator 3 includes a gas-liquid separator 3a in the upper part thereof, and has a heating heat transfer tube 9 as a heating means, and the heating heat transfer tube 9 has a gas in a cogeneration system (not shown). Exhaust gas from an exhaust gas generator 10 such as a turbine or a diesel generator is supplied via a damper device 11.
The damper device 11 includes a rotatable damper 11a. By rotating the damper 11a upward as shown in the figure, the exhaust gas is supplied to the heating heat transfer tube 9 to heat the absorption liquid in the regenerator 3. It is configured to be switchable between a heating state in which the exhaust gas is discharged and a non-heating state in which the exhaust gas is discharged to the outside by rotating it downward.
[0012]
In the regenerator 3, a vapor pipe 12 for transferring refrigerant vapor is connected to the upper part of the gas-liquid separator 3a, which is connected to the condenser 4, and at the lower part of the gas-liquid separator 3a, A concentrated liquid pipe 13 for concentrated liquid, which is a concentration absorbing liquid, is connected, and the concentrated liquid pipe 13 passes through a heat exchanger 6 and is connected to a spreader (not shown) disposed on the top of the absorber 1. Has been.
A refrigerant pipe 14 for transferring refrigerant water is connected to the condenser 4, and the refrigerant pipe 14 is connected to a spraying tool (not shown) arranged at the upper part of the evaporator 2, and the lower part of the evaporator 2 is connected to the condenser 4. The refrigerant pipe 14 is connected by a refrigerant circulation pipe 16 having a refrigerant pump 15.
Further, the evaporator 2 is provided with an evaporator heat transfer tube 2a so that the cooling water is transferred to a heat exchanger (not shown) during the cooling operation and the hot water is transferred during the heating operation to execute the cooling operation or the heating operation. It is configured.
[0013]
As described above, the cooling operation path A including the absorber 1, the evaporator 2, the regenerator 3, and the condenser 4 is configured, and further, the lower part of the gas-liquid separation unit 3 a of the regenerator 3 and the evaporator 2. A heating pipe 18 having a heating valve 17 is disposed between the upper part of the heater and a heating operation.
The regenerator 3 constituting the cooling operation path A is provided with a non-cooling operation path B separately from the cooling operation path A, and the non-cooling operation path B is a circulation for circulating the absorption liquid in the regenerator 3. A liquid circulation path 20 provided with a pump 19 and a steam circulation path 22 provided with a cooler 21 for cooling the refrigerant vapor in the regenerator 3 to cool the refrigerant vapor in the regenerator 3 and return it to the regenerator 3. Has been.
[0014]
That is, the liquid circulation path 20 is disposed so as to connect the intermediate portion and the lower portion of the regenerator 3, and the absorption liquid in the regenerator 3 is circulated by the circulation pump 19 disposed near the lower portion of the regenerator 3. It is configured to let you. Moreover, the steam circulation path 22 is connected to the upper part of the gas-liquid separation part 3a of the regenerator 3, and is connected to the lower part of the regenerator 3 in a state where a part of the liquid circulation path 20 is shared. An air-cooled cooler 21 is provided nearby.
In the liquid circulation path 20, a first electromagnetic valve V 1 is provided on the upper side of the connection point with the steam circulation path 22, and a second electromagnetic valve V 2 is provided on the lower side of the circulation pump 19. The third electromagnetic valve V3 is provided on the upper side of the cooler 21. Further, in the cooling operation path A, the fourth electromagnetic valve V4 is provided in the steam pipe 12, and the fifth electromagnetic valve V5 is provided in the concentrated liquid pipe 13. Yes.
[0015]
These first to fifth electromagnetic valves V1 to V5 supply an operation state in which the absorption liquid and refrigerant vapor in the regenerator 3 are supplied to the cooling operation path A, and supply the absorption liquid and refrigerant vapor to the non-cooling operation path B. It functions as switching means 23 for switching to a non-operating state, and is configured to be opened and closed by a controller 24 as control means.
The damper 11a and the circulation pump 19 of the damper device 11 are also controlled by the controller 24, and the damper 11a is controlled to rotate upward in a heating state in which the exhaust gas from the exhaust gas generator 10 is supplied to the heating heat transfer tube 9. The first to third electromagnetic valves V1 to V3 are controlled to close, the circulation pump 19 is stopped, and the fourth and fifth electromagnetic valves V4 and V5 are controlled to open. In the non-heated state, the damper 11a is controlled to rotate downward, the first to third electromagnetic valves V1 to V3 are controlled to open, the circulation pump 19 is activated, and the fourth and fifth electromagnetic valves V4. , V5 are controlled to be closed.
In the figure, reference numeral 25 denotes a liquid level detector in the regenerator 3.
[0016]
Therefore, in the heating state in which the damper 11a is rotated upward, the cooling operation as desired is performed by the cooling operation path A, and the heating operation can also be performed. In addition to the on / off valve control at the time of the cooling operation, the on / off valve control at the time of the heating operation is controlled so that the heating valve 17 is opened in the heating state, and the heating valve 17 is controlled to be closed at the non-heating state.
In the non-heated state in which the damper 11a is rotated downward, the fourth and fifth electromagnetic valves V4 and V5 are closed, the first to third electromagnetic valves V1 to V3 are opened, and the circulation pump 19 is activated.
Therefore, even if the exhaust gas from the exhaust gas generator 10 leaks to the heating heat transfer tube 9 side of the regenerator 3 and the absorption liquid in the regenerator 3 is heated, the absorption liquid and the refrigerant vapor are moved to the cooling operation path A side. Since the absorbing liquid is not circulated and circulated between the regenerator 3 by the liquid circulation path 20 and the refrigerant vapor is cooled by the cooler 21 and returned to the regenerator 3 as refrigerant water, the regenerator 3 The inner absorbent is not concentrated, and precipitation of the absorbent is reliably prevented.
[0017]
[Another embodiment]
(1) In the previous embodiment, a single effect absorption chiller / heater was shown as an example of an absorption heat source machine, but a double effect absorption chiller / heater equipped with a high temperature regenerator and a low temperature regenerator Of course, the present invention can also be applied to an absorption refrigerating machine dedicated to cooling that does not have a heating operation function.
Moreover, although the example which provided the air cooling type cooler 21 in the steam circulation path 22 which comprises the non-cooling operation path | route B was shown, the cooler 21 is not restricted to an air cooling type, Various coolers, such as a water cooling type, are shown. Can be used.
[0018]
(2) In the previous embodiment, the controller 24 as the control means has been configured to control the opening / closing operation of the first to fifth electromagnetic valves V1 to V5 and the switching operation of the damper 11a. Instead of V1 to V5, a manually operated valve can be used, and the valve and the damper 11a can be manually switched separately.
[Brief description of the drawings]
[Fig. 1] Outline block diagram of absorption chiller
DESCRIPTION OF SYMBOLS 1 Absorber 2 Evaporator 3 Regenerator 4 Condenser 9 Heating means 10 Exhaust gas generator 11a Damper 19 Circulation pump 20 Liquid circulation path 22 Steam circulation path 23 Switching means 24 Control means A Cooling operation path B Non-cooling operation paths V1 to V5 valve

Claims (2)

吸収器、蒸発器、再生器、および、凝縮器を有する冷房運転経路を備え、
前記再生器の加熱手段が、排ガス発生装置からの排ガスにより加熱されるように構成され、
その排ガスを前記加熱手段に供給する加熱状態と非加熱状態とに切り換えるダンパが設けられている吸収式熱源機であって、
前記再生器内の吸収液を循環させる循環ポンプを備えた液循環路と、前記再生器内の冷媒蒸気を冷却して再生器内に戻す蒸気循環路からなる非冷房運転経路が、前記冷房運転経路とは別に設けられ、
前記再生器内の吸収液と冷媒蒸気を前記冷房運転経路に供給する運転状態と前記非冷房運転経路に供給する非運転状態とに切り換える切り換え手段が設けられている吸収式熱源機。
A cooling operation path having an absorber, an evaporator, a regenerator, and a condenser;
The regenerator heating means is configured to be heated by the exhaust gas from the exhaust gas generator,
An absorption heat source machine provided with a damper that switches between a heated state and a non-heated state for supplying the exhaust gas to the heating means,
A non-cooling operation path comprising a liquid circulation path provided with a circulation pump for circulating the absorption liquid in the regenerator and a steam circulation path for cooling the refrigerant vapor in the regenerator and returning it to the regenerator is the cooling operation. Separate from the route,
An absorption heat source apparatus provided with switching means for switching between an operation state in which the absorption liquid and refrigerant vapor in the regenerator are supplied to the cooling operation path and a non-operation state in which the refrigerant is supplied to the non-cooling operation path.
前記切り換え手段が、前記冷房運転経路と非冷房運転経路に設けられた複数のバルブで構成され、それらバルブの開閉と前記ダンパの切り換え作動を制御する制御手段が設けられている請求項1に記載の吸収式熱源機。The said switching means is comprised by the some valve | bulb provided in the said cooling operation path | route and the non-cooling operation path | route, The control means which controls opening / closing of these valves and the switching operation of the said damper is provided. Absorption heat source machine.
JP2003055891A 2003-03-03 2003-03-03 Absorption heat source machine Expired - Fee Related JP4152221B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003055891A JP4152221B2 (en) 2003-03-03 2003-03-03 Absorption heat source machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003055891A JP4152221B2 (en) 2003-03-03 2003-03-03 Absorption heat source machine

Publications (2)

Publication Number Publication Date
JP2004263965A JP2004263965A (en) 2004-09-24
JP4152221B2 true JP4152221B2 (en) 2008-09-17

Family

ID=33119776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003055891A Expired - Fee Related JP4152221B2 (en) 2003-03-03 2003-03-03 Absorption heat source machine

Country Status (1)

Country Link
JP (1) JP4152221B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6106999B2 (en) * 2012-09-03 2017-04-05 アイシン精機株式会社 Absorption heat pump device

Also Published As

Publication number Publication date
JP2004263965A (en) 2004-09-24

Similar Documents

Publication Publication Date Title
JPH09269162A (en) Absorbing type freezer
KR101137582B1 (en) Single and double effect absorption refrigerator and operation control method therefor
JPH03233265A (en) Absorbing type heat pump
JP4152221B2 (en) Absorption heat source machine
JP2009236369A (en) Absorption chiller/heater
JP2000121196A (en) Cooling/heating system utilizing waste heat
JP3851764B2 (en) Absorption refrigerator
JP3932378B2 (en) Air conditioner
JP2003269815A (en) Exhaust heat recovery type absorption refrigerator
JP4310566B2 (en) Air conditioner
JP4077973B2 (en) Operation method of exhaust heat absorption cold water heater
JPH033902Y2 (en)
JPH07151359A (en) Refrigerant circulation type air conditioning system
JP3824441B2 (en) Absorption refrigeration equipment
JPS602580B2 (en) Absorption type water chiller/heater control device
JPH04143562A (en) Low temperature waste heat utilizing absorption type refrigerating plant and controlling method therefor
JP2005106408A (en) Absorption type freezer
JP2567662B2 (en) Air-cooled double-effect absorption refrigerator
JP3143251B2 (en) Absorption refrigerator
JP2004085049A (en) Waste heat input type water cooling and heating machine and operation method
JP3157668B2 (en) Absorption chiller / heater
JPH0754209B2 (en) Absorption cold / hot water device and its operating method
JP4149653B2 (en) Operation method of absorption chiller using exhaust heat
JPH0758145B2 (en) Absorption cold / hot water device and its operating method
JP3412795B2 (en) Double effect absorption chiller / heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080619

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080701

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140711

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees