JP2004263965A - Absorption type heat source machine - Google Patents

Absorption type heat source machine Download PDF

Info

Publication number
JP2004263965A
JP2004263965A JP2003055891A JP2003055891A JP2004263965A JP 2004263965 A JP2004263965 A JP 2004263965A JP 2003055891 A JP2003055891 A JP 2003055891A JP 2003055891 A JP2003055891 A JP 2003055891A JP 2004263965 A JP2004263965 A JP 2004263965A
Authority
JP
Japan
Prior art keywords
regenerator
cooling operation
exhaust gas
heat source
switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003055891A
Other languages
Japanese (ja)
Other versions
JP4152221B2 (en
Inventor
Akio Morita
明夫 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma Co Ltd
Original Assignee
Takuma Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma Co Ltd filed Critical Takuma Co Ltd
Priority to JP2003055891A priority Critical patent/JP4152221B2/en
Publication of JP2004263965A publication Critical patent/JP2004263965A/en
Application granted granted Critical
Publication of JP4152221B2 publication Critical patent/JP4152221B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1417Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with liquid hygroscopic desiccants

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an absorption type heat source machine for surely avoiding the occurrence of clogging in a pipe system by preventing deposition of an absorbent from an absorbing liquid in nonoperation of the absorption type heat source machine without requiring an expensive damper device. <P>SOLUTION: This absorption type heat source machine has a cooling operation passage A having an absorber 1, an evaporator 2, a regenerator 3, and a condenser 4, and is provided with a heating means 9 of the regenerator 3 heated by exhaust gas from an exhaust gas generator 10, and a damper 11a for switching to a heating state of supplying the exhaust gas to the heating means 9 and an unheated state. A non-cooling operation passage B composed of a liquid circulating passage 20 having a circulating pump 19 for circulating the absorbing liquid in the regenerator 3 and a steam circulating passage 22 for cooling and returning refrigerant vapor in the regenerator 3, is arranged separately from the cooling operation passage A. A switching means 23 is arranged for switching to an operation state of supplying the absorbing liquid and refrigerant vapor to the cooling operation passage A and a nonoperational state of supplying the absorbing liquid and the refrigerant vapor to the non-cooling operation passage B. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は吸収器、蒸発器、再生器、および、凝縮器を有する冷房運転経路を備え、前記再生器の加熱手段が、排ガス発生装置からの排ガスにより加熱されるように構成され、その排ガスを前記加熱手段に供給する加熱状態と非加熱状態とに切り換えるダンパが設けられている吸収式熱源機に関する。
【0002】
【従来の技術】
このような吸収式熱源機は、例えば、一般の空調設備や産業用の冷熱利用設備などに冷熱を供給するためのもので、排ガス発生装置としてコージェネレーションシステムにおけるガスタービンやディーゼル発電機などが使用される。
コージェネレーションシステムは、電気エネルギーと熱エネルギーを供給するもので、電気エネルギーの需要量が比較的安定して変動が少ないのに対し、熱エネルギーの需要量は季節や時間によって大幅に変動する。
そのため、従来では、排ガス発生装置からの排ガス経路にダンパを設け、吸収式熱源機の非運転時には、そのダンパの切り換え操作によって、排ガスが再生器の加熱手段側へ流入しないように構成されていた(実際に実施されてはいるが、ダンパについて詳しく言及した特許文献などは見当たらない)。
【0003】
【発明が解決しようとする課題】
しかし、上述した従来技術では、ダンパが高温の排ガスに曝されて熱変形するため、たとえ排ガスが加熱手段側へ流入しないように切り換えても、加熱手段側への排ガスのリークを完全に阻止するのはむずかしい。
排ガスが加熱手段側へリークすると、時間の経過に伴って再生器内の吸収液が加熱されて沸騰し、吸収液の濃度が高くなるとともに、その高濃度の吸収液が吸収器側へ流出し、最終的には、吸収剤(例えば、臭化リチウム)が析出して吸収器への配管系などに詰まるおそれがある。
このようなトラブルは、ダンパを高精度にすることで回避可能ではあるが、排ガスのリークを完全に阻止するには、かなり高精度で高価なダンパ装置が必要となる。
【0004】
本発明は、このような従来の問題点に着目したもので、その目的は、高価なダンパ装置を必要とすることなく、吸収式熱源機の非運転時において、吸収液からの吸収剤の析出を防止して、配管系などへの詰まり発生を確実に回避することのできる吸収式熱源機を提供することである。
【0005】
【課題を解決するための手段】
請求項1の発明の特徴構成は、吸収器、蒸発器、再生器、および、凝縮器を有する冷房運転経路を備え、前記再生器の加熱手段が、排ガス発生装置からの排ガスにより加熱されるように構成され、その排ガスを前記加熱手段に供給する加熱状態と非加熱状態とに切り換えるダンパが設けられている吸収式熱源機であって、前記再生器内の吸収液を循環させる循環ポンプを備えた液循環路と、前記再生器内の冷媒蒸気を冷却して再生器内に戻す蒸気循環路からなる非冷房運転経路が、前記冷房運転経路とは別に設けられ、前記再生器内の吸収液と冷媒蒸気を前記冷房運転経路に供給する運転状態と前記非冷房運転経路に供給する非運転状態とに切り換える切り換え手段が設けられているところにある。
【0006】
請求項1の発明の特徴構成によれば、再生器内の吸収液を循環させる循環ポンプを備えた液循環路と、再生器内の冷媒蒸気を冷却して再生器内に戻す蒸気循環路からなる非冷房運転経路が、吸収器、蒸発器、再生器、および、凝縮器を有する冷房運転経路とは別に設けられ、再生器内の吸収液と冷媒蒸気を冷房運転経路に供給する運転状態と非冷房運転経路に供給する非運転状態とに切り換える切り換え手段が設けられているので、吸収式熱源機の運転時には、再生器内の吸収液と冷媒蒸気を冷房運転経路に供給して所望どおりの冷房運転を実行することができ、吸収式熱源機の非運転時には、再生器内の吸収液と冷媒蒸気を非冷房運転経路に供給することができる。
【0007】
すなわち、吸収式熱源機の非運転時において、たとえ排ガス発生装置からの排ガスが再生器の加熱手段側へリークして吸収液が加熱されても、吸収液は液循環路と再生器の間で循環され、加熱により発生した冷媒蒸気は、蒸気循環路によって冷却されて再生器内に戻されるので、再生器における吸収液の濃度はほぼ一定の範囲内に維持され、少なくとも、高濃度となって吸収剤が析出するようなことはない。
したがって、殊更、高精度で高価なダンパ装置を必要とすることもなく、吸収式熱源機の非運転時において、吸収液からの吸収剤の析出を防止して、配管系などへの詰まり発生を確実に回避することができる。
【0008】
請求項2の発明の特徴構成は、前記切り換え手段が、前記冷房運転経路と非冷房運転経路に設けられた複数のバルブで構成され、それらバルブの開閉と前記ダンパの切り換え作動を制御する制御手段が設けられているところにある。
【0009】
請求項2の発明の特徴構成によれば、前記切り換え手段が、冷房運転経路と非冷房運転経路に設けられた複数のバルブで構成されているので、比較的簡単な構造で入手も容易なバルブにより切り換え手段を安価に製作できるとともに、それらバルブの開閉とダンパの切り換え作動が制御手段により制御されるので、バルブの開閉とダンパの切り換えが所望どおりに実行されて、誤作動の危険性が回避される。
【0010】
【発明の実施の形態】
本発明による吸収式熱源機の実施の形態を図面に基づいて説明する。
この吸収式熱源機は、例えば、一般の空調設備や産業用の冷熱利用設備などに冷熱を供給するためのもので、通常、冷房用の冷熱と暖房用の温熱を択一的に供給することが可能な吸収式冷温水機として構成される。
一重効用式の吸収式冷温水機であれば、図1に示すように、吸収器1、蒸発器2、再生器3、および、凝縮器4を有し、吸収器1には、吸収器用伝熱管1aが配設され、凝縮器4には、凝縮器用伝熱管4aが配設されていて、図外の冷却塔からの冷却水が、吸収器用伝熱管1aを通流した後、凝縮器用伝熱管4aを通流するように、冷却塔との間で循環するように構成されている。
【0011】
吸収器1の下部には、低濃度の吸収液である稀液用の稀液配管5が接続され、その稀液配管5が、熱交換器6を通って再生器3の下部に接続されて、稀液配管5には、稀液用ポンプ7と逆止弁8が介装されている。
再生器3は、その上部に気液分離部3aを備え、かつ、加熱手段としての加熱用伝熱管9を有していて、その加熱用伝熱管9に対し、図外のコージェネレーションシステムにおけるガスタービンやディーゼル発電機などの排ガス発生装置10からの排ガスがダンパ装置11を介して供給されるように構成されている。
そのダンパ装置11は、回動自在なダンパ11aを備えていて、図示のように上方へ回動操作することにより、排ガスを加熱用伝熱管9に供給して再生器3内の吸収液を加熱する加熱状態と、下方へ回動操作することにより、排ガスを外部へ排出する非加熱状態とに切り換え自在に構成されている。
【0012】
再生器3において、その気液分離部3aの上部には、冷媒蒸気を移送する蒸気配管12が接続され、それが凝縮器4に接続されるとともに、気液分離部3aの下部には、高濃度の吸収液である濃液用の濃液配管13が接続され、その濃液配管13が、熱交換器6を通って吸収器1の上部に配置された散布具(図示せず)に接続されている。
凝縮器4には、冷媒水を移送する冷媒配管14が接続され、その冷媒配管14が、蒸発器2の上部に配置された散布具(図示せず)に接続され、蒸発器2の下部と冷媒配管14とが、冷媒ポンプ15を有する冷媒用の循環配管16により接続されている。
そして、蒸発器2には、蒸発器用伝熱管2aが配設され、冷房運転時には冷水を、暖房運転時には温水を図外の熱交換器に移送して、冷房運転または暖房運転を実行するように構成されている。
【0013】
以上のようにして、吸収器1、蒸発器2、再生器3、および、凝縮器4を有する冷房運転経路Aが構成され、さらに、再生器3の気液分離部3aの下部と蒸発器2の上部との間には、暖房弁17を有する暖房配管18が配設されて、暖房運転も兼用できるように構成されている。
そして、冷房運転経路Aを構成する再生器3には、冷房運転経路Aとは別に非冷房運転経路Bが設けられ、その非冷房運転経路Bは、再生器3内の吸収液を循環させる循環ポンプ19を備えた液循環路20と、再生器3内の冷媒蒸気を冷却する冷却器21を備えて再生器3内の冷媒蒸気を冷却して再生器3内に戻す蒸気循環路22により構成されている。
【0014】
すなわち、液循環路20は、再生器3の中間部と下部を接続するように配設され、再生器3の下部近くに配設された循環ポンプ19によって、再生器3内の吸収液を循環させるように構成されている。また、蒸気循環路22は、再生器3の気液分離部3aの上部に接続され、液循環路20の一部を兼用する状態で再生器3の下部に接続され、気液分離部3aの近くに空冷式の冷却器21が設けられている。
そして、液循環路20において、蒸気循環路22との接続箇所より上手側に第1電磁バルブV1が、循環ポンプ19より下手側に第2電磁バルブV2が設けられ、また、蒸気循環路22において、冷却器21の上手側に第3電磁バルブV3が設けられ、さらに、冷房運転経路Aにおいて、蒸気配管12に第4電磁バルブV4が、濃液配管13に第5電磁バルブV5が設けられている。
【0015】
これら第1〜第5電磁バルブV1〜V5は、再生器3内の吸収液と冷媒蒸気を冷房運転経路Aに供給する運転状態と、その吸収液と冷媒蒸気を非冷房運転経路Bに供給する非運転状態とに切り換え操作するための切り換え手段23として機能するもので、制御手段としての制御器24により開閉制御されるように構成されている。
そして、ダンパ装置11のダンパ11aと循環ポンプ19も制御器24により制御され、排ガス発生装置10からの排ガスが加熱用伝熱管9に供給される加熱状態では、ダンパ11aが上方へ回動制御され、第1〜第3電磁バルブV1〜V3が閉弁制御されて循環ポンプ19が停止され、第4と第5電磁バルブV4,V5が開弁制御される。また、非加熱状態では、ダンパ11aが下方へ回動制御され、第1〜第3電磁バルブV1〜V3が開弁制御されて循環ポンプ19が作動されるとともに、第4と第5電磁バルブV4,V5が閉弁制御されるのである。
なお、図中25は、再生器3における液面検出器である。
【0016】
したがって、ダンパ11aが上方へ回動された加熱状態では、冷房運転経路Aによって所望どおりの冷房運転が実行され、また、暖房運転も実行可能となる。暖房運転時の開閉弁制御は前記冷房運転時の開閉弁制御に加え、加熱状態では、暖房弁17が開弁制御され、非加熱状態では、暖房弁17が閉弁制御される。
そして、ダンパ11aが下方へ回動された非加熱状態では、第4と第5電磁バルブV4,V5が閉弁され、第1〜第3電磁バルブV1〜V3が開弁され、かつ、循環ポンプ19が作動される。
そのため、排ガス発生装置10からの排ガスが再生器3の加熱用伝熱管9側へリークして、再生器3内の吸収液が加熱されても、吸収液や冷媒蒸気が冷房運転経路A側へ流出することはなく、吸収液は液循環路20によって再生器3との間で循環され、冷媒蒸気は冷却器21で冷却され、冷媒水となって再生器3へ戻されるので、再生器3内の吸収液が濃縮されることはなく、吸収剤の析出は確実に防止される。
【0017】
〔別実施形態〕
(1)先の実施形態では、吸収式熱源機の一例として一重効用式の吸収式冷温水機を示したが、高温再生器と低温再生器を備えた二重効用式の吸収式冷温水機にも適用できるのは勿論のこと、暖房運転機能を備えていない冷房専用の吸収式冷凍機にも適用可能である。
また、非冷房運転経路Bを構成する蒸気循環路22に空冷式の冷却器21を設けた例を示したが、冷却器21は空冷式に限るものではなく、水冷式などの各種の冷却器を使用することができる。
【0018】
(2)先の実施形態では、制御手段としての制御器24によって、第1〜第5電磁バルブV1〜V5の開閉作動とダンパ11aの切り換え作動を制御する構成を示したが、例えば、電磁バルブV1〜V5に代えて手動操作式のバルブを使用し、そのバルブとダンパ11aとを手動により各別に切り換え操作するように構成することもできる。
【図面の簡単な説明】
【図1】吸収式冷温水機の概略ブロック図
【符号の説明】
1 吸収器
2 蒸発器
3 再生器
4 凝縮器
9 加熱手段
10 排ガス発生装置
11a ダンパ
19 循環ポンプ
20 液循環路
22 蒸気循環路
23 切り換え手段
24 制御手段
A 冷房運転経路
B 非冷房運転経路
V1〜V5 バルブ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention is provided with a cooling operation path having an absorber, an evaporator, a regenerator, and a condenser, wherein the heating means of the regenerator is configured to be heated by exhaust gas from an exhaust gas generator, and the exhaust gas is discharged. The present invention relates to an absorption heat source device provided with a damper for switching between a heating state and a non-heating state supplied to the heating means.
[0002]
[Prior art]
Such an absorption heat source unit is for supplying cold heat to, for example, general air conditioning equipment or industrial cold heat utilization equipment, and a gas turbine or a diesel generator in a cogeneration system is used as an exhaust gas generator. Is done.
A cogeneration system supplies electric energy and heat energy. The demand for electric energy is relatively stable and has little fluctuation, whereas the demand for heat energy fluctuates greatly depending on the season and time.
Therefore, conventionally, a damper is provided in the exhaust gas path from the exhaust gas generator, and when the absorption heat source device is not operating, the damper is switched so that the exhaust gas does not flow into the heating means side of the regenerator. (Although it is actually implemented, there is no patent document that mentions the damper in detail.)
[0003]
[Problems to be solved by the invention]
However, in the above-described prior art, since the damper is thermally deformed by being exposed to the high-temperature exhaust gas, even if the exhaust gas is switched so as not to flow into the heating means side, the leakage of the exhaust gas to the heating means side is completely prevented. It is difficult.
When the exhaust gas leaks to the heating means side, the absorbing solution in the regenerator is heated and boiled with the passage of time, and the concentration of the absorbing solution increases, and the high-concentration absorbing solution flows to the absorber side. Finally, there is a possibility that the absorbent (for example, lithium bromide) may precipitate and clog the piping system to the absorber.
Such troubles can be avoided by making the damper high in accuracy, but in order to completely prevent exhaust gas leakage, a fairly accurate and expensive damper device is required.
[0004]
The present invention focuses on such a conventional problem, and its object is to deposit an absorbent from an absorbing liquid without using an expensive damper device when the absorption heat source device is not operating. It is an object of the present invention to provide an absorption heat source device that can prevent the occurrence of clogging in a piping system or the like and can reliably prevent the occurrence of clogging in a piping system or the like.
[0005]
[Means for Solving the Problems]
The feature configuration of the invention of claim 1 is provided with a cooling operation path having an absorber, an evaporator, a regenerator, and a condenser, and the heating means of the regenerator is heated by exhaust gas from an exhaust gas generator. An absorption type heat source unit provided with a damper for switching between a heated state and a non-heated state for supplying the exhaust gas to the heating means, comprising a circulating pump for circulating the absorbent in the regenerator. A non-cooling operation path comprising a liquid circulation path, and a vapor circulation path for cooling the refrigerant vapor in the regenerator and returning the refrigerant vapor to the regenerator, is provided separately from the cooling operation path, and the absorbing liquid in the regenerator. And a switching means for switching between an operation state in which the refrigerant vapor is supplied to the cooling operation path and a non-operation state in which the refrigerant vapor is supplied to the non-cooling operation path.
[0006]
According to the characteristic configuration of the first aspect of the present invention, the liquid circulation path including the circulation pump that circulates the absorbing liquid in the regenerator and the vapor circulation path that cools the refrigerant vapor in the regenerator and returns the refrigerant vapor to the regenerator. The non-cooling operation path is provided separately from the cooling operation path having the absorber, the evaporator, the regenerator, and the condenser, and the operating state of supplying the absorbent and the refrigerant vapor in the regenerator to the cooling operation path. Since the switching means for switching to the non-operating state for supplying to the non-cooling operation path is provided, during operation of the absorption heat source unit, the absorption liquid and the refrigerant vapor in the regenerator are supplied to the cooling operation path to be as desired. The cooling operation can be performed, and when the absorption heat source device is not operating, the absorbing liquid and the refrigerant vapor in the regenerator can be supplied to the non-cooling operation path.
[0007]
That is, even when the exhaust gas from the exhaust gas generator leaks to the heating means side of the regenerator and heats the absorbent when the absorption heat source device is not operating, the absorbent flows between the liquid circulation path and the regenerator. Since the refrigerant vapor circulated and generated by the heating is cooled by the vapor circulation path and returned to the regenerator, the concentration of the absorbing liquid in the regenerator is maintained within a substantially constant range, and at least becomes a high concentration. There is no precipitation of the absorbent.
Therefore, it is possible to prevent precipitation of the absorbent from the absorbent and prevent clogging of the piping system when the absorption heat source device is not operated, without particularly requiring a high-precision and expensive damper device. It can be avoided reliably.
[0008]
A feature of the invention according to claim 2 is that the switching means comprises a plurality of valves provided in the cooling operation path and the non-cooling operation path, and controls the opening and closing of the valves and the switching operation of the damper. Is provided.
[0009]
According to the characteristic configuration of the invention of claim 2, since the switching means is constituted by a plurality of valves provided in the cooling operation path and the non-cooling operation path, a valve which is relatively simple in structure and easily available. The switching means can be manufactured at low cost, and the opening and closing of the valves and the switching operation of the damper are controlled by the control means, so that the opening and closing of the valve and the switching of the damper are executed as desired, thereby avoiding the risk of malfunction. Is done.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of an absorption heat source device according to the present invention will be described with reference to the drawings.
This absorption-type heat source unit is for supplying cold heat to, for example, general air-conditioning equipment or industrial cold heat utilization equipment. Usually, it selectively supplies cold heat for cooling and warm heat for heating. It is configured as an absorption type chiller / heater that can operate.
As shown in FIG. 1, a single-effect absorption chiller / heater has an absorber 1, an evaporator 2, a regenerator 3 and a condenser 4, and the absorber 1 includes an absorber transmission. A heat pipe 1a is provided, and a condenser heat transfer pipe 4a is provided in the condenser 4. After cooling water from a cooling tower (not shown) flows through the absorber heat transfer pipe 1a, a condenser heat transfer pipe 1a is provided. It is configured to circulate with the cooling tower so as to flow through the heat pipe 4a.
[0011]
The lower part of the absorber 1 is connected to a diluent pipe 5 for a dilute liquid that is a low-concentration absorbent, and the diluent pipe 5 is connected to a lower part of the regenerator 3 through a heat exchanger 6. The diluent pipe 5 is provided with a diluent pump 7 and a check valve 8.
The regenerator 3 is provided with a gas-liquid separation section 3a at its upper part, and has a heating heat transfer tube 9 as a heating means, and the heating heat transfer tube 9 is provided with a gas in a cogeneration system (not shown). Exhaust gas from an exhaust gas generator 10 such as a turbine or a diesel generator is supplied through a damper device 11.
The damper device 11 is provided with a rotatable damper 11a. By rotating the damper device 11a upward as shown in the figure, the exhaust gas is supplied to the heat transfer tube 9 to heat the absorbing liquid in the regenerator 3. It is configured to be switchable between a heated state in which the exhaust gas is discharged and a non-heated state in which the exhaust gas is discharged to the outside by being rotated downward.
[0012]
In the regenerator 3, a vapor pipe 12 for transferring refrigerant vapor is connected to an upper part of the gas-liquid separator 3a, which is connected to the condenser 4, and a high-pressure pipe is connected to a lower part of the gas-liquid separator 3a. A concentrated liquid pipe 13 for a concentrated liquid, which is an absorbing liquid having a concentration, is connected, and the concentrated liquid pipe 13 is connected to a spraying tool (not shown) disposed above the absorber 1 through the heat exchanger 6. Have been.
A refrigerant pipe 14 for transferring refrigerant water is connected to the condenser 4, and the refrigerant pipe 14 is connected to a spraying tool (not shown) arranged at an upper part of the evaporator 2, and is connected to a lower part of the evaporator 2. The refrigerant pipe 14 is connected to a refrigerant circulation pipe 16 having a refrigerant pump 15.
The evaporator 2 is provided with a heat transfer tube 2a for the evaporator, and transfers cold water during a cooling operation and hot water during a heating operation to a heat exchanger (not shown) to perform a cooling operation or a heating operation. It is configured.
[0013]
As described above, the cooling operation path A including the absorber 1, the evaporator 2, the regenerator 3, and the condenser 4 is configured, and the lower part of the gas-liquid separation unit 3a of the regenerator 3 and the evaporator 2 A heating pipe 18 having a heating valve 17 is arranged between the heating pipe 18 and the upper part of the heating pipe 18 so that the heating pipe 18 can be used for a heating operation.
The regenerator 3 constituting the cooling operation path A is provided with a non-cooling operation path B separately from the cooling operation path A. The non-cooling operation path B circulates the absorbent in the regenerator 3. A liquid circulation path 20 having a pump 19 and a vapor circulation path 22 having a cooler 21 for cooling the refrigerant vapor in the regenerator 3 for cooling the refrigerant vapor in the regenerator 3 and returning the refrigerant vapor to the regenerator 3. Have been.
[0014]
That is, the liquid circulation path 20 is provided so as to connect the middle part and the lower part of the regenerator 3, and the absorption liquid in the regenerator 3 is circulated by the circulation pump 19 arranged near the lower part of the regenerator 3. It is configured to be. The vapor circuit 22 is connected to the upper part of the gas-liquid separator 3 a of the regenerator 3, and is connected to the lower part of the regenerator 3 while also serving as a part of the liquid circuit 20. An air-cooled cooler 21 is provided nearby.
In the liquid circulation path 20, a first electromagnetic valve V1 is provided on the upper side of the connection point with the vapor circulation path 22, and a second electromagnetic valve V2 is provided on the lower side of the circulation pump 19. A third electromagnetic valve V3 is provided on the upstream side of the cooler 21, and a fourth electromagnetic valve V4 is provided on the steam pipe 12 and a fifth electromagnetic valve V5 is provided on the concentrated liquid pipe 13 in the cooling operation path A. I have.
[0015]
These first to fifth solenoid valves V1 to V5 are in an operating state in which the absorbing liquid and the refrigerant vapor in the regenerator 3 are supplied to the cooling operation path A, and are supplied with the absorbing liquid and the refrigerant vapor to the non-cooling operation path B. It functions as switching means 23 for switching operation to the non-operation state, and is configured to be opened and closed by a controller 24 as control means.
The damper 11a of the damper device 11 and the circulation pump 19 are also controlled by the controller 24, and in a heating state in which the exhaust gas from the exhaust gas generator 10 is supplied to the heating heat transfer tube 9, the damper 11a is controlled to rotate upward. The first to third electromagnetic valves V1 to V3 are controlled to close, the circulation pump 19 is stopped, and the fourth and fifth electromagnetic valves V4 and V5 are controlled to open. In the non-heating state, the damper 11a is controlled to rotate downward, the first to third electromagnetic valves V1 to V3 are controlled to open, the circulation pump 19 is operated, and the fourth and fifth electromagnetic valves V4 are controlled. , V5 are controlled to close.
In the drawing, reference numeral 25 denotes a liquid level detector in the regenerator 3.
[0016]
Therefore, in the heating state in which the damper 11a is rotated upward, the cooling operation is performed as desired by the cooling operation path A, and the heating operation can also be performed. The on-off valve control during the heating operation is in addition to the on-off valve control during the cooling operation. In the heating state, the heating valve 17 is controlled to open, and in the non-heating state, the heating valve 17 is controlled to close.
In the non-heating state in which the damper 11a is turned downward, the fourth and fifth solenoid valves V4 and V5 are closed, the first to third solenoid valves V1 to V3 are opened, and the circulation pump is opened. 19 is activated.
Therefore, even if the exhaust gas from the exhaust gas generator 10 leaks to the heating heat transfer tube 9 side of the regenerator 3 and the absorbing liquid in the regenerator 3 is heated, the absorbing liquid and the refrigerant vapor are transferred to the cooling operation path A side. The absorbent does not flow out and is circulated between the regenerator 3 by the liquid circulation path 20 and the refrigerant vapor is cooled by the cooler 21 and returned to the regenerator 3 as refrigerant water. The absorption liquid in the inside is not concentrated, and the precipitation of the absorbent is reliably prevented.
[0017]
[Another embodiment]
(1) In the above embodiment, a single-effect absorption chiller / heater was shown as an example of an absorption heat source device, but a double-effect absorption chiller / heater equipped with a high-temperature regenerator and a low-temperature regenerator. Of course, the present invention can be applied to an absorption-type refrigerator exclusively used for cooling without a heating operation function.
In addition, the example in which the air-cooling type cooler 21 is provided in the steam circulation path 22 constituting the non-cooling operation path B has been described. However, the cooler 21 is not limited to the air-cooling type, and various types of water-cooling type Can be used.
[0018]
(2) In the above embodiment, the configuration in which the opening and closing operations of the first to fifth electromagnetic valves V1 to V5 and the switching operation of the damper 11a are controlled by the controller 24 as a control means has been described. A manually operated valve may be used instead of V1 to V5, and the valve and the damper 11a may be manually switched separately.
[Brief description of the drawings]
FIG. 1 is a schematic block diagram of an absorption chiller / heater.
DESCRIPTION OF SYMBOLS 1 Absorber 2 Evaporator 3 Regenerator 4 Condenser 9 Heating means 10 Exhaust gas generator 11a Damper 19 Circulation pump 20 Liquid circulation path 22 Steam circulation path 23 Switching means 24 Control means A Cooling operation path B Non-cooling operation paths V1 to V5 valve

Claims (2)

吸収器、蒸発器、再生器、および、凝縮器を有する冷房運転経路を備え、
前記再生器の加熱手段が、排ガス発生装置からの排ガスにより加熱されるように構成され、
その排ガスを前記加熱手段に供給する加熱状態と非加熱状態とに切り換えるダンパが設けられている吸収式熱源機であって、
前記再生器内の吸収液を循環させる循環ポンプを備えた液循環路と、前記再生器内の冷媒蒸気を冷却して再生器内に戻す蒸気循環路からなる非冷房運転経路が、前記冷房運転経路とは別に設けられ、
前記再生器内の吸収液と冷媒蒸気を前記冷房運転経路に供給する運転状態と前記非冷房運転経路に供給する非運転状態とに切り換える切り換え手段が設けられている吸収式熱源機。
Comprising a cooling operation path having an absorber, an evaporator, a regenerator, and a condenser;
The heating means of the regenerator is configured to be heated by exhaust gas from an exhaust gas generator,
An absorption heat source device provided with a damper for switching between a heated state and a non-heated state for supplying the exhaust gas to the heating means,
A non-cooling operation path including a liquid circulation path including a circulation pump that circulates the absorbent in the regenerator and a vapor circulation path that cools the refrigerant vapor in the regenerator and returns the refrigerant to the regenerator includes a cooling operation. It is provided separately from the route,
An absorption heat source unit provided with switching means for switching between an operation state in which the absorbing liquid and the refrigerant vapor in the regenerator are supplied to the cooling operation path and a non-operation state in which the absorption liquid and the refrigerant vapor are supplied to the non-cooling operation path.
前記切り換え手段が、前記冷房運転経路と非冷房運転経路に設けられた複数のバルブで構成され、それらバルブの開閉と前記ダンパの切り換え作動を制御する制御手段が設けられている請求項1に記載の吸収式熱源機。2. The control device according to claim 1, wherein the switching unit includes a plurality of valves provided in the cooling operation path and the non-cooling operation path, and a control unit that controls opening / closing of the valves and switching operation of the damper is provided. Absorption type heat source machine.
JP2003055891A 2003-03-03 2003-03-03 Absorption heat source machine Expired - Fee Related JP4152221B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003055891A JP4152221B2 (en) 2003-03-03 2003-03-03 Absorption heat source machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003055891A JP4152221B2 (en) 2003-03-03 2003-03-03 Absorption heat source machine

Publications (2)

Publication Number Publication Date
JP2004263965A true JP2004263965A (en) 2004-09-24
JP4152221B2 JP4152221B2 (en) 2008-09-17

Family

ID=33119776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003055891A Expired - Fee Related JP4152221B2 (en) 2003-03-03 2003-03-03 Absorption heat source machine

Country Status (1)

Country Link
JP (1) JP4152221B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014048010A (en) * 2012-09-03 2014-03-17 Aisin Seiki Co Ltd Absorption type heat pump device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014048010A (en) * 2012-09-03 2014-03-17 Aisin Seiki Co Ltd Absorption type heat pump device

Also Published As

Publication number Publication date
JP4152221B2 (en) 2008-09-17

Similar Documents

Publication Publication Date Title
WO2007077687A1 (en) Heat pump hot water supply device
JPH09269162A (en) Absorbing type freezer
KR100981977B1 (en) Absorption water chiller-heater
JP2000018762A (en) Absorption refrigerating machine
JP4152221B2 (en) Absorption heat source machine
JP2985513B2 (en) Absorption cooling and heating system and its control method
JPH0539963A (en) Cooling and heating device
JP3932378B2 (en) Air conditioner
JP4279917B2 (en) Absorption refrigerator
JP2003269815A (en) Exhaust heat recovery type absorption refrigerator
JP3143251B2 (en) Absorption refrigerator
JP4310566B2 (en) Air conditioner
JP2004085049A (en) Waste heat input type water cooling and heating machine and operation method
JPH07151359A (en) Refrigerant circulation type air conditioning system
JP3824441B2 (en) Absorption refrigeration equipment
JP2005106408A (en) Absorption type freezer
JP2002349990A (en) Absorption refrigeration unit
JP3157668B2 (en) Absorption chiller / heater
JP4149653B2 (en) Operation method of absorption chiller using exhaust heat
JP2533932B2 (en) Air-cooled absorption type water heater
JP2005326089A (en) Absorption refrigerating machine
KR100513682B1 (en) Air Conditioner of GHP method
JPH06257881A (en) Absorption type water cooler-heater
JP2001208443A (en) Absorption freezer
JP2020046128A (en) Absorption refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080619

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080701

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140711

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees