JP4148035B2 - Steel bar and wire rod excellent in machinability and low magnetic field magnetic properties, and method for producing the same - Google Patents

Steel bar and wire rod excellent in machinability and low magnetic field magnetic properties, and method for producing the same Download PDF

Info

Publication number
JP4148035B2
JP4148035B2 JP2003166384A JP2003166384A JP4148035B2 JP 4148035 B2 JP4148035 B2 JP 4148035B2 JP 2003166384 A JP2003166384 A JP 2003166384A JP 2003166384 A JP2003166384 A JP 2003166384A JP 4148035 B2 JP4148035 B2 JP 4148035B2
Authority
JP
Japan
Prior art keywords
less
machinability
magnetic field
steel
low magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003166384A
Other languages
Japanese (ja)
Other versions
JP2005002399A (en
Inventor
明博 松崎
昌義 石田
浩 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2003166384A priority Critical patent/JP4148035B2/en
Publication of JP2005002399A publication Critical patent/JP2005002399A/en
Application granted granted Critical
Publication of JP4148035B2 publication Critical patent/JP4148035B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

【0001】
【発明の属する技術分野】
本発明は、自動車および家電製品等の電装部品等に使用される珪素含有の棒鋼・線材およびその製造方法に関し、特にこれら部品の製造過程で要求される被削性および製品段階で要求される低磁場磁気特性の有利な改善を図ったものである。
【0002】
【従来の技術】
自動車および家電製品等の電装部品等の磁気回路を構成する部材としては、磁界に順応し易い珪素含有鋼材が使用される。というのは、これらの部材には、小さな外部磁場によって容易に磁化し、初期透磁率が高いという磁気特性が要求されるからである。
【0003】
これらの鋼材を製造するに際しては、棒鋼・線材に熱間圧延した後、伸線や鍛造などの冷間加工および切削加工を行い、最終成形完了後に磁気焼鈍等が施されるのが一般的であった。
しかしながら、近年、省エネルギーの観点から、被削性の一層の改善に対する要求が高まりつつある。すなわち、被削性の良好な珪素含有棒鋼・線材の開発が望まれていた。
【0004】
一方、これら部材に要求される磁気応答性を確保するためには、低磁界での磁束密度、例えば磁界:100 A/m 時における磁束密度の高い鋼材が有効である。
【0005】
しかしながら、上記のような被削性と低磁場磁気特性とは、鋼材の化学成分の観点からは相反する特性である。すなわち、鋼の被削性を向上させるためには、Siのような固溶強化元素を低減し、鋼を軟質化させることが有効であるが、Siの低減は磁気特性の観点からは好ましくない。また、MnSのような硫化物や鉛を鋼中に分散させ、切削時における切削抵抗の低下させると共に、切り屑処理性を向上させることが被削性改善にとっては極めて有効であるが、これらの元素は磁気特性を大きく阻害する。また、特に鉛は、環境、人体への悪影響もあり、好ましくない。
【0006】
また、特許文献1には、鋼中に黒鉛を含有させて被削性を向上させた快削性電磁鋼が提案されている。
しかしながら、特許文献1に開示された快削性電磁鋼では、低磁界での磁束密度は必ずしも高くなく、低磁場磁気特性は良好とは云えなかった。さらに、この快削性電磁鋼では、黒鉛を十分に析出させて被削性を向上させるためには、長時間の黒鉛化処理を必要とし、生産性が阻害される点にも問題を残していた。
【0007】
【特許文献1】
特公昭54−11769 号公報
【0008】
【発明が解決しようとする課題】
上述したとおり、電装部品として、被削性と低磁場磁気特性の両特性を具備した鋼材は、現在までのところ見当たらず、その開発が望まれていた。
本発明は、上記の問題を有利に解決するもので、製造過程での被削性が高く、かつ製品において優れた低磁場磁気特性を有する珪素含有棒鋼・線材を、その有利な製造方法と共に提案することを目的とする。
【0009】
【課題を解決するための手段】
さて、発明者らは、上記の目的を達成すべく、低磁界で大きな磁束密度が得られ、しかも黒鉛化処理時間を短縮できる成分組成について鋭意研究を重ねた結果、
(1) 鋼中に適量のPを含有させることで、低磁界での磁束密度が向上する、
(2) 鋼中に存在する炭素の大部分を黒鉛とすることによって、被削性が格段に向上する、
(3) 鋼中のMn量を低減し、さらには鋼中に適量のBNを析出させることにより、黒鉛化処理時間を短縮することができ、生産性が格段に向上する
との知見を得た。
本発明は、上記の知見に立脚するものである。
【0010】
【課題を解決するための手段】
すなわち、本発明の要旨構成は次のとおりである。
1.質量%で
C:0.10〜0.50%、
Si:0.5 〜3.5 %、
Mn:0.05%未満、
P:0.010 〜0.10%、
Al:0.35%以下、
N:0.010 %以下、
S:0.006 %以下および
O:0.015 %以下
を含有し、残部はFeおよび不可避的不純物の組成になり、さらに鋼中炭素の95%以上を黒鉛としたことを特徴とする被削性および低磁場磁気特性に優れた棒鋼・線材。
【0011】
2.質量%で
C:0.10〜0.50%、
Si:0.5 〜3.5 %、
Mn:0.05%未満、
P:0.010 〜0.10%、
Al:0.35%以下、
B:0.0010〜0.0030%、
N:0.002 〜0.010 %、
S:0.006 %以下および
O:0.015 %以下
を含有し、残部はFeおよび不可避的不純物の組成になり、さらに鋼中炭素の95%以上を黒鉛としたことを特徴とする被削性および低磁場磁気特性に優れた棒鋼・線材。
【0012】
3.質量%で
C:0.10〜0.50%、
Si:0.5 〜3.5 %、
Mn:0.05%未満、
P:0.010 〜0.10%、
Al:0.35%以下、
N:0.010 %以下、
S:0.006 %以下および
O:0.015 %以下
を含有し、残部はFeおよび不可避的不純物の組成になる鋼材を、熱間加工により棒鋼または線材とし、あるいはさらに成形加工を施したのち、 600〜720 ℃で15〜30時間の黒鉛化処理を施すことを特徴とする被削性および低磁場磁気特性に優れた棒鋼・線材の製造方法。
【0013】
4.質量%で
C:0.10〜0.50%、
Si:0.5 〜3.5 %、
Mn:0.05%未満、
P:0.010 〜0.10%、
Al:0.35%以下、
B:0.0010〜0.0030%、
N:0.002 〜0.010 %、
S:0.006 %以下および
O:0.015 %以下
を含有し、残部はFeおよび不可避的不純物の組成になる鋼材を、熱間加工により棒鋼または線材とし、あるいはさらに成形加工を施したのち、 600〜720 ℃で5〜15時間の黒鉛化処理を施すことを特徴とする被削性および低磁場磁気特性に優れた棒鋼・線材の製造方法。
【0014】
【発明の実施の形態】
以下、本発明を具体的に説明する。
まず、本発明において鋼の成分組成を上記の範囲に限定した理由について説明する。なお、成分に関する「%」表示は特に断らない限り質量%を意味するものとする。
C:0.10〜0.50%
Cは、被削性の向上に有効な黒鉛を形成する基本元素であり、その効果を発現させるためには0.10%以上の添加が必要である。しかしながら、多すぎると低磁場磁気特性の劣化を招くので,上限は0.50%とした。
【0015】
Si:0.5 〜3.5 %
Siは、鋼の低磁場域での磁束密度および鉄損を向上させるのに有効な元素であり、そのためには0.50%以上の含有を必要とするが、一方でSi量が多すぎると固溶強化により鋼の被削性が低下するので、上限は3.50%とした。
【0016】
Mn:0.05%未満
Mnは、セメンタイトを安定化し、黒鉛化を阻害する元素である。そのため、セメンタイトを残留させて低磁場磁気特性を劣化させる。また、セメンタイトは硬質なため、被削性も劣化させる。さらに、黒鉛化が遅延することも被削性に不利となる。従って、Mnの含有は極力低減することが望ましいが、0.05%未満であれば許容できる。
【0017】
P:0.010 〜0.10%
Pは、鋼の低磁場域での磁束密度の向上に有用な元素であり、そのためには少なくとも 0.010%の含有を必要とするが、一方でP量が多すぎると固溶強化により鋼の冷間加工性が低下するので、上限は0.10%とした。
【0018】
Al:0.35%以下
Alは、鋼の低磁場域での磁束密度を向上させるのに有効な元素であるが、多量に段有させると固溶強化により鋼の冷間加工性が低下するので、Alは0.35%以下に限定した。
【0019】
N:0.010 %以下
Nは、多すぎると固溶強化、歪み時効等によって低磁場磁気特性の劣化を引き起こすので、上限を 0.010%とした。
【0020】
S:0.006 %以下
Sは、硫化物系介在物を形成して延性を低下させる他、低磁場磁気特性にも悪影響を及ぼすので、極力低減させることが望ましいが、0.006 %以下であれば許容できる。
【0021】
O:0.015 %以下
Oは、鋼の清浄化に有害なだけでなく、低磁場磁気特性を低下させるので、極力低減させることが望ましいが、0.015 %以下であれば許容できる。
【0022】
以上、必須成分について説明したが、本発明では、さらにBを適量のNと同時に含有させることによって、さらに被削性に優れた棒鋼・線材を提供することができる。この場合の、NおよびBの好適成分組成範囲について説明する。
【0023】
B:0.0010〜0.0030%
Bは、Nと結合してBNを形成するが、このBNが黒鉛の析出サイトとして有効に寄与する。ここに、適量のBNを形成させるには、少なくとも0.0010%のB含有を必要とするが、B量が多すぎると過剰Bが低磁場磁気特性を低下させるので、Bの上限は0.0030%とした。
【0024】
N:0.002 〜0.010 %
Nは、上述したとおり、Bと結合してBNを形成し、これが黒鉛の析出サイトとして有効に寄与する。従って、BとNの同時添加は、鋼の黒鉛化を促進させるだけでなく、黒鉛の微細分散化も促進させ、その結果、被削性の向上および黒鉛化処理時間の短縮化が同時に達成される。
しかしながら、N量が 0.002%に満たないとその添加効果に乏しく、一方 0.010%を超えると低磁場磁気特性の劣化を招くので、Bを添加する場合のN量は 0.002〜0.010 %の範囲とすることが重要である。
【0025】
本発明において、製造方法については、後述する黒鉛化処理時間を除いて、特に制限されることはなく、常法に従って行えば良い。
例えば、転炉精錬後、鋳造し、必要サイズの棒鋼・線材に熱間加工したのち、黒鉛化処理を施す。また、上記の棒鋼・線材を、さらに熱間鍛造により部品形状に成形したのち、黒鉛化処理を施してもよい。
次に、黒鉛化処理に際しては、BNを含まない場合は 600〜720 ℃で15〜30時間の処理とする。
これに対し、BNを含有する場合は、このBNが黒鉛の析出サイトとして機能し、鋼の黒鉛化が促進されるので、上述した従来の場合よりも短時間、すなわち 600〜720 ℃で5〜15時間の短時間処理で済む。
かくして、鋼中の炭素の95%以上を黒鉛とすることができる。
【0026】
【実施例】
表1に示す成分組成になる鋼材を、150 mm角ビレットに熱間鍛造した後、1100℃に加熱後、直径:50mmの棒鋼に圧延した。ついで、鋼中のセメンタイトを黒鉛にするために、表2に示す種々の条件で黒鉛化処理を施した。
かくして得られた棒鋼の被削性および低磁場磁気特性について調べた結果を、表2に併記する。
また、表2には、黒鉛化率と95%黒鉛化達成時間について調べた結果も併せて示す。
なお、棒鋼の被削性は、超硬ドリルを用いて、深さ:20mmの穴あけ加工(無潤滑)を連続して繰り返し行い、切削不能になるまでの穴あけ個数で評価した。
また、低磁場磁気特性は、磁気的応答性の指標として、棒鋼から外径:45mmφ、内径:33mmφ、高さ:5mmのリング状試験片を作製し、700 ℃,1時間の焼鈍後、印加磁界:100 A/m の時の磁束密度(B1 )を測定し、この値で評価した。
【0027】
【表1】

Figure 0004148035
【0028】
【表2】
Figure 0004148035
【0029】
表2に示したとおり、発明例はいずれも、工具寿命は良好であり、また低磁場域での磁束密度も高い値を示している。
特に、適量のBとNを複合含有させたNo.4, 5, 6はいずれも、黒鉛化処理時間を短縮した上で、良好な被削性および低磁場磁気特性を得ることができた。
これに対し、黒鉛化処理時間が短すぎて黒鉛化率が本発明の範囲外となった比較鋼(No.3)は、被削性および低磁場磁気特性のいずれもが低下した。
また、C量が本発明の範囲よりも少ない比較例(No.7)は、黒鉛量の減少により工具寿命が低下している。
さらに、C量が本発明の範囲よりも多い比較例(No.8)は、被削性は良好であったが、低磁場磁気特性の劣化を招いた。
また、黒鉛化処理時間が短すぎて黒鉛化率が本発明の範囲外となった比較例(No.9)は、被削性および低磁場磁気特性のいずれもが低下している。
さらに、Bを添加した場合のN量が本発明(請求項2)の下限に満たない比較例(No.10)は、被削性は良好であったが、黒鉛化処理に長時間を要した。また、固溶Bが残留したため、低磁場磁気特性も劣っていた。
また、P量が本発明の下限に満たない比較例(No.11)は、被削性は良好であったが、低磁場磁気特性に劣っていた。
さらに、Mn量が本発明の上限を超えた比較例(No.12)は、黒鉛化に長時間を必要とした。そのため、黒鉛化時間を短縮しようとすると、黒鉛化が不十分となり、被削性および低磁場磁気特性が共に劣化した。
【0030】
【発明の効果】
かくして、本発明によれば、自動車や家電製品等の電装部品等に適した被削性と低磁場磁気特性に兼ね備える珪素含有棒鋼・線材を安定して得ることができる。
また、本発明によれば、鋼中に適量のBNを析出させることにより、黒鉛化時間を有利に短縮することができ、その結果、生産性の大幅な向上を達成することができる。[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to a silicon-containing steel bar / wire used for electrical parts such as automobiles and home appliances, and a method for producing the same, and in particular, the machinability required in the production process of these parts and the low required in the product stage. This is an advantageous improvement of the magnetic field magnetic characteristics.
[0002]
[Prior art]
A silicon-containing steel material that easily adapts to a magnetic field is used as a member constituting a magnetic circuit such as an electrical component such as an automobile or home appliance. This is because these members are required to have magnetic properties that are easily magnetized by a small external magnetic field and have a high initial permeability.
[0003]
When manufacturing these steel materials, it is common to hot-roll them into steel bars and wires, and then to perform cold working and cutting such as wire drawing and forging, and magnetic annealing etc. are performed after final forming is completed. there were.
However, in recent years, there is an increasing demand for further improvement of machinability from the viewpoint of energy saving. That is, the development of silicon-containing steel bars and wires with good machinability has been desired.
[0004]
On the other hand, in order to ensure the magnetic response required for these members, a steel material having a high magnetic flux density at a low magnetic field, for example, a magnetic flux density at a magnetic field of 100 A / m is effective.
[0005]
However, the machinability and the low magnetic field magnetic properties as described above are contradictory properties from the viewpoint of the chemical composition of the steel material. In other words, in order to improve the machinability of steel, it is effective to reduce solid solution strengthening elements such as Si and soften the steel, but reduction of Si is not preferable from the viewpoint of magnetic properties. . In addition, it is very effective for improving machinability to disperse sulfides such as MnS and lead in steel, to reduce cutting resistance during cutting, and to improve chip disposal. Elements greatly impair magnetic properties. In particular, lead is not preferable because it has an adverse effect on the environment and the human body.
[0006]
Patent Document 1 proposes a free-cutting electrical steel in which machinability is improved by incorporating graphite into the steel.
However, in the free-cutting electrical steel disclosed in Patent Document 1, the magnetic flux density in a low magnetic field is not necessarily high, and the low magnetic field magnetic characteristics cannot be said to be good. Furthermore, in this free-cutting electrical steel, in order to sufficiently precipitate graphite and improve machinability, a long-time graphitization treatment is required, and there is a problem in that productivity is hindered. It was.
[0007]
[Patent Document 1]
Japanese Patent Publication No. 54-11769 [0008]
[Problems to be solved by the invention]
As described above, a steel material having both machinability and low magnetic field magnetic properties as an electrical component has not been found so far, and its development has been desired.
The present invention advantageously solves the above problems, and proposes a silicon-containing steel bar / wire material having high machinability in the manufacturing process and having excellent low-field magnetic properties in the product, together with its advantageous manufacturing method. The purpose is to do.
[0009]
[Means for Solving the Problems]
Now, in order to achieve the above object, the inventors have conducted extensive research on a component composition capable of obtaining a large magnetic flux density with a low magnetic field and shortening the graphitization treatment time.
(1) Inclusion of an appropriate amount of P in steel improves the magnetic flux density in a low magnetic field.
(2) By making most of the carbon present in the steel graphite, the machinability is significantly improved.
(3) The knowledge that the amount of Mn in the steel was reduced and the graphitization treatment time could be shortened by precipitating an appropriate amount of BN in the steel and the productivity was significantly improved was obtained.
The present invention is based on the above findings.
[0010]
[Means for Solving the Problems]
That is, the gist configuration of the present invention is as follows.
1. C: 0.10 to 0.50% in mass%,
Si: 0.5-3.5%
Mn: less than 0.05%,
P: 0.010 to 0.10%,
Al: 0.35% or less,
N: 0.010% or less,
Machinability and low magnetic field characterized by containing S: 0.006% or less and O: 0.015% or less, the balance being Fe and inevitable impurities, and more than 95% of carbon in steel being graphite. Steel bars and wires with excellent magnetic properties.
[0011]
2. C: 0.10 to 0.50% in mass%,
Si: 0.5-3.5%
Mn: less than 0.05%,
P: 0.010 to 0.10%,
Al: 0.35% or less,
B: 0.0010 to 0.0030%,
N: 0.002 to 0.010%,
Machinability and low magnetic field characterized by containing S: 0.006% or less and O: 0.015% or less, the balance being Fe and inevitable impurities, and more than 95% of carbon in steel being graphite. Steel bars and wires with excellent magnetic properties.
[0012]
3. C: 0.10 to 0.50% in mass%,
Si: 0.5-3.5%
Mn: less than 0.05%,
P: 0.010 to 0.10%,
Al: 0.35% or less,
N: 0.010% or less,
A steel material containing S: 0.006% or less and O: 0.015% or less, with the balance being Fe and inevitable impurities, is converted into a bar or wire by hot working, or after further forming, 600 to 720 A method for producing a bar / wire excellent in machinability and low magnetic field magnetic characteristics, characterized by performing graphitization treatment at 15 ° C. for 15 to 30 hours.
[0013]
4). C: 0.10 to 0.50% in mass%,
Si: 0.5-3.5%
Mn: less than 0.05%,
P: 0.010 to 0.10%,
Al: 0.35% or less,
B: 0.0010 to 0.0030%,
N: 0.002 to 0.010%,
A steel material containing S: 0.006% or less and O: 0.015% or less, with the balance being Fe and inevitable impurities, is converted into a bar or wire by hot working, or after further forming, 600 to 720 A method for producing a steel bar / wire excellent in machinability and low magnetic field magnetic characteristics, characterized by performing a graphitization treatment at 5 ° C. for 5 to 15 hours.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be specifically described below.
First, the reason why the composition of steel is limited to the above range in the present invention will be described. Unless otherwise specified, “%” in relation to ingredients means mass%.
C: 0.10 to 0.50%
C is a basic element that forms graphite effective in improving machinability, and in order to exhibit the effect, addition of 0.10% or more is necessary. However, if the amount is too large, the low magnetic field magnetic properties are deteriorated, so the upper limit was set to 0.50%.
[0015]
Si: 0.5-3.5%
Si is an element effective for improving the magnetic flux density and iron loss in the low magnetic field region of steel, and for that purpose, it must contain 0.50% or more. On the other hand, if the amount of Si is too large, it is a solid solution. Since the machinability of steel decreases due to strengthening, the upper limit was made 3.50%.
[0016]
Mn: less than 0.05%
Mn is an element that stabilizes cementite and inhibits graphitization. Therefore, cementite remains and deteriorates the low magnetic field magnetic properties. Moreover, since cementite is hard, machinability is also deteriorated. Furthermore, delaying graphitization is also disadvantageous for machinability. Therefore, it is desirable to reduce the content of Mn as much as possible, but it is acceptable if it is less than 0.05%.
[0017]
P: 0.010 to 0.10%
P is an element useful for improving the magnetic flux density in the low magnetic field region of steel, and for that purpose, it must contain at least 0.010%. On the other hand, if the amount of P is too large, the steel is cooled by solid solution strengthening. Since the workability is reduced, the upper limit was made 0.10%.
[0018]
Al: 0.35% or less
Al is an effective element for improving the magnetic flux density in the low magnetic field region of steel. However, if stepped in a large amount, the cold workability of steel decreases due to solid solution strengthening, so Al is 0.35% or less. Limited to.
[0019]
N: 0.010% or less If N is too much, lower magnetic field magnetic properties are deteriorated due to solid solution strengthening, strain aging, etc., so the upper limit was made 0.010%.
[0020]
S: 0.006% or less S forms sulfide inclusions to lower ductility and also adversely affects low magnetic field magnetic properties. Therefore, it is desirable to reduce it as much as possible, but 0.006% or less is acceptable. .
[0021]
O: 0.015% or less O is not only harmful to steel cleaning, but also lowers the low-field magnetic properties, so it is desirable to reduce it as much as possible, but 0.015% or less is acceptable.
[0022]
Although the essential components have been described above, in the present invention, a steel bar / wire rod having further excellent machinability can be provided by further containing B with an appropriate amount of N. The preferred component composition range of N and B in this case will be described.
[0023]
B: 0.0010-0.0030%
B combines with N to form BN, which effectively contributes as a graphite precipitation site. Here, in order to form an appropriate amount of BN, at least 0.0010% of B is required. However, if the amount of B is too large, excess B deteriorates the low magnetic field magnetic properties, so the upper limit of B is set to 0.0030%. .
[0024]
N: 0.002 to 0.010%
As described above, N combines with B to form BN, which effectively contributes as a graphite precipitation site. Therefore, simultaneous addition of B and N not only promotes graphitization of steel, but also promotes fine dispersion of graphite, and as a result, improvement of machinability and shortening of graphitization time are achieved at the same time. The
However, if the amount of N is less than 0.002%, the effect of addition is poor. On the other hand, if it exceeds 0.010%, the magnetic properties of the low magnetic field are deteriorated, so the amount of N when B is added is in the range of 0.002 to 0.010%. This is very important.
[0025]
In the present invention, the production method is not particularly limited except for the graphitization treatment time described later, and may be performed according to a conventional method.
For example, after refining the converter, it is cast, hot-worked into the required size of steel bars and wires, and then subjected to graphitization. Moreover, after shape | molding said steel bar and wire into a component shape by hot forging, you may give a graphitization process.
Next, in the graphitization treatment, when BN is not included, the treatment is performed at 600 to 720 ° C. for 15 to 30 hours.
On the other hand, when BN is contained, this BN functions as a graphite precipitation site and promotes graphitization of the steel. Short processing time of 15 hours is enough.
Thus, 95% or more of the carbon in the steel can be made graphite.
[0026]
【Example】
A steel material having the composition shown in Table 1 was hot forged into a 150 mm square billet, heated to 1100 ° C., and then rolled into a steel bar having a diameter of 50 mm. Subsequently, graphitization was performed under various conditions shown in Table 2 in order to change the cementite in the steel to graphite.
Table 2 shows the results of the investigation on the machinability and low magnetic field magnetic properties of the steel bars thus obtained.
Table 2 also shows the results of examining the graphitization rate and the 95% graphitization time.
In addition, the machinability of the steel bar was evaluated by the number of holes until cutting became impossible by continuously drilling (non-lubricating) with a depth of 20 mm using a carbide drill.
In addition, low magnetic field magnetic properties are measured by applying a ring-shaped test piece with an outer diameter of 45 mmφ, an inner diameter of 33 mmφ, and a height of 5 mm from steel bars, and annealing after annealing at 700 ° C for 1 hour. Magnetic flux density (B 1 ) at magnetic field: 100 A / m was measured and evaluated based on this value.
[0027]
[Table 1]
Figure 0004148035
[0028]
[Table 2]
Figure 0004148035
[0029]
As shown in Table 2, all of the inventive examples have a good tool life and a high magnetic flux density in a low magnetic field region.
In particular, Nos. 4, 5, and 6 containing a suitable amount of B and N were able to obtain good machinability and low magnetic field magnetic properties while shortening the graphitization time.
In contrast, the comparative steel (No. 3) in which the graphitization treatment time was too short and the graphitization rate was outside the range of the present invention, both the machinability and the low magnetic field magnetic properties were lowered.
Further, in the comparative example (No. 7) in which the C amount is less than the range of the present invention, the tool life is reduced due to the decrease in the graphite amount.
Furthermore, the comparative example (No. 8) in which the C content is larger than the range of the present invention had good machinability but caused deterioration of the low magnetic field magnetic properties.
Further, in the comparative example (No. 9) in which the graphitization treatment time is too short and the graphitization rate is outside the range of the present invention, both the machinability and the low magnetic field magnetic properties are deteriorated.
Furthermore, the comparative example (No. 10) in which the amount of N when B was added did not reach the lower limit of the present invention (Claim 2) had good machinability, but required a long time for graphitization. did. Moreover, since the solid solution B remained, the low magnetic field magnetic characteristics were also inferior.
Further, the comparative example (No. 11) in which the amount of P was less than the lower limit of the present invention had good machinability but was inferior in low magnetic field magnetic characteristics.
Furthermore, the comparative example (No. 12) in which the amount of Mn exceeded the upper limit of the present invention required a long time for graphitization. Therefore, when trying to shorten the graphitization time, graphitization became insufficient, and both machinability and low magnetic field magnetic properties deteriorated.
[0030]
【The invention's effect】
Thus, according to the present invention, it is possible to stably obtain a silicon-containing steel bar / wire material having both machinability and low magnetic field magnetic properties suitable for electric parts such as automobiles and home appliances.
Further, according to the present invention, by precipitating an appropriate amount of BN in the steel, the graphitization time can be advantageously shortened, and as a result, a significant improvement in productivity can be achieved.

Claims (4)

質量%で
C:0.10〜0.50%、
Si:0.5 〜3.5 %、
Mn:0.05%未満、
P:0.010 〜0.10%、
Al:0.35%以下、
N:0.010 %以下、
S:0.006 %以下および
O:0.015 %以下
を含有し、残部はFeおよび不可避的不純物の組成になり、さらに鋼中炭素の95%以上を黒鉛としたことを特徴とする被削性および低磁場磁気特性に優れた棒鋼・線材。
C: 0.10 to 0.50% in mass%,
Si: 0.5-3.5%
Mn: less than 0.05%,
P: 0.010 to 0.10%,
Al: 0.35% or less,
N: 0.010% or less,
Machinability and low magnetic field characterized by containing S: 0.006% or less and O: 0.015% or less, the balance being Fe and inevitable impurities, and more than 95% of carbon in steel being graphite. Steel bars and wires with excellent magnetic properties.
質量%で
C:0.10〜0.50%、
Si:0.5 〜3.5 %、
Mn:0.05%未満、
P:0.010 〜0.10%、
Al:0.35%以下、
B:0.0010〜0.0030%、
N:0.002 〜0.010 %、
S:0.006 %以下および
O:0.015 %以下
を含有し、残部はFeおよび不可避的不純物の組成になり、さらに鋼中炭素の95%以上を黒鉛としたことを特徴とする被削性および低磁場磁気特性に優れた棒鋼・線材。
C: 0.10 to 0.50% in mass%,
Si: 0.5-3.5%
Mn: less than 0.05%,
P: 0.010 to 0.10%,
Al: 0.35% or less,
B: 0.0010 to 0.0030%,
N: 0.002 to 0.010%,
Machinability and low magnetic field characterized by containing S: 0.006% or less and O: 0.015% or less, the balance being Fe and inevitable impurities, and more than 95% of carbon in steel being graphite. Steel bars and wires with excellent magnetic properties.
質量%で
C:0.10〜0.50%、
Si:0.5 〜3.5 %、
Mn:0.05%未満、
P:0.010 〜0.10%、
Al:0.35%以下、
N:0.010 %以下、
S:0.006 %以下および
O:0.015 %以下
を含有し、残部はFeおよび不可避的不純物の組成になる鋼材を、熱間加工により棒鋼または線材とし、あるいはさらに成形加工を施したのち、 600〜720 ℃で15〜30時間の黒鉛化処理を施すことを特徴とする被削性および低磁場磁気特性に優れた棒鋼・線材の製造方法。
C: 0.10 to 0.50% in mass%,
Si: 0.5-3.5%
Mn: less than 0.05%,
P: 0.010 to 0.10%,
Al: 0.35% or less,
N: 0.010% or less,
A steel material containing S: 0.006% or less and O: 0.015% or less, with the balance being Fe and inevitable impurities, is converted into a bar or wire by hot working, or after further forming, 600 to 720 A method for producing a bar / wire excellent in machinability and low magnetic field magnetic characteristics, characterized by performing graphitization treatment at 15 ° C. for 15 to 30 hours.
質量%で
C:0.10〜0.50%、
Si:0.5 〜3.5 %、
Mn:0.05%未満、
P:0.010 〜0.10%、
Al:0.35%以下、
B:0.0010〜0.0030%、
N:0.002 〜0.010 %、
S:0.006 %以下および
O:0.015 %以下
を含有し、残部はFeおよび不可避的不純物の組成になる鋼材を、熱間加工により棒鋼または線材とし、あるいはさらに成形加工を施したのち、 600〜720 ℃で5〜15時間の黒鉛化処理を施すことを特徴とする被削性および低磁場磁気特性に優れた棒鋼・線材の製造方法。
C: 0.10 to 0.50% in mass%,
Si: 0.5-3.5%
Mn: less than 0.05%,
P: 0.010 to 0.10%,
Al: 0.35% or less,
B: 0.0010 to 0.0030%,
N: 0.002 to 0.010%,
A steel material containing S: 0.006% or less and O: 0.015% or less, with the balance being Fe and inevitable impurities, is converted into a bar or wire by hot working, or after further forming, 600 to 720 A method for producing a steel bar / wire excellent in machinability and low magnetic field magnetic characteristics, characterized by performing a graphitization treatment at 5 ° C. for 5 to 15 hours.
JP2003166384A 2003-06-11 2003-06-11 Steel bar and wire rod excellent in machinability and low magnetic field magnetic properties, and method for producing the same Expired - Fee Related JP4148035B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003166384A JP4148035B2 (en) 2003-06-11 2003-06-11 Steel bar and wire rod excellent in machinability and low magnetic field magnetic properties, and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003166384A JP4148035B2 (en) 2003-06-11 2003-06-11 Steel bar and wire rod excellent in machinability and low magnetic field magnetic properties, and method for producing the same

Publications (2)

Publication Number Publication Date
JP2005002399A JP2005002399A (en) 2005-01-06
JP4148035B2 true JP4148035B2 (en) 2008-09-10

Family

ID=34092568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003166384A Expired - Fee Related JP4148035B2 (en) 2003-06-11 2003-06-11 Steel bar and wire rod excellent in machinability and low magnetic field magnetic properties, and method for producing the same

Country Status (1)

Country Link
JP (1) JP4148035B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101262516B1 (en) 2010-11-10 2013-05-08 주식회사 포스코 Wire rod, steel wire having superior magnetic property and method for manufacturing thereof

Also Published As

Publication number Publication date
JP2005002399A (en) 2005-01-06

Similar Documents

Publication Publication Date Title
CN100535164C (en) Fe-36Ni based alloy wire and manufacturing method thereof
JP5226057B2 (en) Copper alloys, copper products, electronic components and connectors
JP5490439B2 (en) Manufacturing method of titanium copper for electronic parts
JP2004143482A (en) High strength cold formed spring steel wire and its production method
JP5592600B2 (en) Bio-based Co-based alloy material for hot die forging and manufacturing method thereof
JP5059035B2 (en) Highly elastic / constant elastic alloy, its manufacturing method and precision instrument
JP4797305B2 (en) Invar alloy wire with excellent strength and twisting characteristics and manufacturing method thereof
JP2005002451A (en) Fe-Ni-Cr ALLOY FOR HEAT-RESISTANT SPRING AND PRODUCTION METHOD OF HEAT-RESISTANT SPRING
JP4148035B2 (en) Steel bar and wire rod excellent in machinability and low magnetic field magnetic properties, and method for producing the same
JP4222111B2 (en) Steel bar or wire rod excellent in machinability and low magnetic field magnetic properties and method for producing the same
JPH07228947A (en) Alloy with high strength and low thermal expansion
JP4772703B2 (en) Electromagnetic soft iron parts having excellent magnetic properties, bar wires for electromagnetic soft iron parts, and manufacturing method thereof
JP4293580B2 (en) Corson alloy for metal mold and manufacturing method thereof
JP2013044030A (en) Non-heat treated steel for hot forging excellent in machinability
JP4103513B2 (en) Extremely low carbon steel wire rod with excellent cold workability and magnetic properties
JP3871894B2 (en) Method for producing high-strength, low-thermal-expansion alloy with excellent ductility
JP3563311B2 (en) Copper alloy electrode material for resistance welding and method for producing the same
JP3907986B2 (en) Method for producing case-hardened steel with excellent cold workability and grain size characteristics
JP4347033B2 (en) Manufacturing method of steel for pre-hardened mold
JPWO2014126012A1 (en) Method for producing martensitic steel
JPH04329824A (en) Production of martensitic stainless steel for cold forging
CN108866422A (en) A kind of high-plasticity screw-thread steel and preparation method thereof
JP4266336B2 (en) Soft magnetic steel material excellent in hot forgeability, magnetic properties and machinability, soft magnetic steel parts excellent in magnetic properties and manufacturing method thereof
JP7355234B2 (en) electromagnetic soft iron
JP4920144B2 (en) Steel for constant velocity joint outer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080603

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080616

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4148035

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130704

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees