JP4148609B2 - Method for producing xylose and xylooligosaccharide - Google Patents
Method for producing xylose and xylooligosaccharide Download PDFInfo
- Publication number
- JP4148609B2 JP4148609B2 JP26677699A JP26677699A JP4148609B2 JP 4148609 B2 JP4148609 B2 JP 4148609B2 JP 26677699 A JP26677699 A JP 26677699A JP 26677699 A JP26677699 A JP 26677699A JP 4148609 B2 JP4148609 B2 JP 4148609B2
- Authority
- JP
- Japan
- Prior art keywords
- xylose
- water
- extract
- xylan
- xylooligosaccharide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Jellies, Jams, And Syrups (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、キシラン含有天然物を特別な条件の熱水で処理してキシロース及びキシロオリゴ糖を製造する方法に関するものである。
【0002】
【従来の技術】
従来から、キシロース及びキシロオリゴ糖の製造方法としては、キシラン含有天然物を約130℃以上の温度で蒸煮または爆砕処理した後に、水で抽出してキシロース及びキシロオリゴ糖を含む抽出液を得た後、活性炭処理とイオン交換樹脂処理との組み合わせ等により脱色処理を行い、純度の高いキシロース及びキシロオリゴ糖を得る方法が知られている。
【0003】
しかしながら、上記載の方法で得られる抽出液中には、リグニン分解成分、原料中の水溶性成分、ヘミセルロース分解成分、等の着色物質が不純物として多量に混入しているため、1)脱色が困難である、2)活性炭及びイオン交換樹脂の使用量が膨大となる、3)陰イオン交換樹脂への色素の不可逆的吸着が避けられず、従って陰イオン交換樹脂の寿命が短い、4)キシロース及びキシロオリゴ糖の一部が活性炭やイオン交換樹脂に吸着され、収量が低下する等の問題を有していた。
【0004】
これらの問題を改善する目的で、キシラン含有天然物を熱水処理して得られる抽出液を、予め、イ)クロマト分離(特開平1−254692号公報)や、ロ)限外濾過(特開昭61−285999号公報)により混入している不純物を効率良く除去しておき、その後に、活性炭やイオン交換樹を用いて脱色処理を行う方法が開示されている。しかし、イ)は、陽イオン交換樹脂のイオン排除作用により、キシロース及びキシロオリゴ糖を含む溶出区分と着色不純物の溶出区分とに分画する方法であるが、キシロース及びキシロオリゴ糖と着色不純物とを完全に分離することは困難であり、着色不純物の除去を効果的に行おうとするとキシロース及びキシロオリゴ糖の損失が起こり収量が低下してしまう、或いは、キシロース及びキシロオリゴ糖の損失を抑えようとすると大量の不純物が混入してしまう傾向にある。また、ロ)は、限外ろ過膜の分子ふるい作用により、比較的分子量の小さいキシロース及びキシロオリゴ糖と比較的分子量の大きい着色不純物とを分離する方法であるが、キシロオリゴ糖と着色不純物の中には分子量が近いものも存在するため、分画分子量の小さい膜を用いると、キシロオリゴ糖の内高分子側のものが膜を通れず、キシロオリゴ糖の収量が低下してしまう、或いは、分画分子量の大きい膜を用いると、着色不純物の内低分子側のものが膜を通り、キシロース及びキシロオリゴ糖に混入してしまう傾向にあり、キシロース及びキシロオリゴ糖の収量を維持しつつ、着色不純物を効率的に除去するには、未だ十分な方法とはいえなかった。
【0005】
また、特開平6−197800号公報では、原料をササに限定してはいるが、原料から、アセトン、アルコール等の有機溶媒や冷水あるいは温水で抽出される成分を除去したのち、残部の含水量を30%〜60%の範囲に調整して、これを飽和水蒸気で加圧加熱処理してキシロオリゴ糖を抽出する方法が開示されている。この方法によれば、原料を前処理して酢酸カリウムや酢酸ナトリウム等の有機酸塩を除去することにより、キシランの二次分解が抑制され、前処理をしていない場合と比較して、キシロオリゴ糖を高収率で高純度に抽出できるようになる。しかし、前記前処理条件では、原料に含まれている易分解性リグニンの分解溶出が行われず、加圧加熱処理をした際、キシロオリゴ糖にリグニン分解成分が混入してしまい、該不純物を除去するのに多大な労力を必要とした。
以上の理由により、キシラン含有天然物からキシロース及びキシロオリゴ糖を高純度に抽出する方法が望まれている。
【0006】
【発明が解決しようとする課題】
本発明は、キシラン含有天然物からキシロース及びキシロオリゴ糖を高純度に抽出することにより、工業的に効率良く、短縮された設備で、キシロース及びキシロオリゴ糖を製造する方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明者らは、前記課題を解決するために鋭意検討した結果、キシラン含有天然物からキシロース及びキシロオリゴ糖を主成分とする糖液を抽出する際、熱水のみを用いて特定の条件下で処理することにより、抽出されるキシロース及びキシロオリゴ糖の分解を抑制し、且つ、リグニン分解成分や原料中の水溶性成分等の不純物の混入を著しく低減できることに基づき、キシロース及びキシロオリゴ糖を高純度に抽出できることを見出し、本発明を完成するに至った。
【0008】
即ち、本発明は、
(1)キシラン含有天然物から予め110℃以上140℃以下の熱水で抽出される成分を除去した水不溶性の残さを、前記処理温度以上200℃以下の熱水で処理することを特徴とする、キシロース及びキシロオリゴ糖の製造方法、
(2)キシラン含有天然物がサトウキビピスであることを特徴とする(1)に記載のキシロース及びキシロオリゴ糖の製造方法、
を提供するものである。
【0009】
以下に本発明を詳細に説明する。
本発明において用いられる原料としては、キシランを含む天然物、例えば白樺やブナ等の広葉樹や、とうもろこし稲穂、綿実殻、サトウキビバカス、サトウキビピス、ビートパルプ等の農産廃棄物が利用できる。これら原料の内、リグニン含有量が低く、穏和な条件で容易にキシロース及びキシロオリゴ糖の抽出ができるサトウキビピスが特に好ましい。
これら原料の形状は、特に限定はしないが、抽出操作を容易にするためにチップ状、繊維状等に粉砕された形状のものが好ましく用いられる。
本発明におけるキシラン含有天然物の熱水処理は、必要に応じて、公知の技術である爆砕と組み合わせて行うこともできる。熱水処理を行う際には、抽出を容易にするために、攪拌した状態で処理することが好ましい。
【0010】
本発明において、キシラン含有天然物の熱水による前処理は、使用する原料により違いはあるが、110℃以上140℃以下で行うことが必要である。110℃未満の場合には、原料に含有される易分解性リグニン、水溶性成分、等、不純物の溶出が不十分であり、140℃を越える場合には、キシラン成分の溶出が生じ、最終的に得られるキシリトールの収量が低下するために好ましくない。前処理に要する時間は、通常10分以上120分以下、好ましくは15分以上60分以下、特に好ましくは20分以上40分以下である。10分未満では、不純物の溶出が不十分であり、120分を越えて実施しても更なる不純物の溶出は見られない。
【0011】
キシラン含有原料に加える水の量は、該原料の乾燥重量に対して、通常1倍量以上16倍量以下、好ましくは3倍量以上14倍量以下、更に好ましくは5倍量以上12倍量以下である。水の量が1倍量より少ない場合には、不純物の溶解が十分に起こらず、不純物を効率よく除去できないので好ましくない。一方、水の量が16倍量を越える場合には、遊離した酢酸に由来するプロトン濃度が低下し、易分解性リグニンの分解が十分に起こらず、その後の操作過程に混入するため好ましくない。
【0012】
以上述べた熱水処理をしたキシラン含有天然物を、必要に応じて、100℃以下の水で攪拌処理し、不純物の抽出を十分に行うことも可能である。この際、攪拌をスムーズに行うために新たに水を添加しても良い。
上記条件で処理をした後に遠心機、濾過機などにより溶出した不純物を分離除去して必要なキシランを高純度に含む残さを得る。得られた残さは加水して洗浄し、不純物を十分に除去しておくことが好ましい。
前処理済みキシラン含有原料は、使用する原料により違いはあるが、通常前処理温度以上200℃以下で熱水処理されて、キシロース及びキシロオリゴ糖が抽出される。処理温度が前処理温度より低い場合には抽出成分がほとんど無く、200℃より高い場合には原料に含有される難分解性リグニン及びセルロースが加水分解されてキシロース及びキシロオリゴ糖と共に溶出されてくるので好ましくない。
【0013】
熱水処理時間は、通常20分以上180分以下、好ましくは40分以上120分以下である。20分より短い場合にはキシロース及びキシロオリゴ糖の溶出が十分に行われないので好ましくない。180分より長い場合には反応系内で生じたキシロース及びキシロオリゴ糖の分解が著しくなるため好ましくない。
前処理済みのキシラン含有原料に加える水の量は、該原料の乾燥重量に対して、通常1倍量以上16倍量以下、好ましくは3倍量以上14倍量以下、更に好ましくは5倍量以上12倍量以下である。1倍量未満の場合には、加水分解されたキシロース及びキシロオリゴ糖を完全に水に溶解するのに不十分であり、一方、水の量が16倍量を越える場合には、遊離した酢酸に由来するプロトン濃度が低下し、キシランの部分加水分解による水可溶化が十分に起こらず、しいてはキシロース及びキシロオリゴ糖収量が低下するために好ましくない。
【0014】
上記抽出操作を行った後、必要に応じて、100℃以下の温度の水で撹拌処理し、水溶性となったキシロース及びキシロオリゴ糖を十分に抽出することも可能である。この際、攪拌をスムーズに行うために、新たに水を添加しても良い。
以上述べた抽出操作を行った後、遠心機、濾過機などにより抽出液から残さを分離除去し、高純度のキシロース及びキシロオリゴ糖を主成分とする抽出液を得ることができる。
【0015】
上述の抽出方法で得られたキシロース及びキシロオリゴ糖を主成分とする水溶液は、必要に応じて、活性炭処理及び陽陰イオン交換樹脂処理等の通常の脱色、脱塩処理を行い、キシロース及びキシリオリゴ糖の損失なしに、不純物を含まない精製された糖液を容易に得ることが出来る。
以上のようにして精製されたキシロース及びキシロオリゴ糖は、そのまま食品等に添加して用いることができる。また、カラムクロマトグラフィーや限外ろ過の方法を用いて、キシロース及び任意の重合度のキシロオリゴ糖の内、少なくとも1つ以上を含む分画を分離して用いることも可能である。
【0016】
【発明の実施の形態】
以下で、実施例により本発明を更に詳しく説明する。尚、水溶液中に溶解しているリグニン分解成分含量の測定は、水溶液中の溶解固形分を真空下で絶乾した試料を用い、JIS−P8008に準拠して行った。また、陰イオン交換樹脂の交換容量の測定は、樹脂を15倍重量の0.5N塩化ナトリウム水溶液と共存させ、標準塩化水素溶液(和光純薬工業株式会社)で、フェノールフタレインを指示薬として滴定を行い求めた。
【0017】
【実施例】
(実施例1)
風乾とうもろこし穂軸100gと水1.0kgとを2Lオートクレーブに入れ、125℃で40分間加熱処理した。次いで、加水洗浄しながら抽出液をろ別し、キシランを高純度に含有する残さ87gを得た。(前処理)
前処理により得られた残さ87gと水1.0kgとを2Lオートクレーブに入れ、160℃で90分間加熱処理しした。次いで、残さをろ別し、得られた抽出液を減圧下で濃縮し、固形分濃度10重量%の抽出液を210g得た。(本処理)
該抽出液50gに粉末活性炭0.05gを加え、50℃で1時間攪拌した後、活性炭をろ別した。
【0018】
活性炭処理された抽出液をアンバーライトIRA410(オルガノ株式会社)を20gを充填したカラムに通過させて、無色透明なキシロース及びキシロオリゴ糖を含有する水溶液を得た。
なお、比較のために、前処理を行っていないとうもろこし穂軸を用いた場合も、上記と同一条件で抽出とそれに続く精製操作を行ったが、得られたキシロース及びキシロオリゴ糖を含有する水溶液は僅かに黄色く着色していた(比較例1)。
【0019】
抽出液中の糖成分及びリグニン分解成分の固形分に占める割合、抽出液をイオン交換樹脂処理した際、イオン交換樹脂の減少したイオン交換容量を表1示す。表1に示すとおり、キシロース成分の抽出固形分に対する純度は、比較例1の場合は44.1であるが、本発明による場合は68.9%と高い値となっている。また、比較例1では、リグニン成分の混入が著しく、活性炭0.05gと陰イオン交換樹脂20gでは脱色しきれなかった。
これらのことから、本発明によれば、キシロース成分を高純度に抽出できること、そのために、後の精製負荷が著しく減少されることが分かる。
【0020】
(実施例2)
実施例1で得られた無色透明のキシロース及びキシロオリゴ糖を含有する水溶液を、分画分子量5000の限外ろ過膜YM5(アミコングレースジャパン社)に3.8kg/cm2の圧力で通した。透過液を再び、分画分子量1000の限外ろ過膜YM2(アミコングレースジャパン社)を用いて、3.8kg/cm2の圧力でろ過した。その保持液からは、キシロビオース及びキシロトリオースを主成分とするキシロオリゴ糖が得られた。
【0021】
(実施例3)
風乾サトウキビピス100gと水1.0kgとを2Lオートクレーブに入れ、130℃で30分間加熱処理した。次いで、加水洗浄しながら抽出液をろ別し、キシランを高純度に含有する残さ85gを得た。(前処理)
前処理により得られた残さ85gと水1.0kgとを2Lオートクレーブに入れ、150℃で60分間加熱処理した。70℃まで冷却後、水500gを加えて2時間撹拌した。次いで、残さをろ別し、得られた抽出液を減圧下で濃縮し、固形分濃度10重量%の抽出液を220g得た。(本処理)
該抽出液50gに粉末活性炭0.05gを加え、50℃で1時間攪拌した後、活性炭をろ別した。
【0022】
活性炭処理された抽出液をアンバーライトIRA410(オルガノ株式会社)を20g充填したカラムに通過させて、無色透明なキシロース及びキシロオリゴ糖を含有する水溶液を得た。
なお、比較のために、前処理条件を80℃、2時間(比較例2)、又は、本処理条件を210℃、20分(比較例3)とした場合も、上記と同一条件で抽出とそれに続く精製操作を行った。
抽出液中の糖成分及びリグニン分解成分の固形分に占める割合、抽出液をイオン交換樹脂処理した際、イオン交換樹脂の減少したイオン交換容量を表2に示した。
【0023】
表2が示すように、本発明では68.9%とキシロース成分を高純度に抽出できるのに対して、比較例2では、前処理による不純物の除去が不充分なため、易分解性リグニンが大量に混入してしまい、48.9%と純度が低い、また、比較例3では、本処理の際、難分解性リグニン及びセルロースの加水分解が生じて処理液に混入してしまうため、46.0%と純度が低いのが分かる。従って、表2に示すように、比較例2、3が脱色処理に必用としたイオン交換樹脂容量は本発明の場合の3倍以上となる。
これらのことから、本発明によれば、キシロース成分を高純度に抽出することができること、そのために、後の精製負荷が著しく減少されることが分かる。
【0024】
【表1】
【0025】
【表2】
【0026】
(実施例4)
風乾綿実殻100gと水800gを2Lオートクレーブに入れ、120℃で40分間加熱処理した。次いで、加水洗浄しながら抽出物をろ別し、キシランを含有する残さ86gを得た。
得られた残さ86gと水800gを2Lオートクレーブに入れ、150℃で90分間加熱処理した後、70℃まで冷却し、水500gを加えて1時間撹拌した。次いで、残さをろ別し、得られた抽出液を減圧下で濃縮し、固形分濃度5重量%の抽出液640gを得た。
その後該抽出液を実施例1と同様に処理した。その結果、キシロース成分が高純度で抽出でき、しかもイオン交換樹脂の精製負荷が著しく減少した。
【0027】
(実施例5)
風乾白樺チップ100gと水1.0kgを2Lオートクレーブに入れ、135℃で25分間加熱処理した。次いで、加水洗浄しながら抽出物をろ別し、キシランを含有する残さ91gを得た。
得られた残さ91gを温度175℃で1分間爆砕処理した処理品と、水1.0kgとを2Lオートクレーブに入れ、170℃で90分間加熱処理した後、70℃まで冷却して2時間撹拌した。次いで、残さをろ別し、得られた抽出液を減圧下で濃縮し、固形分濃度5重量%の抽出液430gを得た。
その後該抽出液を実施例1と同様に処理した。その結果、キシロース成分が高純度で抽出でき、しかもイオン交換樹脂の精製負荷が著しく減少した。
【0028】
【発明の効果】
キシラン含有天然物を特定の条件の熱水を用いて処理することにより、キシロース及びキシロオリゴ糖を高純度に抽出することができるため、純度の良いキシロース及びキシロオリゴ糖を効率良く製造する方法として極めて有用である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing xylose and xylooligosaccharides by treating a xylan-containing natural product with hot water under special conditions.
[0002]
[Prior art]
Conventionally, as a method for producing xylose and xylooligosaccharide, after a xylan-containing natural product is steamed or crushed at a temperature of about 130 ° C. or higher, it is extracted with water to obtain an extract containing xylose and xylooligosaccharide. There is known a method for obtaining high-purity xylose and xylooligosaccharide by performing decolorization treatment by a combination of activated carbon treatment and ion-exchange resin treatment.
[0003]
However, in the extract obtained by the above method, a large amount of colored substances such as lignin decomposing components, water-soluble components in raw materials, hemicellulose decomposing components, etc. are mixed as impurities. 2) A large amount of activated carbon and ion exchange resin are used, 3) Irreversible adsorption of the dye to the anion exchange resin is inevitable, and therefore the life of the anion exchange resin is short, and 4) xylose and Some xylo-oligosaccharides were adsorbed on activated carbon or ion exchange resin, resulting in a decrease in yield.
[0004]
For the purpose of improving these problems, an extract obtained by hydrothermal treatment of a xylan-containing natural product is previously subjected to (i) chromatographic separation (JP-A-1-254692) or (ii) ultrafiltration (JP JP-A-61-285999 discloses a method for efficiently removing impurities mixed therein and then performing a decoloring treatment using activated carbon or an ion exchange tree. However, a) is a method of fractionating into elution sections containing xylose and xylooligosaccharides and elution sections of colored impurities by the ion-exclusion action of the cation exchange resin. However, xylose and xylooligosaccharides and colored impurities are completely separated. It is difficult to separate the colored impurities, and if it is attempted to remove the colored impurities effectively, the loss of xylose and xylooligosaccharides will occur and the yield will decrease, or if the loss of xylose and xylooligosaccharides is to be suppressed, a large amount There is a tendency that impurities are mixed. B) is a method for separating xylose and xylooligosaccharides having a relatively low molecular weight from colored impurities having a relatively high molecular weight by the molecular sieving action of the ultrafiltration membrane. Since some molecules with similar molecular weights exist, if a membrane with a small fractional molecular weight is used, the xylo-oligosaccharide on the inner polymer side will not pass through the membrane and the yield of xylo-oligosaccharide will decrease, or the fractional molecular weight When a membrane with a large size is used, the color impurities on the low molecular weight side tend to pass through the membrane and be mixed into xylose and xylooligosaccharides. However, it was still not a sufficient method to remove the water.
[0005]
In JP-A-6-197800, the raw material is limited to Sasa, but after removing components extracted from the organic solvent such as acetone and alcohol, cold water or hot water from the raw material, the remaining water content Is adjusted to a range of 30% to 60%, and this is subjected to pressure heat treatment with saturated steam to extract xylooligosaccharides. According to this method, the raw material is pretreated to remove organic acid salts such as potassium acetate and sodium acetate, so that secondary decomposition of xylan is suppressed, compared with the case where no pretreatment is performed. Sugar can be extracted with high yield and high purity. However, under the pretreatment conditions, the readily decomposable lignin contained in the raw material is not decomposed and eluted, and when subjected to pressure and heat treatment, the lignin decomposing component is mixed in the xylooligosaccharide, and the impurities are removed. It took a lot of effort.
For these reasons, a method for extracting xylose and xylooligosaccharides from xylan-containing natural products with high purity is desired.
[0006]
[Problems to be solved by the invention]
An object of the present invention is to provide a method for producing xylose and xylooligosaccharides in an industrially efficient and shortened facility by extracting xylose and xylooligosaccharides from xylan-containing natural products with high purity. .
[0007]
[Means for Solving the Problems]
As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that when extracting a sugar liquid mainly composed of xylose and xylooligosaccharide from a xylan-containing natural product, only hot water is used under specific conditions. By processing, the degradation of the extracted xylose and xylooligosaccharides can be suppressed, and the contamination of impurities such as lignin degradation components and water-soluble components in the raw materials can be significantly reduced. The inventors have found that it can be extracted and have completed the present invention.
[0008]
That is, the present invention
(1) A water-insoluble residue obtained by removing a component extracted in advance from hot water of 110 ° C. or higher and 140 ° C. or lower from a xylan-containing natural product is treated with hot water of the processing temperature or higher and 200 ° C. or lower. , Methods for producing xylose and xylooligosaccharides,
(2) The method for producing xylose and xylooligosaccharide according to (1), wherein the xylan-containing natural product is sugarcane pips,
Is to provide.
[0009]
The present invention is described in detail below.
As raw materials used in the present invention, natural products including xylan, for example, broad-leaved trees such as birch and beech, agricultural waste such as corn rice ears, cottonseed husks, sugarcane bacus, sugarcane pips, and beet pulp can be used. Among these raw materials, sugar cane pis is particularly preferable because it has a low lignin content and can easily extract xylose and xylooligosaccharides under mild conditions.
Although the shape of these raw materials is not particularly limited, a shape pulverized into a chip shape, a fiber shape or the like is preferably used in order to facilitate the extraction operation.
The hydrothermal treatment of the xylan-containing natural product in the present invention can be performed in combination with blasting, which is a known technique, as necessary. When performing the hot water treatment, it is preferable to carry out the treatment in a stirred state in order to facilitate extraction.
[0010]
In the present invention, the pretreatment of the xylan-containing natural product with hot water needs to be performed at 110 ° C. or higher and 140 ° C. or lower, although it varies depending on the raw material used. When the temperature is lower than 110 ° C., elution of easily decomposable lignin and water-soluble components contained in the raw materials is insufficient, and when the temperature exceeds 140 ° C., elution of the xylan component occurs. This is not preferable because the yield of xylitol obtained in this method is lowered. The time required for the pretreatment is usually from 10 minutes to 120 minutes, preferably from 15 minutes to 60 minutes, particularly preferably from 20 minutes to 40 minutes. If it is less than 10 minutes, the elution of impurities is insufficient, and no further elution of impurities is observed even if it is carried out for more than 120 minutes.
[0011]
The amount of water added to the xylan-containing raw material is usually 1 to 16 times, preferably 3 to 14 times, more preferably 5 to 12 times the dry weight of the raw material. It is as follows. When the amount of water is less than 1 time, the impurities are not sufficiently dissolved and the impurities cannot be removed efficiently, which is not preferable. On the other hand, when the amount of water exceeds 16 times, the concentration of protons derived from the liberated acetic acid is lowered, the decomposition of easily degradable lignin does not occur sufficiently, and it is not preferable because it is mixed in the subsequent operation process.
[0012]
It is also possible to sufficiently extract impurities by stirring the xylan-containing natural product subjected to the hot water treatment described above with water at 100 ° C. or lower as necessary. At this time, water may be newly added for smooth stirring.
After the treatment under the above conditions, the impurities eluted by a centrifuge, a filter, etc. are separated and removed to obtain a residue containing the necessary xylan with high purity. It is preferable that the obtained residue is washed with water to sufficiently remove impurities.
Although the pretreated xylan-containing raw material varies depending on the raw material used, it is usually hydrothermally treated at a pretreatment temperature of 200 ° C. or less to extract xylose and xylooligosaccharides. When the treatment temperature is lower than the pretreatment temperature, there are almost no extracted components. When it is higher than 200 ° C., the hardly-decomposable lignin and cellulose contained in the raw material are hydrolyzed and eluted together with xylose and xylooligosaccharides. It is not preferable.
[0013]
The hot water treatment time is usually from 20 minutes to 180 minutes, preferably from 40 minutes to 120 minutes. When the time is shorter than 20 minutes, the elution of xylose and xylooligosaccharide is not sufficiently performed, which is not preferable. If it is longer than 180 minutes, the decomposition of xylose and xylooligosaccharides generated in the reaction system becomes remarkable, which is not preferable.
The amount of water added to the pretreated xylan-containing raw material is usually 1 to 16 times, preferably 3 to 14 times, more preferably 5 times the dry weight of the raw material. The amount is 12 times or less. When the amount is less than 1 time, it is insufficient to completely dissolve the hydrolyzed xylose and xylooligosaccharide in water, while when the amount of water exceeds 16 times the amount, Since the concentration of protons derived from the solution decreases and water solubilization due to partial hydrolysis of xylan does not occur sufficiently, the yield of xylose and xylooligosaccharides decreases, which is not preferable.
[0014]
After performing the above extraction operation, it is possible to sufficiently extract the water-soluble xylose and xylooligosaccharide by stirring with water at a temperature of 100 ° C. or lower as necessary. At this time, water may be newly added for smooth stirring.
After performing the above-described extraction operation, the residue is separated and removed from the extract using a centrifuge, a filter, or the like, whereby an extract containing high-purity xylose and xylooligosaccharides as main components can be obtained.
[0015]
The aqueous solution mainly composed of xylose and xylooligosaccharide obtained by the above extraction method is subjected to normal decolorization and desalting treatment such as activated carbon treatment and cation-ion exchange resin treatment as necessary, and then xylose and xylooligosaccharide. A purified sugar solution that does not contain impurities can be easily obtained without any loss.
The xylose and xylooligosaccharide purified as described above can be used as it is added to foods and the like. It is also possible to separate and use a fraction containing at least one of xylose and xylooligosaccharides of any degree of polymerization using column chromatography or ultrafiltration.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail by way of examples. In addition, the measurement of the lignin decomposition component content melt | dissolved in aqueous solution was performed based on JIS-P8008 using the sample which melt | dissolved the solid content in aqueous solution under vacuum. In addition, the measurement of the exchange capacity of the anion exchange resin was carried out by coexisting the resin with a 15N weight aqueous 0.5N sodium chloride solution and titrating with a standard hydrogen chloride solution (Wako Pure Chemical Industries, Ltd.) using phenolphthalein as an indicator. And asked.
[0017]
【Example】
(Example 1)
100 g of air-dried corn cobs and 1.0 kg of water were placed in a 2 L autoclave and heat-treated at 125 ° C. for 40 minutes. Next, the extract was filtered off while washing with water to obtain 87 g of a residue containing xylan with high purity. (Preprocessing)
87 g of the residue obtained by the pretreatment and 1.0 kg of water were placed in a 2 L autoclave and heat-treated at 160 ° C. for 90 minutes. Next, the residue was filtered off, and the resulting extract was concentrated under reduced pressure to obtain 210 g of an extract having a solid content of 10% by weight. (This processing)
After adding 0.05 g of powdered activated carbon to 50 g of the extract and stirring at 50 ° C. for 1 hour, the activated carbon was filtered off.
[0018]
The activated carbon-treated extract was passed through a column packed with 20 g of Amberlite IRA410 (Organo Co., Ltd.) to obtain an aqueous solution containing colorless and transparent xylose and xylooligosaccharide.
For comparison, when corn cobs not pretreated were used, extraction and subsequent purification operations were performed under the same conditions as described above, but the obtained aqueous solution containing xylose and xylooligosaccharide was It was slightly colored yellow (Comparative Example 1).
[0019]
Table 1 shows the ratio of the sugar component and lignin decomposition component in the extract to the solid content, and the reduced ion exchange capacity of the ion exchange resin when the extract was treated with the ion exchange resin. As shown in Table 1, the purity of the xylose component relative to the extracted solid content is 44.1 in the case of Comparative Example 1, but is a high value of 68.9% in the case of the present invention. In Comparative Example 1, the lignin component was significantly mixed, and 0.05 g of activated carbon and 20 g of anion exchange resin could not be completely decolorized.
From these facts, it can be seen that according to the present invention, the xylose component can be extracted with high purity, and therefore the subsequent purification load is significantly reduced.
[0020]
(Example 2)
The aqueous solution containing colorless and transparent xylose and xylooligosaccharide obtained in Example 1 was passed through an ultrafiltration membrane YM5 (Amicon Grace Japan) having a molecular weight cut off of 5000 at a pressure of 3.8 kg / cm 2. The permeate was again filtered at a pressure of 3.8 kg / cm 2 using an ultrafiltration membrane YM2 (Amicon Grace Japan) with a molecular weight cut off of 1000. From the retentate, xylo-oligosaccharides mainly composed of xylobiose and xylotriose were obtained.
[0021]
(Example 3)
100 g of air-dried sugar cane pipes and 1.0 kg of water were placed in a 2 L autoclave and heat-treated at 130 ° C. for 30 minutes. Subsequently, the extract was filtered off while washing with water to obtain 85 g of a residue containing xylan with high purity. (Preprocessing)
85 g of the residue obtained by the pretreatment and 1.0 kg of water were placed in a 2 L autoclave and heat-treated at 150 ° C. for 60 minutes. After cooling to 70 ° C., 500 g of water was added and stirred for 2 hours. Next, the residue was filtered off, and the resulting extract was concentrated under reduced pressure to obtain 220 g of an extract having a solid concentration of 10% by weight. (This processing)
After adding 0.05 g of powdered activated carbon to 50 g of the extract and stirring at 50 ° C. for 1 hour, the activated carbon was filtered off.
[0022]
The activated carbon-treated extract was passed through a column packed with 20 g of Amberlite IRA410 (Organo Co., Ltd.) to obtain an aqueous solution containing colorless and transparent xylose and xylooligosaccharide.
For comparison, when the pretreatment conditions are 80 ° C., 2 hours (Comparative Example 2), or the main treatment conditions are 210 ° C. and 20 minutes (Comparative Example 3), the extraction is performed under the same conditions as above. Subsequent purification operations were performed.
Table 2 shows the ratio of sugar components and lignin decomposition components in the extract to the solid content, and the reduced ion exchange capacity of the ion exchange resin when the extract was treated with the ion exchange resin.
[0023]
As Table 2 shows, in the present invention, the xylose component can be extracted with a high purity of 68.9%, while in Comparative Example 2, the removal of impurities by pretreatment is insufficient, A large amount is mixed and the purity is as low as 48.9%. In Comparative Example 3, hydrolysis of hardly decomposable lignin and cellulose occurs in this treatment, and it is mixed into the processing solution. It can be seen that the purity is low at 0.0%. Therefore, as shown in Table 2, the capacity of the ion exchange resin required for the decoloring treatment in Comparative Examples 2 and 3 is three times or more that in the present invention.
From these, it can be seen that according to the present invention, the xylose component can be extracted with high purity, and therefore, the subsequent purification load is remarkably reduced.
[0024]
[Table 1]
[0025]
[Table 2]
[0026]
Example 4
100 g of air-dried cotton husk and 800 g of water were placed in a 2 L autoclave and heat-treated at 120 ° C. for 40 minutes. Next, the extract was filtered off with water washing to obtain 86 g of a residue containing xylan.
86 g of the obtained residue and 800 g of water were placed in a 2 L autoclave, heat-treated at 150 ° C. for 90 minutes, then cooled to 70 ° C., 500 g of water was added and stirred for 1 hour. Next, the residue was filtered off, and the resulting extract was concentrated under reduced pressure to obtain 640 g of an extract having a solid content concentration of 5% by weight.
Thereafter, the extract was treated in the same manner as in Example 1. As a result, the xylose component could be extracted with high purity, and the purification load of the ion exchange resin was significantly reduced.
[0027]
(Example 5)
100 g of air-dried white straw chips and 1.0 kg of water were placed in a 2 L autoclave and heat-treated at 135 ° C. for 25 minutes. Next, the extract was filtered off with water washing to obtain 91 g of a residue containing xylan.
A treated product obtained by blasting 91 g of the obtained residue at a temperature of 175 ° C. for 1 minute and 1.0 kg of water were placed in a 2 L autoclave, heat-treated at 170 ° C. for 90 minutes, then cooled to 70 ° C. and stirred for 2 hours. . Next, the residue was filtered off, and the resulting extract was concentrated under reduced pressure to obtain 430 g of an extract having a solid content concentration of 5% by weight.
Thereafter, the extract was treated in the same manner as in Example 1. As a result, the xylose component could be extracted with high purity, and the purification load of the ion exchange resin was significantly reduced.
[0028]
【The invention's effect】
Since xylose and xylooligosaccharides can be extracted with high purity by treating xylan-containing natural products with hot water under specific conditions, it is extremely useful as a method for efficiently producing high-purity xylose and xylooligosaccharides. It is.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26677699A JP4148609B2 (en) | 1998-12-24 | 1999-09-21 | Method for producing xylose and xylooligosaccharide |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP36773098 | 1998-12-24 | ||
JP10-367730 | 1998-12-24 | ||
JP26677699A JP4148609B2 (en) | 1998-12-24 | 1999-09-21 | Method for producing xylose and xylooligosaccharide |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000236899A JP2000236899A (en) | 2000-09-05 |
JP4148609B2 true JP4148609B2 (en) | 2008-09-10 |
Family
ID=26547584
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26677699A Expired - Fee Related JP4148609B2 (en) | 1998-12-24 | 1999-09-21 | Method for producing xylose and xylooligosaccharide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4148609B2 (en) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FI115919B (en) * | 2002-06-27 | 2005-08-15 | Danisco Sweeteners Oy | Procedure for removing crystallization inhibitors from a solution containing monosaccharide sugar |
KR100450563B1 (en) * | 2002-10-31 | 2004-09-30 | 대한제당 주식회사 | Process for producing xylooligosaccharides |
AU2005249147B2 (en) * | 2004-06-04 | 2011-03-24 | Poly Gain Pte Ltd | Natural sweetener |
JP4557648B2 (en) * | 2004-09-09 | 2010-10-06 | ニッタ株式会社 | Method for producing xylooligosaccharide |
JP4601412B2 (en) * | 2004-12-21 | 2010-12-22 | ニッタ株式会社 | Method for producing xylooligosaccharide |
US8057840B2 (en) * | 2006-01-25 | 2011-11-15 | Tate & Lyle Ingredients Americas Llc | Food products comprising a slowly digestible or digestion resistant carbohydrate composition |
JP2008056599A (en) * | 2006-08-30 | 2008-03-13 | Nikken Kasei Kk | Process for producing xylose polymer and its reduced product |
FI20085275L (en) * | 2008-04-02 | 2009-10-09 | Hannu Ilvesniemi | A method for processing biomass |
JP2010116344A (en) * | 2008-11-13 | 2010-05-27 | Okinawa Satoukibi Kino Kenkyusho:Kk | Oral medicine containing pith fiber of tree and plant and having function of removing intestinal waste and food |
US9708356B2 (en) | 2011-11-30 | 2017-07-18 | Oji Holdings Corporation | Method for manufacturing monosaccharides, oligosaccharides, and furfurals from biomass |
CN103468834B (en) * | 2013-09-16 | 2014-12-03 | 南京林业大学 | Method for preparing xylooligosaccharide by treating plant fibers via neutral sulfite |
MY182288A (en) * | 2014-01-16 | 2021-01-18 | Lali Arvind Mallinath | Process for fractionation of oligosaccharides from agri-waste |
JP2017153379A (en) * | 2016-02-29 | 2017-09-07 | トヨタ自動車株式会社 | Method for producing xylooligosaccharide using herbaceous biomass as raw material |
CN106317260B (en) * | 2016-08-23 | 2020-01-07 | 上海交通大学 | Method for extracting and purifying arabinoxylan from highland barley grains |
CN106636256B (en) * | 2016-12-28 | 2024-03-08 | 山东龙力生物科技股份有限公司 | Xylo-oligosaccharide with low polymerization degree and preparation method and application thereof |
-
1999
- 1999-09-21 JP JP26677699A patent/JP4148609B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2000236899A (en) | 2000-09-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4148609B2 (en) | Method for producing xylose and xylooligosaccharide | |
US4181796A (en) | Process for obtaining xylan and fibrin from vegetable raw material containing xylan | |
JPS6214280B2 (en) | ||
NO770904L (en) | PROCEDURE FOR XYLITOL RECYCLING | |
Jacquemin et al. | Performance evaluation of a semi-industrial production process of arabinoxylans from wheat bran | |
EP3397066B1 (en) | Process for separating proteins from biomass materials | |
NL8301787A (en) | PROCESS FOR THE EXTRACTION OF MONOSACCHARIDES FROM TUBULAR CONTAINING POLY, OLIGO AND DISACCHARIDES USING ULTRA FILTRATION | |
FI125039B (en) | Purification procedure and preparation process for cellobiose | |
JP2010059082A (en) | Method for producing oxalic acid | |
CN102603927A (en) | Method for preparing lignin and hemicellulose from wheat straws | |
JPS6146119B2 (en) | ||
EP3606932B1 (en) | Industrial-scale d-mannose extraction from d-mannose bisulfite adducts | |
EP0096497B1 (en) | Solubilisation and hydrolysis of cellulose-containing materials | |
JPS61285999A (en) | Production of xylose and xylooligosaccharide | |
JP2605207B2 (en) | Purification method of beet saponin | |
JPH0575400B2 (en) | ||
JP4148610B2 (en) | Method for producing xylitol | |
EP3356563B1 (en) | Methods of enriching arabinose fractions | |
JP2004059475A (en) | Method for purifying reducing sugar | |
US1997545A (en) | Method of purifying carbohydrate solutions obtained in the saccharification of cellulose-containing materials | |
JP3831476B2 (en) | Purification method of xylose | |
JP2015071544A (en) | Method of producing furfural from biomass | |
JPH06197800A (en) | Process for producing sugar syrup composed mainly of xylooligosaccharide from bamboo grass | |
HU208847B (en) | Prfocess for removing by molecule separation impurities and colouring agents of raw sugar solution obtained by saccharification of biomass originating from high lignine-containing wastes, particularly from wood chips, reed, sedge, corn-cob, etc. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20031203 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040218 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060914 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080529 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080624 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080624 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110704 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110704 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120704 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130704 Year of fee payment: 5 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |