JP4148416B2 - Insulated container and assembled battery including the same - Google Patents

Insulated container and assembled battery including the same Download PDF

Info

Publication number
JP4148416B2
JP4148416B2 JP2004203936A JP2004203936A JP4148416B2 JP 4148416 B2 JP4148416 B2 JP 4148416B2 JP 2004203936 A JP2004203936 A JP 2004203936A JP 2004203936 A JP2004203936 A JP 2004203936A JP 4148416 B2 JP4148416 B2 JP 4148416B2
Authority
JP
Japan
Prior art keywords
container
wall
heat insulating
heat
upper container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004203936A
Other languages
Japanese (ja)
Other versions
JP2006024536A (en
Inventor
力也 阿部
正 白方
栄 鷲田
博資 大畑
孝一 蟹江
康 森
恭二 平松
俊武 倉重
毅 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2004203936A priority Critical patent/JP4148416B2/en
Publication of JP2006024536A publication Critical patent/JP2006024536A/en
Priority to JP2008071632A priority patent/JP4885166B2/en
Application granted granted Critical
Publication of JP4148416B2 publication Critical patent/JP4148416B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Battery Mounting, Suspending (AREA)

Description

本発明は、複数のナトリウム−硫黄電池等の高温で作動する二次電池を収容する断熱容器、及びそれを備えた集合電池に関する。 The present invention relates to a heat insulating container that houses secondary batteries that operate at a high temperature, such as a plurality of sodium-sulfur batteries, and an assembled battery that includes the same.

従来、複数の単電池を集合した集合電池が用いられている。このような集合電池の単電池としてナトリウム−硫黄電池を用いたものがある。ナトリウム−硫黄電池は電力貯蔵用、電気自動車の駆動電源用等に用いられる2次電池であり、290℃から350℃の作動温度に加熱された状態で負極室のナトリウムがナトリウムイオンとなって固体電解質管を透過して正極室の硫黄と反応し、多硫化ナトリウムを生成し放電が行われると共に、充電時には正極室内の多硫化ナトリウムから可逆的にナトリウムイオンと硫黄が生成され、ナトリウムイオンは固体電解質管を透過して負極室に戻る。したがって、ナトリウム−硫黄電池を単電池として用いた集合電池は、作動温度を290℃から350℃の一定温度に維持するために、複数のナトリウム−硫黄電池の単電池を収容し、ジュール発熱や放電時の反応熱が外部へ放熱することを抑制する断熱容器を備えたものがある。
このような断熱容器として、特許文献1には「内部に複数の電池が立設され上部が開口した箱状の真空断熱容器に真空断熱蓋を縁部に形成された合せ目で突き合わせたナトリウム硫黄電池用断熱容器」が開示されている。
また、特許文献2には「上面が開放された箱型の容体に、下面が開放された箱型の蓋体を冠着したものであり、容体と蓋体は、外壁と内壁をステンレス板で構成した中空容器内に、ガラス繊維、ロックウールなどの熱伝導性の小さい素材からなる繊維状物を板状に固化せしめた真空断熱ボードを装填した断熱容器」が開示されている。
一方、断熱容器を備えた燃料電池として、特許文献3には「外壁と内壁とを有する釣り鐘状の形状を有した真空断熱容器を平板状の断熱材上に載置された燃料電池スタックに覆設し、真空断熱容器の下端縁部に形成された外壁と内壁との接合部において真空断熱容器を断熱材に取り付けた高温型燃料電池」が開示されている。
また、特許文献4には、「絶縁性板材よりなる芯材の周面に複数の電熱線を巻回し、その両面に絶縁性の薄板を配置して一体化した集合電池の加熱装置、及び、該加熱装置を断熱容器の内底面に配設した集合電池」が開示されている。
Conventionally, an assembled battery in which a plurality of single cells are assembled has been used. There is a battery using a sodium-sulfur battery as a unit cell of such an assembled battery. The sodium-sulfur battery is a secondary battery used for power storage, electric vehicle drive power supply, etc., and the sodium in the negative electrode chamber becomes a sodium ion in a state heated to an operating temperature of 290 ° C. to 350 ° C. It passes through the electrolyte tube and reacts with sulfur in the positive electrode chamber to generate sodium polysulfide and discharge is performed. At the time of charging, sodium ions and sulfur are reversibly generated from sodium polysulfide in the positive electrode chamber, and the sodium ions are solid. It passes through the electrolyte tube and returns to the negative electrode chamber. Therefore, an assembled battery using a sodium-sulfur battery as a unit cell contains a plurality of unit cells of sodium-sulfur battery to maintain an operating temperature at a constant temperature of 290 ° C. to 350 ° C. Some have a heat insulating container that suppresses the heat of reaction from radiating to the outside.
As such a heat insulation container, Patent Document 1 states that “sodium sulfur which is abutted at a joint formed on the edge of a box-shaped vacuum heat insulation container with a plurality of batteries standing inside and having an open top. A battery insulation container "is disclosed.
Patent Document 2 states that “a box-shaped container whose upper surface is opened and a box-shaped lid whose lower surface is opened are crowned. The container and the lid are made of stainless steel plates on the outer wall and the inner wall. There is disclosed a heat-insulating container in which a vacuum heat-insulating board in which a fibrous material made of a material having low thermal conductivity such as glass fiber or rock wool is solidified into a plate shape is loaded in a hollow container.
On the other hand, as a fuel cell provided with a heat insulating container, Patent Document 3 discloses that “a vacuum heat insulating container having a bell-shaped shape having an outer wall and an inner wall is covered with a fuel cell stack placed on a flat heat insulating material. And a high-temperature fuel cell in which a vacuum heat insulating container is attached to a heat insulating material at a joint between an outer wall and an inner wall formed at the lower edge of the vacuum heat insulating container.
Patent Document 4 states that “a heating device for an assembled battery in which a plurality of heating wires are wound around a peripheral surface of a core member made of an insulating plate, and an insulating thin plate is arranged on both sides thereof, and An “assembled battery in which the heating device is disposed on the inner bottom surface of the heat insulating container” is disclosed.

特開平10−83832号公報Japanese Patent Laid-Open No. 10-83832 特開2000−21364号公報JP 2000-21364 A 特開平8−138721号公報JP-A-8-138721 特開平11−162507号公報JP 11-162507 A

しかしながら上記従来技術では、以下のような課題を有していた。
(1)特許文献1乃至2の断熱容器では、合せ目が形成された部分や真空断熱ボードを介して外部へ放熱するため、断熱性に欠けるという課題を有していた。
(2)特許文献1乃至2の断熱容器では、矩形の箱型に形成されているため、外壁と内壁との間の中空部を真空に形成した場合、負圧により容器の一部に応力が集中するため耐久性に欠け、また、耐久性を向上させるために中空部に補強部材を形成したり充填材を充填したりした場合は、補強部材や充填材を介して外部へ放熱するため、断熱性に欠けるという課題を有していた。
(3)特許文献1乃至2の断熱容器では、複数のナトリウム−硫黄電池の単電池が断熱容器内に横方向及び縦方向に一定間隔で並設されるため、単電池の設置効率が悪く断熱容器が大型化し省スペース性に欠けると共に、断熱容器の大型化によりその表面積が大きくなるため断熱性が低下するという課題を有していた。
(4)特許文献3の高温型燃料電池では、釣り鐘状の真空断熱容器の下端部の開口部は平板状の断熱材で閉じられているだけなので、真空断熱容器の下端部の外壁と内壁の接合部や下端部に接触した断熱材から多大な放熱が生じ断熱性に欠けるという課題を有していた。
(5)特許文献3の高温型燃料電池は650℃〜1000℃の高温で作動するため、作動時に真空断熱容器の壁面に吸着した水分子や水素分子が脱離して真空部分の真空度が低下し断熱性が低下するという課題を有していた。
(6)特許文献3の高温型燃料電池では、燃料ガス及び空気が真空断熱容器の内外に出入りし、燃料ガス及び空気の顕熱として外部に放熱するため、真空断熱容器を用いても断熱性に欠けるという課題を有していた。
(7)特許文献4の集合電池では、断熱容器が比較的熱伝導率が小さくならないように形成されており、断熱容器から放熱された熱を加熱装置による加熱で補うことで断熱容器内の温度を所定の動作温度に維持している。したがって、所定の時間間隔で加熱装置に供給する電力が必要となり、集合電池の電力を供給するとエネルギロスが生じ、或いは外部から安価な電力を供給するとその分のコストがかかり、省エネルギ性及び省コスト性に欠けるという課題を有していた。
However, the above prior art has the following problems.
(1) In the heat insulation containers of Patent Documents 1 and 2, since heat is radiated to the outside through the portion where the seam is formed and the vacuum heat insulation board, there is a problem that the heat insulation is lacking.
(2) Since the heat insulating containers of Patent Documents 1 and 2 are formed in a rectangular box shape, when the hollow portion between the outer wall and the inner wall is formed in a vacuum, stress is applied to a part of the container due to negative pressure. In order to concentrate, it lacks durability, and in order to improve durability, when a reinforcing member is formed in the hollow part or filled with a filler, heat is radiated to the outside through the reinforcing member or filler. It had the subject of lacking heat insulation.
(3) In the heat insulation containers of Patent Documents 1 and 2, a plurality of sodium-sulfur battery cells are arranged in parallel in the heat insulation container at regular intervals in the horizontal and vertical directions. In addition to the increase in size of the container and lack of space-saving properties, the increase in the surface area of the heat-insulating container caused a problem that the heat-insulating property was lowered.
(4) In the high-temperature fuel cell of Patent Document 3, since the opening at the lower end of the bell-shaped vacuum heat insulating container is only closed by a flat heat insulating material, the outer wall and the inner wall of the lower end of the vacuum heat insulating container There has been a problem that a great amount of heat is radiated from the heat insulating material in contact with the joint and the lower end and lacks heat insulation.
(5) Since the high-temperature fuel cell of Patent Document 3 operates at a high temperature of 650 ° C. to 1000 ° C., water molecules and hydrogen molecules adsorbed on the wall surface of the vacuum insulation container are desorbed during operation, and the degree of vacuum in the vacuum portion is reduced. However, there was a problem that the heat insulating property was lowered.
(6) In the high-temperature fuel cell of Patent Document 3, the fuel gas and air enter and exit the vacuum heat insulating container and dissipate to the outside as sensible heat of the fuel gas and air. Had the problem of lacking.
(7) In the assembled battery of Patent Document 4, the heat insulating container is formed so that the thermal conductivity is not relatively reduced, and the temperature in the heat insulating container is compensated by the heat radiated from the heat insulating container by the heating by the heating device. Is maintained at a predetermined operating temperature. Therefore, power to be supplied to the heating device at a predetermined time interval is required, and energy loss occurs when the power of the assembled battery is supplied, or cost is increased when inexpensive power is supplied from the outside. There was a problem of lack of cost.

本発明は上記従来の課題を解決するもので、内部に収容される二次電池の効率が高い場合、すなわち内部抵抗が小さく放電及び充電によるジュール発熱量が少ない場合であっても、放熱を抑えて熱的に自立した運転が可能で、さらに所定温度以上の高温になった場合に、外部への放熱を促進させ高温化を防止できる安全性に優れる断熱容器を提供することを目的とする。 The present invention solves the above-described conventional problems, and suppresses heat dissipation even when the efficiency of the secondary battery accommodated therein is high, that is, even when the internal resistance is small and the amount of Joule heat generated by discharging and charging is small. It is an object of the present invention to provide a thermally insulated container that is capable of thermally independent operation and that is excellent in safety and can promote heat dissipation to the outside and prevent a high temperature when the temperature becomes higher than a predetermined temperature .

また、本発明は上記従来の課題を解決するもので、放熱を抑えて熱的に自立した運転が可能であると共に、単電池を稠密に無駄なく配置することができるのでエネルギ密度を高くすることができ、また単電池の直列数と並列数の組合せにより変圧器を用いることなく交流200Vに接続することができ、さらに所定温度以上の高温になった場合に、外部への放熱を促進させ高温化を防止できる安全性に優れる集合電池を提供することを目的とする。 In addition, the present invention solves the above-described conventional problems, and it is possible to operate in a thermally independent manner while suppressing heat dissipation and to increase the energy density because the cells can be densely and efficiently disposed. In addition, the combination of the number of cells in series and the number of parallel cells can be connected to AC 200V without using a transformer. Further, when the temperature becomes higher than a predetermined temperature, heat dissipation to the outside is promoted and the temperature is increased. An object of the present invention is to provide an assembled battery excellent in safety that can be prevented .

上記従来の課題を解決するために本発明は以下の構成を有している。
本発明の請求項1に記載の断熱容器は、ナトリウム−硫黄電池等の高温で作動する二次電池が収容される密封された断熱容器であって、架台部と、前記架台部から立設された周壁部と、を有し前記架台部上に断熱部が敷設された下部容器と、天板部と、胴体部と、下部に下部開口部と、を有し、外壁部と内壁部との間が真空状に形成された二重壁構造に形成され、前記下部開口部を前記下部容器の前記断熱部に当接して前記下部容器に挿着する上部容器と、前記上部容器の前記内壁部に形成され所定温度で融解して前記内壁部に孔部を形成する内壁融解部と、を備えた構成を有している。
この構成により、以下のような作用を有する。
(1)上部容器が、二重壁構造に形成され二重壁の内部が真空状に形成されているので、上部容器の熱伝導率を0.001W/mK〜0.02W/mKとすることができ、外部への放熱を抑制することができ、上部容器内部に収容される二次電池の効率が高い場合、すなわち内部抵抗が小さく放電及び充電によるジュール発熱量が少ない場合であってもヒータ等による加熱が不要で熱的に自立した運転が可能である。
(2)上部容器が、円筒状等の胴体部と湾曲面状等の天板部とを備えているので、構造的強度が高く、二重壁構造の内部の中空部に補強部材を設けたり強度維持のための充填材を充填したりする必要がないので、補強部材や充填材を介して外部に放熱することがなく、上部容器の熱伝導率を極めて小さくできる。
(3)上部容器の内部の天板部近傍は、収容した二次電池やそれを集合したモジュールのジュール発熱や反応熱等により発生した熱の対流により温度が高くなる。上部容器の下部に下部開口部を形成し、温度が高くなる上部容器の天板部側には開口部を形成していないので外部への放熱を抑制することができる。
(4)下部容器が架台部と、架台部から立設された周壁部と、架台部に敷設された断熱部と、を有し、上部容器の下部開口部を下部容器の断熱部に当接して挿着しているので、上部容器の下部開口部側からの放熱を抑制することができる。特に上部容器の下端部で中空部を封止するための外壁部と内壁部の接合部分(下端部封止部)から下部容器への伝熱を断熱部により防ぎ、放熱を抑制することができる。
(5)下部容器に載置した二次電池からの電力の取り出しのための電力線や電圧や電流の計測のための計測線等を下部容器の架台部から外部に引き出すことができるので、設置作業が容易であると共に、上部容器に電力線や計測線を取り出すための孔や開口を設ける必要がなく上部容器を容易に製作でき、二重壁構造に孔や開口を設けないのでその孔や開口からの熱伝導がなく上部容器の断熱性の低下を防ぐことができる。
(6)上部容器と下部容器を気密に接合して断熱容器を密封でき、断熱容器内の気密性が保たれ断熱性を向上させることができる。
(7)断熱容器内部が二次電池の活物質の漏れ等により所定温度以上の高温になった場合に、内壁融解部が融解して断熱容器内部の気体が中空部に流れ込み、中空部の真空度が低下し上部容器の熱伝導率が大きくなるので、外部への放熱を促進させ高温化を防止できる。
In order to solve the above conventional problems, the present invention has the following configuration.
The heat insulation container according to claim 1 of the present invention is a sealed heat insulation container in which a secondary battery operating at a high temperature such as a sodium-sulfur battery is accommodated, and is erected from a gantry part and the gantry part. A lower container in which a heat insulating part is laid on the gantry part, a top plate part, a body part, and a lower opening part in the lower part, and an outer wall part and an inner wall part. The upper container is formed in a double wall structure formed in a vacuum, and the lower opening is in contact with the heat insulating part of the lower container and is inserted into the lower container, and the inner wall of the upper container And an inner wall melting part that forms a hole in the inner wall part by melting at a predetermined temperature .
This configuration has the following effects.
(1) Since the upper container is formed in a double wall structure and the inside of the double wall is formed in a vacuum, the thermal conductivity of the upper container is set to 0.001 W / mK to 0.02 W / mK. Even when the efficiency of the secondary battery accommodated in the upper container is high, that is, when the internal resistance is small and the amount of Joule heat generated by discharging and charging is small, the heater can be suppressed. It is possible to operate in a thermally independent manner without the need for heating.
(2) Since the upper container includes a cylindrical body portion and a curved surface top plate portion, the structural strength is high, and a reinforcing member is provided in the hollow portion of the double wall structure. Since it is not necessary to fill with a filler for maintaining the strength, heat is not radiated to the outside through the reinforcing member or the filler, and the thermal conductivity of the upper container can be made extremely small.
(3) In the vicinity of the top plate inside the upper container, the temperature rises due to convection of heat generated by Joule heat generation, reaction heat, or the like of the housed secondary battery or a module in which the secondary battery is assembled. A lower opening is formed in the lower part of the upper container, and since no opening is formed on the top plate part side of the upper container where the temperature rises, heat radiation to the outside can be suppressed.
(4) The lower container has a gantry part, a peripheral wall part erected from the gantry part, and a heat insulating part laid on the gantry part, and the lower opening of the upper container is brought into contact with the heat insulating part of the lower container Therefore, the heat radiation from the lower opening side of the upper container can be suppressed. In particular, heat transfer from the joint portion (lower end sealing portion) between the outer wall portion and the inner wall portion for sealing the hollow portion at the lower end portion of the upper container to the lower container can be prevented by the heat insulating portion, and heat dissipation can be suppressed. .
(5) Installation work is possible because the power line for taking out the power from the secondary battery placed in the lower container and the measurement line for measuring the voltage and current can be drawn out from the base part of the lower container. It is easy to manufacture the upper container without the need to provide a hole or opening for taking out the power line or measurement line in the upper container, and the double wall structure is not provided with a hole or opening. Therefore, the heat insulation of the upper container can be prevented from lowering.
(6) The upper container and the lower container can be joined in an airtight manner to seal the heat insulating container, the air tightness in the heat insulating container can be maintained, and the heat insulating property can be improved.
(7) When the inside of the heat insulation container becomes a high temperature of a predetermined temperature or more due to leakage of the active material of the secondary battery, the inner wall melting part melts and the gas inside the heat insulation container flows into the hollow part, and the vacuum of the hollow part The temperature decreases and the thermal conductivity of the upper container increases, so heat dissipation to the outside can be promoted and high temperatures can be prevented.

ここで、上部容器の材質としてはステンレス鋼(SUS)や一般構造用圧延鋼材(SS)等の金属が用いられる。上部容器の中空部の真空度としては、絶対圧で100Pa以下、好ましくは10Pa以下の真空度に形成されることが好ましい。これにより、上部容器の熱伝導率を0.001W/mK〜0.02W/mKと小さくすることができる。真空度が10Paより大きくなるにつれ上部容器の熱伝導率が大きくなり熱的に自立した運転ができなくなり、100Paより大きくなるとその傾向が著しく顕著になるため好ましくない。
下部容器はSUSやSS等の金属、又は硬質の断熱材や耐熱性が高く熱伝導率の小さい材質等により形成される。また、下部容器は金属製の外壁と内壁を有しその間の中空部を真空状とした二重壁構造に形成してもよい。下部容器の底部に敷設される断熱部としては、1乃至複数の平板状、シート状の断熱材や真空断熱プレート、或いはそれらを組み合わせたもの等を用いることができる。また、断熱材や真空断熱プレートを積層して用いることもできる。
上部容器と下部容器を密封接合する場合は、上部容器の胴体部と下部容器の周壁部の上端部とを溶接したり、各々にフランジ部を設けて溶接やボルトナットにより螺着したりする接合手段が用いられる。なお、上部容器の胴体部と下部容器の周壁部の上端部とを溶接する場合は上部容器の外径と下部容器の内径を略同一に形成して、上部容器が下部容器に隙間無く挿着されることが好ましい。また、ボルトナットにより螺着する場合は耐熱性のパッキン等を介して接合される。
Here, metals such as stainless steel (SUS) and general structural rolled steel (SS) are used as the material of the upper container. The degree of vacuum in the hollow part of the upper container is preferably 100 Pa or less, and preferably 10 Pa or less in absolute pressure. Thereby, the thermal conductivity of the upper container can be reduced to 0.001 W / mK to 0.02 W / mK. As the degree of vacuum becomes higher than 10 Pa, the thermal conductivity of the upper container becomes higher, so that a thermally independent operation cannot be performed. When the degree of vacuum is higher than 100 Pa, the tendency becomes remarkably remarkable.
The lower container is formed of a metal such as SUS or SS, or a hard heat insulating material or a material having high heat resistance and low thermal conductivity. Moreover, you may form a lower container in the double wall structure which has a metal outer wall and inner wall, and made the hollow part between them into the vacuum state. As the heat insulating portion laid on the bottom of the lower container, one or a plurality of flat plate-like, sheet-like heat insulating materials, vacuum heat insulating plates, or combinations thereof can be used. Moreover, a heat insulating material and a vacuum heat insulating plate can be laminated and used.
When the upper container and the lower container are hermetically joined, the body part of the upper container and the upper end part of the peripheral wall part of the lower container are welded, or a flange part is provided on each of them and is welded or screwed with a bolt and nut. Means are used. When welding the upper container body and the upper end of the peripheral wall of the lower container, the outer diameter of the upper container and the inner diameter of the lower container are formed substantially the same, and the upper container is inserted into the lower container without any gap. It is preferred that Moreover, when screwing with a bolt nut, it joins via heat resistant packing etc.

また、上部容器の内壁部の内側面又は外側面、或いは外壁部の内側面の少なくとも1面に輻射熱反射部を配設してもよい。これにより、断熱容器内部に収容される二次電池から発生した輻射熱を輻射熱反射部により反射することにより外部に漏れるのを抑制することができる。輻射熱反射部としては、銅やアルミニウムにより形成された板状体や銅やアルミニウムをめっきや蒸着により層状に形成したもの等が用いられる。或いは内壁部の内側面や外側面、外壁部の内側面を研磨して各壁面に一体形成することもできる。
なお、上部容器の中空部にアルミニウム等により形成された箔状の反射板とガラスウール等のスペーサを交互に積層して配設した断熱方法、いわゆるスーパーインシュレーションを用いることもでき、断熱性を高めることができる。
また、上部容器の外壁部と内壁部との間の中空部に、ジルコニア合金やチタン合金等の粒状物や塊状物からなるゲッタを配設してもよい。これにより、上部容器の中空部に残留したガスを吸収するゲッタを配設することにより、中空部の真空度を極度に低下させ上部容器の断熱性を高めることができる。
Moreover, you may arrange | position a radiant heat reflection part in at least 1 surface of the inner surface or the outer surface of the inner wall part of an upper container, or the inner surface of an outer wall part. Thereby, it can suppress leaking outside by reflecting the radiant heat which generate | occur | produced from the secondary battery accommodated in the inside of a heat insulation container by a radiant heat reflection part. As the radiant heat reflecting portion, a plate-like body formed of copper or aluminum, or a layer formed by plating or vapor deposition of copper or aluminum is used. Alternatively, the inner side surface and the outer side surface of the inner wall portion and the inner side surface of the outer wall portion can be polished and integrally formed on each wall surface.
It is also possible to use a heat insulation method in which a foil-like reflector formed of aluminum or the like and a spacer such as glass wool are alternately laminated in the hollow portion of the upper container, so-called super insulation, and heat insulation can be used. Can be increased.
Moreover, you may arrange | position the getter which consists of granular materials and aggregates, such as a zirconia alloy and a titanium alloy, in the hollow part between the outer wall part and inner wall part of an upper container. Thereby, by providing the getter that absorbs the gas remaining in the hollow part of the upper container, the vacuum degree of the hollow part can be extremely lowered and the heat insulation of the upper container can be improved.

内壁融解部としては、アルミニウム合金等により形成されたものが用いられる。なお、内壁融解部を形成する際に内壁融解部として内壁との接合性が低い材質を用いる場合は、内壁融解部を接合する内壁の孔部にニッケル又はアルミニウム等のめっきを施すことが好ましい。As the inner wall melting portion, one formed of an aluminum alloy or the like is used. In addition, when using a material with low bondability with an inner wall as an inner wall melting part when forming an inner wall melting part, it is preferable to plate nickel or aluminum etc. in the hole of the inner wall which joins an inner wall melting part.
また、内壁融解部は、上部容器の天板部、特に湾曲面状の天板部の頂部の内壁に形成されることが好ましい。なお、内壁融解部に並設して温度センサを設けてもよい。これにより、断熱容器内は対流により上部が高温になるため、断熱容器内部の温度の上昇を温度センサにより検出でき、二次電池の異常を早期に察知できる。  The inner wall melting portion is preferably formed on the top wall of the upper container, particularly the top wall of the curved top plate. A temperature sensor may be provided in parallel with the inner wall melting portion. Thereby, since an upper part becomes high temperature by the convection in a heat insulation container, the temperature rise in a heat insulation container can be detected with a temperature sensor, and abnormality of a secondary battery can be detected at an early stage.

また、断熱容器は、前記下部容器の前記周壁部の上端部に周設された下部フランジ部と、前記上部容器の前記胴体部に周設された上部フランジ部と、を備え、前記上部フランジ部を前記下部フランジ部に気密に接合し密封した構成とすることにより、以下のような作用を有する。
(1)上部容器が上部フランジ部を備え、下部容器が下部フランジ部を備えているので、上部容器の上部フランジ部を下部容器の下部フランジ部に気密に接合し断熱容器を密封でき、断熱容器内の気密性が保たれ断熱性を向上させることができる。
(2)上部フランジ部と下部フランジ部を備えているので、上部容器の外径と下部容器の内径が多少異なっていても上部フランジ部と下部フランジ部とを溶接等で接合することにより断熱容器を密封することができる。
The heat insulating container includes a lower flange portion provided around an upper end portion of the peripheral wall portion of the lower container, and an upper flange portion provided around the body portion of the upper container, and the upper flange portion. By sealing and sealing to the lower flange part, it has the following effects.
(1) Since the upper container is provided with the upper flange portion and the lower container is provided with the lower flange portion, the upper flange portion of the upper container can be hermetically joined to the lower flange portion of the lower container, and the heat insulating container can be sealed. The inside airtightness is maintained and the heat insulating property can be improved.
(2) Since the upper flange portion and the lower flange portion are provided, even if the outer diameter of the upper container and the inner diameter of the lower container are slightly different, the upper flange portion and the lower flange portion are joined together by welding or the like. Can be sealed.

また、断熱容器は、前記下部容器の前記断熱部の上部に配設され前記上部容器の前記下部開口部に嵌合する円柱状の嵌合断熱部を備えた構成とすることにより、以下のような作用を有する。
(1)上部容器の下部開口部を嵌合断熱部で塞ぐことができるので、上部容器の下端部からの放熱、特に外壁部と内壁部の接合部及び下部容器の底部の断熱部からの放熱を抑制することができる。
Further, the heat insulating container, by a configuration including the cylindrical fitting insulating part which is disposed above the heat insulating portion is fitted into the lower opening of the upper container of the lower container, as follows It has an effect.
(1) Since the lower opening of the upper container can be closed by the fitting heat insulating part, heat is dissipated from the lower end of the upper container, in particular, heat from the joined part of the outer wall part and the inner wall part and the heat insulating part of the bottom part of the lower container. Can be suppressed.

ここで、嵌合断熱部として真空断熱プレートを用いた場合、さらに放熱を抑制できると共に、真空断熱プレートの側壁を伝わる熱をその下部に敷設された断熱部により遮断できるので、断熱性を著しく高めることができる。   Here, when a vacuum heat insulating plate is used as the fitting heat insulating portion, heat dissipation can be further suppressed, and heat transmitted through the side wall of the vacuum heat insulating plate can be blocked by the heat insulating portion laid on the lower portion thereof, so that the heat insulating property is remarkably enhanced. be able to.

断熱容器の製造方法は、前記上部容器を前記二次電池の作動温度以上の温度に加熱する加熱工程と、前記上部容器を加熱した状態で外壁部と内壁部との間の中空部を真空脱気する真空脱気工程を備えた構成を有している。
この構成により、以下のような作用を有する。
(1)上部容器を製作する際に、加熱工程において上部容器を二次電池の作動温度以上の温度に加熱することにより上部容器の外壁部や内壁部の表面に吸着した水分子や水素分子、或いは外壁部や内壁部を形成する金属内部の水素分子等が脱離させることができ、真空脱気工程において脱離した気体を除去することができるので、作動温度において上部容器の中空部の真空度を極めて大きくすることができ、断熱性を向上できる。
A method for manufacturing the heat insulating container includes a heating step of heating the upper container to a temperature equal to or higher than an operating temperature of the secondary battery, and a vacuum portion between the outer wall portion and the inner wall portion in a state where the upper container is heated. It has the structure provided with the vacuum deaeration process to care.
This configuration has the following effects.
(1) When the upper container is manufactured, water molecules and hydrogen molecules adsorbed on the outer and inner wall surfaces of the upper container by heating the upper container to a temperature higher than the operating temperature of the secondary battery in the heating process, Alternatively, hydrogen molecules and the like inside the metal forming the outer wall and inner wall can be desorbed, and the gas desorbed in the vacuum degassing process can be removed, so that the vacuum of the hollow portion of the upper container at the operating temperature The degree can be made extremely large and the heat insulation can be improved.

ここで、加熱工程における加熱温度としては、二次電池がナトリウム−硫黄電池である場合は作動温度が290℃〜350℃であるので、その作動温度以上の温度が用いられる。   Here, as the heating temperature in the heating step, when the secondary battery is a sodium-sulfur battery, the operating temperature is 290 ° C. to 350 ° C., and therefore a temperature higher than the operating temperature is used.

本発明の請求項に記載の発明は、請求項に記載の断熱容器であって、前記上部容器の前記外壁部に形成され所定温度で融解して前記外壁部に孔部を形成する外壁融解部を備えた構成を有している。
この構成により、請求項の作用に加え、以下のような作用を有する。
(1)断熱容器内部の高温化が上部容器の中空部の真空度の低下による放熱の増加だけでは許容できなくなった場合に、外壁融解部が融解して断熱容器や中空部の内部の高温の気体を断熱容器の外部に放出することができるので、断熱容器の内部の極度の高温化を防止することができる。
Invention of Claim 2 of this invention is the heat insulation container of Claim 1 , Comprising: The outer wall which is formed in the said outer wall part of the said upper container, fuse | melts at predetermined temperature, and forms a hole in the said outer wall part It has a configuration with a melting part.
With this configuration, in addition to the operation of the first aspect , the following operation is provided.
(1) When the high temperature inside the heat insulation container cannot be allowed only by the increase in heat radiation due to the decrease in the vacuum degree of the hollow part of the upper container, the outer wall melting part melts and the high temperature inside the heat insulation container or the hollow part Since the gas can be discharged to the outside of the heat insulating container, an extremely high temperature inside the heat insulating container can be prevented.

ここで、外壁融解部としては、アルミニウム合金等により形成されたものが用いられる。なお、外壁融解部を形成する際に外壁融解部として外壁との接合性が低い材質を用いる場合は、外壁融解部を接合する外壁の孔部にニッケル又はアルミニウム等のめっきを施すことが好ましい。また、外壁融解部は、内壁融解部と同様に天板部、特に湾曲面状の天板部の頂部の内壁に形成されることが好ましい。
また、外壁融解部としては、内壁融解部の融点と同じか或いはそれより高い融点の材質が用いられる。
Here, as the outer wall melting portion, one formed of an aluminum alloy or the like is used. In addition, when using a material with low bonding property with the outer wall as the outer wall melting portion when forming the outer wall melting portion, it is preferable to perform plating of nickel or aluminum on the hole portion of the outer wall to which the outer wall melting portion is bonded. Moreover, it is preferable that the outer wall melting portion is formed on the top plate portion, particularly on the inner wall of the top of the curved top plate portion, like the inner wall melting portion.
The outer wall melting portion is made of a material having a melting point equal to or higher than the melting point of the inner wall melting portion.

本発明の請求項3に記載の発明は、請求項1又は2に記載の断熱容器であって、前記内壁融解部及び/又は前記外壁融解部が、前記上部容器の前記天板部に形成された構成を有している。Invention of Claim 3 of this invention is the heat insulation container of Claim 1 or 2, Comprising: The said inner wall melting | dissolving part and / or the said outer wall melting | fusing part are formed in the said top-plate part of the said upper container. It has a configuration.
この構成により、請求項1又は2の作用に加え、以下のような作用が得られる。With this configuration, in addition to the operation of the first or second aspect, the following operation can be obtained.
(1)断熱容器の内部の天板部近傍は、収容した二次電池やそれを集合したモジュールのジュール発熱や反応熱等により発生した熱の対流により温度が高くなるため、二次電池の異常を早期に察知できる。(1) The temperature of the vicinity of the top plate inside the heat insulating container increases due to convection of heat generated by Joule heat generation or reaction heat of the contained secondary battery or a module in which the secondary battery is assembled. Can be detected early.

本発明の請求項に記載の集合電池は、ナトリウム−硫黄電池等の高温で作動する二次電池の単電池を集合した集合電池であって、請求項1乃至の内いずれか1項に記載の断熱容器、前記断熱容器に収容された1乃至複数の単電池収容箱体と、前記単電池収容箱体に収容された複数の前記単電池と、を備えた構成を有している。
この構成によって、以下のような作用を有する。
(1)断熱容器の上部容器が、二重壁構造に形成され二重壁の内部が真空状に形成されているので、外部への放熱を抑制することができ、上部容器内部に収容される二次電池の効率が高い場合、すなわち内部抵抗が小さく放電及び充電によるジュール発熱量が少ない場合であってもヒータ等による加熱が不要で熱的に自立した運転が可能である。
(2)断熱容器の上部容器が、円筒状等の胴体部と湾曲面状等の天板部とを備えているので、構造的強度が高く、二重壁構造の内部の中空部に補強部材を設けたり強度維持のための充填材を充填したりする必要がないので、補強部材や充填材を介して外部に放熱することがなく、上部容器の熱伝導率を極めて小さくできる。
(3)断熱容器の内部の天板部近傍は、収容した二次電池やそれを集合したモジュールのジュール発熱や反応熱等により発生した熱の対流により温度が高くなる。断熱容器の上部容器の下部に下部開口部を形成し、温度が高くなる上部容器の天板部側には開口部を形成していないので外部への放熱を抑制することができる。
)断熱容器の上部容器の内壁部や外壁部に形成され所定温度で融解して孔部を形成する内壁融解部や外壁融解部を備えると、断熱容器内部が二次電池の活物質の漏れ等により所定温度以上の高温になった場合に、内壁融解部や外壁融解部が融解して断熱容器内部の気体を外部に段階的に逃がすことができ高温化を防止できる。
)1乃至複数の単電池収容箱体を備えているので、複数の単電池を種々の配列で、或いは配列を整えて単電池収容箱体の内部に収容することができる。
The assembled battery according to claim 4 of the present invention is an assembled battery in which unit cells of secondary batteries that operate at a high temperature such as a sodium-sulfur battery are assembled, and any one of claims 1 to 3. And a plurality of unit cells housed in the unit cell housing box, and a plurality of the unit cells housed in the unit cell housing box. .
This configuration has the following effects.
(1) Since the upper container of the heat insulating container is formed in a double wall structure and the inside of the double wall is formed in a vacuum state, heat radiation to the outside can be suppressed and accommodated inside the upper container. Even when the efficiency of the secondary battery is high, that is, when the internal resistance is small and the amount of Joule heat generated by discharging and charging is small, heating by a heater or the like is unnecessary and a thermally independent operation is possible.
(2) Since the upper container of the heat insulating container includes a cylindrical body portion and a curved surface top plate portion, the structural strength is high, and the reinforcing member is provided in the hollow portion of the double wall structure. It is not necessary to provide a filler or a filler for maintaining the strength, so that heat is not radiated to the outside through the reinforcing member or the filler, and the thermal conductivity of the upper container can be extremely reduced.
(3) In the vicinity of the top plate inside the heat insulating container, the temperature rises due to convection of heat generated by Joule heat generation, reaction heat, or the like of the housed secondary battery or a module in which the secondary batteries are assembled. Since the lower opening is formed in the lower part of the upper container of the heat insulating container and the opening is not formed on the top plate part side of the upper container where the temperature becomes high, heat radiation to the outside can be suppressed.
( 4 ) When an inner wall melting part or an outer wall melting part is formed on the inner wall or outer wall of the upper container of the heat insulating container and melts at a predetermined temperature to form a hole, the heat insulating container contains the active material of the secondary battery. When the temperature becomes higher than a predetermined temperature due to leakage or the like, the inner wall melting portion and the outer wall melting portion are melted, and the gas inside the heat insulating container can be gradually released to the outside, and the temperature rise can be prevented.
( 5 ) Since one to a plurality of unit cell housing boxes are provided, the plurality of unit cells can be housed in the unit cell housing box in various arrangements or in an arrangement.

ここで、単電池収容箱体の上下部やその近傍には、単電池の起動時に作動温度を上昇させるためのヒータ等を設けることができる。
また、単電池収容箱体は、平面視形状が円形状或いは四角形、六角形、八角形等の多角形状等に形成され、断熱容器の内部に複数積み重ねて複数設けることができる。これにより、所定数の単電池収容箱体を積み重ねて設け直列に接続することで高電圧が得られると共に、設置面積は変わらないので省スペース性に優れる。
Here, a heater or the like for raising the operating temperature at the time of activation of the unit cell can be provided in the upper and lower portions of the unit cell housing box or in the vicinity thereof.
Further, the unit cell housing box is formed in a circular shape or a polygonal shape such as a quadrangle, a hexagon, an octagon, etc. in a plan view, and a plurality of unit cell housing boxes can be provided by being stacked inside the heat insulating container. Thereby, a high voltage can be obtained by stacking and connecting a predetermined number of unit cell housing boxes in series, and the installation area does not change, so that space saving is excellent.

本発明の請求項に記載の発明は、請求項に記載の集合電池であって、複数の前記単電池が、前記単電池収容箱体に千鳥状配列で収容された構成を有している。
この構成によって、請求項の作用に加え、以下のような作用を有する。
(1)単電池を千鳥形配列で単電池収容箱体に収容しているので、単電池を稠密に無駄なく配置することができ多数の単電池を収容でき集合電池のエネルギ密度を向上させることができる。
(2)単電池を整列して配設することができ、各単電池を電気的に接続する際に各列毎に直列に接続し易い。
The invention according to claim 5 of the present invention is the assembled battery according to claim 4 , wherein a plurality of the single cells are housed in a staggered arrangement in the single cell housing box. Yes.
With this configuration, in addition to the operation of the fourth aspect , the following operation is provided.
(1) Since the cells are housed in the cell housing box in a staggered arrangement, the cells can be arranged densely and without waste, and can accommodate a large number of cells and improve the energy density of the assembled battery. Can do.
(2) The cells can be arranged and arranged, and when the cells are electrically connected, they are easily connected in series for each column.

本発明の請求項に記載の発明は、請求項又はに記載の集合電池であって、前記単電池収容箱体が、平面視形状が正六角形又は円形若しくは楕円形に形成された構成を有している。
この構成によって、請求項又はの作用に加え、以下のような作用を有する。
(1)単電池収容箱体を平面視形状で正六角形又は円形若しくは楕円形に形成することにより、上部容器の内部のスペースを有効利用でき、集合電池を小型化できる。また、断熱容器を小型化できるので、放熱面積を小さくでき外部への放熱を最小限に抑制することができる。
The invention according to claim 6 of the present invention is the assembled battery according to claim 4 or 5 , wherein the unit cell housing is formed in a regular hexagonal shape, a circular shape or an elliptical shape in plan view. have.
With this configuration, in addition to the operation of the fourth or fifth aspect , the following operation is provided.
(1) By forming the unit cell housing box into a regular hexagonal shape, a circular shape, or an elliptical shape in plan view, the space inside the upper container can be used effectively, and the assembled battery can be miniaturized. Further, since the heat insulating container can be reduced in size, the heat radiation area can be reduced, and heat radiation to the outside can be minimized.

本発明の請求項に記載の発明は、請求項乃至の内いずれか1項に記載の集合電池であって、平面視形状が正六角形に形成された1乃至複数の前記単電池収容箱体と、前記単電池収容箱体の内部を平面視形状が菱形状に3つに等分割して形成された菱形収容部と、各々の前記菱形収容部に千鳥形配列で配設された複数の前記単電池と、を備えた構成を有している。
この構成によって、請求項乃至の内いずれか1項の作用に加え、以下のような作用を有する。
(1)単電池収容箱体を平面視形状で正六角形に形成することにより、上部容器の内部に無駄な空間を形成することなくスペースを有効利用でき、集合電池を小型化できる。また、断熱容器を小型化できるので、放熱面積を小さくでき外部への放熱を最小限に抑制することができる。
(2)単電池収容箱体の内部に平面視形状が菱形状の3つの菱形収容部を備え、各々の菱形収容部に単電池を千鳥形配列で配設しているので、単電池を稠密に無駄なく配置することができ多数の単電池を収容でき集合電池のエネルギ密度を向上させることができる。
(3)平面視形状が菱形の菱形収容部に単電池を千鳥形配列で配設しているので、単電池を菱形収容部に整列して配設することができ、各単電池を電気的に接続する際に各列毎に直列に接続し易く、また、直列接続された各単電池群を並列に接続し易く、必要に応じた直列数と並列数の設計が容易に行える。
The invention according to claim 7 of the present invention is the assembled battery according to any one of claims 4 to 6 , wherein one or a plurality of the single cells containing a regular hexagonal shape in plan view are accommodated. A box, a rhombus accommodating portion formed by equally dividing the inside of the unit cell accommodating box into three rhombus shapes in plan view, and a staggered arrangement in each rhombus accommodating portion A plurality of unit cells.
With this configuration, in addition to the operation of any one of claims 4 to 6 , the following operation is provided.
(1) By forming the unit cell housing box in a regular hexagonal shape in plan view, the space can be effectively used without forming a useless space inside the upper container, and the assembled battery can be reduced in size. Further, since the heat insulating container can be reduced in size, the heat radiation area can be reduced, and heat radiation to the outside can be minimized.
(2) Since the single cell housing box is provided with three rhombus accommodating portions having a rhombus shape in plan view, and the cells are arranged in a staggered arrangement in each rhombus accommodating portion, the cells are densely packed. Can be disposed without waste, can accommodate a large number of single cells, and can improve the energy density of the assembled battery.
(3) Since the cells are arranged in a staggered arrangement in the rhombus accommodating portion having a rhombus shape in plan view, the cells can be arranged in alignment with the rhombus accommodating portion, and each cell is electrically connected It is easy to connect in series for each column when connecting to each other, and it is easy to connect each cell group connected in series in parallel, and the number of series and the number of parallels can be easily designed as necessary.

ここで、菱形収容部は、仕切り板を設ける等して単電池収容箱体の内部を分割して形成される。また、千鳥形配列とは、隣り合う3つの単電池の各々の中心軸が正三形の角の位置となる配列であり、単電池を千鳥形配列で並設することにより、単電池を最も高密度で配置することができる。なお、隣り合う単電池の接触部分にはマイカシート等の絶縁材を挟んで互いに絶縁状態で配設される。   Here, the rhombus accommodating portion is formed by dividing the inside of the unit cell accommodating box by providing a partition plate or the like. The staggered arrangement is an arrangement in which the central axis of each of the three adjacent unit cells is located at the corner of a regular triangle. By arranging the unit cells in a staggered arrangement, the unit cell is the highest. Can be arranged in density. In addition, the contact portions of adjacent unit cells are disposed in an insulated state with an insulating material such as a mica sheet interposed therebetween.

本発明の請求項に記載の発明は、請求項に記載の集合電池であって、各々の前記菱形収容部に配設された複数の前記単電池が前記菱形収容部の側壁に平行な列毎に直列に接続されると共に各列が並列に接続され、さらに各々の前記菱形収容部の単電池群が直列に接続され、且つ、前記菱形収容部内の一列の前記単電池の本数mと、前記断熱容器の内部に配設された前記単電池収納箱体の個数nと、が(数1)を満たすように決定された構成を有している。

Figure 0004148416
この構成によって、請求項の作用に加え、以下のような作用を有する。
(1)集合電池全体の直流電圧値が、交流に変換した際の交流200(V)の交流電圧適正値以上、且つ交流200(V)に接続する場合のインバータ変換素子の耐電圧にスイッチング過電圧を考慮した電圧値以下となるので、集合電池を変圧器を介すことなく交流200(V)に接続することができ、変圧器における電力損失をなくし、またその設置コストを削減できる。 The invention according to claim 8 of the present invention is the assembled battery according to claim 7 , wherein the plurality of single cells disposed in each of the rhombus accommodating portions are parallel to a side wall of the rhombus accommodating portion. Each row is connected in series and each row is connected in parallel, and the cell groups of each of the rhombus accommodating portions are connected in series, and the number m of the cells in one row in the rhombus accommodating portion is The number n of the unit cell storage boxes disposed inside the heat insulating container is determined to satisfy (Equation 1).
Figure 0004148416
With this configuration, in addition to the operation of the seventh aspect , the following operation is provided.
(1) The DC voltage value of the entire assembled battery is not less than the appropriate value of the AC voltage of 200 (V) when converted to AC, and the switching overvoltage is equivalent to the withstand voltage of the inverter conversion element when connected to the AC 200 (V). Therefore, the assembled battery can be connected to AC 200 (V) without passing through a transformer, power loss in the transformer can be eliminated, and the installation cost can be reduced.

ここで、断熱容器の外径や高さは、単電池の大きさ、菱形収容部内の一列の本数mや単電池収納箱体の個数n等により適宜決定されることが好ましい。なお、m=10、n=6の場合は、単電池の外径を20〜100mm、高さを120〜600mmとすると、断熱容器の外径Rdは500〜2500mmに形成され、高さLdは1090〜5450mmに形成されることが好ましい。
また、断熱容器の外径や高さは菱形収容部内の一列の本数mや単電池収納箱体の個数nにより適宜設定されるが、断熱容器内に単電池を3mn本収容するためにはその容積を外径Rd、高さLdの場合の容積と同様にする必要がある。したがって、断熱容器の外径は0.5Rd〜2Rdに形成されることが好ましく、高さは0.25Ld〜4Ldに形成されることが好ましい。断熱容器の高さが0.25Ldより小さくなるにつれ、容積一定なので外径が2Rdより大きくなり集合電池の設置スペースをとるため好ましくない。断熱容器の高さが4Ldより大きくなるにつれ、断熱容器の高さ方向に温度差がつき、単電池の電圧がばらついたり活物質が凝固したりして単電池の制御が困難になるため好ましくない。
Here, it is preferable that the outer diameter and height of the heat insulating container are appropriately determined depending on the size of the unit cells, the number m of rows in the rhombus housing unit, the number n of unit cell storage boxes, and the like. In the case of m = 10 and n = 6, if the outer diameter of the unit cell is 20 to 100 mm and the height is 120 to 600 mm, the outer diameter Rd of the heat insulating container is formed to 500 to 2500 mm, and the height Ld is It is preferable to be formed at 1990 to 5450 mm.
In addition, the outer diameter and height of the heat insulation container are appropriately set according to the number m of the row in the rhombus accommodating portion and the number n of the cell storage boxes, but in order to accommodate 3 mn cells in the heat insulation container, The volume needs to be the same as the volume in the case of the outer diameter Rd and the height Ld. Therefore, the outer diameter of the heat insulating container is preferably formed to 0.5 Rd to 2 Rd, and the height is preferably formed to 0.25 Ld to 4 Ld. As the height of the heat insulation container becomes smaller than 0.25 Ld, the outer diameter becomes larger than 2 Rd because the volume is constant, which is not preferable. As the height of the heat insulation container becomes larger than 4 Ld, a temperature difference is caused in the height direction of the heat insulation container, and it is not preferable because the voltage of the battery cell varies or the active material is solidified and it becomes difficult to control the battery cell. .

以上説明したように、本発明によれば、以下のような有利な効果が得られる。
請求項1に記載の発明によれば、
(1)上部容器の熱伝導率を0.001W/mK〜0.02W/mKとすることができ、外部への放熱を抑制することができ、上部容器内部に収容される二次電池の効率が高い場合、すなわち内部抵抗が小さく放電及び充電によるジュール発熱量が少ない場合であってもヒータ等による加熱が不要で熱的に自立した運転が可能である断熱性に優れた断熱容器を提供することができる。
(2)構造的強度が高く、二重壁構造の内部の中空部に補強部材を設けたり強度維持のための充填材を充填したりする必要がないので、補強部材や充填材を介して外部に放熱することがなく、上部容器の熱伝導率を極めて小さくできる断熱性に優れた断熱容器を提供することができる。
(3)温度が高くなる上部容器の天板部から外部への放熱を抑制することができる断熱容器を提供することができる。
(4)上部容器の下部開口部側からの放熱を抑制でき、特に上部容器の下端部で接合される外壁部と内壁部の接合部から下部容器への伝熱を断熱部により防ぎ、放熱を抑制できる断熱性に優れた断熱容器を提供することができる。
(5)設置作業が容易であると共に、上部容器に電力線や計測線を取り出すための孔や開口を設ける必要がなく上部容器を容易に製作できる生産性に優れた断熱容器を提供することができる。
(6)二重壁構造に孔や開口を設けないのでその孔や開口からの熱伝導がなく上部容器の断熱性の低下を防ぐことができる断熱容器を提供することができる。
(7)上部容器と下部容器を気密に接合して断熱容器を密封でき、断熱容器内の気密性が保たれ断熱性を向上させることができる断熱容器を提供することができる。
(8)断熱容器内部が二次電池の活物質の漏れ等により所定温度以上の高温になった場合に、内壁融解部が融解して断熱容器内部の気体が中空部に流れ込み、中空部の真空度が低下し上部容器の熱伝導率が大きくなるので、外部への放熱を促進させ高温化を防止できる安全性に優れた断熱容器を提供することができる。
As described above, according to the present invention, the following advantageous effects can be obtained.
According to the invention of claim 1,
(1) The thermal conductivity of the upper container can be 0.001 W / mK to 0.02 W / mK, heat dissipation to the outside can be suppressed, and the efficiency of the secondary battery accommodated in the upper container Provide a heat insulating container with excellent heat insulating properties that does not require heating with a heater or the like and is capable of thermally independent operation even when the internal resistance is low, that is, even when the internal resistance is small and the amount of Joule heat generated by discharging and charging is small be able to.
(2) Since the structural strength is high and there is no need to provide a reinforcing member in the hollow part of the double-walled structure or to fill with a filler for maintaining the strength, the outer part is provided via the reinforcing member or the filler. Therefore, it is possible to provide a heat insulating container excellent in heat insulating properties that can reduce the thermal conductivity of the upper container extremely without heat dissipation.
(3) It is possible to provide a heat insulating container capable of suppressing heat radiation from the top plate portion of the upper container where the temperature becomes high to the outside.
(4) Heat dissipation from the lower opening side of the upper container can be suppressed, and heat transfer from the joint between the outer wall and the inner wall connected to the lower container is prevented by the heat insulating part. It is possible to provide a heat insulating container having excellent heat insulating properties that can be suppressed.
(5) It is possible to provide an insulated container excellent in productivity that can be easily manufactured without the need for providing a hole or opening for taking out a power line or a measurement line in the upper container, as well as easy installation work. .
(6) Since a double wall structure is not provided with holes or openings, it is possible to provide a heat insulating container that does not conduct heat from the holes or openings and can prevent a decrease in heat insulation of the upper container.
(7) It is possible to provide a heat-insulating container that can hermetically seal the heat-insulating container by joining the upper container and the lower container in an air-tight manner, and can keep the air-tightness in the heat-insulating container and improve the heat-insulating property.
(8) When the inside of the heat insulation container becomes a high temperature of a predetermined temperature or more due to leakage of the active material of the secondary battery, the inner wall melting part melts and the gas inside the heat insulation container flows into the hollow part, and the vacuum of the hollow part Since the temperature decreases and the thermal conductivity of the upper container increases, it is possible to provide an insulated container excellent in safety that can promote heat dissipation to the outside and prevent high temperature.

請求項に記載の発明によれば、請求項の効果に加え、
(1)断熱容器内部の高温化が、内壁融解部の融解による上部容器の中空部の真空度の低下による放熱の増加だけでは許容できなくなった場合に、外壁融解部が融解して断熱容器や中空部の内部の高温の気体を断熱容器の外部に放出することができるので、断熱容器の内部の極度の高温化を防止することができる安全性に優れた断熱容器を提供することができる。
According to invention of Claim 2 , in addition to the effect of Claim 1 ,
(1) When the high temperature inside the heat insulating container cannot be allowed by the increase in heat dissipation due to the decrease in the vacuum degree of the hollow part of the upper container due to the melting of the inner wall melting part, the outer wall melting part melts and the heat insulating container or Since the high-temperature gas inside the hollow portion can be discharged to the outside of the heat insulation container, it is possible to provide a heat insulation container excellent in safety that can prevent an extremely high temperature inside the heat insulation container.

請求項3に記載の発明によれば、請求項1又は2の効果に加え、According to invention of Claim 3, in addition to the effect of Claim 1 or 2,
(1)断熱容器の内部の天板部近傍は、収容した二次電池やそれを集合したモジュールのジュール発熱や反応熱等により発生した熱の対流により温度が高くなるため、二次電池の異常を早期に察知できる断熱容器を提供することができる。(1) The temperature of the vicinity of the top plate inside the heat insulating container increases due to convection of heat generated by Joule heat generation or reaction heat of the contained secondary battery or a module in which the secondary battery is assembled. Can be provided.

請求項に記載の発明によれば、
(1)上部容器の熱伝導率を0.001W/mK〜0.02W/mKとすることができ、外部への放熱を抑制することができ、上部容器内部に収容される二次電池の効率が高い場合、すなわち内部抵抗が小さく放電及び充電によるジュール発熱量が少ない場合であってもヒータ等による加熱が不要で熱的に自立した運転が可能である断熱性に優れた集合電池を提供することができる。
(2)断熱容器の構造的強度が高く、二重壁構造の内部の中空部に補強部材を設けたり強度維持のための充填材を充填したりする必要がないので、補強部材や充填材を介して外部に放熱することがなく、上部容器の熱伝導率を極めて小さくできる断熱性に優れた集合電池を提供することができる。
(3)温度が高くなる上部容器の天板部から外部への放熱を抑制することができる集合電池を提供することができる。
(4)上部容器の下部開口部側からの放熱を抑制でき、特に上部容器の下端部で接合される外壁部と内壁部の接合部から下部容器への伝熱を断熱部により防ぎ、放熱を抑制できる集合電池を提供することができる。
(5)設置作業が容易であると共に、上部容器に電力線や計測線を取り出すための孔や開口を設ける必要がなく上部容器を容易に製作できる生産性に優れた集合電池を提供することができる。
(6)二重壁構造に孔や開口を設けないのでその孔や開口からの熱伝導がなく上部容器の断熱性の低下を防ぐことができる集合電池を提供することができる。
)断熱容器内部が二次電池の活物質の漏れ等により所定温度以上の高温になった場合に、内壁融解部が融解して断熱容器内部の気体が中空部に流れ込み、中空部の真空度が低下し上部容器の熱伝導率が大きくなるので、外部への放熱を促進させ高温化を防止できる安全性に優れた集合電池を提供することができる。
)断熱容器内部の高温化が、内壁融解部の融解による上部容器の中空部の真空度の低下による放熱の増加だけでは許容できなくなった場合に、外壁融解部が融解して断熱容器や中空部の内部の高温の気体を断熱容器の外部に放出することができるので、断熱容器の内部の極度の高温化を防止することができる安全性に優れた集合電池を提供することができる。
)1乃至複数の単電池収容箱体を備えているので、複数の単電池を種々の配列で、或いは配列を整えて単電池収容箱体の内部に収容することができる省スペース性に優れ且つ単電池の配列作業が容易な集合電池を提供することができる。
According to invention of Claim 4 ,
(1) The thermal conductivity of the upper container can be 0.001 W / mK to 0.02 W / mK, heat dissipation to the outside can be suppressed, and the efficiency of the secondary battery accommodated in the upper container Provides a battery with excellent thermal insulation that does not require heating by a heater or the like and is capable of thermally independent operation even when the internal resistance is low, that is, even when the internal resistance is small and the amount of Joule heat generated by discharging and charging is small. be able to.
(2) Since the structural strength of the heat insulation container is high and there is no need to provide a reinforcing member in the hollow part of the double wall structure or to fill the filler for maintaining the strength, Therefore, it is possible to provide an assembled battery excellent in heat insulating property that does not radiate heat to the outside and can extremely reduce the thermal conductivity of the upper container.
(3) It is possible to provide an assembled battery that can suppress heat radiation from the top plate portion of the upper container where the temperature becomes high.
(4) Heat dissipation from the lower opening side of the upper container can be suppressed, and heat transfer from the joint between the outer wall and the inner wall connected to the lower container is prevented by the heat insulating part. An assembled battery that can be suppressed can be provided.
(5) It is easy to install, and it is not necessary to provide a hole or opening for taking out the power line or the measurement line in the upper container, so that it is possible to provide an assembled battery excellent in productivity that can easily manufacture the upper container. .
(6) Since no hole or opening is provided in the double wall structure, there is no heat conduction from the hole or opening, and it is possible to provide an assembled battery that can prevent the heat insulation of the upper container from deteriorating.
( 7 ) When the inside of the heat insulation container becomes a high temperature of a predetermined temperature or more due to leakage of the active material of the secondary battery, the inner wall melting part melts and the gas inside the heat insulation container flows into the hollow part, and the vacuum of the hollow part As the temperature decreases and the thermal conductivity of the upper container increases, it is possible to provide an assembled battery excellent in safety that can promote heat dissipation to the outside and prevent high temperature.
( 8 ) When the high temperature inside the heat insulation container cannot be allowed only by the increase in heat dissipation due to the decrease in the vacuum degree of the hollow part of the upper container due to the melting of the inner wall melting part, the outer wall melting part melts and the heat insulation container or Since the high-temperature gas inside the hollow portion can be released to the outside of the heat insulating container, it is possible to provide an assembled battery with excellent safety that can prevent an extremely high temperature inside the heat insulating container.
( 9 ) Since one to a plurality of unit cell housing boxes are provided, the plurality of unit cells can be housed in the unit cell housing box in various arrangements or arranged. It is possible to provide an assembled battery that is excellent and can be easily arranged.

請求項に記載の発明によれば、請求項の効果に加え、
(1)単電池を千鳥形配列で単電池収容箱体に収容しているので、単電池を稠密に無駄なく配置することができ多数の単電池を収容でき集合電池のエネルギ密度を向上させることができる集合電池を提供することができる。
(2)単電池を整列して配設することができ、各単電池を電気的に接続する際に各列毎に直列に接続し易く単電池の電気接続の作業性に優れた集合電池を提供することができる。
According to invention of Claim 5 , in addition to the effect of Claim 4 ,
(1) Since the cells are housed in the cell housing box in a staggered arrangement, the cells can be arranged densely and without waste, and can accommodate a large number of cells and improve the energy density of the assembled battery. It is possible to provide an assembled battery that can
(2) A battery cell in which the cells can be arranged and arranged, and when the cells are electrically connected, it is easy to connect in series for each column, and the battery has excellent workability in electrical connection of the cells. Can be provided.

請求項に記載の発明によれば、請求項又はの効果に加え、
(1)単電池収容箱体を平面視形状で正六角形又は円形若しくは楕円形に形成することにより、上部容器の内部のスペースを有効利用でき、集合電池を小型化でき、断熱容器を小型化できるので、放熱面積を小さくでき外部への放熱を最小限に抑制することができる集合電池を提供することができる。
According to invention of Claim 6 , in addition to the effect of Claim 4 or 5 ,
(1) By forming the unit cell housing box into a regular hexagonal shape, a circular shape or an elliptical shape in plan view, the space inside the upper container can be used effectively, the assembled battery can be miniaturized, and the heat insulating container can be miniaturized. Therefore, it is possible to provide an assembled battery that can reduce the heat dissipating area and minimize heat dissipating to the outside.

請求項に記載の発明によれば、請求項乃至の内いずれか1項の効果に加え、
(1)単電池収容箱体を平面視形状で正六角形に形成することにより、上部容器の内部に無駄な空間を形成することなくスペースを有効利用でき、集合電池を小型化できるコンパクトな集合電池を提供することができる。
(2)断熱容器を小型化できるので、放熱面積を小さくでき外部への放熱を最小限に抑制することができる集合電池を提供することができる。
(3)単電池収容箱体の内部に平面視形状が菱形状の3つの菱形収容部を備え、各々の菱形収容部に単電池を千鳥形配列で配設しているので、単電池を稠密に無駄なく配置することができ多数の単電池を収容でき集合電池のエネルギ密度を向上させることができる集合電池を提供することができる。
(4)平面視形状が菱形の菱形収容部に単電池を千鳥形配列で配設しているので、単電池を菱形収容部に整列して配設することができ、各単電池を電気的に接続する際に各列毎に直列に接続し易く、また、直列接続された各単電池群を並列に接続し易く、必要に応じた直列数と並列数の設計が容易に行える設計の自由度及び容易性に優れた集合電池を提供することができる。
According to the invention of claim 7 , in addition to the effect of any one of claims 4 to 6 ,
(1) By forming the unit cell housing box in a regular hexagonal shape in plan view, a compact assembled battery that can effectively use the space without forming a useless space inside the upper container and can reduce the size of the assembled battery. Can be provided.
(2) Since the heat insulating container can be reduced in size, it is possible to provide an assembled battery that can reduce the heat radiation area and minimize heat radiation to the outside.
(3) Three rhombus accommodating portions having a rhombus shape in plan view are provided inside the cell housing box, and the cells are arranged in a staggered arrangement in each rhombus accommodating portion. Therefore, it is possible to provide an assembled battery that can be disposed without waste, can accommodate a large number of single cells, and can improve the energy density of the assembled battery.
(4) Since the cells are arranged in a staggered arrangement in the rhombus accommodating portion having a rhombus shape in plan view, the cells can be arranged in alignment with the rhombus accommodating portion, and each cell is electrically connected. It is easy to connect in series for each column when connecting to each other, and it is easy to connect each group of cells connected in series in parallel, and the freedom of design that can easily design the number of series and the number of parallel as needed It is possible to provide an assembled battery excellent in degree and ease.

請求項に記載の発明によれば、請求項の効果に加え、
(1)集合電池全体の直流電圧値が、交流に変換した際の交流200(V)の交流電圧適正値以上、且つ交流200(V)に接続する場合のインバータ変換素子の耐電圧にスイッチング過電圧を考慮した電圧値以下となるので、変圧器を介すことなく交流200(V)に接続することができ、変圧器における電力損失をなくし、またその設置コストを削減できる省コスト性に優れた集合電池を提供することができる。
According to the invention described in claim 8 , in addition to the effect of claim 7 ,
(1) The DC voltage value of the entire assembled battery is not less than the appropriate value of the AC voltage of 200 (V) when converted to AC, and the switching overvoltage is equivalent to the withstand voltage of the inverter conversion element when connected to the AC 200 (V). Therefore, it can be connected to AC 200 (V) without going through a transformer, eliminates power loss in the transformer, and is excellent in cost saving that can reduce the installation cost. An assembled battery can be provided.

以下、本発明の一実施の形態について、図面を参照しながら説明する。
(実施の形態1)
図1は本実施の形態1における集合電池の一部破断要部斜視図であり、図2(a)は本実施の形態1における集合電池の要部側面断面図であり、図2(b)は断熱部の他の例を示す要部側面断面図であり、図3(a)は図2のA−A線の矢視断面図であり、図3(b)は図3(a)の要部拡大図である。
図中、1は集合電池、2は下部が開口した釣り鐘状の上部容器、3は上部容器2の下部開口部側が挿着された下部容器、4は上部容器2と下部容器3により構成された断熱容器、5は上部容器2の円筒状の胴体部、6は胴体部5の上部に一体的に形成された湾曲面状の天板部、7は胴体部5及び天板部6の外壁部、8は外壁部7の内側に配設された内壁部、9は外壁部7と内壁部8の間に形成された中空部であり、外壁部7と内壁部8は上部容器2の下端部封止部9aで封止され中空部9が密閉されている。なお、下端部封止部9aの断面形状としては内壁部8の下端部と外壁部7の下端部を最短距離で接続した直線状に限られるものではなく、山形状や湾曲状等を用いることもできる。下端部封止部9aを断面山形状や断面湾曲状とすることにより、内壁部8から外壁部7への伝熱距離を長くでき、下端部封止部9aによる放熱を低減できる。10は胴体部5の外壁部7に周設された上部フランジ部、11は下部容器3の架台部、12は架台部11から立設された円筒状の周壁部、13は下部容器3の上端縁部に周設された下部フランジ部、14は上部フランジ部10と下部フランジ部13とを接合するボルトナット、15はナトリウム−硫黄電池等の高温で作動する二次電池の単電池、16は複数の単電池15が収容された平面視形状が正六角形の単電池収容箱体、16aは単電池収容箱体16内に立設され単電池収容箱体16を菱形の3つの領域に等分割する仕切り板、16bは単電池収容箱体16の内部に形成された3つの菱形収容部、17は複数の単電池15を収容した単電池収容箱体16を複数段積み重ねて各々電気的に接続して形成されたモジュール、18は架台部11を貫通して配設され、モジュール17から放電された電力の取り出し及び充電するための電力の供給を行う電力線、19は架台部11を貫通して配設され、モジュール17の総電圧や温度等を計測するために外部の計測器等に接続される計測線である。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
(Embodiment 1)
FIG. 1 is a perspective view of a partially broken main part of the assembled battery according to the first embodiment. FIG. 2A is a side sectional view of the essential part of the assembled battery according to the first embodiment. Fig. 3 is a side cross-sectional view of the main part showing another example of the heat insulating portion, Fig. 3 (a) is a cross-sectional view taken along the line AA in Fig. 2, and Fig. 3 (b) is a cross-sectional view of Fig. 3 (a). It is a principal part enlarged view.
In the figure, 1 is an assembled battery, 2 is a bell-shaped upper container with an open bottom, 3 is a lower container in which the lower opening of the upper container 2 is inserted, and 4 is composed of an upper container 2 and a lower container 3. The heat insulating container 5 is a cylindrical body part of the upper container 2, 6 is a curved top plate part integrally formed on the upper part of the body part 5, and 7 is an outer wall part of the body part 5 and the top plate part 6. , 8 is an inner wall portion disposed inside the outer wall portion 7, 9 is a hollow portion formed between the outer wall portion 7 and the inner wall portion 8, and the outer wall portion 7 and the inner wall portion 8 are the lower end portion of the upper container 2. The hollow portion 9 is sealed by the sealing portion 9a. The cross-sectional shape of the lower end sealing portion 9a is not limited to a linear shape in which the lower end portion of the inner wall portion 8 and the lower end portion of the outer wall portion 7 are connected at the shortest distance, and a mountain shape, a curved shape, or the like is used. You can also. By setting the lower end sealing portion 9a to have a cross-sectional mountain shape or a curved shape, the heat transfer distance from the inner wall portion 8 to the outer wall portion 7 can be increased, and heat radiation by the lower end sealing portion 9a can be reduced. 10 is an upper flange portion provided around the outer wall portion 7 of the body portion 5, 11 is a pedestal portion of the lower container 3, 12 is a cylindrical peripheral wall portion erected from the pedestal portion 11, and 13 is an upper end of the lower container 3. A lower flange portion provided around the edge, 14 is a bolt and nut that joins the upper flange portion 10 and the lower flange portion 13, 15 is a single cell of a secondary battery that operates at a high temperature such as a sodium-sulfur battery, and 16 is A unit cell housing box having a regular hexagonal shape in plan view in which a plurality of unit cells 15 are housed, and 16a is erected in the unit cell housing box 16, and the cell unit housing box 16 is equally divided into three rhombus regions. A partition plate 16b, three rhombus accommodating portions formed inside the single cell housing box 16, and 17 a plurality of unit cell housing boxes 16 each housing a plurality of single cells 15 stacked in an electrically connected manner. The module 18 is formed as a gantry 11 A power line 19, which is disposed to penetrate the pedestal 11 and supplies power for taking out and charging power discharged from the module 17, is used to control the total voltage and temperature of the module 17. It is a measurement line connected to an external measuring instrument or the like for measurement.

図2(a)において、21はモジュール17の周囲に配設された保護容器、22,23はモジュール17の上部及び下部に配設された起動用の上部ヒータ及び下部ヒータ、24a,24bは下部容器3の底部に敷設された断熱材(断熱部)24cの上部に積層された嵌合断熱材(嵌合断熱部)である。上部容器2の下部開口部は最下層の下部断熱材24c上に当接している。嵌合断熱材24a,24bは上部容器2の下部開口部と同形状の円柱状に形成され下部開口部に嵌合している。なお、図2(a)において示した保護容器21及び上部ヒータ22、下部ヒータ23は図1においては説明を分かり易くするために図示を省略している。また、図2(b)において、25は下部容器3の底部に敷設された断熱材、26は断熱材25の上面に敷設され上部容器2の下部開口部に嵌合する真空断熱プレートである。なお、本実施の形態1においては、図2(a)に示すように断熱部として断熱材24a,24b,24cを用いているが、図2(b)に示すように断熱部として断熱材25と真空断熱プレート26を組み合わせて用いることもできる。なお、図2(b)に示すものに限らず、断熱材25を真空断熱プレートとすることもできる。真空断熱プレート26は、内部の中空部に真空断熱層が形成されたものである。
また、図3(a)において、31は直列に接続された単電池15の一群を並列に接続するための並列接続端子である。図3(b)において、15a,15b,15cは単電池、33は正極端子、34は負極端子、35は各々の単電池15,15a,15b,15cに巻着された絶縁材であるマイカシートである。
In FIG. 2A, 21 is a protective container disposed around the module 17, 22 and 23 are upper and lower heaters for starting disposed at the upper and lower portions of the module 17, and 24a and 24b are lower portions. It is the fitting heat insulating material (fitting heat insulation part) laminated | stacked on the upper part of the heat insulating material (heat insulation part) 24c laid in the bottom part of the container 3. FIG. The lower opening of the upper container 2 is in contact with the lowermost lower heat insulating material 24c. The fitting heat insulating materials 24a and 24b are formed in a cylindrical shape having the same shape as the lower opening of the upper container 2 and are fitted in the lower opening. The protective container 21, the upper heater 22, and the lower heater 23 shown in FIG. 2A are not shown in FIG. 1 for easy understanding. In FIG. 2B, 25 is a heat insulating material laid on the bottom of the lower container 3, and 26 is a vacuum heat insulating plate laid on the upper surface of the heat insulating material 25 and fitted into the lower opening of the upper container 2. In the first embodiment, as shown in FIG. 2A, the heat insulating materials 24a, 24b, and 24c are used as the heat insulating portions. However, as shown in FIG. 2B, the heat insulating materials 25 are used as the heat insulating portions. And the vacuum heat insulating plate 26 can be used in combination. In addition, it is not restricted to what is shown in FIG.2 (b), The heat insulating material 25 can also be used as a vacuum heat insulation plate. The vacuum heat insulating plate 26 has a vacuum heat insulating layer formed in an internal hollow portion.
Moreover, in Fig.3 (a), 31 is a parallel connection terminal for connecting the group of the cell 15 connected in series in parallel. In FIG. 3B, 15a, 15b and 15c are single cells, 33 is a positive terminal, 34 is a negative terminal, and 35 is an mica sheet which is an insulating material wound around each single cell 15, 15a, 15b and 15c. It is.

ここで、断熱容器4の外径や高さとしては、収容される単電池15の大きさや個数、配置により適宜設定されることが好ましい。本実施の形態1においては、図1乃至図3に示すように、単電池収容箱体16内の3つの菱形収容部16bに千鳥状配列で各々複数の単電池15を配置し、その単電池収容箱体16を複数段積み重ねて、所定本数の単電池15を断熱容器4内に収容している。本実施の形態1においては、単電池15としては外径が20〜100mm、高さが120〜600mmのものを用い、断熱容器4としては外径が500〜2500mm、高さが1090〜5450mmのものを用いた。
なお、断熱容器4内に収容される単電池15の配置は上述したものに限られないため、断熱容器4の外径や高さは単電池15の配置により適宜決定される。
単電池収容箱体16の材質としては、ステンレス鋼や炭素鋼等が用いられる。特に炭素鋼を用いると蓄熱性が向上し放熱を抑制することができる。また、炭素繊維の内張りを施すこともでき同様の効果が得られる。
また、本実施の形態1においては、保護容器21とモジュール17との間やモジュール17の単電池収容箱体16内部等に火災防止のための耐熱性及び電気絶縁性を有する砂(図示せず)を充填する。これにより、断熱容器4内部が単電池15の活物質の漏れ等により高温になった場合であっても火災の発生を抑制することができる。
Here, the outer diameter and height of the heat insulating container 4 are preferably set as appropriate depending on the size, number, and arrangement of the cells 15 accommodated. In the first embodiment, as shown in FIGS. 1 to 3, a plurality of unit cells 15 are arranged in a staggered arrangement in three rhombus accommodating units 16 b in the unit cell housing 16, and the unit cells are arranged. A plurality of storage boxes 16 are stacked, and a predetermined number of single cells 15 are stored in the heat insulating container 4. In the first embodiment, the cell 15 has an outer diameter of 20 to 100 mm and a height of 120 to 600 mm, and the heat insulating container 4 has an outer diameter of 500 to 2500 mm and a height of 1090 to 5450 mm. A thing was used.
In addition, since the arrangement of the unit cells 15 accommodated in the heat insulating container 4 is not limited to the above, the outer diameter and height of the heat insulating container 4 are appropriately determined depending on the arrangement of the unit cells 15.
As the material of the unit cell housing 16, stainless steel, carbon steel, or the like is used. In particular, when carbon steel is used, the heat storage property is improved and heat dissipation can be suppressed. Also, carbon fiber lining can be applied, and similar effects can be obtained.
In the first embodiment, heat-resistant and electrically insulating sand (not shown) is provided between the protective container 21 and the module 17 or inside the unit cell housing 16 of the module 17 to prevent fire. ). Thereby, even if it is a case where the inside of the heat insulation container 4 becomes high temperature by the leakage of the active material of the cell 15, etc., generation | occurrence | production of a fire can be suppressed.

以上のように構成された本実施の形態1における集合電池1について、以下その断熱容器4の上部容器2の製造方法について説明する。
まず、上部容器2を二次電池のモジュール17の作動温度以上の温度に加熱した加熱炉等に入れ、加熱する(加熱工程)。次に、加熱した状態で中空部9に設けた脱気口(図示せず)に真空ポンプ等を接続し真空脱気を行う(真空脱気工程)。なお真空脱気工程の後、脱気口を封止し中空部9を密閉する。これにより、上部容器2の外壁部7の内表面や内壁部8の外表面に吸着した水分子や水素分子、或いは外壁部7の内表面や内壁部8を形成する金属内部の水素分子等を脱離させ除去することができ、作動時に水蒸気や水素の発生を抑制することができるので、中空部9の真空度を極めて低くすることができる。なお、本実施の形態1においては、収容される二次電池の単電池15がナトリウム−硫黄電池である場合は、その作動温度である290℃〜350℃以上、例えば500℃に加熱される。
With respect to the assembled battery 1 according to the first embodiment configured as described above, a method for manufacturing the upper container 2 of the heat insulating container 4 will be described below.
First, the upper container 2 is put into a heating furnace heated to a temperature equal to or higher than the operating temperature of the module 17 of the secondary battery and heated (heating process). Next, a vacuum pump or the like is connected to a deaeration port (not shown) provided in the hollow portion 9 in a heated state to perform vacuum deaeration (vacuum deaeration step). In addition, after a vacuum deaeration process, a deaeration port is sealed and the hollow part 9 is sealed. As a result, water molecules and hydrogen molecules adsorbed on the inner surface of the outer wall 7 of the upper container 2 and the outer surface of the inner wall 8, or hydrogen molecules inside the metal forming the inner surface of the outer wall 7 and the inner wall 8, etc. Since it can be desorbed and removed, and generation of water vapor and hydrogen can be suppressed during operation, the degree of vacuum of the hollow portion 9 can be made extremely low. In the first embodiment, when the unit cell 15 of the secondary battery to be accommodated is a sodium-sulfur battery, it is heated to its operating temperature of 290 ° C. to 350 ° C. or higher, for example, 500 ° C.

次に、モジュール17内の単電池15の配置及び電気的接続について、図3を用いて説明する。
図3(a)に示すように、単電池15は円柱状に形成され、複数の単電池15は平面視形状が正六角形の単電池収容箱体16内に起立して並立されている。単電池収容箱体16は仕切り板16aにより平面視形状が菱形の3つの菱形収容部16bに等分割されている。菱形収容部16bは一辺の長さが正六角形の単電池収容箱体16の一辺の長さと同一に形成され、角部の角度は鋭角が略60°、鈍角が略120°に形成されている。また、図3(b)に示すように、各々の菱形収容部16bには単電池15を起立した状態で千鳥形配列で配設している。すなわち、隣り合う3本の単電池15a,15b,15cが各々マイカシート35を介して接触すると共に、各々の単電池15a,15b,15cの中心が正三角形の角に位置するように配置されている。これにより、単電池15a,15b,15cを稠密に無駄なスペースなく配置することができる。
また、図3(a)に示すように、単電池15は、単電池収容箱体16内の菱形収容部16bの側壁に平行な列毎に10本が直列に接続され、その直列に接続された単電池が平行に10列配設され、各列の先頭の単電池15の正極端子33及び各列の最後尾の単電池15の負極端子34が並列接続端子31により接続され、各列が並列に接続されている。さらに、一つの単電池収容箱体16内の各々の菱形収容部16bは直列に接続され、単電池収容箱体16の側壁等に設けられた単電池収容箱体16用の正極端子と負極端子(図示せず)に接続されている。また、各々の菱形収容部16bに単電池15が収容された単電池収容箱体16には隣り合う単電池15の間等に防火用の砂が所定量充填され、その上に絶縁板が取り付けられ、6個積み重ねられ、単電池収容箱体16の側壁等に設けられた正極端子と負極端子(図示せず)で上下方向に直列に接続され、モジュール17が形成されている。ここで、菱形収容部16b内の一列の単電池15の本数mと、断熱容器4の内部に配設された単電池収納箱体16の個数nと、が(数2)を満たすように決定されることにより、集合電池1全体の直流電圧値が、交流に変換した際の交流200Vの交流電圧適正値以上、且つ交流200Vに接続する場合のインバータ変換素子の耐電圧にスイッチング過電圧を考慮した電圧値以下となるので、変圧器を介すことなく交流200Vに接続することができる。

Figure 0004148416
ここで、菱形収容部16b内の一列(m本)の単電池15は直列に接続され、各列は並列に接続され、各々の菱形収容部16b(3つ)は直列に接続され、各々の単電池収容箱体16(n個)は直列に接続されているので、(数2)の3mnはモジュール17内の単電池15の内、直列に接続されたものの本数となる。Eは単電池15の充電終止電圧、Eは単電池15の放電終止電圧であるので、3mnEは集合電池1の充電終止電圧Eとなり、3mnEは集合電池1の放電終止電圧となる。ここで、放電開始から放電終了までの集合電池1が出力する直流電圧値をEとすると、3mnE≦E≦3mnEである。
集合電池1を変圧器を介すことなく交流200(V)に接続するためには、集合電池全体の直流電圧値Eを交流に変換した際の交流電圧値E/√2が、交流200(V)の交流電圧適正値以上でなければならない。交流電圧適正値を202±20(V)とすると、E≧(202±20)√2となる。また、集合電池1を変圧器を介すことなく交流200(V)に接続するためには、集合電池全体の直流電圧値Eが、交流200(V)に接続する場合のインバータ変換素子の耐電圧にスイッチング過電圧を考慮した電圧値以下でなければならない。この電圧値を425(V)とすると、E≦425なる。
Eが常にE≧(202±20)√2、及び、E≦425を満たすためには、3mnE≦425、及び、3mnE≧222√2を満たせばよい。
本実施の形態1においては、10本の単電池15を直列に接続しそれを10列並列に接続し、これらが一つの単電池収容箱体16の3つの菱形収容部16bに各々収容され、この単電池収容箱体16を6個積み重ねて、モジュール17を形成している。また、一つの単電池15の充電終止電圧Eが2.35(V)、放電終止電圧Eが1.80(V)である。これにより、上記(数1)を満たし、集合電池1を変圧器を介さずに交流200(V)に接続することができる。 Next, the arrangement and electrical connection of the single cells 15 in the module 17 will be described with reference to FIG.
As shown in FIG. 3A, the unit cells 15 are formed in a columnar shape, and the plurality of unit cells 15 are erected in a unit cell housing box 16 having a regular hexagonal shape in plan view. The unit cell housing 16 is equally divided into three rhombus accommodating portions 16b having a rhombic shape in plan view by a partition plate 16a. The rhombus accommodating portion 16b is formed to have the same length as one side of the regular hexagonal unit cell housing box 16, and the corners are formed with an acute angle of approximately 60 ° and an obtuse angle of approximately 120 °. . As shown in FIG. 3 (b), each rhombus accommodating portion 16b is arranged in a staggered arrangement with the cells 15 standing up. That is, the three adjacent unit cells 15a, 15b, and 15c are in contact with each other through the mica sheet 35, and the centers of the unit cells 15a, 15b, and 15c are arranged at the corners of an equilateral triangle. Yes. Thereby, the single cells 15a, 15b, and 15c can be densely arranged without useless space.
Moreover, as shown to Fig.3 (a), ten cells 15 are connected in series for every row | line | column parallel to the side wall of the rhombus accommodating part 16b in the cell accommodating box 16, and it is connected in series. 10 cells are arranged in parallel, the positive terminal 33 of the first cell 15 in each column and the negative terminal 34 of the last cell 15 in each column are connected by a parallel connection terminal 31, and each column is Connected in parallel. Further, each rhombus accommodating portion 16b in one unit cell housing box 16 is connected in series, and a positive terminal and a negative terminal for the unit cell housing box 16 provided on a side wall of the unit cell housing box 16 or the like. (Not shown). Further, the unit cell housing box 16 in which the unit cells 15 are accommodated in each rhombus accommodating unit 16b is filled with a predetermined amount of fire-proof sand between the adjacent unit cells 15, and an insulating plate is mounted thereon. 6 modules are stacked and connected in series in the vertical direction by a positive electrode terminal and a negative electrode terminal (not shown) provided on the side wall of the unit cell housing box 16 or the like to form a module 17. Here, the number m of the cells 15 in a row in the rhombus accommodating portion 16b and the number n of the cell storage boxes 16 disposed in the heat insulating container 4 are determined so as to satisfy (Equation 2). As a result, the DC voltage value of the entire assembled battery 1 is not less than the appropriate value of the AC voltage of 200V AC when converted to AC, and the switching overvoltage is considered in the withstand voltage of the inverter conversion element when connected to the AC voltage of 200V. Since it becomes below a voltage value, it can connect to AC200V without going through a transformer.
Figure 0004148416
Here, one row (m pieces) of cells 15 in the rhombus accommodating portion 16b are connected in series, each row is connected in parallel, and each rhombus accommodating portion 16b (three) is connected in series, Since the unit cell housing boxes 16 (n pieces) are connected in series, 3 mn in (Equation 2) is the number of the unit cells 15 in the module 17 connected in series. Since E c is the end-of-charge voltage of the unit cell 15 and E d is the end-of-discharge voltage of the unit cell 15, 3 mnE c is the end-of-charge voltage E c of the assembled battery 1, and 3 mnE d is the end-of-discharge voltage of the assembled battery 1. Become. Here, when the DC voltage value output from the assembled battery 1 from the start of discharge to the end of discharge is E, 3 mnE d ≦ E ≦ 3 mnE c .
In order to connect the assembled battery 1 to the alternating current 200 (V) without using a transformer, the alternating voltage value E / √2 when the direct current voltage value E of the entire assembled battery is converted into alternating current is set to the alternating current 200 ( V) must be greater than the appropriate AC voltage. When the AC voltage appropriate value is 202 ± 20 (V), E ≧ (202 ± 20) √2. Further, in order to connect the assembled battery 1 to the AC 200 (V) without passing through a transformer, the DC voltage value E of the entire assembled battery is the resistance of the inverter conversion element when connected to the AC 200 (V). The voltage must be less than the voltage value considering the switching overvoltage. When this voltage value is 425 (V), E ≦ 425.
In order for E to always satisfy E ≧ (202 ± 20) √2 and E ≦ 425, it is only necessary to satisfy 3mnE c ≦ 425 and 3mnE d ≧ 222√2.
In the first embodiment, ten unit cells 15 are connected in series and connected in 10 rows in parallel, and these are accommodated in the three rhombus accommodating portions 16b of one unit cell housing box 16, respectively. Six unit cell housing boxes 16 are stacked to form a module 17. The charging termination voltage E c of one unit cell 15 is 2.35 (V), discharge end voltage E d is 1.80 (V). Thereby, said (Formula 1) is satisfy | filled and the assembled battery 1 can be connected to alternating current 200 (V) without passing through a transformer.

次に、上部容器2の中空部9に形成された真空断熱層の熱伝導率と単電池15の単セル効率との関係について図4を用いて説明する。
図4は上部容器の真空断熱層の熱伝導率と単電池の単セル効率との関係を示す関係図である。図4は、本実施の形態1における集合電池1について、上部容器2の中空部9に形成された真空断熱層の熱伝導率λと単電池15の単セル効率ηとを適宜変更し、8時間充電及び8時間放電を繰り返す運転を行った場合に、熱自立した運転が可能な真空断熱層の熱伝導率と単セル効率とをグラフ化したものである。
ここで、単セル効率とは、1本の単電池15(単セル)に充電した電力量に対し放電する電力量の割合であり、単電池15の内部抵抗が小さくなるにつれ、単セル効率は高くなる。一方、単電池15の内部抵抗が小さくなるにつれ、単電池15に電流が流れる際に発生するジュール発熱量は減少する。
図4に示すように、上部容器2の中空部9に形成された真空断熱層の熱伝導率λを0.001W/mK〜0.01W/mKとすると、単セル効率ηが0.89〜0.99の高効率の単電池15を用いても、集合電池1は熱的に自立した運転が可能であることがわかった。特に、単セル効率ηが0.90の単電池15を用いた場合は熱伝導率λを0.0086W/mKとし、単セル効率ηが0.93の単電池15を用いた場合は熱伝導率λを0.0059W/mKとし、単セル効率ηが0.96の単電池15を用いた場合は熱伝導率λを0.0034W/mKとすることで、集合電池1は熱的に自立した運転を行うことができることがわかった。なお、熱伝導率λを0.0086W/mKとするための真空断熱層の真空度は16Paであった。
Next, the relationship between the thermal conductivity of the vacuum heat insulating layer formed in the hollow portion 9 of the upper container 2 and the single cell efficiency of the unit cell 15 will be described with reference to FIG.
FIG. 4 is a relational diagram showing the relationship between the thermal conductivity of the vacuum heat insulating layer of the upper container and the single cell efficiency of the single battery. FIG. 4 shows the assembled battery 1 according to the first embodiment, in which the thermal conductivity λ d of the vacuum heat insulating layer formed in the hollow portion 9 of the upper container 2 and the single cell efficiency η c of the single battery 15 are appropriately changed. FIG. 5 is a graph showing the thermal conductivity and single cell efficiency of a vacuum heat insulating layer capable of thermal self-sustained operation when an operation of repeatedly charging for 8 hours and discharging for 8 hours is performed.
Here, the single cell efficiency is the ratio of the amount of power discharged to the amount of power charged in one single battery 15 (single cell). As the internal resistance of the single battery 15 decreases, the single cell efficiency is Get higher. On the other hand, as the internal resistance of the unit cell 15 decreases, the amount of Joule heat generated when a current flows through the unit cell 15 decreases.
As shown in FIG. 4, when the thermal conductivity λ d of the vacuum heat insulating layer formed in the hollow portion 9 of the upper container 2 is 0.001 W / mK to 0.01 W / mK, the single cell efficiency η c is 0. It was found that even when the highly efficient single battery 15 of 89 to 0.99 was used, the assembled battery 1 can be operated thermally independently. In particular, when the unit cell 15 having a single cell efficiency η c of 0.90 is used, the thermal conductivity λ d is set to 0.0086 W / mK, and the unit cell 15 having a unit cell efficiency η c of 0.93 is used. Has a thermal conductivity λ d of 0.0059 W / mK, and in the case of using the single battery 15 having a single cell efficiency η c of 0.96, the thermal conductivity λ d is 0.0034 W / mK. 1 was found to be able to perform a thermally independent operation. Note that the degree of vacuum of the vacuum heat insulating layer for setting the thermal conductivity λ d to 0.0086 W / mK was 16 Pa.

次に、上部容器2の内壁部8及び外壁部7に形成された内壁融解部及び外壁融解部について図5を用いて説明する。
図5は上部容器2の天板部6の要部拡大断面図である。
図5において、41は内壁部8に形成された内壁融解部、42は内壁部8に穿設され内壁融解部41が埋め込まれた孔部、43は外壁部7に形成された外壁融解部、44は外壁部7に穿設され外壁融解部43が埋め込まれた孔部である。
孔部42に所定温度、例えば400℃〜800℃好ましくは600℃〜800℃で融解するアルミニウム合金等により形成された内壁融解部41が埋め込まれている。これにより、断熱容器4内部が単電池15の活物質の漏れ等により作動温度以上、例えば600℃以上の高温になった場合に、内壁融解部41が融解して内壁部8に孔部42が形成され、断熱容器4内部の加熱膨張した気体が中空部9に流れ込み、中空部9の真空度圧力を低下させることができるので、熱伝導率が増加し、外部への放熱を促進させ高温化を防止できる。
また、孔部44に所定温度、例えば400℃〜1200℃好ましくは600℃〜900℃で融解するアルミニウム合金等により形成された外壁融解部43が埋め込まれている。なお、外壁融解部43としては内壁融解部41の融点と同様又は高い融点を有するものを用いることが好ましい。これにより、断熱容器4内部が所定温度以上の高温になり内壁融解部41が融解し、中空部9の真空度低下による放熱増加だけでは許容できなくなった場合に、外壁融解部43が融解して断熱容器4や中空部9の内部の高温の気体を断熱容器4の外部に放出することができるので、高温化を防止することができる。
なお、孔部42及び孔部44の内周面にはニッケル又はアルミニウム等のめっきを施した場合は、内壁融解部41と内壁部8、又は外壁融解部43と外壁部7の材質が異なることによる接合不良を防止することができる。
Next, the inner wall melting portion and the outer wall melting portion formed in the inner wall portion 8 and the outer wall portion 7 of the upper container 2 will be described with reference to FIG.
FIG. 5 is an enlarged cross-sectional view of a main part of the top plate portion 6 of the upper container 2.
In FIG. 5, reference numeral 41 denotes an inner wall melting portion formed in the inner wall portion 8, 42 denotes a hole portion drilled in the inner wall portion 8 and embedded with the inner wall melting portion 41, and 43 denotes an outer wall melting portion formed in the outer wall portion 7, Reference numeral 44 denotes a hole formed in the outer wall portion 7 and embedded with the outer wall melting portion 43.
An inner wall melting portion 41 formed of an aluminum alloy or the like that melts at a predetermined temperature, for example, 400 ° C. to 800 ° C., preferably 600 ° C. to 800 ° C., is embedded in the hole 42. Thereby, when the inside of the heat insulating container 4 becomes higher than the operating temperature, for example, 600 ° C. or higher due to leakage of the active material of the unit cell 15, the inner wall melting portion 41 is melted and the hole 42 is formed in the inner wall portion 8. The formed and expanded gas inside the heat insulating container 4 flows into the hollow portion 9 and the vacuum degree pressure of the hollow portion 9 can be lowered, so that the thermal conductivity is increased and the heat radiation to the outside is promoted to increase the temperature. Can be prevented.
In addition, an outer wall melting portion 43 formed of an aluminum alloy or the like that melts at a predetermined temperature, for example, 400 ° C. to 1200 ° C., preferably 600 ° C. to 900 ° C., is embedded in the hole 44. In addition, it is preferable to use what has a melting | fusing point similar to or higher than the melting | fusing point of the inner wall melting | fusing part 41 as the outer wall melting | fusing part 43. FIG. As a result, when the inside of the heat insulating container 4 becomes a high temperature of a predetermined temperature or more and the inner wall melting portion 41 is melted, and the heat radiation due to the decrease in the vacuum degree of the hollow portion 9 cannot be allowed, the outer wall melting portion 43 melts. Since the high-temperature gas inside the heat insulating container 4 or the hollow portion 9 can be discharged to the outside of the heat insulating container 4, it is possible to prevent a high temperature.
When the inner peripheral surfaces of the hole 42 and the hole 44 are plated with nickel or aluminum, the materials of the inner wall melting part 41 and the inner wall part 8 or the outer wall melting part 43 and the outer wall part 7 are different. It is possible to prevent a bonding failure due to.

次に、輻射熱反射部及びゲッタについて図6を用いて説明する。
図6は上部容器2の胴体部5の要部断面図である。51は内壁部8の外側面すなわち中空部9側の面に沿って配設された輻射熱反射部、52は内壁部8の内側面に沿って配設された輻射熱反射部、53は中空部9の輻射熱反射部51上に配設固定されたゲッタである。
輻射熱反射部51,52は、内壁部8の所定面を研磨して形成することもでき、或いは1乃至複数の反射板を内壁部8に沿って設けることもできる。輻射熱反射部51,52としては、アルミニウムや銅等により形成されたものが用いられる。これにより、モジュール17等から発生した輻射熱を反射し外部への放熱を抑制することができる。
また、上部容器2の中空部9の輻射熱反射部51上には、残留したガスを吸収するゲッタ53が配設固定されている。これにより、上部容器2の中空部9を封止した後であっても、中空部9の内部の残留ガスを除去し真空度をさらに低下させることができる。ゲッタとしては、ジルコニア合金やチタン合金等の塊状物等が用いられる。
Next, the radiant heat reflecting portion and the getter will be described with reference to FIG.
FIG. 6 is a cross-sectional view of the main part of the body portion 5 of the upper container 2. Reference numeral 51 denotes a radiant heat reflecting portion disposed along the outer surface of the inner wall portion 8, that is, the surface on the hollow portion 9 side, 52 denotes a radiant heat reflecting portion disposed along the inner surface of the inner wall portion 8, and 53 denotes the hollow portion 9. The getter is disposed and fixed on the radiant heat reflecting portion 51.
The radiant heat reflecting portions 51 and 52 can be formed by polishing a predetermined surface of the inner wall portion 8, or one or more reflecting plates can be provided along the inner wall portion 8. As the radiant heat reflecting portions 51 and 52, those formed of aluminum, copper or the like are used. Thereby, the radiant heat which generate | occur | produced from the module 17 grade | etc., Can be reflected, and the thermal radiation to the outside can be suppressed.
A getter 53 that absorbs the remaining gas is disposed and fixed on the radiant heat reflecting portion 51 of the hollow portion 9 of the upper container 2. Thereby, even after sealing the hollow part 9 of the upper container 2, the residual gas inside the hollow part 9 can be removed and the degree of vacuum can be further reduced. As the getter, a lump such as a zirconia alloy or a titanium alloy is used.

次に、単電池15の配列の他の例について図を用いて説明する。
は単電池の配列の他の例を示す要部断面図である。
において、2は上部容器、7は外壁部、8は内壁部、9は中空部、15は単電池であり、これらは図3において説明したものと同様のものであるので同一の符号を付けて説明を省略する。16′は平面視形状で円形に形成された単電池収容箱体である。なお、図においては、説明をわかり易くするために、並列接続端子31や正極端子33、負極端子34は図示を省略している。
本実施の形態1においては、図3(a)に示すように、単電池収容箱体16を平面視形状で正六角形に形成し、その単電池収容箱体16の内部に複数の単電池15を千鳥状配列で収容しているが、これに限られるものではなく、図に示すように、単電池収容箱体16′を平面視形状で円形に形成し、円形の単電池収容箱体16′の内部に複数の単電池15を千鳥状配列で収容することもできる。単電池収容箱体16′を円形とすることにより、単電池15同士の電気的接続は多少複雑になるが、単電池15の収容本数を増加させることができる。或いは、同本数を収容する場合は、六角形に比べ上部容器2を小型化することができる。
Next, another example of an array of cells 15 will be described with reference to FIG.
FIG. 7 is a cross-sectional view of the main part showing another example of the arrangement of the unit cells.
In FIG. 7 , 2 is an upper container, 7 is an outer wall part, 8 is an inner wall part, 9 is a hollow part, 15 is a single cell, and these are the same as those described in FIG. A description will be omitted. Reference numeral 16 'denotes a unit cell housing box formed in a circular shape in plan view. In FIG. 7 , the parallel connection terminal 31, the positive electrode terminal 33, and the negative electrode terminal 34 are not shown for easy understanding.
In the first embodiment, as shown in FIG. 3A, the unit cell housing box 16 is formed in a regular hexagonal shape in plan view, and a plurality of unit cells 15 are formed inside the unit cell housing box 16. However, the present invention is not limited to this. As shown in FIG. 7 , the unit cell housing box 16 'is formed in a circular shape in plan view, and the unit cell housing box is circular. A plurality of single cells 15 can be accommodated in a staggered arrangement inside 16 '. By making the unit cell housing box 16 ′ circular, the electrical connection between the unit cells 15 is somewhat complicated, but the number of unit cells 15 can be increased. Or when accommodating the same number, the upper container 2 can be reduced in size compared with a hexagon.

以上のように本実施の形態1における集合電池及び断熱容器は構成されているので、以下のような作用を有する。
(1)断熱容器4の上部容器2が、中空部9が真空状に形成された二重壁構造に形成され、中空部9の真空度が絶対圧で100Pa以下、好ましくは10Pa以下に形成されているので、上部容器2の熱伝導率を0.001W/mK〜0.02W/mKとすることができ、外部への放熱を抑制することができ、上部容器2内部に収容される単電池15の効率が高い場合、すなわち内部抵抗が小さく放電及び充電によるジュール発熱量が少ない場合であってもヒータ等による加熱が不要で熱的に自立した運転を行うことができる。
(2)上部容器2の胴体部5が円筒状に形成されると共に天板部6が胴体部5に一体に形成された湾曲面状に形成されているので、構造的強度が高く、これにより二重壁構造の内部の中空部9に補強部材を設けたり強度維持のための充填材を充填したりする必要がないので、補強部材や充填材を介して外部に放熱することがなく、上部容器2の熱伝導率を極めて小さくできる。
(3)断熱容器4内部の天板部6近傍は、収容した二次電池の単電池15やそれを集合したモジュール17のジュール発熱や反応熱等により発生した熱の対流で温度が高くなる。天板部6が湾曲状に形成されているので、天板部6の二重壁構造の中空部9に補強部材や充填材を設けることなく構造的強度を維持することができ、補強部材や充填材を設けないので、外部への放熱を抑制することができる。
(4)上部容器2は円筒状の胴体部5の上部に天板部6が一体に形成され下部に下部開口部が形成されているので、温度が高くなる断熱容器4内部の上部において内壁部と外壁部の接合部分がないため熱伝導率を小さくでき外部への放熱を抑制することができる。
(5)下部容器3は架台部11と周壁部12とにより形成されているので、上部容器2の胴体部5を下部容器3に挿入して下部開口部を断熱材24cに当接させると共に、下部開口部に嵌合断熱材24a,24bを嵌合して、上部容器2を下部容器3に挿着しているので、上部容器2の下部開口部側からの放熱、特に上部容器2の下端部で接合された外壁部7と内壁部8との接合部からの放熱を抑制することができる。また、断熱材24a,24bに替えて真空断熱プレート26を用いた場合はさらに断熱性を高めることができると共に、真空断熱プレート26を上部容器2の下部開口部に嵌合させているので、真空断熱プレート26の側壁を伝わる熱をその下部に敷設された断熱部25により遮断でき、断熱性を著しく高めることができる。
(6)上部容器2が上部フランジ部10を備え、下部容器3が下部フランジ部13を備えているので、上部容器2の上部フランジ部10を下部容器3の下部フランジ部13に気密に接合し断熱容器4を密封でき、断熱容器4内の気密性が保たれ断熱性を向上させることができる。
(7)上部容器2を製作する際に、加熱工程において上部容器2を二次電池の作動温度以上の温度に加熱することにより上部容器2の外壁部7や内壁部8の表面に吸着した水分子や水素分子、或いは外壁部7や内壁部8を形成する金属内部の水素分子等が脱離させることができ、真空脱気工程において脱離した気体を除去することができるので、上部容器の中空部の真空度を100Pa以下、好ましくは10Pa以下に極めて低くすることができる。
(8)断熱容器4内部に収容されるモジュール17から発生した輻射熱を輻射熱反射部51,52により反射することにより外部に漏れるのを抑制することができ、断熱性を高めることができる。
(9)上部容器2の中空部9に残留したガスを吸収するゲッタ53を内壁部8の中空部9側の面に配設することにより、中空部9の真空度を100Pa以下、好ましくは10Pa以下に低下させ、上部容器2の断熱性を高めることができる。
(10)断熱容器4内部が単電池15の活物質の漏れ等により所定温度以上の高温になった場合に、内壁融解部41が融解して断熱容器4内部の気体が中空部9に流れ込み、中空部9の真空度が低下し上部容器2の熱伝導率が大きくなるので、外部への放熱を促進させ高温化を防止でき安全性に優れる。また、断熱容器4内部の高温化が、内壁融解部41の融解による上部容器2の中空部9の真空度の低下による放熱の増加だけでは許容できなくなった場合に、外壁融解部43が融解して断熱容器4や中空部9の内部の高温の気体を断熱容器4の外部に放出することができるので、断熱容器4の内部の極度の高温化を防止することができ安全性に優れる。
(11)単電池収容箱体16が正六角形に形成されることにより、上部容器2の円筒状の胴体部5内部に単電池収容箱体16が無駄な空間を形成することなく収容されるので、省スペース性を向上させることができる。
(12)単電池収容箱体16の内部を仕切り板16aで仕切って平面視形状が菱形状の3つの菱形収容部16bを形成し、各々の菱形収容部16bに単電池15を千鳥形配列で配設しているので、単電池15を稠密に無駄なく配置することができ多数の単電池15を収容でき集合電池1のエネルギ密度を向上させることができる。また、菱形収容部16bに単電池15を千鳥形配列で配設しているので、単電池15を整列して配設することができ、各単電池15を電気的に接続する際に各列毎に直列に接続し易く、また、直列接続された各単電池15群を並列に接続し易く、必要に応じた直列数と並列数の設計が容易に行える。
(13)集合電池1全体の直流電圧値が、交流に変換した際の交流200(V)の交流電圧適正値以上、且つ交流200(V)に接続する場合のインバータ変換素子の耐電圧にスイッチング過電圧を考慮した電圧値以下となるので、変圧器を介すことなく交流200(V)に接続することができ、変圧器における電力損失をなくし、その設置コストを削減できる。
As described above, the assembled battery and the heat insulating container according to the first embodiment are configured, and thus have the following effects.
(1) The upper container 2 of the heat insulating container 4 is formed in a double wall structure in which the hollow portion 9 is formed in a vacuum shape, and the vacuum degree of the hollow portion 9 is 100 Pa or less, preferably 10 Pa or less in absolute pressure. Therefore, the thermal conductivity of the upper container 2 can be set to 0.001 W / mK to 0.02 W / mK, heat dissipation to the outside can be suppressed, and the unit cell accommodated inside the upper container 2 Even when the efficiency of 15 is high, that is, when the internal resistance is small and the amount of Joule heat generated by discharging and charging is small, heating by a heater or the like is unnecessary and a thermally independent operation can be performed.
(2) Since the body portion 5 of the upper container 2 is formed in a cylindrical shape and the top plate portion 6 is formed in a curved surface formed integrally with the body portion 5, the structural strength is high, thereby Since there is no need to provide a reinforcing member in the hollow portion 9 in the double wall structure or to fill with a filler for maintaining the strength, heat is not radiated to the outside via the reinforcing member or the filler. The thermal conductivity of the container 2 can be made extremely small.
(3) In the vicinity of the top plate portion 6 inside the heat insulating container 4, the temperature rises due to convection of heat generated by Joule heat generation, reaction heat, or the like of the accommodated secondary battery unit cell 15 or the module 17 in which the cells are assembled. Since the top plate portion 6 is formed in a curved shape, the structural strength can be maintained without providing a reinforcing member or a filler in the hollow portion 9 of the double wall structure of the top plate portion 6. Since no filler is provided, heat radiation to the outside can be suppressed.
(4) Since the top container 6 is integrally formed on the upper part of the cylindrical body part 5 and the lower opening part is formed on the lower part, the upper container 2 has an inner wall part at the upper part inside the heat insulating container 4 where the temperature rises. Since there is no joint portion between the outer wall and the heat conductivity, the heat conductivity can be reduced and the heat radiation to the outside can be suppressed.
(5) Since the lower container 3 is formed by the gantry part 11 and the peripheral wall part 12, the body part 5 of the upper container 2 is inserted into the lower container 3 and the lower opening is brought into contact with the heat insulating material 24c. Since the fitting insulators 24a and 24b are fitted into the lower opening and the upper container 2 is inserted into the lower container 3, heat radiation from the lower opening side of the upper container 2, particularly the lower end of the upper container 2 The heat radiation from the joint part of the outer wall part 7 and the inner wall part 8 joined by the part can be suppressed. Further, when the vacuum heat insulating plate 26 is used in place of the heat insulating materials 24a and 24b, the heat insulating property can be further improved and the vacuum heat insulating plate 26 is fitted into the lower opening of the upper container 2, so that the vacuum The heat transmitted through the side wall of the heat insulating plate 26 can be blocked by the heat insulating portion 25 laid under the heat insulating plate 26, and the heat insulating property can be remarkably enhanced.
(6) Since the upper container 2 includes the upper flange portion 10 and the lower container 3 includes the lower flange portion 13, the upper flange portion 10 of the upper container 2 is airtightly joined to the lower flange portion 13 of the lower container 3. The heat insulation container 4 can be sealed, the airtightness in the heat insulation container 4 is maintained, and the heat insulation can be improved.
(7) When the upper container 2 is manufactured, the water adsorbed on the surface of the outer wall 7 or the inner wall 8 of the upper container 2 by heating the upper container 2 to a temperature higher than the operating temperature of the secondary battery in the heating step. Molecules, hydrogen molecules, or hydrogen molecules inside the metal that forms the outer wall 7 or inner wall 8 can be desorbed, and the gas desorbed in the vacuum degassing step can be removed. The degree of vacuum of the hollow portion can be made extremely low to 100 Pa or less, preferably 10 Pa or less.
(8) By reflecting the radiant heat generated from the module 17 accommodated inside the heat insulating container 4 by the radiant heat reflecting portions 51 and 52, it is possible to suppress leakage to the outside, and to improve the heat insulation.
(9) By disposing a getter 53 that absorbs gas remaining in the hollow portion 9 of the upper container 2 on the surface of the inner wall portion 8 on the hollow portion 9 side, the degree of vacuum of the hollow portion 9 is 100 Pa or less, preferably 10 Pa. It can reduce to the following and can improve the heat insulation of the upper container 2. FIG.
(10) When the inside of the heat insulating container 4 becomes a high temperature of a predetermined temperature or more due to leakage of the active material of the unit cell 15, the inner wall melting part 41 melts and the gas inside the heat insulating container 4 flows into the hollow part 9, Since the degree of vacuum of the hollow portion 9 is reduced and the thermal conductivity of the upper container 2 is increased, heat dissipation to the outside can be promoted to prevent high temperature and excellent safety. Further, when the high temperature inside the heat insulating container 4 becomes unacceptable only by an increase in heat radiation due to a decrease in the degree of vacuum of the hollow part 9 of the upper container 2 due to melting of the inner wall melting part 41, the outer wall melting part 43 melts. Since the high-temperature gas inside the heat insulating container 4 and the hollow portion 9 can be released to the outside of the heat insulating container 4, extreme temperature rise inside the heat insulating container 4 can be prevented, and the safety is excellent.
(11) Since the unit cell housing box 16 is formed in a regular hexagon, the unit cell housing box 16 is housed in the cylindrical body portion 5 of the upper container 2 without forming a useless space. , Space saving can be improved.
(12) The inside of the cell housing box 16 is partitioned by a partition plate 16a to form three rhombus housing portions 16b having a rhombus shape in plan view, and the cells 15 are arranged in a staggered arrangement in each rhombus housing portion 16b. Since it is disposed, the unit cells 15 can be densely arranged without waste, and a large number of unit cells 15 can be accommodated, and the energy density of the battery assembly 1 can be improved. Moreover, since the cells 15 are arranged in the rhombus accommodating portion 16b in a staggered arrangement, the cells 15 can be arranged in an array, and each column 15 is electrically connected to each other when electrically connected. It is easy to connect in series each time, and it is easy to connect each group of single cells 15 connected in series in parallel, and the number of series and the number of parallels can be easily designed as necessary.
(13) The DC voltage value of the assembled battery 1 as a whole is switched to an AC voltage appropriate value of AC 200 (V) when converted to AC, and to the withstand voltage of the inverter conversion element when connected to AC 200 (V). Since it becomes below the voltage value which considered the overvoltage, it can connect to alternating current 200 (V) without passing through a transformer, the electric power loss in a transformer can be eliminated, and the installation cost can be reduced.

以上説明したように、本発明は複数のナトリウム−硫黄電池等の高温で作動する二次電池を収容する断熱容器に関し、特に本発明によれば、内部に収容される二次電池の効率が高い場合、すなわち内部抵抗が小さく放電及び充電によるジュール発熱量が少ない場合であっても、放熱を抑えて熱的に自立した運転が可能で、さらに所定温度以上の高温になった場合に、外部への放熱を促進させ高温化を防止できる安全性に優れる断熱容器を提供することができる。
また、以上説明したように、本発明は複数のナトリウム−硫黄電池等の高温で作動する二次電池を集合した集合電池に関し、特に本発明によれば、放熱を抑えて熱的に自立した運転が可能であると共に、単電池を稠密に無駄なく配置することができるのでエネルギ密度を高くすることができ、また単電池の直列数と並列数の組合せにより変圧器を用いることなく交流200ボルトに接続することができ、さらに所定温度以上の高温になった場合に、外部への放熱を促進させ高温化を防止できる安全性に優れる集合電池を提供することができる。
As described above, the present invention relates to a heat insulating container that accommodates a secondary battery that operates at a high temperature, such as a plurality of sodium-sulfur batteries, and in particular, according to the present invention, the efficiency of the secondary battery accommodated therein is high. In other words, even if the internal resistance is small and the amount of Joule heat generated by discharging and charging is small, it is possible to operate in a thermally independent manner while suppressing heat dissipation . It is possible to provide a heat-insulating container excellent in safety that can promote heat dissipation and prevent high temperature .
In addition, as described above, the present invention relates to an assembled battery in which a plurality of secondary batteries that operate at a high temperature, such as a sodium-sulfur battery, are assembled, and in particular, according to the present invention, a thermally independent operation with reduced heat dissipation. In addition, it is possible to increase the energy density because the cells can be arranged densely and without waste, and the combination of the number of cells in series and the number of cells in parallel can be increased to 200 volts AC without using a transformer. It is possible to provide an assembled battery excellent in safety that can be connected and further promotes heat dissipation to the outside when the temperature becomes higher than a predetermined temperature and prevents high temperature .

実施の形態1における集合電池の一部破断要部斜視図FIG. 3 is a partially broken perspective view of the battery assembly according to the first embodiment. (a)実施の形態1における集合電池の要部側面断面図 (b)断熱部の他の例を示す要部側面断面図(A) Main part side surface sectional drawing of the assembled battery in Embodiment 1 (b) Main part side surface sectional view which shows the other example of a heat insulation part. (a)図2のA−A線の矢視断面図 (b)図3(a)の要部拡大図(A) A sectional view taken along the line AA in FIG. 2 (b) An enlarged view of the main part of FIG. 上部容器の真空断熱層の熱伝導率と単電池の単セル効率との関係を示す関係図Relationship diagram showing the relationship between the thermal conductivity of the vacuum insulation layer of the upper container and the unit cell efficiency of the unit cell 断熱容器の天板部の要部拡大断面図An enlarged cross-sectional view of the main part of the top plate of the heat insulation container 断熱容器の胴体部の要部拡大断面図Expanded cross-sectional view of the main part of the body of the heat insulation container 単電池の配列の他の例を示す要部断面図Cross-sectional view of the main part showing another example of the arrangement of unit cells

符号の説明Explanation of symbols

1 集合電池
2 上部容器
3 下部容器
4 断熱容器
5 胴体部
6 天板部
7 外壁部
8 内壁部
9 中空部
9a 下端部封止部
10 上部フランジ部
11 架台部
12 周壁部
13 下部フランジ部
14 ボルトナット
15 単電池
16,16′ 単電池収容箱体
16a 仕切り板
16b 菱形収容部
17 モジュール
18 電力線
19 計測線
21 保護容器
22 上部ヒータ
23 下部ヒータ
24a,24b 嵌合断熱材(嵌合断熱部)
24c 断熱材(断熱部)
25 断熱材
26 真空断熱プレート
31 並列接続端子
33 正極端子
34 負極端子
35 マイカシート
41 内壁融解部
42,44 孔部
43 外壁融解部
45 温度センサ
51,52 輻射熱反射部
53 ゲッタ
DESCRIPTION OF SYMBOLS 1 Collective battery 2 Upper container 3 Lower container 4 Thermal insulation container 5 Body part 6 Top plate part 7 Outer wall part 8 Inner wall part 9 Hollow part 9a Lower end part sealing part 10 Upper flange part 11 Mounting part 12 Peripheral wall part 13 Lower flange part 14 Bolt Nut 15 Cell 16, 16 ′ Cell housing box 16 a Partition plate 16 b Diamond housing portion 17 Module 18 Power line 19 Measuring line 21 Protective container 22 Upper heater 23 Lower heater 24a, 24b Fitting heat insulating material (fitting heat insulating portion)
24c Heat insulation material (heat insulation part)
25 heat insulating material 26 vacuum heat insulating plate 31 parallel connection terminal 33 positive electrode terminal 34 negative electrode terminal 35 mica sheet 41 inner wall melting part 42, 44 hole part 43 outer wall melting part 45 temperature sensor 51, 52 radiant heat reflection part 53 getter

Claims (8)

ナトリウム−硫黄電池等の高温で作動する二次電池が収容される密封された断熱容器であって、
架台部と、前記架台部から立設された周壁部と、を有し前記架台部上に断熱部が敷設された下部容器と、
天板部と、胴体部と、下部に下部開口部と、を有し、外壁部と内壁部との間が真空状に形成された二重壁構造に形成され、前記下部開口部を前記下部容器の前記断熱部に当接して前記下部容器に挿着する上部容器と、
前記上部容器の前記内壁部に形成され所定温度で融解して前記内壁部に孔部を形成する内壁融解部と、
を備えていることを特徴とする断熱容器。
A hermetically sealed insulated container containing a secondary battery operating at a high temperature such as a sodium-sulfur battery,
A lower container having a gantry part, a peripheral wall part erected from the gantry part, and a heat insulating part laid on the gantry part;
It has a top plate part, a body part, and a lower opening part in the lower part, and is formed in a double wall structure in which a space between the outer wall part and the inner wall part is formed in a vacuum shape, and the lower opening part is formed in the lower part An upper container that contacts the heat insulating portion of the container and is inserted into the lower container;
An inner wall melting portion that is formed on the inner wall portion of the upper container and melts at a predetermined temperature to form a hole in the inner wall portion;
It is equipped with the heat insulation container characterized by the above-mentioned.
前記上部容器の前記外壁部に形成され所定温度で融解して前記外壁部に孔部を形成する外壁融解部を備えていることを特徴とする請求項に記載の断熱容器。 The heat insulation container according to claim 1 , further comprising an outer wall melting part that is formed on the outer wall part of the upper container and melts at a predetermined temperature to form a hole in the outer wall part. 前記内壁融解部及び/又は前記外壁融解部が、前記上部容器の前記天板部に形成されていることを特徴とする請求項1又は2に記載の断熱容器。The heat insulation container according to claim 1, wherein the inner wall melting part and / or the outer wall melting part is formed in the top plate part of the upper container. ナトリウム−硫黄電池等の高温で作動する二次電池の単電池を集合した集合電池であって、
請求項1乃至の内いずれか1項に記載の断熱容器
前記断熱容器に収容された1乃至複数の単電池収容箱体と、
前記単電池収容箱体に収容された複数の前記単電池と、
を備えていることを特徴とする集合電池。
An assembled battery in which secondary cells operating at a high temperature such as a sodium-sulfur battery are assembled,
And the heat insulating container according to any one of claims 1 to 3,
One or a plurality of single cell housing boxes housed in the heat insulating container;
A plurality of the single cells housed in the single cell housing box;
An assembled battery characterized by comprising:
複数の前記単電池が、前記単電池収容箱体に千鳥状配列で収容されていることを特徴とする請求項に記載の集合電池。 The assembled battery according to claim 4 , wherein the plurality of single cells are accommodated in the single cell accommodation box in a staggered arrangement. 前記単電池収容箱体が、平面視形状が正六角形又は円形若しくは楕円形に形成されていることを特徴とする請求項又はに記載の集合電池。 The assembled battery according to claim 4 or 5 , wherein the unit cell housing box is formed in a regular hexagonal shape, a circular shape, or an elliptical shape in plan view. 平面視形状が正六角形に形成された1乃至複数の前記単電池収容箱体と、前記単電池収容箱体の内部を平面視形状が菱形状に3つに等分割して形成された菱形収容部と、各々の前記菱形収容部に千鳥形配列で配設された複数の前記単電池と、を備えていることを特徴とする請求項乃至の内いずれか1項に記載の集合電池。 One or a plurality of the single cell housing boxes formed in a regular hexagonal shape in plan view, and a rhombus housing formed by equally dividing the inside of the single cell housing box into three diamond shapes in plan view parts and a set cell according to any one of claims 4 to 6, characterized in that it comprises a plurality of said unit cells arranged in a staggered arrangement in the rhombic accommodating portion of each . 各々の前記菱形収容部に配設された複数の前記単電池が前記菱形収容部の側壁に平行な列毎に直列に接続されると共に各列が並列に接続され、さらに各々の前記菱形収容部の単電池群が直列に接続され、且つ、前記菱形収容部内の一列の前記単電池の本数mと、前記断熱容器の内部に配設された前記単電池収納箱体の個数nと、が(数1)を満たすように決定されていることを特徴とする請求項に記載の集合電池。
Figure 0004148416
A plurality of the cells arranged in each rhombus accommodating portion are connected in series for each row parallel to the side wall of the rhombus accommodating portion, and each row is connected in parallel, and each rhombus accommodating portion Are connected in series, and the number m of the single cells in a row in the rhombus accommodating portion and the number n of the single cell storage boxes disposed in the heat insulating container are ( The assembled battery according to claim 7 , wherein the battery is determined so as to satisfy Formula 1).
Figure 0004148416
JP2004203936A 2004-07-09 2004-07-09 Insulated container and assembled battery including the same Expired - Fee Related JP4148416B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004203936A JP4148416B2 (en) 2004-07-09 2004-07-09 Insulated container and assembled battery including the same
JP2008071632A JP4885166B2 (en) 2004-07-09 2008-03-19 Insulated container and assembled battery including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004203936A JP4148416B2 (en) 2004-07-09 2004-07-09 Insulated container and assembled battery including the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008071632A Division JP4885166B2 (en) 2004-07-09 2008-03-19 Insulated container and assembled battery including the same

Publications (2)

Publication Number Publication Date
JP2006024536A JP2006024536A (en) 2006-01-26
JP4148416B2 true JP4148416B2 (en) 2008-09-10

Family

ID=35797647

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2004203936A Expired - Fee Related JP4148416B2 (en) 2004-07-09 2004-07-09 Insulated container and assembled battery including the same
JP2008071632A Expired - Fee Related JP4885166B2 (en) 2004-07-09 2008-03-19 Insulated container and assembled battery including the same

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2008071632A Expired - Fee Related JP4885166B2 (en) 2004-07-09 2008-03-19 Insulated container and assembled battery including the same

Country Status (1)

Country Link
JP (2) JP4148416B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008021482A (en) * 2006-07-12 2008-01-31 Hissho Go Battery can for secondary battery
WO2013145611A1 (en) * 2012-03-30 2013-10-03 日本電気株式会社 Power storage device and method for radiating heat in power storage device
JP6339833B2 (en) * 2014-03-25 2018-06-06 エイブリック株式会社 Sensor device
JP2017084988A (en) * 2015-10-29 2017-05-18 株式会社ジェイテクト Power storage unit
JP6677301B2 (en) * 2016-07-14 2020-04-08 日本製鉄株式会社 gasket
CN112635813B (en) * 2020-12-08 2022-04-19 隆能科技(南通)有限公司 Ultralow temperature lithium ion battery and preparation method thereof
CN113644344A (en) * 2021-08-18 2021-11-12 武汉蔚能电池资产有限公司 Battery pack thermal insulation shell
CN115000602A (en) * 2022-07-13 2022-09-02 深圳市新鹏翔电子有限公司 Lithium ion battery and conjuncted lithium cell group

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2136629B (en) * 1983-03-16 1986-11-19 South African Inventions Power storage battery
JP2612653B2 (en) * 1991-10-24 1997-05-21 日本碍子株式会社 NaS battery temperature control system
JPH05283102A (en) * 1992-03-30 1993-10-29 Ngk Insulators Ltd Heat radiator for battery system
JPH09219183A (en) * 1996-02-09 1997-08-19 Mitsubishi Heavy Ind Ltd Secondary battery structure
JP3061572B2 (en) * 1996-08-19 2000-07-10 日本碍子株式会社 Baking method of insulated container
JPH10117447A (en) * 1996-08-22 1998-05-06 Hitachi Ltd Sodium-sulfur battery system
JP2000048857A (en) * 1998-07-27 2000-02-18 Ngk Insulators Ltd Evacuated insulation container for battery
JP2002063947A (en) * 2000-08-21 2002-02-28 Ngk Insulators Ltd Vacuum heat insulated container for battery pack and adjusting method of radiation
JP2002260724A (en) * 2001-03-02 2002-09-13 Hitachi Ltd High-temperature sodium secondary battery module
JP2003151620A (en) * 2001-11-16 2003-05-23 Ngk Insulators Ltd Sodium-sulfur battery

Also Published As

Publication number Publication date
JP2006024536A (en) 2006-01-26
JP4885166B2 (en) 2012-02-29
JP2008192622A (en) 2008-08-21

Similar Documents

Publication Publication Date Title
JP4885166B2 (en) Insulated container and assembled battery including the same
US8652666B2 (en) Battery module
KR20210110695A (en) Battery packs, vehicles, and energy storage devices
JP4902164B2 (en) Power supply
WO2011092773A1 (en) Cell module
KR20200065010A (en) Lithium-ion battery with modular busbar assembly
US20110129706A1 (en) Lithium-Ion Secondary Battery
CN112151917B (en) Battery pack and vehicle
JP2013251127A (en) Power source device
KR101899114B1 (en) Stack assembly
CN108604689B (en) Fuel cell
KR20150123102A (en) Battery cell assembly for secondary battery
JP6209164B2 (en) Module battery
CN107210387A (en) Long cycle life prismatic battery battery core for high power applications
JP2005123069A (en) Battery pack
JP2018116888A (en) Storage battery
KR20200015512A (en) Compact high temperature electrochemical cell stack architecture
JP2010186715A (en) Heat radiation structure of battery pack, and battery pack
JP4616496B2 (en) Fuel cell system
US20100215999A1 (en) Secondary battery module
JP2010272319A (en) Battery pack
US20240222768A1 (en) Electric power storage module
JP2003234132A (en) Heating device of collective battery composed of sodium- sulfur cell
WO2017119106A1 (en) Power storage module
JP2021086735A (en) Power storage module and manufacturing method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080319

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080521

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080620

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080619

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130704

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees