KR100450563B1 - Process for producing xylooligosaccharides - Google Patents

Process for producing xylooligosaccharides Download PDF

Info

Publication number
KR100450563B1
KR100450563B1 KR10-2002-0067201A KR20020067201A KR100450563B1 KR 100450563 B1 KR100450563 B1 KR 100450563B1 KR 20020067201 A KR20020067201 A KR 20020067201A KR 100450563 B1 KR100450563 B1 KR 100450563B1
Authority
KR
South Korea
Prior art keywords
xylan
treatment
exchange resin
sugar solution
ion exchange
Prior art date
Application number
KR10-2002-0067201A
Other languages
Korean (ko)
Other versions
KR20040038305A (en
Inventor
현승일
박윤제
권순우
윤수영
이창승
김용훈
정상원
조정일
윤세왕
Original Assignee
대한제당 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대한제당 주식회사 filed Critical 대한제당 주식회사
Priority to KR10-2002-0067201A priority Critical patent/KR100450563B1/en
Publication of KR20040038305A publication Critical patent/KR20040038305A/en
Application granted granted Critical
Publication of KR100450563B1 publication Critical patent/KR100450563B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/04Polysaccharides, i.e. compounds containing more than five saccharide radicals attached to each other by glycosidic bonds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2434Glucanases acting on beta-1,4-glucosidic bonds
    • C12N9/2437Cellulases (3.2.1.4; 3.2.1.74; 3.2.1.91; 3.2.1.150)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2477Hemicellulases not provided in a preceding group
    • C12N9/248Xylanases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/14Preparation of compounds containing saccharide radicals produced by the action of a carbohydrase (EC 3.2.x), e.g. by alpha-amylase, e.g. by cellulase, hemicellulase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01004Cellulase (3.2.1.4), i.e. endo-1,4-beta-glucanase

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Saccharide Compounds (AREA)

Abstract

본 발명은 자일란(xylan) 함유 식물성 원료로부터 정제된 자일로올리고당을 제조하는 방법에 관한 것으로서, (a) 자일란 함유 식물성 원료를 물에 침지하여 팽윤시킨 후 폭쇄처리하고, (b) 폭쇄물에 물을 가하여 슬러리화한 후 고액분리장치 로 고액분리하여 조당액을 얻고, (c) 조당액을 원심분리한 후 상층액을 정밀여과막으로 여과하고, (d) 여과액을 이온교환수지에 통액하여 탈색된 당액을 얻은 후 농축하는 단계를 포함하는 본 발명의 방법을 이용하면 자일로즈 2당류 및 3당류의 함량이 높은 고품질의 자일로올리고당을 얻을 수 있다.The present invention relates to a method for producing purified xyloligosaccharides from xylan-containing vegetable raw materials, (a) swelling by swelling by immersing the xylan-containing vegetable raw materials in water, and (b) water to the explosives. Slurry was added to solidify and solid-liquid separation was carried out using a solid-liquid separator to obtain crude sugar. (C) Centrifugation of the crude sugar was carried out, and the supernatant was filtered through a microfiltration membrane. By using the method of the present invention comprising the step of obtaining a concentrated sugar solution and high content of xylose disaccharides and a high content of xylose oligosaccharides can be obtained.

Description

자일로올리고당의 생산 방법{PROCESS FOR PRODUCING XYLOOLIGOSACCHARIDES}Production method of xyloligosaccharides {PROCESS FOR PRODUCING XYLOOLIGOSACCHARIDES}

본 발명은 자일란(xylan)을 함유하는 식물성 원료로부터 자일로올리고당(xylooligosaccharide)을 생산하는 방법에 관한 것이다.The present invention relates to a method for producing xylooligosaccharides from a vegetable source containing xylan.

자일로올리고당은 자일로즈 및 자일로즈가 2개 내지 수 개로 결합된 것의 혼합물이며 온화한 감미를 갖는 시럽 또는 분말상 물질로서 죽순, 과일, 야채, 우유 및 꿀 등에 천연적으로 포함되어 있다. 자일로올리고당은 비피더스(Bifidus), 락토바실러스(Lactobacillus) 등과 같은 장내 유용미생물을 선택적으로 증식시킴으로서 장기능을 개선시키는 기능성 식품으로서 그 효과가 다른 올리고당보다 뛰어나다고알려져 있다. 또 지질대사 개선, 간 보호 및 해독작용을 갖는 것으로 보고된 바 있고, 인체에 흡수되기 어렵기 때문에 저칼로리 감미료 및 식품소재로 사용할 수 있다. 자일로올리고당은 식품 외에도 의약품, 사료 및 농업 분야를 포함하는 다양한 분야에서 매우 유용하게 사용할 수 있으며, 특히 식품 분야에 사용하는 자일로올리고당은 2당류, 3당류가 장내 유용 미생물 증식에 가장 효과적인 것으로 알려져 있어 중합도(Degree of Polymerization) 범위가 2-3인 것이 가장 바람직하다.Xyloligosaccharides are a mixture of two to several combinations of xylose and xylose and are a syrup or powdery substance with a mild sweetness and are naturally contained in bamboo shoots, fruits, vegetables, milk and honey. Xyloligosaccharide is a functional food that improves intestinal function by selectively propagating useful intestinal microorganisms such as Bifidus and Lactobacillus, and it is known that its effect is superior to other oligosaccharides. In addition, it has been reported to have improved lipid metabolism, liver protection and detoxification, and can be used as a low-calorie sweetener and food material because it is difficult to be absorbed by the human body. In addition to food, xyloligosaccharides can be very useful in various fields including medicine, feed, and agriculture. In particular, xyloligosaccharides used in food are known to be most effective for the growth of enteric microorganisms. It is most preferable that the degree of polymerization ranges from 2-3.

또한 이것을 수소 첨가한 환원 자일로올리고당은 내열성 및 내 알칼리성이 증가하므로 비착색성 식품소재 및 화학원료로서 사용할 수 있다.In addition, since the reduced xyloligosaccharides hydrogenated are increased in heat resistance and alkali resistance, they can be used as non-coloring food materials and chemical raw materials.

자일로올리고당은 산업적 규모로는 리그노셀룰로즈 물질(lignocellulosic materials, LCMs)로부터 생산하고 있으며, 통상적인 원료로는 목재, 옥수수 속대, 볏짚, 사탕수수 깍지, 곡류 껍질, 밀기울 등이 사용된다.Xyloligosaccharides are produced from lignocellulosic materials (LCMs) on an industrial scale, and common raw materials include wood, corncobs, rice straw, sugar cane pods, grain husks, bran, and the like.

상기 LCM 으로부터 자일로올리고당을 생산하기 위해서 세 가지 방법을 이용할 수 있다.Three methods can be used to produce xylooligosaccharides from the LCM.

첫째 방법은, 천연의 자일란 함유 LCM을 직접 효소로 처리하는 것인데 이 방법은 적용가능한 대상이 제한적이다. 예를 들어, 감귤류 펄프의 막으로부터 효소적 방법에 의해 자일로올리고당을 생산한 바 있다(일본 특허 제 8103287 호),The first method involves the direct enzymatic treatment of native xylan-containing LCM, which is of limited applicability. For example, xyloligosaccharides have been produced by enzymatic methods from membranes of citrus pulp (Japanese Patent No. 8103287),

둘째 방법은 적절한 LCM을 화학적 방법으로 처리하여 자일란을 얻고, 이를 효소로 가수분해하여 자일로올리고당을 생산하는 것이다. 예를 들어, LCM을 NaOH, KOH, Ca(OH)2, 암모니아 또는 이들의 혼합물과 같은 알칼리 용액으로 처리하여 자일란을 얻고, 유기 화합물(예: 산, 알콜 또는 케톤류)로 침전시켜 분리한 후, 자일라네이즈(xylanase)로 가수분해하여 자일로올리고당을 얻을 수 있다. 이 방법은 LCM으로부터 충분히 정제된 자일란만을 자일라네이즈의 기질로 사용할 수 있다는 점에서 공업적인 제법으로서 적합하지 않다.The second method involves treating the appropriate LCM with chemical methods to obtain xylan, which is then hydrolyzed with enzymes to produce xylooligosaccharides. For example, LCM can be treated with an alkaline solution such as NaOH, KOH, Ca (OH) 2 , ammonia or mixtures thereof to obtain xylan, precipitated with organic compounds (e.g. acids, alcohols or ketones), followed by separation. Hydrolysis with xylanase can yield xylooligosaccharides. This method is not suitable as an industrial production method in that only xylan sufficiently purified from LCM can be used as a substrate of xylanase.

셋째 방법은 자일란 함유 LCM을 증기 또는 물(열수)로 가수분해시킴으로써 LCM으로부터 한 단계로 자일로올리고당을 얻는 방법이다.The third method is to obtain xylooligosaccharide in one step from the LCM by hydrolyzing the xylan-containing LCM with steam or water (hot water).

증기 또는 열수로 추출하는 방법은 적당한 추출 조건을 선택한다면 수용액상의 자일로올리고당류를 수득할 수 있기 때문에 자일로올리고당의 제조 방법에 가장 적합하다. 증기 또는 열수 추출 방법에 관해서는, 일본 특허 공개 제 소53-44640호에 상세하게 기재되어 있다. 증기 또는 열수추출 방법으로는 (1) 밀폐 용기 중에 물과 원료를 넣고 가열하는 방법과, (2) 밀폐 용기에 원료를 넣어 포화증기 하에서 200℃ 이상의 온도로 가열한 후 급격하게 공기중으로 방출하는 폭쇄처리 후 추출하는 방법이 알려져 있다. 그러나 이 방법들은 회수 올리고당 함량이 낮고 4당류 이하의 자일로올리고당 보다는 5당류 이상의 자일로올리고당과 자일란 함량이 높을 뿐 아니라 수득된 당액 및 자일로즈 결정의 착색이 강한 단점이 있다.Extraction by steam or hot water is most suitable for the preparation of xylooligosaccharides, since xyloligosaccharides in aqueous solution can be obtained if appropriate extraction conditions are selected. A steam or hot water extraction method is described in detail in Japanese Patent Laid-Open No. 53-44640. Steam or hot water extraction methods include (1) adding water and raw materials to a sealed container and heating them, and (2) adding raw materials to a closed container and heating them to a temperature of 200 ° C. or higher under saturated steam, and then rapidly discharging them into the air. Methods of extraction after treatment are known. However, these methods have a disadvantage of low recovery oligosaccharide content and higher xyloligosaccharides and xylan contents than 5 saccharides than xyloligosaccharides of less than 4 saccharides, and strong coloring of the obtained sugar and xylose crystals.

이에 증기 또는 열수 추출한 자일란 수용액으로부터 무색 투명한 자일로올리고당 시럽을 수득하기 위한 방법에 대해 연구가 계속되어 왔으며, 일본 특허 공개 제 소61-285999 호에서는 목재를 증기 폭쇄처리한 추출액에 셀룰레이즈(cellulase) 등의 효소를 가하여 저분자화한 후, 이 효소 처리 당액으로부터 한외여과, 활성탄 흡착, 이온 교환수지 처리 및 농축과정을 차례로 거쳐 무색 투명한 자일로올리고당시럽을 제조하는 방법을 개시하고 있다.Therefore, research has been conducted on obtaining a colorless and transparent xyloligosaccharide syrup from an aqueous solution of xylan extracted from steam or hot water, and Japanese Patent Laid-Open No. 61-285999 discloses a cellulase in a wood-vapor-extracted extract. A method of producing a colorless transparent xylooligosaccharide syrup after the low molecular weight by addition of an enzyme such as ultrafiltration, activated carbon adsorption, ion exchange resin treatment, and concentration is carried out sequentially.

이 방법에 따르면 증기폭쇄 처리는 옥수수속대, 면실각 등으로부터 자일로올리고당을 수득하기 부적합하여 목재를 이용하였고, 목재의 폭쇄처리 추출액 중에도 5당류 이상과 자일란 함량이 매우 높은 반면 2당류 내지 3당류의 함량이 낮아 추가로 효소 처리를 하는 것이 필수적이었다. 또한 폭쇄처리 추출액을 바로 효소처리 한 다음 한외여과 후 이온교환수지에 적용하였는데, 효소처리 후 한외여과 및 이온교환수지를 거치는 일반적인 방법에서는 여과 속도가 매우 느려 대용량의 한외여과 장치가 필요할 뿐만 아니라 공정의 전체적인 효율도 낮아지게 된다.  According to this method, the steam decay treatment was not suitable for obtaining xylo-oligosaccharides from corncobs, cottonseed shells, etc., and wood was used. Among the decayed extracts of wood, at least 5 sugars and xylan contents were very high. Low content was essential for further enzymatic treatment. In addition, the explosives treated extracts were immediately enzymatically applied to the ion exchange resin after ultrafiltration.In the general method of passing through the ultrafiltration and ion exchange resin after the enzyme treatment, the filtration rate is very slow and a large-capacity ultrafiltration device is required. The overall efficiency is also lowered.

따라서, 증기폭쇄처리를 이용하여 목재 뿐 아니라 옥수수속대, 면실각 등과 같은 천연물질로부터 자일로올리고당을 보다 간단하고 효율적으로 생산 및 정제하기 위한 개선된 방법이 요구되고 있다.Therefore, there is a need for an improved method for producing and purifying xylo-oligosaccharides more simply and efficiently from natural materials such as corncobs, cotton kernels, etc. using steam aeration treatment.

본 발명의 목적은 식물성 원료로부터 간단하고 효율적으로 자일로올리고당을 생산하는 방법을 제공하는 것이다.It is an object of the present invention to provide a method for producing xylooligosaccharides simply and efficiently from vegetable raw materials.

도 1은 본원의 실시예 및 비교예에서 자일란 함유 식물성 원료로부터 자일로올리고당을 생산하는 공정의 모식도이고,1 is a schematic diagram of a process for producing xylooligosaccharides from xylan-containing vegetable raw materials in Examples and Comparative Examples of the present application,

도 2는 본원의 실시예 및 비교예에서 한외여과시 플럭스(flux)를 비교한 그래프이다.Figure 2 is a graph comparing the flux during ultrafiltration in the Examples and Comparative Examples of the present application.

상기 목적에 따라, 본 발명에서는 자일란 함유 식물성 원료로부터 자일로올리고당을 생산하는 방법으로서, (a) 자일란 함유 식물성 원료를 물에 침지하여 팽윤시킨 후 폭쇄처리하고, (b) 폭쇄물에 물을 가하여 슬러리화한 후 고액분리장치로고액분리하여 조당액을 얻고, (c) 조당액을 원심분리한 후 상층액을 정밀여과막으로 여과하고, (d) 여과액을 이온교환 수지에 통액하여 탈색된 당액을 얻은 후 농축하는 단계를 포함하는 방법을 제공한다.According to the above object, in the present invention, a method for producing xylooligosaccharides from xylan-containing vegetable raw materials, (a) swelling by swelling the xylan-containing vegetable raw materials in water and swelling, (b) adding water to the crushed material After slurrying, the crude liquid is separated by a solid-liquid separator to obtain crude sugar, (c) the crude sugar is centrifuged, the supernatant is filtered through a microfiltration membrane, and (d) the filtrate is passed through an ion exchange resin to decolorize the sugar solution. It provides a method comprising the step of obtaining and concentrating.

본 발명의 방법에 사용할 수 있는 자일란 함유 식물성 원료로는 옥수수 속대, 면실각, 볏짚, 사탕수수 깍지, 곡류 껍질, 밀기울, 목재 등을 사용할 수 있으며, 옥수수 속대를 사용하는 것이 바람직하다.As the xylan-containing vegetable raw material that can be used in the method of the present invention, corn cobs, cotton shell shell, rice straw, sugar cane pods, grain husks, bran, wood, etc. may be used, and corn cobs are preferably used.

우선, 단계 (a)에서는 원료를 물에 충분히 침지하여 팽윤시키는데, 옥수수 속대를 예로 들면 4 내지 10 배량의 물을 가하고 0.5 내지 24 시간 동안 방치하여 함수율이 60 내지 80 %가 되도록 팽윤시킨다. 팽윤된 원료를 폭쇄 처리하기 위해서, 원료를 폭쇄기에 넣은 후 160 내지 220℃, 바람직하게는 180 내지 200℃에서 3내지 30분간, 바람직하게는 5 내지 20분간 유지한 다음 대기압의 리시버탱크(receiver tank)로 급속 방출한다. 이때 폭쇄기 내의 기압은 약 6 내지 23 bar, 바람직하게는 약 10 내지 16 bar의 범위로 유지된다.First, in step (a), the raw material is sufficiently immersed in water and swelled. Corn cobs, for example, 4 to 10 times the amount of water is added and left for 0.5 to 24 hours to swell so that the water content is 60 to 80%. In order to explode the swollen raw material, the raw material is placed in an aerator and then held at 160 to 220 ° C., preferably at 180 to 200 ° C. for 3 to 30 minutes, preferably 5 to 20 minutes, and then a receiver tank at atmospheric pressure. Release rapidly. The air pressure in the aerator is then maintained in the range of about 6 to 23 bar, preferably about 10 to 16 bar.

폭쇄시 온도가 설정온도보다 높거나 유지시간이 설정시간보다 길어지면 자일로즈 단당의 함량이 증대하는 단점이 있으며, 반대로 온도가 낮거나 시간이 짧아지면 자일로즈 이당류와 삼당류의 함량이 감소하고, 이후 탈색공정에서 탈색부하가 증가하여 탈색처리량 또한 줄어드는 단점이 있다.When the temperature is higher than the set temperature during the explosion or the holding time is longer than the set time, the content of xylose monosaccharide increases. On the contrary, when the temperature is low or the time is shortened, the content of xylose disaccharides and trisaccharides decreases. Since the decolorization load increases in the decolorization process, there is a disadvantage that the decolorization treatment also decreases.

단계 (b)에서는 단계 (a)에서 얻은 폭쇄물에 0.5 내지 2 배의 물을 가하고 20 내지 80 ℃에서 0.5 내지 4 시간 동안 교반하여 슬러리화한 후 고액분리 장치를 이용하여 고액 분리함으로써 조당액을 수득한다. 이때 고액분리 장치로는 필터프레스, 데칸터(decanter) 등을 사용할 수 있다.In step (b), 0.5 to 2 times of water is added to the explosives obtained in step (a), stirred at 20 to 80 ° C. for 0.5 to 4 hours, slurryed, and the crude sugar solution is separated into solids using a solid-liquid separator. To obtain. In this case, a filter press, a decanter, or the like may be used as the solid-liquid separator.

단계 (c)에서는 단계 (b)에서 얻은 조당액을 원심분리하여 상층액을 얻고 이를 0.1 내지 5 ㎛, 바람직하게는 0.2 내지 1.2 ㎛의 구멍크기를 갖는 정밀여과막을 사용하여 여과함으로써 당액을 얻는다.In step (c), the crude sugar obtained in step (b) is centrifuged to obtain a supernatant, and the sugar solution is obtained by filtration using a microfiltration membrane having a pore size of 0.1 to 5 탆, preferably 0.2 to 1.2 탆.

단계 (d)에서는 단계 (c)에서 얻은 당액을 이온교환 수지로 처리함으로써 탈색시킨 후 농축한다. 이 단계에서 이온교환수지로는 통상의 양이온교환수지 또는 음이온교환수지를 사용할 수 있으며, 양이온 교환수지와 음이온 교환수지를 순차적으로 사용하는 것이 수율면에서 바람직하다. 그러나, 상기 순서를 바꾸어서 사용하거나, 한 가지 종류의 이온 교환수지만을 사용하여도 목적하는 탈색효과를 얻을 수 있다. 양이온 교환수지로는 술폰기가 수지에 결합되어 있는 스티렌계 강산성 양이온교환수지, 예를 들어, 다이아이온(DIAION) SK1B, PK216, PK228, SPC160H (삼양사), 앰버라이트(Amberlite) IR120, IR252, IR200 (롬앤하스사), S100, SP120, SP114(바이엘사); 카르복실기가 수지에 결합되어 있는 메타크릴계 또는 아크릴계 약산성 양이온교환수지, 예를 들어, 다이아이온 WK10, WK11, WK40(삼양사), 앰버라이트 IRC50, IRC86(롬앤하스사), CNP80(바이엘사) 등을 사용할 수 있고, 특히 강산성 양이온교환수지를 사용하는 것이 바람직하다. 음이온교환수지로는 트리메틸암모늄기가 수지에 결합되어 있는 스티렌계 강염기성 음이온교환수지, 예를 들어, 다이아이온 SA11A, PA306, PA308, PA312, PA408, PA412(삼양사), IRA401S, IRA404, IRA900(롬앤하스사), M500Z, MP500A, MP600(바이엘사); 3급 아민기가 수지에 결합되어 있는 약염기성 음이온교환수지, 예를 들어, 다이아이온 WA20,WA21(삼양사),MP62(바이엘사); 트리메틸암모늄기가 수지에 결합되어 있는 스티렌계 약염기성 음이온교환수지, 예를 들어, WA30(삼양사), IRA93SP(롬앤하스사); MP64(바이엘사) 등을 사용할 수 있고, 특히 약염기성 음이온교환수지를 사용하는 것이 바람직하다.In step (d), the sugar solution obtained in step (c) is decolorized by treatment with an ion exchange resin and then concentrated. In this step, as the ion exchange resin, a conventional cation exchange resin or anion exchange resin can be used, and it is preferable to use a cation exchange resin and an anion exchange resin sequentially in terms of yield. However, the desired decoloring effect can be obtained even by changing the order or using only one type of ion exchange resin. As the cation exchange resin, a styrene strong acid cation exchange resin having a sulfone group bonded to the resin, for example, DIAION SK1B, PK216, PK228, SPC160H (Samyang Corporation), Amberlite IR120, IR252, IR200 ( Rohm & Haas Co.), S100, SP120, SP114 (Bayer); Methacrylic or acrylic weakly acidic cation exchange resins in which a carboxyl group is bonded to a resin, for example, Dion WK10, WK11, WK40 (Samyang Corporation), Amberlite IRC50, IRC86 (Rohm & Haas Corporation), CNP80 (Bayer Corporation), etc. It is preferable to use a strong acid cation exchange resin. As the anion exchange resin, a styrene strong base anion exchange resin having a trimethylammonium group bonded to the resin, for example, Dion SA11A, PA306, PA308, PA312, PA408, PA412 (Samyang Corporation), IRA401S, IRA404, IRA900 (Rohm & Haas) G), M500Z, MP500A, MP600 (Bayer); Weakly basic anion exchange resins having tertiary amine groups bonded to the resin, for example, diion WA20, WA21 (Samyang), MP62 (Bayer); Styrene-based weakly basic anion exchange resins in which a trimethylammonium group is bonded to the resin, for example, WA30 (Samyang), IRA93SP (Rom &Haas); MP64 (Bayer Corporation) and the like can be used, and it is particularly preferable to use a weakly basic anion exchange resin.

이온 교환 수지를 통과한 당액을 감압하에 농축하여 얻어진 자일로올리고당액은 자일란 분해효소로 처리하지 않은 상태에서도 장내 유용 미생물 증식효과가 뛰어난 자일로즈 2당류(X2) 및 3당류(X3)의 함량이 약 25 % 정도에 이른다.The xyloligosaccharide obtained by concentrating the sugar solution passed through the ion exchange resin under reduced pressure has a high content of xylose disaccharides (X2) and trisaccharides (X3), which have excellent intestinal microbial growth effects even without treatment with xylanase. It is about 25%.

한편, 상기 이온교환수지 처리 후에 자일란 분해효소 처리 및 한외여과 공정을 추가로 실시함으로써 X2 및 X3의 함량이 보다 증가된 고품질의 자일로올리고당액을 얻을 수 있다.On the other hand, by further performing the xylan decomposing enzyme treatment and ultrafiltration process after the ion exchange resin treatment it is possible to obtain a high quality xylo oligosaccharide solution with increased content of X2 and X3.

구체적으로, 상기 이온교환 수지 처리에 의해 얻어진 탈색 당액에 1 내지 20 U/ml의 양으로 자일란 분해효소, 예를 들어, 자일라네이즈(xylanase), 헤미셀룰레이즈(hemicellulase), 셀룰레이즈(cellulase) 등을 가하고 20 내지 70℃에서 1 내지 10 시간 동안 반응시킴으로써 탈색 당액에 포함된 자일란을 추가로 자일로올리고당으로 분해시킨다. 당액에 포함된 효소를 제거할 목적으로, 상기에서 얻은 효소반응액을 분자량 컷-오프(cut-off) 값이 3 내지 30 kDa 인 한외여과막으로 여과한 후 농축하여 목적하는 자일로올리고당을 얻을 수 있다. 이러한 추가 공정을 도입하여 얻어지는 자일로올리고당은 자일로즈 2당류(X2) 및 3당류(X3)의 총 함량이 약 40 내지 50 %에 이르므로 제품의 특성이 훨씬 우수하다.Specifically, xylanases, such as xylanase, hemicellulase, and cellulase, in the amount of 1 to 20 U / ml in the decolorized sugar solution obtained by the ion exchange resin treatment. Xylan contained in the decoloring sugar solution is further decomposed into xyloligosaccharide by adding and reacting at 20 to 70 ° C. for 1 to 10 hours. In order to remove the enzyme contained in the sugar solution, the enzyme reaction solution obtained above was filtered with an ultrafiltration membrane having a molecular weight cut-off value of 3 to 30 kDa and concentrated to obtain the desired xyloligosaccharide. have. The xyloligosaccharide obtained by introducing this additional process has a much better product properties because the total content of xylose disaccharides (X2) and trisaccharides (X3) amounts to about 40-50%.

또한, 상기와 같이 이온교환수지 처리 후에 효소 반응 및 한외여과 공정을실시하면, 효소반응 또는 한외여과 공정을 이온교환수지 처리보다 먼저 실시한 경우에 비해 최종적으로 얻어지는 자일로올리고당에 포함되는 X2+X3 함량을 증가시킬 수 있다. 또한, 한외여과시 여과 속도도 최대 약 25배 정도까지 증가시킬 수 있으므로 보다 작은 용량의 한외여과 설비로도 동일한 작업처리량(throughput)을 얻을 수 있어 매우 효과적이다.In addition, when the enzyme reaction and ultrafiltration process are carried out after the ion exchange resin treatment as described above, the content of X2 + X3 contained in the finally obtained xyloligosaccharide compared with the case where the enzyme reaction or ultrafiltration process is performed before the ion exchange resin treatment is performed. Can be increased. In addition, since the filtration rate during ultrafiltration can be increased up to about 25 times, the same throughput can be obtained even with a smaller capacity ultrafiltration facility, which is very effective.

이하에서 본 발명을 실시예에 의거하여 보다 구체적으로 설명한다. 단, 이들 실시예는 본 발명을 예시하기 위한 것일 뿐, 본 발명이 이들만으로 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples. However, these Examples are only for illustrating the present invention, the present invention is not limited to these.

실시예 1Example 1

옥수수 속대(Corncob)의 칩(chip) 15 kg에 물 80 L를 첨가한 다음 방치하여 물을 충분히 흡수하게 하였다. 15시간 후 남은 물을 버리고 함수율 76 %의 팽윤된 옥수수 속대를 얻었다.80 kg of water was added to 15 kg of Corncob chips and allowed to stand to allow sufficient water absorption. After 15 hours the remaining water was discarded to obtain a swollen corncob with a water content of 76%.

팽윤된 옥수수 속대 55 kg을 폭쇄기에 투입하고 내부에 고온의 수증기를 도입하여 190℃의 온도를 13 분간 유지한 다음 통기공이 있는 대기압의 리시버탱크로 급속 방출하였다.55 kg of swollen corncobs were introduced into the aerator and hot steam was introduced therein to maintain a temperature of 190 ° C. for 13 minutes, and then rapidly discharged into an atmospheric receiver tank with a vent.

팽윤 및 폭쇄를 4번 반복한 폭쇄물을 모아 물 210 L를 가하여 50℃ 온도에서 4시간 동안 교반하였다.The swelling and the swelling were repeated four times. The crushed product was collected, and 210 L of water was added thereto, followed by stirring at 50 ° C for 4 hours.

생성된 추출 슬러리를 필터프레스(영동테크 제작)로 여과하여 276 kg의 5.0 브릭스(Brix) 여과액과 함수율 67 %인 케이크 83 kg로 고액분리하였다.The resulting extraction slurry was filtered through a filter press (manufactured by Yeongdong Tech) and solid-liquid separated into 276 kg of 5.0 Brix filtrate and 83 kg of cake having a water content of 67%.

276 kg의 여과액을 13,200 X g에서 4.5 L/분의 작업처리량으로 원심분리함으로써 현탁물질을 침강시켜 5.0 Brix, A420 = 3.98의 당액 270 kg을 얻었다.The suspension was allowed to settle by centrifuging 276 kg of the filtrate at a throughput of 4.5 L / min at 13,200 X g to give 270 kg of a sugar solution of 5.0 Brix, A420 = 3.98.

원심분리 당액 30 L를 취해 0.3 ㎛ 정밀여과막(한국폴주식회사)을 사용하여 TMP(Trans Membrane Pressure) 8.5 psig로 여과하여 4.7 Brix, A420 = 3.325, pH 3.45의 당액 29 L를 얻었다.30 L of the centrifuged sugar solution was taken and filtered using TMP (Trans Membrane Pressure) 8.5 psig using a 0.3 µm microfiltration membrane (Korea Pole Co., Ltd.) to obtain 29 L of a sugar solution of 4.7 Brix, A420 = 3.325, pH 3.45.

강산성 양이온교환수지 SPC160H(삼양사) 80 ml과 약염기성 음이온교환수지 WA30(삼양사) 800 ml를 각각 직경 52 mm, 높이 490 mm의 칼럼에 채우고, 상기에서 얻은 당액 1400 ml를 SPC160H 컬럼에서 WA30 컬럼의 순서로 800 ml/h의 유속으로 흘려주면서 용출물은 0.6 Bx가 나오기 시작한 시점부터 A420이 0.015가 될 때까지 회수하였다. 회수한 탈색 당액은 2.6 Brix, A420 = 0.008, pH 5.26, 양은 910 ml이었다.80 ml of strongly acidic cation exchange resin SPC160H (Samyang) and 800 ml of weakly basic anion exchange resin WA30 (Samyang) were filled in a column of 52 mm in diameter and 490 mm in height, and 1400 ml of the obtained sugar solution was added to the WA30 column in the SPC160H column. The eluate was recovered from the start of 0.6 Bx until A420 became 0.015 while flowing at a flow rate of 800 ml / h. The recovered bleached sugar solution was 2.6 Brix, A420 = 0.008, pH 5.26, and the amount was 910 ml.

이온교환 탈색 당액 900 ml을 60 mmHg의 감압, 60℃의 온도조건에서 증발농축하여 70.5 Brix, A420 = 0.226의 농축 당액 32 g을 얻었다.900 ml of ion-exchange decolorized sugar solution was concentrated by evaporation under reduced pressure of 60 mmHg at a temperature of 60 ° C. to obtain 32 g of concentrated sugar solution of 70.5 Brix, A420 = 0.226.

본 실시예의 전체 공정을 도 1에 도식화하였다.The overall process of this example is illustrated in FIG. 1.

실시예 2Example 2

옥수수 속대를 팽윤시킨 후 실시예 1과 동일한 방법으로 정밀여과까지의 과정을 실시하여 4.7 Brix, A420 = 3.325, pH 3.45인 당액 29 L를 얻었다.After swelling the corncob, the same procedure as in Example 1 was carried out to microfiltration to obtain 29 L of a sugar solution of 4.7 Brix, A420 = 3.325, and pH 3.45.

얻어진 당액 1400 ml를 이용하여 실시예 1과 동일하게 이온교환수지로 탈색 처리함으로써 2.6 Brix, A420 = 0.008, pH 5.31인 탈색 당액 910 ml을 얻었다.1400 ml of the obtained sugar solution was subjected to decolorization treatment with ion exchange resin in the same manner as in Example 1 to obtain 910 ml of decolorized sugar solution having 2.6 Brix, A420 = 0.008 and pH 5.31.

900 ml의 이온교환 탈색 당액에 10 U/ml의 농도로 자일라네이즈(xylanase)를 가하여 50℃에서 4 시간동안 교반하였다.Xylanase was added to 900 ml of ion-exchange bleached sugar solution at a concentration of 10 U / ml and stirred at 50 ° C. for 4 hours.

효소반응액 900 ml을 컷-오프(cut-off)치가 10 kDa인 한외여과막(Amicon사) 카트리지 한 개를 사용하여 여과함으로써 2.2 Brix, A420 = 0.005, pH 3.72 인 여과 당액 800 ml을 얻었다.900 ml of the enzyme reaction solution was filtered using one ultrafiltration membrane (Amicon) cartridge having a cut-off value of 10 kDa to obtain 800 ml of a filtered sugar solution having 2.2 Brix, A420 = 0.005, and pH 3.72.

여과 당액 800 ml을 60 mmHg의 감압, 60℃의 온도조건에서 증발농축하여 70.7 Brix, A420 = 0.255의 농축당액 24 g을 얻었다.800 ml of the filtered sugar solution was evaporated under reduced pressure of 60 mmHg at a temperature of 60 ° C. to obtain 24 g of a concentrated sugar solution of 70.7 Brix, A420 = 0.25.

본 실시예의 전체 공정을 도 1에 도식화하였다.The overall process of this example is illustrated in FIG. 1.

비교예Comparative example

옥수수 속대를 팽윤시킨 후 실시예 1과 동일한 방법으로 정밀여과까지의 과정을 실시하여 4.7 Brix, A420 = 3.325, pH 3.45인 당액 29 L를 얻었다.After swollen corncob, the same procedure as in Example 1 was carried out to fine filtration to obtain 29 L of a sugar solution of 4.7 Brix, A420 = 3.325, and pH 3.45.

1800 ml의 당액에 10 U/ml의 농도로 자일라네이즈를 가하여 50℃에서 4 시간 교반하였다.Xylase was added to 1800 ml of the sugar solution at a concentration of 10 U / ml, and the mixture was stirred at 50 ° C for 4 hours.

효소반응액 1800 ml을 컷-오프 치 10 kDa인 한외여과막(Amicon사) 카트리지두 개를 사용하여 여과함으로써 3.9 Brix, A420 = 2.195, pH 3.46 인 여과 당액 1400 ml을 얻었다.1800 ml of the enzyme reaction solution was filtered using two ultrafiltration membrane cartridges (Amicon) having a cut-off value of 10 kDa, thereby obtaining 1400 ml of a filtrate of 3.9 Brix, A420 = 2.195, and a pH of 3.46.

강산성 양이온교환수지 SPC160H(삼양사) 40 ml과 약염기성 음이온교환수지 WA30(삼양사) 400 ml를 각각 직경 52 mm, 높이 490 mm의 칼럼에 채우고, 상기에서 얻은 여과 당액 1200 ml을 SPC160H 컬럼에서 WA30 컬럼의 순서로 400 ml/h의 유속으로 흘려주면서 용출물은 0.6 Bx가 나오기 시작한 시점부터 A420이 0.012가 될 때까지 회수하였다. 회수한 탈색 당액은 2.4 Brix, A420 = 0.006, pH 5.95, 양은 790 ml이었다.40 ml of strongly acidic cation exchange resin SPC160H (Samyang) and 400 ml of weakly basic anion exchange resin WA30 (Samyang) were filled in a column 52 mm in diameter and 490 mm in height, and 1200 ml of the filtrate was obtained from the WA30 column of the SPC160H column. The eluate was recovered from the starting point of 0.6 Bx until A420 became 0.012 while flowing at a flow rate of 400 ml / h in this order. The recovered bleached sugar solution was 2.4 Brix, A420 = 0.006, pH 5.95, and the amount was 790 ml.

이온교환 탈색 당액 780 ml을 60 mmHg의 감압, 60℃의 온도조건에서 증발농축하여 70.5 Brix, A420 = 0.226의 농축당액 25 g을 얻었다.780 ml of ion-exchange decolorized sugar solution was evaporated under reduced pressure of 60 mmHg at a temperature of 60 ° C. to obtain 25 g of concentrated sugar solution of 70.5 Brix, A420 = 0.226.

본 비교예의 전체 공정을 도 1에 도식화하였다.The overall process of this comparative example is shown in FIG.

시험예 1: 공정 중 액상 당 조성비 변화Test Example 1: Change in liquid sugar composition during the process

상기 실시예 1, 2 및 비교예의 각 공정에서 얻어진 당액 중 자일로올리고당의 조성을 분석하기 위해 다음과 같은 조건으로 HPLC를 실시하였다:HPLC was carried out under the following conditions to analyze the composition of xyloligosaccharides in the sugar solution obtained in each step of Examples 1, 2 and Comparative Examples:

HPLC 시스템: Knauer사HPLC system: Knauer

칼럼: Sugar-PAK I(Waters, USA)Column: Sugar-PAK I (Waters, USA)

이동상: 0.1 mM Ca-EDTA 수용액Mobile phase: 0.1 mM Ca-EDTA aqueous solution

유속: 0.3 ml/분Flow rate: 0.3 ml / min

칼럼 온도: 80℃Column temperature: 80 ℃

검출기: RI 검출기.Detector: RI detector.

X5이상X5 or more X4X4 X3X3 X2X2 X1X1 GG AA X2이상X2 or above X2+X3X2 + X3 공통common 원심분리액Centrifuge 50.150.1 7.07.0 9.29.2 10.510.5 15.115.1 1.61.6 4.64.6 76.876.8 19.719.7 정밀여과액Precision Filtrate 50.250.2 7.87.8 9.09.0 10.210.2 15.415.4 1.51.5 4.84.8 77.277.2 19.219.2 실시예 1Example 1 이온교환액Ion exchange solution 34.934.9 10.710.7 11.111.1 13.813.8 21.121.1 1.91.9 6.46.4 70.570.5 24.924.9 농축액concentrate 34.734.7 10.210.2 11.411.4 13.513.5 21.721.7 1.91.9 6.56.5 69.869.8 24.924.9 실시예 2Example 2 이온교환액Ion exchange solution 33.733.7 10.410.4 11.911.9 13.413.4 21.621.6 2.32.3 6.76.7 69.469.4 25.325.3 효소처리액Enzyme Treatment Solution 16.516.5 12.012.0 15.315.3 25.525.5 22.122.1 2.42.4 6.36.3 69.369.3 40.840.8 한외여과액Ultrafiltration Amount 15.715.7 11.711.7 16.416.4 25.725.7 22.022.0 2.22.2 6.36.3 69.569.5 42.142.1 농축액concentrate 14.914.9 11.011.0 16.316.3 25.725.7 23.023.0 2.62.6 6.56.5 67.967.9 42.042.0 비교예Comparative example 효소처리액Enzyme Treatment Solution 42.042.0 8.48.4 12.612.6 13.413.4 15.715.7 1.71.7 4.64.6 76.476.4 26.026.0 한외여과액Ultrafiltration Amount 34.734.7 8.98.9 12.912.9 16.916.9 18.418.4 1.91.9 5.55.5 73.473.4 29.829.8 이온교환액Ion exchange solution 14.614.6 11.311.3 17.317.3 22.422.4 24.624.6 2.32.3 7.47.4 65.665.6 39.739.7 농축액concentrate 13.913.9 11.811.8 17.317.3 22.222.2 24.624.6 2.62.6 7.67.6 65.265.2 39.539.5 X1-X5: 자일로즈 1 내지 5당류G: 글루코즈(Glucose)A: 아라비노즈(Arabinose)X1-X5: Xylose 1-5 saccharides G: Glucose A: Arabinose

상기 표 1에서 볼 수 있는 바와 같이, 실시예 1에서 이온교환수지 처리에 의해 얻은 탈색 당액은 효소처리에 의해 X2+X3의 함량을 증가시키지 않더라도 이미 25 % 정도의 X2+X3를 포함하고 있다. 또한, 실시예 2에서 얻어진 자일로올리고당액은 효소반응에 의해 X2+X3가 직전 단계에서 얻은 당액에 비해 15.5 % 증가하였으나, 비교예에서는 효소반응에 의해 얻어진 당액의 X2+X3가 직전 단계에 비해 6.8% 증가하는데 그쳤다. 따라서 효소반응에 의한 X2, X3의 함량 증가 효과는 이온교환수지에 의한 탈색 단계 후에 실시했을 때 증대됨을 확인할 수 있다.As can be seen in Table 1, the decolorized sugar solution obtained by the ion exchange resin treatment in Example 1 already contains about 25% of X2 + X3 even if the content of X2 + X3 is not increased by the enzyme treatment. In addition, the xyloligosaccharide solution obtained in Example 2 was increased by 15.5% compared to the sugar solution obtained in the previous step by X2 + X3 by the enzymatic reaction, whereas in the comparative example, X2 + X3 of the sugar solution obtained by the enzymatic reaction was compared to the previous step. Only 6.8% increase. Therefore, it can be seen that the effect of increasing the content of X2 and X3 by the enzymatic reaction is increased after the decolorization step by the ion exchange resin.

실시예 2와 비교예에서 최종 농축액의 당 조성을 비교하면, X2+X3의 조성이 실시예 2의 경우 42.0 %, 비교예의 경우 39.5 %로 실시예 2의 X2+X3 조성이 상대적으로 높았다. 따라서, 정밀여과된 당액을 정제하는 공정에서 본 발명에서와 같이 이온교환에 의한 탈색, 효소처리 및 한외여과를 순차적으로 실시하는 것이 X2+X3의 조성이 높은 양질의 자일로올리고당을 얻는데 가장 유리함을 알 수 있다.Comparing the sugar composition of the final concentrate in Example 2 and Comparative Example, the composition of X2 + X3 was 42.0% in Example 2, 39.5% in Comparative Example was relatively high in the composition of Example 2 X2 + X3. Therefore, in the process of purifying the microfiltered sugar solution, decolorization, enzymatic treatment and ultrafiltration sequentially by ion exchange as in the present invention are most advantageous for obtaining high quality xylo-oligosaccharide having a high composition of X2 + X3. Able to know.

한편, 상기 실시예 1, 2 및 비교예의 각 공정에서 얻어진 당액의 당회수율 및 소요시간을 분석하여 하기 표 2에 나타내었다.On the other hand, the sugar recovery yield and the required time of the sugar solution obtained in each step of Examples 1, 2 and Comparative Examples are shown in Table 2 below.

BrixBrix A420A420 당회수율(%)Yield rate (%) 소요시간(hr)Duration (hr) 공통common 원심분리Centrifugation 5.05.0 3.9803.980 100100 정밀여과Precision filtration 4.74.7 3.3253.325 90.8790.87 실시예 1Example 1 이온교환Ion exchange 2.62.6 0.0080.008 50.2750.27 5.85.8 농축concentration 70.570.5 0.2260.226 47.7647.76 실시예 2Example 2 이온교환Ion exchange 2.62.6 0.0080.008 50.2750.27 10.510.5 효소처리Enzyme treatment 2.62.6 0.0540.054 50.2750.27 한외여과Ultrafiltration 2.22.2 0.0050.005 37.8137.81 농축concentration 70.770.7 0.2550.255 35.9235.92 비교예Comparative example 효소처리Enzyme treatment 4.74.7 3.5053.505 90.8790.87 21.721.7 한외여과Ultrafiltration 3.93.9 2.1952.195 58.6458.64 이온교환Ion exchange 2.42.4 0.0060.006 36.0636.06 농축concentration 70.570.5 0.2260.226 33.9333.93 당회수율: 원심분리 당액 대비 당 회수율Sugar recovery rate: Sugar recovery rate compared to the centrifuged sugar solution

상기 표 2에서 볼 수 있는 바와 같이, 실시예 1이 당회수율도 가장 높고 소요시간도 가장 짧아서 25 % 정도의 자일로즈 2당류와 3당류가 함유된 자일로올리고당 생산공정에 적합한 것을 알 수 있다. 그리고 실시예 2와 비교예를 비교하면 최종적인 당회수율에서도 실시예 2가 근소한 차이로 더 높은 값을 나타내면서 동시에 소요시간은 상대적으로 적다는 것을 알 수 있다. 따라서 고품질의 자일로올리고당액 생산공정으로는 실시예 2를 사용하는 것이 바람직하다.As can be seen in Table 2, Example 1 has the highest sugar yield and the shortest time required, and thus it can be seen that it is suitable for a xylo-oligosaccharide production process containing about 25% of xylose disaccharides and trisaccharides. Comparing Example 2 with Comparative Example, it can be seen that Example 2 shows a higher value with a slight difference in the final yield, and at the same time, the required time is relatively small. Therefore, it is preferable to use Example 2 as a high quality xylo-oligosaccharide liquid production process.

시험예 2: 한외여과시 플럭스(Flux) 비교Test Example 2: Comparison of Flux During Ultrafiltration

실시예 2에서 플럭스 대 농축비의 곡선을 구하기 위하여 여과시작 5분 후, 1.4배 농축시점, 2배 농축시점, 4.5배 농축시점에서 한외여과막을 통과해 나오는 여과액의 유량을 측정하여 여과막 단위면적 및 단위시간당 유속으로 나타내었다.In order to calculate the flux versus concentration ratio in Example 2, the filtration membrane unit area was measured by measuring the flow rate of the filtrate passing through the ultrafiltration membrane at the time of 1.4 times concentration, 2 times concentration, and 4.5 times concentration after 5 minutes of filtration. And the flow rate per unit time.

비교예에서는 같은 방법으로 여과시작 5분 후, 1.1배 농축시점,1.2배 농축시점, 1.5배 농축시점, 2.8배 농축시점에서의 값을 측정하여 환산하였다.In the comparative example, 5 minutes after the start of filtration, the values at 1.1 times concentration time, 1.2 times concentration time, 1.5 times concentration time and 2.8 times concentration time were measured and converted.

그 결과, 도 2에서 볼 수 있는 바와 같이, 실시예 2의 초기 플럭스는 717 ml/m2/분이고, 비교예의 초기 플럭스는 83 ml/m2/분으로서 약 9배의 여과속도의 차가 나며 이 차는 농축이 진행될수록 점차 확대되어 25배 정도의 여과속도의 차이를 보였다.As a result, as can be seen in Figure 2, the initial flux of Example 2 is 717 ml / m 2 / min, the initial flux of the comparative example is 83 ml / m 2 / min with a difference of about 9 times the filtration rate Tea was gradually enlarged as it was concentrated, showing a difference of 25 times in filtration rate.

따라서 동일한 작업처리량을 얻기 위해서는 비교예의 공정이 훨씬 큰 용량의 한외여과 설비를 필요로 함을 알 수 있고, 바꾸어 본 발명의 공정처리 순서에 의하면 동일한 한외여과설비로 빠르고 효과적으로 자일로올리고당을 얻을 수 있음을 알 수 있다.Therefore, in order to obtain the same throughput, it can be seen that the process of the comparative example requires a much larger capacity ultrafiltration plant. It can be seen.

본 발명의 방법을 이용하면, 자일란 함유 식물성 원료로부터 자일로즈 2당류 및 3당류의 함량이 높은 고품질의 자일로올리고당을 효율적으로 얻을 수 있다.By using the method of the present invention, it is possible to efficiently obtain high-quality xyloligosaccharides having a high content of xylose disaccharides and trisaccharides from xylan-containing vegetable raw materials.

Claims (8)

(a) 자일란 함유 식물성 원료를 물에 침지하여 팽윤시킨 후 폭쇄처리하고,(a) dipping the xylan-containing vegetable raw material in water and swelling, followed by explosive treatment; (b) (a)에서 얻은 폭쇄물에 물을 가하여 슬러리화한 후 고액분리장치로 고액분리하여 조당액을 얻고,(b) slurrying by adding water to the explosives obtained in (a) and solid-liquid separation with a solid-liquid separator to obtain a crude sugar solution, (c) (b)에서 얻은 조당액을 원심분리한 후 상층액을 정밀여과막으로 여과하고,(c) after centrifuging the crude sugar obtained in (b), the supernatant was filtered through a microfiltration membrane, (d) (c)에서 얻은 여과액을 이온교환 수지에 통액하여 탈색된 당액을 얻은 후 농축하는 단계를 포함하는,(d) passing the filtrate obtained in (c) to an ion exchange resin to obtain a decolorized sugar solution and then concentrating. 자일란 함유 식물성 원료로부터 자일로올리고당을 생산하는 방법.A method for producing xylooligosaccharides from xylan-containing vegetable raw materials. 제 1 항에 있어서,The method of claim 1, 자일란 함유 식물성 원료가 옥수수 속대, 면실각, 볏짚, 사탕수수 깍지, 곡류 껍질, 밀기울 및 목재로 이루어진 그룹으로부터 선택되는 것을 특징으로 하는 방법.And wherein the xylan-containing vegetable raw material is selected from the group consisting of corncobs, cotton kernels, rice straw, sugar cane pods, grain husks, bran and wood. 제 1 항에 있어서,The method of claim 1, (a) 단계에서 폭쇄 처리는 160 내지 220 ℃에서 3 내지 30분간 실시하는 것을 특징으로 하는 방법.In step (a), the explosion treatment is carried out at 160 to 220 ° C for 3 to 30 minutes. 제 1 항에 있어서,The method of claim 1, 단계 (c)에서 0.1 내지 5 ㎛의 구멍크기를 갖는 정밀여과막을 사용하는 것을 특징으로 하는 방법.Characterized in that in step (c) a microfiltration membrane having a pore size of 0.1 to 5 μm is used. 제 1 항에 있어서,The method of claim 1, 단계 (d)의 이온교환수지 처리 후에 자일란 분해효소 처리 및 한외여과 공정을 추가로 포함하는 것을 특징으로 하는 방법.And after the ion exchange resin treatment of step (d), xylanase treatment and ultrafiltration processes. 제 5 항에 있어서,The method of claim 5, wherein 자일란 분해효소로 자일라네이즈, 헤미셀룰레이즈 또는 셀룰레이즈를 사용하는 것을 특징으로 하는 방법.Xylase, hemicellulose or cellulose. 제 5 항에 있어서,The method of claim 5, wherein 자일란 분해효소 처리는 이온교환 수지 처리 후 얻어진 당액에 자일란 분해효소를 1 내지 20 U/ml 의 양으로 가하고 20 내지 70℃에서 1 내지 10 시간 동안 반응시킴으로써 실시하는 것을 특징으로 하는 방법.The xylan degrading enzyme treatment is carried out by adding the xylan degrading enzyme to the sugar solution obtained after the ion exchange resin treatment in an amount of 1 to 20 U / ml and reacting at 20 to 70 ° C. for 1 to 10 hours. 제 5 항에 있어서,The method of claim 5, wherein 한외여과시 사용되는 한외여과막은 분자량 컷-오프(cut-off) 값이 3 내지 30 kDa인 것을 특징으로 하는 방법.The ultrafiltration membrane used in ultrafiltration has a molecular weight cut-off value of 3 to 30 kDa.
KR10-2002-0067201A 2002-10-31 2002-10-31 Process for producing xylooligosaccharides KR100450563B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0067201A KR100450563B1 (en) 2002-10-31 2002-10-31 Process for producing xylooligosaccharides

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0067201A KR100450563B1 (en) 2002-10-31 2002-10-31 Process for producing xylooligosaccharides

Publications (2)

Publication Number Publication Date
KR20040038305A KR20040038305A (en) 2004-05-08
KR100450563B1 true KR100450563B1 (en) 2004-09-30

Family

ID=37336532

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0067201A KR100450563B1 (en) 2002-10-31 2002-10-31 Process for producing xylooligosaccharides

Country Status (1)

Country Link
KR (1) KR100450563B1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100620495B1 (en) * 2004-08-02 2006-09-08 학교법인 동의학원 Process for preparing xylooigosaccharide using recombinant endoxylanase
US11388910B2 (en) 2014-04-28 2022-07-19 International Dehydrated Foods, Inc. Process for preparing a collagen-rich composition
US10694768B2 (en) * 2014-04-28 2020-06-30 International Dehydrated Foods, Inc. Process for preparing a soluble protein composition
KR102389473B1 (en) * 2019-12-20 2022-04-25 대상 주식회사 Manufacturing method of pentose-based oligosaccharide from biomass

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61285999A (en) * 1985-06-11 1986-12-16 Towa Kasei Kogyo Kk Production of xylose and xylooligosaccharide
JPS6460395A (en) * 1987-08-31 1989-03-07 Kanzaki Paper Mfg Co Ltd Production of xylooligosaccharide
JPH05253000A (en) * 1992-03-09 1993-10-05 Hokkaido Togyo Kk Method for cleaning crude saccharide solution
JPH06197800A (en) * 1992-12-21 1994-07-19 Hokkaido Prefecture Process for producing sugar syrup composed mainly of xylooligosaccharide from bamboo grass
JP2000236899A (en) * 1998-12-24 2000-09-05 Asahi Chem Ind Co Ltd Production of xylose and xylooligosaccharide

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61285999A (en) * 1985-06-11 1986-12-16 Towa Kasei Kogyo Kk Production of xylose and xylooligosaccharide
JPS6460395A (en) * 1987-08-31 1989-03-07 Kanzaki Paper Mfg Co Ltd Production of xylooligosaccharide
JPH05253000A (en) * 1992-03-09 1993-10-05 Hokkaido Togyo Kk Method for cleaning crude saccharide solution
JPH06197800A (en) * 1992-12-21 1994-07-19 Hokkaido Prefecture Process for producing sugar syrup composed mainly of xylooligosaccharide from bamboo grass
JP2000236899A (en) * 1998-12-24 2000-09-05 Asahi Chem Ind Co Ltd Production of xylose and xylooligosaccharide

Also Published As

Publication number Publication date
KR20040038305A (en) 2004-05-08

Similar Documents

Publication Publication Date Title
JP4675139B2 (en) High purity xylooligosaccharide composition
RU2177038C2 (en) Method of xylose extraction from solutions
US20050096464A1 (en) Separation process
US4547226A (en) Preparation of high fructose syrups from citrus residues
EP2425723B1 (en) Process and plant for producing sugar products from grapes
EP0983392B1 (en) Crystallization method
US4758283A (en) Process for preparing L-rhamnose
KR100450563B1 (en) Process for producing xylooligosaccharides
US8580955B2 (en) Purification method and production method for cellobiose
EP0114891A1 (en) Preparing high fructose syrups from citrus residues
JPS61285999A (en) Production of xylose and xylooligosaccharide
RU2224026C1 (en) Method for producing fructose-glucose syrup
US20040198965A1 (en) D-galactose isolation system
GB2407573A (en) Production of arabinose
EP3606932B1 (en) Industrial-scale d-mannose extraction from d-mannose bisulfite adducts
EP3356563B1 (en) Methods of enriching arabinose fractions
EP2735573A1 (en) Method for producing inulin
KR101562024B1 (en) Preparing method of sugar mixture containing galactooligosaccharides and lactulose
KR20230150237A (en) Improved method for production of allulose
JPS63145293A (en) Production of l-rhamnose
GB2406335A (en) Separation of deoxy sugars
HU208847B (en) Prfocess for removing by molecule separation impurities and colouring agents of raw sugar solution obtained by saccharification of biomass originating from high lignine-containing wastes, particularly from wood chips, reed, sedge, corn-cob, etc.

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120905

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20130912

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20140912

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20150911

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20160909

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20180903

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20190918

Year of fee payment: 16