JP2017084988A - Power storage unit - Google Patents

Power storage unit Download PDF

Info

Publication number
JP2017084988A
JP2017084988A JP2015212581A JP2015212581A JP2017084988A JP 2017084988 A JP2017084988 A JP 2017084988A JP 2015212581 A JP2015212581 A JP 2015212581A JP 2015212581 A JP2015212581 A JP 2015212581A JP 2017084988 A JP2017084988 A JP 2017084988A
Authority
JP
Japan
Prior art keywords
power storage
power
storage
storage device
storage unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015212581A
Other languages
Japanese (ja)
Inventor
巧美 三尾
Takumi Mio
巧美 三尾
幸弘 小松原
Yukihiro Komatsubara
幸弘 小松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2015212581A priority Critical patent/JP2017084988A/en
Publication of JP2017084988A publication Critical patent/JP2017084988A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a power storage unit which can show a desired characteristic by making a power storage device insusceptible to an ambient air temperature.SOLUTION: A power storage unit (1) comprises: a power storage element (21); a power storage housing (25) for housing the power storage element (21) therein; at least one power storage device (20) having electrode terminals (22, 23) exposed outside the power storage housing (25); a storing case (10) for storing the power storage device (20); heat insulation means (11a) for intercepting the heat exchange between the outside and inside of the storing case (10); and a non-contact power receiver-supplier (30) disposed in the storing case (10), performing power reception from and power supply to an outside device (50, 60) provided outside the storing case (10) in a non-contact manner, and connected with the power storage device (20).SELECTED DRAWING: Figure 1

Description

本発明は、蓄電ユニットに関するものである。   The present invention relates to a power storage unit.

近年、充放電を繰り返し行うことができる環境問題を考慮した蓄電デバイスが、各種の分野で広範囲にわたって利用されている。例えば、自動車の分野では、電気自動車やハイブリッド自動車及び種々の電動機を駆動源とする車両用装置での利用が促進され、注目されている。これらの車両には、電動機に電力を供給したり、減速時に電気エネルギーを蓄電したりするために、二次電池や電気二重層キャパシタ等からなる蓄電デバイスが搭載されている。   In recent years, power storage devices that take into account environmental problems that can be repeatedly charged and discharged have been widely used in various fields. For example, in the field of automobiles, use in electric vehicles, hybrid vehicles, and vehicle devices using various electric motors as driving sources is promoted and attracting attention. These vehicles are equipped with a power storage device such as a secondary battery or an electric double layer capacitor in order to supply electric power to the motor or store electric energy during deceleration.

蓄電デバイスは、使用温度によって特性が変化する。そのため、蓄電デバイスが所望の特性を発揮するために、蓄電デバイスを断熱部材によって被覆した蓄電ユニットがある(例えば特許文献1参照)。   The characteristics of the electricity storage device vary depending on the use temperature. Therefore, there is a power storage unit in which the power storage device is covered with a heat insulating member so that the power storage device exhibits desired characteristics (see, for example, Patent Document 1).

特開2001−313487号公報JP 2001-31487 A

しかしながら、特許文献1に開示された蓄電ユニットでは、蓄電デバイスの電極端子が断熱部材から露出している(図5参照)ので、電極端子が外気温度の影響を受けることになる。そのため、蓄電ユニットは、蓄電デバイスの特性の変化を低減するため、さらなる断熱効果の向上が望まれている。   However, in the power storage unit disclosed in Patent Document 1, since the electrode terminal of the power storage device is exposed from the heat insulating member (see FIG. 5), the electrode terminal is affected by the outside air temperature. Therefore, the power storage unit is desired to further improve the heat insulation effect in order to reduce the change in characteristics of the power storage device.

本発明は、蓄電デバイスが外気温度の影響をより受けにくくすることで、所望の特性を発揮できる蓄電ユニットを提供することを目的とする。   An object of this invention is to provide the electrical storage unit which can exhibit a desired characteristic by making an electrical storage device less susceptible to the influence of outside temperature.

本発明の蓄電ユニットは、蓄電要素、前記蓄電要素を内部に収納する蓄電筐体、及び、前記蓄電筐体の外部に露出する電極端子を有する一以上の蓄電デバイスと、前記蓄電デバイスを内部に収納する収納ケースと、前記収納ケースの外部と内部の間の熱の出入りを遮る断熱手段と、前記収納ケースの内部に配置され、前記収納ケースの外部に設けられた外部装置との間の受給電を非接触で行い、前記蓄電デバイスに接続される非接触受給電装置と、を備える。   The power storage unit of the present invention includes a power storage element, a power storage housing that houses the power storage element, one or more power storage devices having electrode terminals exposed to the outside of the power storage housing, and the power storage device inside Receipt between a storage case to be stored, heat insulating means for blocking heat flow between the outside and the inside of the storage case, and an external device disposed inside the storage case and provided outside the storage case A non-contact power supply / reception device that performs electricity contactlessly and is connected to the power storage device.

上記の蓄電ユニットによれば、収納ケースの外部と内部との間で断熱するので、収納ケースの外部と蓄電デバイスの蓄電筐体との間の熱の出入りが遮断される。しかも、収納ケースの外部に設けられた外部装置との間の電力の受給電を非接触で行うので、電極端子を介した収納ケースの外部と蓄電要素との間の熱伝導も遮断される。よって、収納ケースの外気温度の影響を受けずに蓄電要素の温度を維持でき、低温時の出力特性の低下や高温時の電極材料の劣化を回避して蓄電デバイスの性能を適切に維持できる。   According to the above power storage unit, heat is insulated between the outside and the inside of the storage case, so that the heat input and output between the outside of the storage case and the power storage housing of the power storage device is blocked. In addition, since power is supplied to and received from an external device provided outside the storage case, the heat conduction between the outside of the storage case and the storage element via the electrode terminals is also blocked. Therefore, the temperature of the power storage element can be maintained without being affected by the outside temperature of the storage case, and the performance of the power storage device can be appropriately maintained while avoiding the deterioration of the output characteristics at the low temperature and the deterioration of the electrode material at the high temperature.

本実施形態の蓄電ユニットの概要を示す概要図である。It is a schematic diagram which shows the outline | summary of the electrical storage unit of this embodiment. 同じく、図1の蓄電デバイスの概要を示す概要図である。Similarly, it is a schematic diagram which shows the outline | summary of the electrical storage device of FIG. 同じく、図1の制御装置の電気的な構成概要を示すブロック図である。Similarly, it is a block diagram which shows the electrical structure outline | summary of the control apparatus of FIG. 同じく、種々の蓄電デバイスの内部抵抗の温度特性を模式的に示した図である。Similarly, it is the figure which showed typically the temperature characteristic of the internal resistance of various electrical storage devices.

(1.蓄電ユニットの構成)
以下、本発明の蓄電ユニットの具体的な実施形態について図面を参照しつつ説明する。図1において、蓄電ユニット1は、収納ケース10、蓄電デバイス20及び非接触受給電装置30を有する。蓄電ユニット1は、外部装置50からの電力を受電して、蓄電デバイス20の充電を行い、各蓄電デバイス20が出力する電力を外部装置60に給電して、外部装置60を介してモータMを駆動するための装置である。
(1. Configuration of power storage unit)
Hereinafter, specific embodiments of the power storage unit of the present invention will be described with reference to the drawings. In FIG. 1, the power storage unit 1 includes a storage case 10, a power storage device 20, and a contactless power supply / reception device 30. The power storage unit 1 receives power from the external device 50 to charge the power storage device 20, feeds the power output from each power storage device 20 to the external device 60, and operates the motor M via the external device 60. It is an apparatus for driving.

収納ケース10は、容器本体11と蓋体12とを備える。収納ケース10は、容器本体11の収容部111に蓄電デバイス20及び非接触受給電装置30の制御器30aを収容する。蓋体12は容器本体11の開口部114を覆蓋して収納ケース10の内部空間が真空状態で維持される真空空間11bであるように密閉する。   The storage case 10 includes a container body 11 and a lid body 12. The storage case 10 stores the power storage device 20 and the controller 30 a of the non-contact power feeding / receiving device 30 in the storage portion 111 of the container body 11. The lid 12 covers the opening 114 of the container body 11 and seals it so that the internal space of the storage case 10 is a vacuum space 11b that is maintained in a vacuum state.

容器本体11は、丸みを帯びた略直方体箱形の全体形状をなし、図1において上方に開口する略方形の開口部114を中央部に有し、略直方体状に凹む収容部111が形成される。開口部114の周縁には、径方向外方(水平方向)に向けて相似大形に拡径された接合部11cが形成される。接合部11cの上端面は平坦な接合端面115をなし、容器本体11に蓋体12の端面を重ね合わせ、開口部114を覆蓋する。図1中の符号116,117は、蓄電デバイス20と制御器30aを収容部111の底面から離間させて真空空間11bに配置するための台座である。   The container body 11 has an overall shape of a rounded substantially rectangular parallelepiped box shape, and has a substantially rectangular opening 114 that opens upward in FIG. 1 at the center, and a housing portion 111 that is recessed in a substantially rectangular parallelepiped shape is formed. The At the periphery of the opening 114, a joint portion 11c is formed having a diameter that is enlarged in a similar size toward the outer side in the radial direction (horizontal direction). The upper end surface of the joint portion 11 c forms a flat joint end surface 115, and the end surface of the lid body 12 is overlapped on the container body 11 to cover the opening 114. Reference numerals 116 and 117 in FIG. 1 are pedestals for disposing the power storage device 20 and the controller 30a in the vacuum space 11b so as to be separated from the bottom surface of the housing portion 111.

容器本体11を形成する全部の壁部は、非磁性の金属材料を容器本体11の外形状に成形した金属板状の第1容器本体壁112と第2容器本体壁113とを、真空層11aを介して外側と内側に配して接合した二重層をなして形成される。真空層11aを有する容器本体11は公知の方法によって成形される。例えば、高温の真空炉中で第1容器本体壁112と第2容器本体壁113との接合部を、所定の接合材で溶接しながら封じる製造方法が知られている。容器本体11を形成する非磁性の金属材料としては、例えばSUS304、SUS316等のオーステナイト系ステンレス、ないしはアルミニウム等を用いることができる。   All the wall portions forming the container body 11 are formed by forming a metal plate-like first container body wall 112 and a second container body wall 113 obtained by molding a nonmagnetic metal material into the outer shape of the container body 11 into the vacuum layer 11a. It is formed as a double layer that is arranged on the outside and the inside via a joint. The container body 11 having the vacuum layer 11a is formed by a known method. For example, a manufacturing method is known in which a joint between a first container body wall 112 and a second container body wall 113 is sealed while being welded with a predetermined joining material in a high-temperature vacuum furnace. As the nonmagnetic metal material forming the container body 11, for example, austenitic stainless steel such as SUS304 or SUS316, aluminum, or the like can be used.

蓋体12は、容器本体11の接合部11cの外周形状に対応する同一の外周形状を有し、丸みを帯びた略方形板状の全体形状をなす。蓋体12を形成する全部の壁部は、容器本体11と同様に、非磁性の金属材料を蓋体12の外形状に成形した金属板状の第1蓋体壁122と第2蓋体壁123とを、真空層12aを介して外側と内側に配して接合させた二重層をなして形成される。蓋体12の内側の第2蓋体壁123には、制御器30aと連動する一対の共振コイル31,32が取り付られる。なお、一対の共振コイル31,32は、第2蓋体壁123から離間させて真空空間11bに配置するように取り付けられる。   The lid 12 has the same outer peripheral shape corresponding to the outer peripheral shape of the joint portion 11c of the container main body 11, and has an overall shape of a rounded substantially square plate. As with the container body 11, all the wall portions forming the lid body 12 are a metal plate-like first lid wall 122 and second lid wall obtained by molding a nonmagnetic metal material into the outer shape of the lid body 12. 123 is formed as a double layer in which the outer layer and the outer layer are bonded to each other via the vacuum layer 12a. A pair of resonance coils 31 and 32 that are linked to the controller 30a are attached to the second lid wall 123 inside the lid 12. The pair of resonance coils 31 and 32 are attached so as to be separated from the second lid wall 123 and disposed in the vacuum space 11b.

蓋体12の外周縁部は、容器本体11との接合部12cを形成する。接合部12cの第2蓋体壁123側の下端面は、接合端面125をなし、容器本体11の接合端面115との重ね合わせ面を形成し、開口部114を覆蓋する。容器本体11と蓋体12との接合は、収納ケース10の外周面に露出する接合部11c、12c同士の境界線に沿って全周を溶接することによって行う。容器本体11と蓋体12との接合強度、及び内部空間を真空空間11bとして維持できるだけの密着度を保つことができる。例えば、蓄電デバイス20や制御器30a等を容器本体11に収容し、共振コイル31,32に制御器30aを接続し、蓋体12で開口部114を覆蓋する等の組み付け作業を真空下で行うのなら、境界線に沿って電子ビームを照射して溶接できる。この場合、収納ケース10の内部空間を真空空間11bに維持できる。組み付け作業を大気下で行うのなら、レーザー溶接を行うことができる。この場合は内部空間に大気が残存する。図1中の符号13は、適当な方法によって溶接を行った部分を示す。   The outer peripheral edge of the lid 12 forms a joint 12 c with the container body 11. The lower end surface of the joining portion 12c on the second lid wall 123 side forms a joining end surface 125, forms an overlapping surface with the joining end surface 115 of the container body 11, and covers the opening 114. The container body 11 and the lid body 12 are joined by welding the entire circumference along the boundary line between the joint portions 11 c and 12 c exposed on the outer peripheral surface of the storage case 10. The bonding strength between the container body 11 and the lid 12 and the degree of adhesion that can maintain the internal space as the vacuum space 11b can be maintained. For example, the storage device 20, the controller 30 a, etc. are accommodated in the container body 11, the controller 30 a is connected to the resonance coils 31, 32, and assembly work such as covering the opening 114 with the lid 12 is performed under vacuum. If so, it can be welded by irradiating an electron beam along the boundary line. In this case, the internal space of the storage case 10 can be maintained in the vacuum space 11b. If the assembly work is performed in the atmosphere, laser welding can be performed. In this case, air remains in the internal space. Reference numeral 13 in FIG. 1 indicates a portion welded by an appropriate method.

なお、容器本体11と蓋体12との接合は、上記した接合部11c、12c同士の境界線に沿って全周を溶接する以外に、適当なシール材を用いる方法でも構わない。例えば、接合端面115,125の間にOリングを装着できる。この場合、内径側と外径側の大小一対の2本のOリングを用いることもできる。収納ケース10の内部空間に大気が残存する場合は、2本のOリング間に真空空間を形成して断熱することもできる。   The container body 11 and the lid body 12 may be joined by a method using an appropriate sealing material other than welding the entire circumference along the boundary line between the joint portions 11c and 12c described above. For example, an O-ring can be attached between the joining end faces 115 and 125. In this case, a pair of large and small O-rings on the inner diameter side and the outer diameter side can also be used. When the atmosphere remains in the internal space of the storage case 10, a vacuum space can be formed between the two O-rings for heat insulation.

蓄電デバイス20は、図示しない枠体に所定の複数枚が保持される。蓄電デバイス20は扁平な直方体の箱状をなしており、それぞれ枠体に保持された状態で、全体の電池容量を考慮して直列又は並列接続される。なお、図2は、未接続の蓄電デバイス20を積層配置した状態を示す。各蓄電デバイス20は、収容部111の底面(第2容器本体壁113)と離間させて収納ケース10中に載置及び収容される。蓄電デバイス20は、各蓄電デバイス20の正極端子22及び負極端子23が所定のポートに接続されるように、適当な接続手段を介して制御器30aに電気的に接続される。   A predetermined plurality of power storage devices 20 are held in a frame (not shown). The electricity storage device 20 has a flat, rectangular parallelepiped box shape, and is connected in series or in parallel in consideration of the entire battery capacity while being held in a frame. FIG. 2 shows a state where unconnected power storage devices 20 are stacked. Each power storage device 20 is placed and stored in the storage case 10 while being separated from the bottom surface (second container body wall 113) of the storage unit 111. The electricity storage device 20 is electrically connected to the controller 30a through appropriate connection means so that the positive electrode terminal 22 and the negative electrode terminal 23 of each electricity storage device 20 are connected to a predetermined port.

蓄電デバイス20は、充電放電を繰り返し行うことができ、例えば電気二重層キャパシタ、リチウムイオンキャパシタ、リチウムイオン二次電池等を用いることができる。蓄電デバイス20は、蓄電要素21、正極端子22、負極端子23及び蓄電筐体25を備え、ラミネートの蓄電筐体25の内部に蓄電要素21を収納する。蓄電筐体25の内部には、蓄電要素21に接続し、一部分が蓄電筐体25の外部に突出する正極端子22と負極端子23が収容される。   The power storage device 20 can be repeatedly charged and discharged. For example, an electric double layer capacitor, a lithium ion capacitor, a lithium ion secondary battery, or the like can be used. The power storage device 20 includes a power storage element 21, a positive electrode terminal 22, a negative electrode terminal 23, and a power storage casing 25, and stores the power storage element 21 inside a laminated power storage casing 25. Inside the electricity storage housing 25, a positive electrode terminal 22 and a negative electrode terminal 23 that are connected to the electricity storage element 21 and partially protrude outside the electricity storage housing 25 are accommodated.

蓄電要素21は、正極板212、負極板213、及び電解液を備える。図2に、セパレータ214を介して交互に積層した平板状の正極板212と負極板213、及び非水性電解液(図示せず)を備える蓄電要素21の構成例を示す。正極板212及び負極板213は、正極集電体同士又は負極集電体同士を一体に接続される。   The electricity storage element 21 includes a positive electrode plate 212, a negative electrode plate 213, and an electrolytic solution. FIG. 2 shows a configuration example of the electricity storage element 21 including the flat plate-like positive electrode plates 212 and the negative electrode plates 213 alternately stacked via the separators 214 and a non-aqueous electrolyte solution (not shown). The positive electrode plate 212 and the negative electrode plate 213 are integrally connected to each other between the positive electrode current collectors or the negative electrode current collectors.

正極板212は、正極材料に種々の添加材、例えば導電助材、結着材、増粘剤等を適宜に添加した正極合材を適切な溶媒に懸濁させて混合し、スラリーとしたものを正極集電体の片面又は両面に塗布し、プレスし、乾燥して作製できる。正極材料としては、特に限定されるものではなく、公知材料を用いることができる。電気二重層キャパシタ又はリチウムイオンキャパシタであれば、活性炭やポリアセン等を用いることができる。リチウムイオン二次電池であれば、リチウムイオンを可逆的に挿入・脱離できる、代表的には、LiMnO、LiCoO、LiNiO等のリチウム遷移金属複合酸化物等を用いることができる。 The positive electrode plate 212 is a slurry obtained by suspending and mixing a positive electrode mixture in which various additives, for example, a conductive additive, a binder, a thickener and the like are appropriately added to a positive electrode material, and mixing them in an appropriate solvent. Can be applied to one or both sides of the positive electrode current collector, pressed and dried. The positive electrode material is not particularly limited, and a known material can be used. In the case of an electric double layer capacitor or a lithium ion capacitor, activated carbon, polyacene, or the like can be used. For lithium ion secondary batteries, lithium transition metal composite oxides such as LiMnO 2 , LiCoO 2 , and LiNiO 2 that can reversibly insert and desorb lithium ions can be used.

正極集電体としては、アルミニウム、ステンレス鋼、銅、ニッケル等からなる箔、メッシュ等を用いることができる。導電助材としては、ケッチェンブラック、アセチレンブラック等を、結着材としては、ポリフッ化ビニリデン、SBRゴム、ポリアクリル酸等を、増粘剤としてカルボキシルメチルセルロース等を、溶媒としては、N−メチルピロリドン等の有機溶媒又は水を用いることができる。   As the positive electrode current collector, foil, mesh, or the like made of aluminum, stainless steel, copper, nickel, or the like can be used. Ketjen black, acetylene black, etc. as conductive aids, polyvinylidene fluoride, SBR rubber, polyacrylic acid, etc. as binders, carboxymethyl cellulose, etc. as thickeners, N-methyl as solvent. An organic solvent such as pyrrolidone or water can be used.

負極板213は、正極板212と同様に負極材料に適宜な添加材を添加した負極合材を負極集電体に塗布し、プレスし、乾燥することで作製できる。電気二重層キャパシタであれば、正極材料と同様の負極材料を用いることができる。リチウムイオンキャパシタ又はリチウムイオン二次電池であれば、リチウムイオンを可逆的に挿入・脱離できる、黒鉛(グラファイト)等の炭素系材料を用いることができる。負極集電体としては、銅、ステンレス鋼、ニッケル等からなる箔、メッシュ等を用いることができる。リチウムイオンキャパシタであれば、リチウムイオンプレドープ用のリチウム極を製作できる。例えば、銅、ステンレス等のリチウム極集電体にリチウム金属箔を圧着して作製する。   Similarly to the positive electrode plate 212, the negative electrode plate 213 can be manufactured by applying a negative electrode mixture obtained by adding an appropriate additive to the negative electrode material to the negative electrode current collector, pressing, and drying. If it is an electric double layer capacitor, the negative electrode material similar to a positive electrode material can be used. In the case of a lithium ion capacitor or a lithium ion secondary battery, a carbon-based material such as graphite that can reversibly insert and desorb lithium ions can be used. As the negative electrode current collector, foil, mesh, or the like made of copper, stainless steel, nickel, or the like can be used. If it is a lithium ion capacitor, the lithium electrode for lithium ion pre dope can be manufactured. For example, a lithium metal foil is crimped to a lithium electrode current collector such as copper or stainless steel.

電解液は、公知の支持塩を電解質とする非水性電解液を用いることができる。電気二重層キャパシタであれば、代表的には、主溶媒として、γ−ブチロラクトン、プロピレンカーボネート等を、副溶媒として、エチレンカーボネート等のカーボネート類を用い、電解質として、金属の陽イオン、4級アンモニウムカチオン等のカチオンと、BF4−、PF6−等のアニオンとの塩を用いて所定濃度に調整する。リチウムイオンキャパシタ又はリチウムイオン二次電池であれば、電気二重層キャパシタと同様の非水性溶媒中に、リチウム塩としてLiPF、LiBF等を用いることができる。 As the electrolytic solution, a non-aqueous electrolytic solution containing a known supporting salt as an electrolyte can be used. In the case of an electric double layer capacitor, typically, γ-butyrolactone, propylene carbonate or the like is used as a main solvent, carbonates such as ethylene carbonate is used as a secondary solvent, and a metal cation or quaternary ammonium is used as an electrolyte. The concentration is adjusted to a predetermined concentration using a salt of a cation such as a cation and an anion such as BF 4− and PF 6− . If a lithium ion capacitor or a lithium ion secondary battery, an electric double layer similar non-aqueous solvent and a capacitor, it is possible to use LiPF 6, LiBF 4 or the like as a lithium salt.

正極板212同士で一体化した正極体、及び負極板213同士で一体化した負極体は、導体よりなる電力取り出し用のタブ状の正極端子22及び負極端子23に接続する。正極端子22及び負極端子23は、正極体又は負極体それぞれに電気的に接続される。正極端子22及び負極端子23は、ラミネート樹脂フィルムの溶着面に挿入された状態で固定され、蓄電筐体25内部の蓄電要素21に、蓄電筐体25外部の非接触受給電装置30を接続する。   The positive electrode body integrated with the positive electrode plates 212 and the negative electrode body integrated with the negative electrode plates 213 are connected to a tab-shaped positive electrode terminal 22 and a negative electrode terminal 23 for taking out electric power made of a conductor. The positive electrode terminal 22 and the negative electrode terminal 23 are electrically connected to the positive electrode body or the negative electrode body, respectively. The positive electrode terminal 22 and the negative electrode terminal 23 are fixed in a state where the positive electrode terminal 22 and the negative electrode terminal 23 are inserted into the welding surface of the laminate resin film, and the non-contact power feeding / receiving device 30 outside the power storage case 25 is connected to the power storage element 21 inside the power storage case 25. .

非接触受給電装置30は、外部装置との間で非接触で電力の受給電を行うための装置であり、いわゆるワイヤレス給電及び受電を行うことができれば公知の装置を用いることができ、特に限定されない。非接触受給電装置30は、磁気共鳴方式、電磁誘導方式、電波受信方式などを適用できる。例えば、磁気共鳴方式を用いた非接触受給電装置30について、図1及び図3を用いて簡単に説明する。非接触受給電装置30は、制御器30aと一対の共振コイル31,32とを有する。収納ケース10の蓋体12の裏面には、コイルケース中に収納された共振コイル31,32が固定される。   The non-contact power supply / reception device 30 is a device for performing power contact / reception with an external device in a non-contact manner, and any known device can be used as long as so-called wireless power supply and power reception can be performed. Not. The non-contact power feeding / receiving device 30 can employ a magnetic resonance method, an electromagnetic induction method, a radio wave reception method, or the like. For example, a non-contact power supply / reception device 30 using a magnetic resonance method will be briefly described with reference to FIGS. 1 and 3. The non-contact power supply / reception device 30 includes a controller 30 a and a pair of resonance coils 31 and 32. Resonant coils 31 and 32 housed in the coil case are fixed to the back surface of the lid 12 of the housing case 10.

共振コイル31は、外部装置50の共振コイル51と電磁場を介して共鳴する。これにより、蓄電ユニット1が外部装置50から供給される電力を受電し、蓄電デバイス20の充電を可能にする。共振コイル31は、外部装置50の共振コイル51との距離や、共振コイル31及び共振コイル51の共鳴周波数等に基づいて、共鳴強度及びその結合度等が大きくなるように巻数が適宜設定される。共振コイル31は、共振コイル51を介して外部装置50から受電した電力を制御器30a(整流器33)に出力する。なお、符号53は、所定の交流電圧を共鳴可能な高周波に変換するための装置である。   The resonance coil 31 resonates with the resonance coil 51 of the external device 50 via an electromagnetic field. As a result, the power storage unit 1 receives power supplied from the external device 50 and enables the power storage device 20 to be charged. The number of turns of the resonance coil 31 is appropriately set so that the resonance intensity and the degree of coupling thereof are increased based on the distance from the resonance coil 51 of the external device 50, the resonance frequency of the resonance coil 31 and the resonance coil 51, and the like. . The resonance coil 31 outputs the power received from the external device 50 via the resonance coil 51 to the controller 30a (rectifier 33). Reference numeral 53 denotes a device for converting a predetermined alternating voltage into a resonable high frequency.

制御器30aは、整流器33と、DC/DCコンバータ34と、DC/ACインバータ35と、高周波ドライバ36と、ECU37と、電源用DC/DCコンバータ38とを有する。整流器33は、共振コイル31を介して受電した電力の交流電圧を整流して直流電圧に変換する。電源用DC/DCコンバータ38は、整流器33によって整流された直流電圧を入力して所定の直流電圧に変換し、DC/DCコンバータ34、DC/ACインバータ35、高周波ドライバ36、ECU37に電源電圧(駆動電圧)として供給する。   The controller 30 a includes a rectifier 33, a DC / DC converter 34, a DC / AC inverter 35, a high frequency driver 36, an ECU 37, and a power source DC / DC converter 38. The rectifier 33 rectifies the AC voltage of the power received via the resonance coil 31 and converts it into a DC voltage. The DC / DC converter for power supply 38 receives the DC voltage rectified by the rectifier 33 and converts it to a predetermined DC voltage, and supplies the DC / DC converter 34, the DC / AC inverter 35, the high frequency driver 36, and the ECU 37 with the power supply voltage ( Drive voltage).

ECU37は、蓄電デバイス20から得る現在のデバイス状態を示す出力信号を監視し、例えば充電状態(いわゆるSOC)に応じてDC/DCコンバータ34から蓄電デバイス20へ出力する電圧を制御する。また、非接触受給電装置30は、受給電の開始や終了等の各種電気信号(制御信号等)の交換を非接触で行う、図示しない制御信号交換手段を有している。制御信号交換手段を介して非接触受給電装置30に入力される制御信号は、ECU37に入力され、ECU37は、DC/DCコンバータ34、DC/ACインバータ35、高周波ドライバ36の出力を制御する。   ECU37 monitors the output signal which shows the present device state obtained from the electrical storage device 20, and controls the voltage output to the electrical storage device 20 from the DC / DC converter 34 according to a charge condition (what is called SOC), for example. The non-contact power supply / reception device 30 includes control signal exchanging means (not shown) that exchanges various electric signals (control signals and the like) such as start and end of power supply and reception in a non-contact manner. A control signal input to the non-contact power supply / reception device 30 via the control signal exchanging means is input to the ECU 37, which controls the outputs of the DC / DC converter 34, the DC / AC inverter 35, and the high frequency driver 36.

DC/DCコンバータ34は、ECU37からの制御信号に基づいて、整流器33によって整流された直流電圧を適切な電圧レベルに変換して蓄電デバイス20に出力する。このようにして、蓄電デバイス20への充電を外部装置50と非接触で行うことができる。   The DC / DC converter 34 converts the DC voltage rectified by the rectifier 33 into an appropriate voltage level based on a control signal from the ECU 37 and outputs the converted voltage to the power storage device 20. In this way, charging of the electricity storage device 20 can be performed without contact with the external device 50.

DC/ACインバータ35は、蓄電デバイス20から放電される電力を入力し、ECU37からの制御信号に基づいて、所定の交流電圧に変換し、高周波ドライバ36に出力する。高周波ドライバ36は、ECU37からの制御信号に基づいて、DC/ACインバータ35から入力された交流電力を、共振コイル62と共鳴可能な高周波の交流電圧に変換し、その高周波電力を共振コイル32に出力する。高周波電力を入力した共振コイル32は、電磁場を介して外部装置60の共振コイル62と共鳴する。共振コイル62が共振コイル32と共鳴することにより、外部装置60は蓄電ユニット1から供給される電力を受電する。このようにして、蓄電デバイス20が放電する電力が、非接触で外部装置60のPCU(パワーコントロールユニット)63に給電され、PCU63はモータMに電力を供給可能となる。   The DC / AC inverter 35 receives electric power discharged from the power storage device 20, converts it into a predetermined AC voltage based on a control signal from the ECU 37, and outputs it to the high frequency driver 36. The high frequency driver 36 converts the AC power input from the DC / AC inverter 35 into a high frequency AC voltage that can resonate with the resonance coil 62 based on a control signal from the ECU 37, and converts the high frequency power to the resonance coil 32. Output. The resonance coil 32 to which the high frequency power is input resonates with the resonance coil 62 of the external device 60 through an electromagnetic field. When the resonance coil 62 resonates with the resonance coil 32, the external device 60 receives power supplied from the power storage unit 1. In this way, the electric power discharged from the electricity storage device 20 is supplied to the PCU (power control unit) 63 of the external device 60 in a non-contact manner, and the PCU 63 can supply electric power to the motor M.

図4に、上記した電気二重層キャパシタ(EDLC)、リチウムイオンキャパシタ(LIC)、リチウムイオン二次電池(LIB)について、温度変化に対する内部抵抗の変化度合いの違いを誇張気味に、わかりやすく表したグラフを示す。内部抵抗は、蓄電デバイスの温度や電気化学的な反応速度等によって変化することが周知されている。図示のとおり、リチウムイオン二次電池>リチウムイオンキャパシタ>電気二重層キャパシタの順で、温度変化に対する内部抵抗の変化度合いが大きくなる。外部装置50,60と蓄電ユニット1との間の電力の受給電を非接触で行うことによる断熱効果は、内部抵抗の変化度合いが大きいリチウムイオン二次電池、或いはリチウムイオンキャパシタにおいて、特に低温時の出力特性の低下を補うことができる点で、好ましい。   FIG. 4 exaggeratedly shows the difference in the degree of change in internal resistance with respect to temperature change for the above-mentioned electric double layer capacitor (EDLC), lithium ion capacitor (LIC), and lithium ion secondary battery (LIB). A graph is shown. It is well known that the internal resistance varies depending on the temperature of the electricity storage device, the electrochemical reaction rate, and the like. As illustrated, the degree of change in internal resistance with respect to temperature change increases in the order of lithium ion secondary battery> lithium ion capacitor> electric double layer capacitor. The heat insulation effect obtained by contactless power supply / reception between the external devices 50 and 60 and the power storage unit 1 is particularly advantageous in a lithium ion secondary battery or a lithium ion capacitor having a large degree of change in internal resistance at low temperatures. This is preferable in that it can compensate for the decrease in output characteristics.

(2.蓄電ユニットの作用効果)
上記実施形態によれば、蓄電ユニット1は、蓄電要素21、蓄電要素21を内部に収納する蓄電筐体25、及び、蓄電筐体25の外部に露出する正極端子22、負極端子23を有する一以上の蓄電デバイス20と、蓄電デバイス20を内部に収納する収納ケース10と、収納ケース10の外部と内部の間の熱の出入りを遮る断熱手段(真空層11a,真空空間11b)と、収納ケース10の内部に配置され、収納ケース10の外部に設けられた外部装置50、60との間の受給電を非接触で行い、蓄電デバイス20に接続される非接触受給電装置30と、を備える。
(2. Effect of power storage unit)
According to the embodiment, the power storage unit 1 includes the power storage element 21, the power storage casing 25 that houses the power storage element 21, and the positive terminal 22 and the negative terminal 23 that are exposed to the outside of the power storage casing 25. The power storage device 20, the storage case 10 for storing the power storage device 20 therein, the heat insulating means (vacuum layer 11a, vacuum space 11b) for blocking heat flow between the outside and the inside of the storage case 10, and the storage case 10, and a non-contact power supply / reception device 30 connected to the power storage device 20 for receiving and supplying power between the external devices 50 and 60 provided outside the storage case 10 in a non-contact manner. .

よって、収納ケース10の外部と内部との間で断熱するので、収納ケース10の外部と蓄電デバイス20の蓄電筐体25との間の熱の出入りが遮断される。しかも、外部装置50,60との間の電力の受給電を非接触で行うので、正極端子22、負極端子23を介した収納ケース10の外部と蓄電要素21との間の熱伝導も遮断される。よって、収納ケース10の外気温度の影響を受けずに蓄電要素21の温度を維持でき、低温下の出力特性低下(内部抵抗の増加)や高温下の電極材料の熱劣化を回避して蓄電デバイス20の性能を適切に維持できる。   Therefore, since heat insulation is performed between the outside and the inside of the storage case 10, heat input / output between the outside of the storage case 10 and the power storage case 25 of the power storage device 20 is blocked. In addition, since power is supplied and received between the external devices 50 and 60 in a non-contact manner, heat conduction between the outside of the storage case 10 and the storage element 21 via the positive terminal 22 and the negative terminal 23 is also cut off. The Therefore, the temperature of the electricity storage element 21 can be maintained without being affected by the outside air temperature of the storage case 10, and the electricity storage device can be avoided by avoiding lowering of output characteristics (increase in internal resistance) at low temperatures and thermal deterioration of electrode materials at high temperatures. 20 performances can be maintained appropriately.

また、上記実施形態によれば、収納ケース10が、容器本体11及び蓋体12を備え、断熱手段が、容器本体11及び蓋体12の少なくとも一方に設けられた真空層11aである。よって、蓄電ユニット1の組み付け易さを損なわずに、気体分子を介した収納ケース10の内部と外部との間の熱伝導を抑制することができ、効果的に断熱できる。   Moreover, according to the said embodiment, the storage case 10 is provided with the container main body 11 and the cover body 12, and the heat insulation means is the vacuum layer 11a provided in at least one of the container main body 11 and the cover body 12. Therefore, the heat conduction between the inside and the outside of the storage case 10 via the gas molecules can be suppressed without impairing the ease of assembling the power storage unit 1, and heat insulation can be performed effectively.

なお、断熱手段は上記実施形態に記載した真空を介した手段に必ずしも限定されず、公知の断熱材等を用いることができる。具体的には、容器本体及び蓋体を適当な発泡性断熱材(ウレタンフォーム等)で形成したり、容器本体及び蓋体の内部空間に繊維系断熱材(グラスウール等)等の材料を充填したりすることができる。   In addition, a heat insulation means is not necessarily limited to the means through the vacuum described in the said embodiment, A well-known heat insulating material etc. can be used. Specifically, the container body and lid are formed of suitable foaming insulation (urethane foam, etc.), and the interior space of the container body and lid is filled with a material such as fiber insulation (glass wool, etc.). Can be.

また、上記実施形態によれば、断熱手段が、収納ケース10の内部に形成する真空空間11bである。よって、収納ケース10の内部と外部との間の熱伝導がより効果的に遮断されるとともに、蓄電デバイス20又は非接触受給電装置30と収納ケース10との間の断熱が図られ、適切な蓄電要素21の温度をより良好に維持できる。   Moreover, according to the said embodiment, the heat insulation means is the vacuum space 11b formed in the inside of the storage case 10. FIG. Therefore, the heat conduction between the inside and the outside of the storage case 10 is more effectively interrupted, and the heat insulation between the power storage device 20 or the non-contact power supply / reception device 30 and the storage case 10 is achieved. The temperature of the electrical storage element 21 can be maintained better.

また、上記実施形態によれば、収納ケース10が非磁性材料で形成され、非接触受給電装置30が電磁誘導方式又は磁気共鳴方式によって非接触受給電を行う装置とできる。よって、電磁誘導又は磁気共鳴によって発生させる相互誘導又は電磁界共鳴すべき電磁波の損失を少なくして受給電の効率を高めることができる。   Moreover, according to the said embodiment, the storage case 10 is formed with a non-magnetic material, and the non-contact power feeding / receiving device 30 can be a device that performs non-contact power feeding / receiving by an electromagnetic induction method or a magnetic resonance method. Therefore, it is possible to reduce the loss of electromagnetic waves that are to be induced by electromagnetic induction or magnetic resonance and should be electromagnetically resonated, thereby increasing the efficiency of power supply and reception.

また、上記実施形態によれば、蓄電デバイス20を、リチウムイオンキャパシタ又はリチウムイオン二次電池とできる。よって、少なくとも一方の電極(正極板212,負極板213)で酸化還元の電極反応を伴う蓄電デバイス20であり、電極反応速度の温度依存性により、外気温度によって特に低温時の蓄電デバイス20の出力が小さくなり、更に高温時の出力との増減幅が大きく電気負荷の制御が複雑化する欠点が有る。蓄電要素21の温度を所定範囲に維持することで欠点を補いながら、高エネルギー密度を有する有利なポテンシャルを生かすことができる。   Moreover, according to the said embodiment, the electrical storage device 20 can be used as a lithium ion capacitor or a lithium ion secondary battery. Therefore, the power storage device 20 is accompanied by an oxidation-reduction electrode reaction with at least one of the electrodes (the positive electrode plate 212 and the negative electrode plate 213). Due to the temperature dependence of the electrode reaction rate, the output of the power storage device 20 particularly at low temperatures due to the outside temperature. However, there is a disadvantage that the increase / decrease width with respect to the output at high temperature is large and the control of the electric load is complicated. Maintaining the temperature of the power storage element 21 in a predetermined range can make use of an advantageous potential having a high energy density while compensating for the drawbacks.

また、上記実施形態によれば、蓄電デバイス20を、電気二重層キャパシタとできる。よって、入手容易な電極材料を用いることができ、且つ、特に外気温度が高温の際の蓄電要素21材料の安定化を図ることができる。   Moreover, according to the said embodiment, the electrical storage device 20 can be used as an electrical double layer capacitor. Therefore, it is possible to use an easily available electrode material, and it is possible to stabilize the electricity storage element 21 material particularly when the outside air temperature is high.

また、例えば上記した実施形態の蓄電ユニット1を、ステアリング装置の操舵力を補助するために回転駆動されるモータの駆動補助電源として用いることができる。高出力化の要請に応えるべく、必要に応じて、バッテリとは別に設けたキャパシタの高電圧によって大電力を供給する用途に好適に用いることができる。   In addition, for example, the power storage unit 1 of the above-described embodiment can be used as a driving assist power source for a motor that is rotationally driven to assist the steering force of the steering device. In order to meet the demand for higher output, it can be suitably used for applications in which large power is supplied by a high voltage of a capacitor provided separately from the battery, if necessary.

1:蓄電ユニット、10:収納ケース、11a、12a:真空層、11b:真空空間、21:蓄電要素、20:蓄電デバイス、22:正極端子(電極端子)、23:負極端子(電極端子)、25:蓄電筐体、30:非接触受給電装置、50,60:外部装置 1: storage unit, 10: storage case, 11a, 12a: vacuum layer, 11b: vacuum space, 21: storage element, 20: storage device, 22: positive terminal (electrode terminal), 23: negative terminal (electrode terminal), 25: Storage case, 30: Non-contact power supply / reception device, 50, 60: External device

Claims (6)

蓄電要素、前記蓄電要素を内部に収納する蓄電筐体、及び、前記蓄電筐体の外部に露出する電極端子を有する一以上の蓄電デバイスと、
前記蓄電デバイスを内部に収納する収納ケースと、
前記収納ケースの外部と内部の間の熱の出入りを遮る断熱手段と、
前記収納ケースの内部に配置され、前記収納ケースの外部に設けられた外部装置との間の受給電を非接触で行い、前記蓄電デバイスに接続される非接触受給電装置と、
を備える蓄電ユニット。
A power storage element, a power storage housing for storing the power storage element therein, and one or more power storage devices having electrode terminals exposed to the outside of the power storage housing;
A storage case for storing the electricity storage device therein;
Heat insulating means for blocking heat flow between the outside and the inside of the storage case;
A non-contact power supply / reception device that is disposed inside the storage case, performs power supply / reception with an external device provided outside the storage case, and is connected to the power storage device;
A power storage unit comprising:
前記収納ケースが、容器本体及び蓋体を備え、
前記断熱手段が、前記容器本体及び前記蓋体の少なくとも一方に設けられた真空層である、請求項1に記載の蓄電ユニット。
The storage case includes a container body and a lid;
The power storage unit according to claim 1, wherein the heat insulating means is a vacuum layer provided on at least one of the container main body and the lid.
前記断熱手段が、前記収納ケースの内部に形成する真空空間である、請求項1又は2に記載の蓄電ユニット。   The power storage unit according to claim 1 or 2, wherein the heat insulating means is a vacuum space formed inside the storage case. 前記収納ケースが非磁性材料で形成され、前記非接触受給電装置が電磁誘導方式又は磁気共鳴方式によって非接触受給電を行う装置である、請求項1〜3のいずれか一項に記載の蓄電ユニット。   The electrical storage according to any one of claims 1 to 3, wherein the storage case is formed of a nonmagnetic material, and the contactless power supply / reception device is a device that performs contactless power supply / reception by an electromagnetic induction method or a magnetic resonance method. unit. 前記蓄電デバイスが、リチウムイオンキャパシタ又はリチウムイオン二次電池である、請求項1〜4のいずれか一項に記載の蓄電ユニット。   The electrical storage unit as described in any one of Claims 1-4 whose said electrical storage device is a lithium ion capacitor or a lithium ion secondary battery. 前記蓄電デバイスが、電気二重層キャパシタである、請求項1〜4のいずれか一項に記載の蓄電ユニット。   The electrical storage unit as described in any one of Claims 1-4 whose said electrical storage device is an electrical double layer capacitor.
JP2015212581A 2015-10-29 2015-10-29 Power storage unit Pending JP2017084988A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015212581A JP2017084988A (en) 2015-10-29 2015-10-29 Power storage unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015212581A JP2017084988A (en) 2015-10-29 2015-10-29 Power storage unit

Publications (1)

Publication Number Publication Date
JP2017084988A true JP2017084988A (en) 2017-05-18

Family

ID=58712199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015212581A Pending JP2017084988A (en) 2015-10-29 2015-10-29 Power storage unit

Country Status (1)

Country Link
JP (1) JP2017084988A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022553580A (en) * 2019-10-30 2022-12-23 インダクトイーブイ インク. Contactless replaceable battery system
JP7477910B2 (en) 2019-10-30 2024-05-02 インダクトイーブイ インク. Contactless replaceable battery system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05275111A (en) * 1992-03-24 1993-10-22 Ngk Insulators Ltd Assembled-type battery
JP2004355861A (en) * 2003-05-27 2004-12-16 Mitsubishi Heavy Ind Ltd Battery module and battery system
JP2008192622A (en) * 2004-07-09 2008-08-21 Mitsubishi Heavy Ind Ltd Heat-insulated container, and battery having the same
US20120141851A1 (en) * 2010-12-06 2012-06-07 Suyu Hou System and method for enclosing an energy storage device
JP2013145649A (en) * 2012-01-13 2013-07-25 Nissan Motor Co Ltd Method for manufacturing electric device pack or electric device module and electric device pack or electric device module manufactured thereby
JP2015186410A (en) * 2014-03-26 2015-10-22 日立マクセル株式会社 Power supply having non-contact power transmission means

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05275111A (en) * 1992-03-24 1993-10-22 Ngk Insulators Ltd Assembled-type battery
JP2004355861A (en) * 2003-05-27 2004-12-16 Mitsubishi Heavy Ind Ltd Battery module and battery system
JP2008192622A (en) * 2004-07-09 2008-08-21 Mitsubishi Heavy Ind Ltd Heat-insulated container, and battery having the same
US20120141851A1 (en) * 2010-12-06 2012-06-07 Suyu Hou System and method for enclosing an energy storage device
JP2013145649A (en) * 2012-01-13 2013-07-25 Nissan Motor Co Ltd Method for manufacturing electric device pack or electric device module and electric device pack or electric device module manufactured thereby
JP2015186410A (en) * 2014-03-26 2015-10-22 日立マクセル株式会社 Power supply having non-contact power transmission means

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022553580A (en) * 2019-10-30 2022-12-23 インダクトイーブイ インク. Contactless replaceable battery system
JP7477910B2 (en) 2019-10-30 2024-05-02 インダクトイーブイ インク. Contactless replaceable battery system

Similar Documents

Publication Publication Date Title
US9293785B2 (en) Lithium ion secondary battery, vehicle, and battery mounting device
JP3997370B2 (en) Non-aqueous secondary battery
JP6086240B2 (en) Non-aqueous electrolyte battery and manufacturing method thereof
CN104067411A (en) Secondary battery
JP2019053862A (en) Laminated electrode body and power storage element
JP5989405B2 (en) Power supply
JP5603649B2 (en) Secondary battery and solar power generation system, wind power generation system, and vehicle equipped with the secondary battery
JP5236199B2 (en) Non-aqueous secondary battery
JP5470335B2 (en) Winding type secondary battery
JP5670168B2 (en) Power storage cell and power storage device
JP5415009B2 (en) Power storage device module
JP4009803B2 (en) Non-aqueous secondary battery
KR20130122998A (en) Secondary battery having novel electrode tap-lead joint portion
JP2013118098A (en) Electrode body for power storage device, power storage device, and vehicle
JP3997369B2 (en) Manufacturing method of non-aqueous secondary battery
CN108886118A (en) Utilize the battery unit manufacturing equipment of induction heating
KR102253783B1 (en) Battery Cell Interconnection Board Comprising Bus-bar Having Coupling Structure
JP2002298827A (en) Nonaqueous secondary battery
JP2011216382A (en) Capacitor
JP2017084988A (en) Power storage unit
KR20140089455A (en) Secondary Battery Assembly
JP4092543B2 (en) Non-aqueous secondary battery
JP4009802B2 (en) Non-aqueous secondary battery and manufacturing method thereof
JP5831213B2 (en) Secondary battery, vehicle
JP5646944B2 (en) Secondary battery and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190830

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200114