JP4147729B2 - Resin-sealed semiconductor device and manufacturing method thereof - Google Patents

Resin-sealed semiconductor device and manufacturing method thereof Download PDF

Info

Publication number
JP4147729B2
JP4147729B2 JP2000204813A JP2000204813A JP4147729B2 JP 4147729 B2 JP4147729 B2 JP 4147729B2 JP 2000204813 A JP2000204813 A JP 2000204813A JP 2000204813 A JP2000204813 A JP 2000204813A JP 4147729 B2 JP4147729 B2 JP 4147729B2
Authority
JP
Japan
Prior art keywords
circuit board
printed circuit
semiconductor pellet
resin
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000204813A
Other languages
Japanese (ja)
Other versions
JP2002026170A (en
Inventor
憲吾 武政
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP2000204813A priority Critical patent/JP4147729B2/en
Publication of JP2002026170A publication Critical patent/JP2002026170A/en
Application granted granted Critical
Publication of JP4147729B2 publication Critical patent/JP4147729B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92247Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a wire connector

Landscapes

  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は,樹脂封止型半導体装置及びその製造方法に関する。
【0002】
【従来の技術】
一般に,従来の樹脂封止型半導体装置の構造は,図8に示すように,プリント基板上601に絶縁接着剤619を介して半導体ペレット602が積載され半導体ぺレット602とプリント基板601とが,金属ワイヤ603を介して電気的に接続される。また,金属ワイヤ603と半導体ペレット602を保護するために絶縁樹脂604により封止されている。
【0003】
かかる従来の樹脂封止型半導体装置の製造方法を図9に基づいて説明する。
【0004】
まず,図9(a)に示すように,プリント基板601上に絶縁接着剤619を塗布する。次いで,図9(b)に示すように,プリント基板601に塗布された絶縁接着剤619上に半導体ペレット602を積載する。
【0005】
さらに,図9(c)に示すように,半導体ペレット602とプリント基板601とを電気的に導通するために金属ワイヤ603を接続する。最後に,図9(d)に示すように,金属ワイヤ603と半導体ペレット602を保護するため絶縁樹脂604により,金属ワイヤ603と半導体ペレット602を封止する。
【0006】
【発明が解決しようとする課題】
しかしながら,従来の樹脂封止型半導体装置及び製造方法では,以下のような問題があった。
【0007】
〔1〕半導体ペレットはプリント基板上に載置され,半導体ペレット裏面はプリント基板と電気的に接続されないので,半導体ペレットの裏面電位を制御することができない。
〔2〕例えば略350μm厚さの半導体ペレット上に金属ワイヤが接続されて,例えば略200μm高さの凸部が形成されるので,半導体装置全体の厚さが増大する。
〔3〕半導体ペレットを接着するための接着剤が例えば熱などの衝撃により樹脂界面で剥離し,半導体装置の信頼性が低下する。
〔4〕金属ワイヤを使用しているため,樹脂を塗布する際の負荷などに起因して配線が変形し,隣接する配線と接触して電気的なショートが発生する。
〔5〕半導体ペレットよりも広い範囲で塗布される絶縁接着剤は,半導体ペレットの接着圧力により不安定な形状で拡大してしまうので,プリント基板側の金属ワイヤの接続を,半導体ペレットから例えば略0.8mm以上離隔した位置でおこなわなければならない。このため,プリント基板の配線を形成できない部分が増大する。
【0008】
したがって,本発明の課題は,上記問題を解決して,半導体ペレット裏面を制御し,かつ,半導体装置の厚さを低減することが可能な新規かつ改良された樹脂封止型半導体装置及びその製造方法を提供することにある。
【0009】
【課題を解決するための手段】
記課題を解決するため,請求項に記載の発明のように,プリント基板の所定位置に半導体ペレットを挿入するための凹部溝あるいは貫通孔が形成され,前記凹部溝あるいは前記貫通孔に挿入された前記半導体ペレット表面は金属ワイヤを介して前記プリント基板と電気的に接続され,かつ,前記半導体ペレット裏面は導電配線が形成される導電配線テープを介して前記プリント基板と電気的に接続され,前記半導体ペレット及び前記金属ワイヤ及び前記導電配線テープが絶縁樹脂で封止されていることを特徴とする樹脂封止型半導体装置が提供される。
【0010】
本項記載の発明では,半導体ペレットの裏面電位を制御することができると共に,プリント基板の貫通孔に挿入した半導体ペレット裏面を導電性テープにより電気的に接続するので,本項記載の発明によらない半導体装置と比較して,さらに厚さ低減することができる。さらに,接着剤をプリント基板上に塗布しないので,熱応力による接着剤の剥離がなく,半導体ペレット裏面から電気的導通を図ることができる。
【0011】
また,上記課題を解決するため,請求項に記載の発明のように,プリント基板の所定位置に凹部溝あるいは貫通孔が形成され,前記凹部溝あるいは前記貫通孔に挿入された前記半導体ペレット表裏両面共に,導電配線が形成される導電配線テープを介して前記プリント基板と電気的に接続され,前記半導体ペレット及び前記導電配線テープが絶縁樹脂で封止されていることを特徴とする樹脂封止型半導体装置が提供される。
【0012】
本項記載の発明では,半導体ペレットの裏面電位を制御することができると共に,プリント基板の貫通孔に挿入した半導体ペレット表裏両面を導電性テープにより電気的に接続するので,請求項に記載の半導体装置と比較して,さらに厚さ低減することができる。さらに,接着剤をプリント基板上に塗布しないので,熱応力による接着剤の剥離がなく,半導体ペレット両面から電気的導通を図ることができる。さらに配線が固定がされている導電性テープにより半導体ペレットとプリント基板の電気的接続を図るため隣接する配線が変形して電気的にショートすることがない。
【0013】
また,上記課題を解決するため,請求項に記載の発明のように,プリント基板の所定位置に貫通孔を形成する工程と,前記貫通孔を覆い,かつ前記貫通孔内部方向が粘着面となるように粘着テープを前記プリント基板の裏面に貼り付ける工程と,前記半導体ペレットを前記プリント基板の前記貫通孔に挿入して,前記粘着テープの前記粘着面に前記半導体ペレットを接着する工程と,選択的に,前記粘着テープを介して前記貫通孔に突起形状物を挿入して前記半導体ペレットを所定高さ位置に固定する,あるいは平坦なステージで前記半導体ペレットを所定位置に固定する工程と,前記半導体ペレット表面と前記プリント基板とを金属ワイヤで電気的に接続する工程と,前記半導体ペレット表面と前記金属ワイヤとを絶縁樹脂により封止する工程と,前記プリント基板に貼り付けられた前記粘着テープを剥ぎ取る工程と,前記プリント基板の上下を反対にした後,前記プリント基板裏面の所定位置にメタルマスクを貼り付け,前記半導体ペレット裏面と前記プリント基板裏面とが電気的に導通するように印刷法により所定範囲に導電樹脂を塗布する工程と,前記導電樹脂の充填により形成された凸部をスキージにより平坦にする工程と,を有することを特徴とする樹脂封止型半導体装置の製造方法が提供される。
【0014】
本項記載の発明では,絶縁接着剤を使用せずに半導体ペレット表面とプリント基板とを金属ワイヤで配線できるので,絶縁樹脂を塗布する面積を低減することができる。この結果,半導体装置の全体面積も小さくすることができる。
【0015】
また,上記課題を解決するため,請求項に記載の発明のように,プリント基板の所定位置に貫通孔を形成する工程と,前記貫通孔を覆い,かつ前記貫通孔内部方向が粘着面となるように粘着テープを前記プリント基板の裏面に貼り付ける工程と,前記半導体ペレットを前記プリント基板の前記貫通孔に挿入して,前記粘着テープの前記粘着面に前記半導体ペレットを接着する工程と,選択的に,前記粘着テープを介して前記貫通孔に突起形状物を挿入して前記半導体ペレットを所定高さ位置に固定する,あるいは平坦なステージで前記半導体ペレットを所定位置に固定する工程と,前記半導体ペレット表面と前記プリント基板とを金属ワイヤで電気的に接続する工程と,前記半導体ペレット表面と前記金属ワイヤとを絶縁樹脂により封止する工程と,前記プリント基板に貼り付けられた前記粘着テープを剥ぎ取る工程と,前記プリント基板の上下を反対にした後,前記半導体ペレット裏面と前記プリント基板裏面とが電気的に導通するように,塗布法により塗布ノズルを介して所定範囲に導電樹脂を塗布する工程と,前記導電樹脂の充填により形成された凸部を研磨により平坦にする工程と,を有することを特徴とする樹脂封止型半導体装置の製造方法が提供される。
【0016】
本項記載の発明では,絶縁樹脂を塗布する面積を低減して半導体装置の全体面積も小さくすることができると共に,メタルマスクを使用せずに半導体ペレット裏面の配線を形成できるので,請求項に記載の発明と比較して,低コストで製造できる。
【0017】
【発明の実施の形態】
以下,本発明の好適な実施の形態について,添付図面を参照しながら詳細に説明する。尚,以下の説明および添付図面において,同一の機能及び構成を有する構成要素については,同一符号を付することにより,重複説明を省略する。
【0018】
まず,図1を参照しながら,樹脂封止型半導体装置の一例について説明する。図1は,一例としての樹脂封止型半導体装置の断面図である。
【0019】
まず,図1に示すように,プリント基板101の貫通孔120に半導体ペレット102が挿入されている。半導体ペレット102の表面は,プリント基板101との電気的導通を図るために金属ワイヤ103が接続されている。また,金属ワイヤ103及び半導体ペレット102の表面は,金属ワイヤ103及び半導体ペレット102を保護するため,絶縁樹脂104で封止されている。このとき,金属ワイヤの高さ106は,例えば略150〜250μmであるので,絶縁樹脂が形成される高さ107は,例えば略170〜270μmである。
【0020】
一方,プリント基板101の裏面の開放部は,導電樹脂105により封止されている。この導電樹脂105を介して,プリント基板101と半導体ペレット102の裏面とが電気的に導通されるので,半導体ペレット102裏面電位を制御することができる。プリント基板101と比較して半導体ペレット102が薄い場合には,ワイヤボンド位置の認識できるようにするため,あるいは,金属ワイヤ103とプリント基板101の配線が電気的にショートしないように,半導体ペレット102を底上げする。このとき,プリント基板101の裏面に形成される導電樹脂105の凸部厚さ108は,メタルマスクを使用して印刷法で導電樹脂を形成した場合には,例えば略100μmである。
【0021】
以上のように,図1に示した樹脂封止型半導体装置においては,半導体ペレットの裏面電位を制御することができると共に,プリント基板の貫通孔に半導体ペレットを挿入するので半導体装置の厚さは,従来構造の半導体装置と比較して例えば略2/3程度の厚さに低減することができる。
【0022】
図1に示した樹脂封止型半導体装置では,半導体ペレット裏面とプリント基板とを導電樹脂を使用して電気的導通を図っているが,次に示す樹脂封止型半導体装置では銅箔を使用する。
【0023】
以下,図2に基づいて,樹脂封止型半導体装置の他の例について説明する。図2は,樹脂封止型半導体装置の他の構成を示す断面図である。
【0024】
まず,図2に示すように,プリント基板201の貫通孔220には,プリント基板201と略同一厚さの半導体ペレット202挿入されている。半導体ペレット202の表面は,プリント基板201との電気的導通を図るために金属ワイヤ203が接続されている。また,金属ワイヤ203及び半導体ペレット202の表面は,金属ワイヤ203及び半導体ペレット202を保護するため,絶縁樹脂204で封止されている。このとき,金属ワイヤの高さ206は,例えば略150〜250μmであるので,絶縁樹脂が形成される高さ207は,例えば略170〜270μmである。
【0025】
一方,プリント基板201の裏面には,貫通孔220を覆うように銅箔209が装着されており,導電性接着剤210を介して,半導体ペレット202が接着されている。このように,半導体ペレット202の裏面は,銅箔209を介してプリント基板201と電気的に導通されるので,半導体ペレット202の裏面電位を制御することができる。なお,この銅箔209の厚さは,例えば略10μmである。
【0026】
以上のように,図2に示した樹脂封止型半導体装置においては,半導体ペレットの裏面電位を制御することができると共に,プリント基板と半導体ペレットの厚さが略同一である場合には,プリント基板裏面に装着した銅箔上に,半導体ペレットを搭載するすることができるので半導体装置の厚さは,図1の例と比較して,例えば略90μm程度の厚さを低減することができる。
【0027】
第1の実施の形態
図2に示した樹脂封止型半導体装置では,半導体ペレット裏面とプリント基板とを銅箔を使用して電気的導通を図っているが,本実施形態では導電配線が形成されている導電性テープを使用する。
【0028】
以下,図3に基づいて,第1の実施の形態を説明する。図3は,本実施形態にかかる樹脂封止型半導体装置の構成を示す断面図である。
【0029】
プリント基板301の貫通孔320には,半導体ペレット302が挿入されている。半導体ペレット302の表面は,プリント基板301との電気的導通を図るために金属ワイヤ303が接続されている。
【0030】
一方,半導体ペレット302の裏面は,導電配線が形成されている導電性テープ311が接着され,プリント基板301の表面と電気的に接続されている。また,金属ワイヤ303,半導体ペレット302,導電性テープ311を保護するため,金属ワイヤ303及び半導体ペレット302表面及び貫通孔320の内部は,絶縁樹脂304で封止されている。このとき,金属ワイヤの高さ306は,例えば略150〜250μmであるので,絶縁樹脂304が形成される高さ307は,例えば略170〜270μmである。
【0031】
以上のように,第1の実施の形態においては,半導体ペレットの裏面電位を制御することができると共に,プリント基板の貫通孔に半導体ペレットを挿入し,半導体ペレットの裏面を導電性テープを介してプリント基板と電気的な導通を図っているので,半導体装置の厚さは,図2の例と比較して,例えば略10μm程度薄くすることができる。また,接着剤をプリント基板上に塗布していないので,熱応力などにより半導体ペレットが接着剤から剥離することがなく,半導体ペレット裏面と電気的な導通を図ることができる。
【0032】
第2の実施の形態
第1の実施の形態では,半導体ペレット裏面とプリント基板とを導電配線が形成されている導電性テープを使用して電気的導通を図っているが,本実施形態では半導体ペレットの表裏両面を導電性テープを使用してプリント基板と電気的な導通を図っている。
【0033】
以下,図4に基づいて,第2の実施の形態を説明する。図4は,本実施形態にかかる樹脂封止型半導体装置の構成を示す断面図である。
【0034】
プリント基板401の貫通孔420には,半導体ペレット402が挿入されており,半導体ペレット402の表面は,プリント基板401と電気的導通を図るため,導電配線が形成される導電性テープ411が貼り付けられている。
【0035】
一方,半導体ペレット402の裏面は,導電配線が形成されている導電性テープ412が接着され,プリント基板401の表面と電気的に接続されている。また,半導体ペレット402,導電性テープ411,412を保護するため,半導体ペレット402表面及び貫通孔420の内部は,絶縁樹脂404で封止されている。このときの絶縁樹脂404の高さ407は,例えば略50μmである。
【0036】
以上のように,第2の実施の形態においては,半導体ペレットの裏面電位を制御することができると共に,プリント基板の貫通孔に半導体ペレットを挿入し,半導体ペレットの表裏両面を導電性テープを介してプリント基板と電気的な導通を図っているので,半導体装置の厚さは,第1の実施の形態と比較して,例えば略120〜220μm程度薄くすることができる。また,接着剤をプリント基板上に塗布していないので,熱応力などにより接着剤から剥離することがなく,半導体ペレット裏面と電気的に導通を図ることができる。さらに,導電配線が形成される導電性テープを介して半導体ペレットとプリント基板の電気的導通を図っているので,導電配線が変形して隣接配線と電気的にショートすることはない。
【0037】
第3の実施の形態
次いで,本実施形態にかかる半導体装置の製造方法について,図1に示した樹脂封止型半導体装置を例に,図5及び図6に基づいて説明する。図5及び図6は,本実施形態にかかる半導体装置の製造方法を説明するための工程断面図である。
【0038】
まず,図5(a)に示すように,プリント基板501の所定位置に貫通孔520を形成する。次いで,貫通孔520を覆うようにプリント基板501の裏面に粘着テープ512を貼り付ける。このとき,粘着テープ512の粘着面は,貫通孔520内部の方向となるように貼り付けられる。さらに,プリント基板501の貫通孔520に半導体ペレット502を挿入し,粘着テープ512に接着する。
【0039】
次いで,図5(b)に示すように,突起部514を有するステージ513を使用して,突起部514がプリント基板501の裏面から粘着テープ512に接着された半導体ペレット502を押し上げるように,貫通孔520内に挿入され,半導体ペレット502を底上げして所定高さの位置に固定される。
【0040】
次いで,図5(c)に示すように,半導体ペレット502の表面とプリント基板501との電気的導通を図るため,金属ワイヤ503を接続する。さらに,図5(d)に示すように,金属ワイヤ503及び半導体ペレット502を覆うように絶縁樹脂504を塗布し硬化させる。その後,図5(e)に示すように,ステージ513からプリント基板501を取り外し,さらにプリント基板501から粘着テープ512を取り除く。
【0041】
次いで,図6(a)に示すように,プリント基板501の上下を反対にする。その後,図6(b)に示すように,プリント基板501の裏面の所定位置にメタルマスク515を施した後,印刷法により,プリント基板501の裏面の開口部から,貫通孔520内部及びプリント基板501の裏面の所定範囲に導電樹脂507が塗布される。さらに,導電樹脂507が塗布されたメタルマスク515上面に沿ってスキージ516を移動して,必要以上に塗布された導電樹脂507を伸展して平坦にする。さらに,塗布された導電樹脂507を塗布し硬化させることにより,半導体ペレット502の裏面とプリント基板501とが電気的に導通される。
【0042】
さらに,図6(c)に示すように,プリント基板501からメタルマスク515を除去する。その後,図6(d)に示すように,プリント基板の上下を元に戻して,本実施形態にかかる樹脂封止型半導体装置が完成する。
【0043】
以上のように,第3の実施の形態によれば,絶縁接着剤を使用しないので,金属ワイヤのプリント基板への配線位置を半導体ペレットから例えば略0.3mm程度の位置で実行できるので,絶縁樹脂の塗布面積が小さくなる。この結果,半導体装置の面積を微小化することができる。
【0044】
第4の実施の形態
第3の実施の形態においては,プリント基板裏面の導電樹脂を印刷法により塗布しているが,本実施形態では塗布ノズルを使用して塗布法により導電樹脂を塗布する方法について説明する。
【0045】
以下,本実施形態にかかる半導体装置の製造方法について,図7に基づいて説明する。図7は,本実施形態にかかる半導体装置の製造方法を説明するための工程断面図である。なお,図5(a)〜図6(a)までの工程は,第3の実施の形態と同様であるので,その説明は省略する。
【0046】
まず,図7(a)に示すように,第3の実施の形態での図5(a)〜図6(a)に示す工程で形成されたプリント基板は,金属ワイヤ503および半導体ペレット502を覆うように絶縁樹脂504を塗布し硬化させる。
【0047】
次いで,図7(b)に示すように,塗布ノズル517により,プリント基板501の裏面の開口部から,貫通孔520内部及びプリント基板501の裏面の所定範囲に導電樹脂507が塗布される。さらに,塗布された導電樹脂507を硬化させることにより,半導体ペレット502の裏面とプリント基板501とが電気的に導通される。
【0048】
最後に,図7(c)に示すように,プリント基板501の裏面に必要以上に形成された導電樹脂507の凸部を,研磨機518により研削して,導電樹脂を平坦化する。また,図7(d)に示すように,プリント基板の上下を元に戻して,本実施形態にかかる樹脂封止型半導体装置が完成する。
【0049】
以上のように,第4の実施の形態によれば,絶縁接着剤を使用しないので,金属ワイヤのプリント基板への配線位置を半導体ペレットから例えば略0.3mm程度の位置で実行できるので,絶縁樹脂の塗布面積が小さくなる。この結果,半導体装置の面積を微小化することができる。さらに,第3の実施の形態と比較して,メタルマスクを使用しないので,製造コストの低減を図ることができる。
【0050】
以上,本発明に係る好適な実施の形態について説明したが,本発明はかかる構成に限定されない。当業者であれば,特許請求の範囲に記載された技術思想の範囲内において,各種の修正例および変更例を想定し得るものであり,それらの修正例および変更例についても本発明の技術範囲に包含されるものと了解される。
【0051】
例えば,上記図1に示した樹脂封止型半導体装置においては,プリント基板と比較して薄い半導体ペレットを使用した構成を例に挙げて説明したが,プリント基板と同等の厚さの半導体ペレットでも対応することができる。
【0052】
また,例えば,上記第1の実施の形態及び第2の実施の形態においては,貫通孔を有するプリント基板を使用した構成を例に挙げて説明したが,貫通していない凹部溝であっても実施することができる。
【0053】
また,例えば,上記第3の実施の形態及び第4の実施の形態では,突起形状のあるステージを使用した構成を例に挙げて説明したが,平坦なステージであっても実施することができる。
【0054】
【発明の効果】
半導体ペレットの裏面電位を制御することができると共に,プリント基板の貫通孔に半導体ペレットを挿入して半導体ペレットの厚さが低減されるので,半導体装置の厚さを低減することができる。絶縁接着剤を使用せずに半導体ペレット表面とプリント基板とを配線できるので,絶縁樹脂を塗布する面積を低減することができる。この結果,半導体装置の全体面積も微小化することができる。
【図面の簡単な説明】
【図1】樹脂封止型半導体装置の一例を示す断面図である。
【図2】樹脂封止型半導体装置の他の例を示す断面図である。
【図3】第1の実施の形態にかかる樹脂封止型半導体装置を示す断面図である。
【図4】第2の実施の形態にかかる樹脂封止型半導体装置を示す断面図である。
【図5】第3の実施の形態にかかる樹脂封止型半導体装置を示す製造工程を説明するための工程断面図である。
【図6】第3の実施の形態にかかる樹脂封止型半導体装置を示す製造工程を説明するための工程断面図である。
【図7】第4の実施の形態にかかる樹脂封止型半導体装置の製造工程を説明するための工程断面図である。
【図8】従来における樹脂封止型半導体装置を示す断面図である。
【図9】従来における樹脂封止型半導体装置の製造工程を説明するための工程断面図である。
【符号の説明】
101 プリント基板
102 半導体ペレット
103 金属ワイヤ
104 絶縁樹脂
105 導電樹脂
120 貫通孔
209 銅箔
210 導電性接着剤
311 導電テープ
507 導電樹脂
510 導電性接着剤
512 粘着テープ
513 ステージ
514 突起部
515 メタルマスク
516 スキージ
517 塗布ノズル
518 研磨機
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a resin-encapsulated semiconductor device and a method for manufacturing the same.
[0002]
[Prior art]
In general, the structure of a conventional resin-encapsulated semiconductor device is such that, as shown in FIG. 8, a semiconductor pellet 602 is stacked on a printed board 601 with an insulating adhesive 619 interposed between the semiconductor pellet 602 and the printed board 601. Electrical connection is made through a metal wire 603. In addition, the metal wire 603 and the semiconductor pellet 602 are sealed with an insulating resin 604 to protect them.
[0003]
A method for manufacturing such a conventional resin-encapsulated semiconductor device will be described with reference to FIG.
[0004]
First, as shown in FIG. 9A, an insulating adhesive 619 is applied on the printed circuit board 601. Next, as shown in FIG. 9B, the semiconductor pellet 602 is loaded on the insulating adhesive 619 applied to the printed circuit board 601.
[0005]
Further, as shown in FIG. 9C, a metal wire 603 is connected to electrically connect the semiconductor pellet 602 and the printed circuit board 601. Finally, as shown in FIG. 9D, the metal wire 603 and the semiconductor pellet 602 are sealed with an insulating resin 604 to protect the metal wire 603 and the semiconductor pellet 602.
[0006]
[Problems to be solved by the invention]
However, the conventional resin-encapsulated semiconductor device and manufacturing method have the following problems.
[0007]
[1] Since the semiconductor pellet is placed on the printed circuit board and the back surface of the semiconductor pellet is not electrically connected to the printed circuit board, the back surface potential of the semiconductor pellet cannot be controlled.
[2] For example, a metal wire is connected on a semiconductor pellet having a thickness of approximately 350 μm to form a convex portion having a height of approximately 200 μm, for example, so that the thickness of the entire semiconductor device is increased.
[3] The adhesive for adhering the semiconductor pellets peels off at the resin interface due to impact such as heat, and the reliability of the semiconductor device is lowered.
[4] Since a metal wire is used, the wiring is deformed due to a load at the time of applying the resin, and an electrical short circuit occurs due to contact with the adjacent wiring.
[5] Since the insulating adhesive applied in a wider range than the semiconductor pellet expands in an unstable shape due to the bonding pressure of the semiconductor pellet, the connection of the metal wire on the printed circuit board side is, for example, approximately from the semiconductor pellet. Must be performed at a position separated by 0.8 mm or more. For this reason, the part which cannot form the wiring of a printed circuit board increases.
[0008]
Accordingly, an object of the present invention is to provide a new and improved resin-encapsulated semiconductor device capable of solving the above-described problems, controlling the back surface of the semiconductor pellet, and reducing the thickness of the semiconductor device, and its manufacture. It is to provide a method.
[0009]
[Means for Solving the Problems]
To solve the above SL problem, as in the invention of claim 1, the trough or through-hole for inserting a semiconductor pellet to a predetermined position of the printed circuit board is formed, inserted in the recess grooves or the through-hole The semiconductor pellet surface is electrically connected to the printed circuit board through a metal wire, and the semiconductor pellet back surface is electrically connected to the printed circuit board through a conductive wiring tape on which conductive wiring is formed. The resin-encapsulated semiconductor device is characterized in that the semiconductor pellet, the metal wire, and the conductive wiring tape are sealed with an insulating resin.
[0010]
In the invention of this claim, wherein, it is possible to control the back surface potential of the semiconductor pellet, since the electrical connection by inserting a semiconductor pellet backside conductive tape in the through hole of the printed circuit board, depending on the invention in this section, wherein The thickness can be further reduced as compared with a semiconductor device having no semiconductor device. Furthermore, since the adhesive is not applied onto the printed circuit board, the adhesive is not peeled off due to thermal stress, and electrical conduction can be achieved from the back surface of the semiconductor pellet.
[0011]
Further, in order to solve the above-mentioned problem, as in the invention according to claim 2 , a concave groove or a through hole is formed in a predetermined position of a printed circuit board, and the semiconductor pellet front and back inserted into the concave groove or the through hole is provided. Resin sealing characterized in that both sides are electrically connected to the printed circuit board through a conductive wiring tape on which conductive wiring is formed, and the semiconductor pellet and the conductive wiring tape are sealed with an insulating resin. A type semiconductor device is provided.
[0012]
In the invention of this claim, wherein, it is possible to control the back surface potential of the semiconductor pellet, since the electrical connection by inserting the semiconductor pellet front and back surfaces of the conductive tape to the through hole of the printed circuit board, according to claim 1 Compared with a semiconductor device, the thickness can be further reduced. Furthermore, since no adhesive is applied onto the printed circuit board, the adhesive is not peeled off due to thermal stress, and electrical conduction can be achieved from both sides of the semiconductor pellet. Further, since the conductive pellet to which the wiring is fixed is used to electrically connect the semiconductor pellet and the printed board, the adjacent wiring is not deformed and is not electrically short-circuited.
[0013]
In order to solve the above-mentioned problem, as in the invention described in claim 3 , a step of forming a through hole at a predetermined position of the printed circuit board, the through hole being covered and the inside direction of the through hole being an adhesive surface Attaching the adhesive tape to the back surface of the printed circuit board so that the semiconductor pellet is inserted into the through-hole of the printed circuit board, and bonding the semiconductor pellet to the adhesive surface of the adhesive tape; Optionally, inserting a protrusion-shaped object into the through-hole via the adhesive tape and fixing the semiconductor pellet at a predetermined height position, or fixing the semiconductor pellet at a predetermined position on a flat stage; Electrically connecting the surface of the semiconductor pellet and the printed circuit board with a metal wire, and sealing the surface of the semiconductor pellet and the metal wire with an insulating resin. A step, a step of peeling off the adhesive tape affixed to the printed circuit board, a top surface of the printed circuit board is turned upside down, a metal mask is applied to a predetermined position on the back surface of the printed circuit board, A step of applying a conductive resin in a predetermined range by a printing method so that the back surface of the printed circuit board is electrically connected, and a step of flattening a convex portion formed by filling the conductive resin with a squeegee. A method for manufacturing a resin-encapsulated semiconductor device is provided.
[0014]
In the invention described in this section, since the surface of the semiconductor pellet and the printed board can be wired with a metal wire without using an insulating adhesive, the area where the insulating resin is applied can be reduced. As a result, the entire area of the semiconductor device can be reduced.
[0015]
In order to solve the above-mentioned problem, as in the invention described in claim 4 , a step of forming a through hole at a predetermined position of a printed circuit board, the through hole being covered, and the inside direction of the through hole being an adhesive surface Attaching the adhesive tape to the back surface of the printed circuit board so that the semiconductor pellet is inserted into the through-hole of the printed circuit board, and bonding the semiconductor pellet to the adhesive surface of the adhesive tape; Optionally, inserting a protrusion-shaped object into the through-hole via the adhesive tape and fixing the semiconductor pellet at a predetermined height position, or fixing the semiconductor pellet at a predetermined position on a flat stage; Electrically connecting the surface of the semiconductor pellet and the printed circuit board with a metal wire, and sealing the surface of the semiconductor pellet and the metal wire with an insulating resin. A step, a step of peeling off the adhesive tape affixed to the printed circuit board, and after turning the printed circuit board upside down, so that the back surface of the semiconductor pellet and the back surface of the printed circuit board are electrically connected, A resin-sealed mold comprising: a step of applying a conductive resin to a predetermined range via a coating nozzle by a coating method; and a step of flattening a convex portion formed by filling the conductive resin by polishing. A method for manufacturing a semiconductor device is provided.
[0016]
In the invention of this claim, wherein, it is possible to smaller overall area of the semiconductor device by reducing the area for applying the insulating resin, it is possible to form a wiring of a semiconductor pellet backside without using a metal mask, according to claim 3 Compared with the invention described in, it can be manufactured at low cost.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described in detail with reference to the accompanying drawings. In the following description and the accompanying drawings, components having the same function and configuration are denoted by the same reference numerals, and redundant description is omitted.
[0018]
First, an example of a resin-encapsulated semiconductor device will be described with reference to FIG. FIG. 1 is a cross-sectional view of a resin-encapsulated semiconductor device as an example.
[0019]
First, as shown in FIG. 1, the semiconductor pellet 102 is inserted into the through hole 120 of the printed circuit board 101. A metal wire 103 is connected to the surface of the semiconductor pellet 102 for electrical connection with the printed circuit board 101. Further, the surfaces of the metal wire 103 and the semiconductor pellet 102 are sealed with an insulating resin 104 in order to protect the metal wire 103 and the semiconductor pellet 102. At this time, since the height 106 of the metal wire is, for example, approximately 150 to 250 μm, the height 107 at which the insulating resin is formed is, for example, approximately 170 to 270 μm.
[0020]
On the other hand, the open part of the back surface of the printed circuit board 101 is sealed with a conductive resin 105. Since the printed circuit board 101 and the back surface of the semiconductor pellet 102 are electrically connected via the conductive resin 105, the back surface potential of the semiconductor pellet 102 can be controlled. When the semiconductor pellet 102 is thinner than the printed board 101, the semiconductor pellet 102 is used so that the wire bond position can be recognized, or the wiring between the metal wire 103 and the printed board 101 is not electrically short-circuited. Raise the bottom. At this time, the thickness 108 of the conductive resin 105 formed on the back surface of the printed circuit board 101 is, for example, approximately 100 μm when the conductive resin is formed by a printing method using a metal mask.
[0021]
As described above, in the resin-encapsulated semiconductor device shown in FIG. 1, the back surface potential of the semiconductor pellet can be controlled, and the semiconductor pellet is inserted into the through hole of the printed circuit board. Thus, the thickness can be reduced to about 2/3, for example, as compared with a semiconductor device having a conventional structure.
[0022]
In the resin-encapsulated semiconductor device shown in FIG. 1, a conductive resin is used between the back surface of the semiconductor pellet and the printed circuit board to achieve electrical continuity, but the following resin-encapsulated semiconductor device uses copper foil. To do.
[0023]
Hereinafter, another example of the resin-encapsulated semiconductor device will be described with reference to FIG. FIG. 2 is a cross-sectional view showing another configuration of the resin-encapsulated semiconductor device.
[0024]
First, as shown in FIG. 2, a semiconductor pellet 202 having substantially the same thickness as the printed board 201 is inserted into the through hole 220 of the printed board 201. A metal wire 203 is connected to the surface of the semiconductor pellet 202 in order to achieve electrical continuity with the printed circuit board 201. Further, the surfaces of the metal wire 203 and the semiconductor pellet 202 are sealed with an insulating resin 204 in order to protect the metal wire 203 and the semiconductor pellet 202. At this time, since the height 206 of the metal wire is, for example, approximately 150 to 250 μm, the height 207 at which the insulating resin is formed is, for example, approximately 170 to 270 μm.
[0025]
On the other hand, a copper foil 209 is attached to the back surface of the printed circuit board 201 so as to cover the through hole 220, and the semiconductor pellet 202 is bonded via a conductive adhesive 210. Thus, since the back surface of the semiconductor pellet 202 is electrically connected to the printed circuit board 201 via the copper foil 209, the back surface potential of the semiconductor pellet 202 can be controlled. The thickness of the copper foil 209 is approximately 10 μm, for example.
[0026]
As described above, in the resin-encapsulated semiconductor device shown in FIG. 2, the back surface potential of the semiconductor pellet can be controlled, and if the printed board and the semiconductor pellet have substantially the same thickness, Since the semiconductor pellet can be mounted on the copper foil mounted on the back surface of the substrate, the thickness of the semiconductor device can be reduced to about 90 μm, for example , compared with the example of FIG.
[0027]
( First embodiment )
In the resin-encapsulated semiconductor device shown in FIG. 2 , the semiconductor pellet back surface and the printed circuit board are electrically connected using copper foil, but in this embodiment, the conductive tape on which conductive wiring is formed. Is used.
[0028]
The first embodiment will be described below with reference to FIG. FIG. 3 is a cross-sectional view showing the configuration of the resin-encapsulated semiconductor device according to the present embodiment.
[0029]
A semiconductor pellet 302 is inserted into the through hole 320 of the printed board 301. A metal wire 303 is connected to the surface of the semiconductor pellet 302 for electrical connection with the printed board 301.
[0030]
On the other hand, the back surface of the semiconductor pellet 302 is electrically connected to the surface of the printed board 301 by bonding a conductive tape 311 on which conductive wiring is formed. Further, in order to protect the metal wire 303, the semiconductor pellet 302, and the conductive tape 311, the surfaces of the metal wire 303 and the semiconductor pellet 302 and the inside of the through hole 320 are sealed with an insulating resin 304. At this time, since the height 306 of the metal wire is, for example, approximately 150 to 250 μm, the height 307 where the insulating resin 304 is formed is, for example, approximately 170 to 270 μm.
[0031]
As described above, in the first embodiment , the back surface potential of the semiconductor pellet can be controlled, the semiconductor pellet is inserted into the through hole of the printed circuit board, and the back surface of the semiconductor pellet is interposed through the conductive tape. since the aim of the printed circuit board and electric conduction, the thickness of the semiconductor device can be compared to the example of FIG. 2, for example, about substantially 10μm thin. Further, since the adhesive is not applied on the printed circuit board, the semiconductor pellet does not peel off from the adhesive due to thermal stress or the like, and electrical conduction with the back surface of the semiconductor pellet can be achieved.
[0032]
( Second Embodiment )
In the first embodiment, the back surface of the semiconductor pellet and the printed circuit board are electrically connected by using a conductive tape on which conductive wiring is formed. In this embodiment, the front and back surfaces of the semiconductor pellet are conductive. The conductive tape is used for electrical continuity with the printed circuit board.
[0033]
Hereinafter, the second embodiment will be described with reference to FIG. FIG. 4 is a cross-sectional view showing the configuration of the resin-encapsulated semiconductor device according to this embodiment.
[0034]
A semiconductor pellet 402 is inserted into the through hole 420 of the printed circuit board 401, and a conductive tape 411 on which conductive wiring is formed is attached to the surface of the semiconductor pellet 402 in order to achieve electrical conduction with the printed circuit board 401. It has been.
[0035]
On the other hand, the back surface of the semiconductor pellet 402 is electrically connected to the surface of the printed circuit board 401 by bonding a conductive tape 412 on which conductive wiring is formed. Further, in order to protect the semiconductor pellet 402 and the conductive tapes 411 and 412, the surface of the semiconductor pellet 402 and the inside of the through hole 420 are sealed with an insulating resin 404. The height 407 of the insulating resin 404 at this time is approximately 50 μm, for example.
[0036]
As described above, in the second embodiment , the back surface potential of the semiconductor pellet can be controlled, the semiconductor pellet is inserted into the through hole of the printed circuit board, and both the front and back surfaces of the semiconductor pellet are interposed with the conductive tape. Therefore, the thickness of the semiconductor device can be reduced by, for example, about 120 to 220 μm as compared with the first embodiment . In addition, since the adhesive is not applied on the printed circuit board, it is not peeled off from the adhesive due to thermal stress or the like, and can be electrically connected to the back surface of the semiconductor pellet. Further, since the semiconductor pellet and the printed circuit board are electrically connected via the conductive tape on which the conductive wiring is formed, the conductive wiring is not deformed and is not electrically short-circuited with the adjacent wiring.
[0037]
( Third embodiment )
Next, a method for manufacturing the semiconductor device according to the present embodiment will be described with reference to FIGS . 5 and 6 taking the resin-encapsulated semiconductor device shown in FIG. 1 as an example. 5 and 6 are process cross-sectional views for explaining the semiconductor device manufacturing method according to the present embodiment.
[0038]
First, as shown in FIG. 5A, a through-hole 520 is formed at a predetermined position of the printed board 501. Next, an adhesive tape 512 is attached to the back surface of the printed board 501 so as to cover the through hole 520. At this time, the adhesive surface of the adhesive tape 512 is attached so as to be in the direction inside the through hole 520. Further, the semiconductor pellet 502 is inserted into the through hole 520 of the printed board 501 and bonded to the adhesive tape 512.
[0039]
Next, as shown in FIG. 5 (b), using a stage 513 having a protrusion 514, the protrusion 514 penetrates so as to push up the semiconductor pellet 502 bonded to the adhesive tape 512 from the back surface of the printed circuit board 501. The semiconductor pellet 502 is inserted into the hole 520 and fixed to a predetermined height position.
[0040]
Next, as shown in FIG. 5C, a metal wire 503 is connected in order to achieve electrical continuity between the surface of the semiconductor pellet 502 and the printed board 501. Further, as shown in FIG. 5D, an insulating resin 504 is applied and cured so as to cover the metal wire 503 and the semiconductor pellet 502. Thereafter, as shown in FIG. 5E, the printed circuit board 501 is removed from the stage 513, and the adhesive tape 512 is further removed from the printed circuit board 501.
[0041]
Next, as shown in FIG. 6A, the printed board 501 is turned upside down. Thereafter, as shown in FIG. 6B, after a metal mask 515 is applied to a predetermined position on the back surface of the printed circuit board 501, the inside of the through hole 520 and the printed circuit board are formed from the opening on the back surface of the printed circuit board 501 by a printing method. A conductive resin 507 is applied to a predetermined range on the back surface of 501. Further, the squeegee 516 is moved along the upper surface of the metal mask 515 coated with the conductive resin 507, and the conductive resin 507 coated more than necessary is extended and flattened. Further, by applying and curing the applied conductive resin 507, the back surface of the semiconductor pellet 502 and the printed board 501 are electrically connected.
[0042]
Further, the metal mask 515 is removed from the printed board 501 as shown in FIG. Thereafter, as shown in FIG. 6D, the upper and lower sides of the printed board are returned to the original, and the resin-encapsulated semiconductor device according to the present embodiment is completed.
[0043]
As described above, according to the third embodiment, since the insulating adhesive is not used, the wiring position of the metal wire to the printed board can be executed at a position of, for example, about 0.3 mm from the semiconductor pellet. The resin application area is reduced. As a result, the area of the semiconductor device can be reduced.
[0044]
( Fourth embodiment )
In the third embodiment , the conductive resin on the back surface of the printed circuit board is applied by a printing method. In the present embodiment, a method for applying the conductive resin by an application method using an application nozzle will be described.
[0045]
Hereinafter, a method of manufacturing the semiconductor device according to the present embodiment will be described with reference to FIG. FIG. 7 is a process cross-sectional view for explaining the semiconductor device manufacturing method according to the present embodiment. Note that the steps from FIG. 5A to FIG. 6A are the same as those in the third embodiment, and a description thereof will be omitted.
[0046]
First, as shown in FIG. 7A, the printed circuit board formed in the steps shown in FIGS. 5A to 6A in the third embodiment includes metal wires 503 and semiconductor pellets 502. An insulating resin 504 is applied and cured so as to cover it.
[0047]
Next, as shown in FIG. 7B, the conductive resin 507 is applied from the opening on the back surface of the printed circuit board 501 to a predetermined range on the inside of the through hole 520 and the back surface of the printed circuit board 501 by the application nozzle 517. Furthermore, the back surface of the semiconductor pellet 502 and the printed board 501 are electrically connected by curing the applied conductive resin 507.
[0048]
Finally, as shown in FIG. 7C, the convex portion of the conductive resin 507 formed more than necessary on the back surface of the printed circuit board 501 is ground by a polishing machine 518 to flatten the conductive resin. Further, as shown in FIG. 7D, the printed circuit board is turned upside down to complete the resin-encapsulated semiconductor device according to the present embodiment.
[0049]
As described above, according to the fourth embodiment, since no insulating adhesive is used, the wiring position of the metal wire to the printed board can be executed at a position of about 0.3 mm from the semiconductor pellet. The resin application area is reduced. As a result, the area of the semiconductor device can be reduced. Furthermore, since a metal mask is not used as compared with the third embodiment , the manufacturing cost can be reduced.
[0050]
The preferred embodiment according to the present invention has been described above, but the present invention is not limited to such a configuration. A person skilled in the art can assume various modifications and changes within the scope of the technical idea described in the claims, and the modifications and changes are also within the technical scope of the present invention. It is understood that it is included in
[0051]
For example, in the resin-encapsulated semiconductor device shown in FIG. 1 described above, the configuration using thin semiconductor pellets as compared with the printed circuit board has been described as an example. Can respond.
[0052]
For example, in the first embodiment and the second embodiment described above, the configuration using a printed circuit board having a through hole has been described as an example. Can be implemented.
[0053]
Further, for example, in the third embodiment and the fourth embodiment described above, the configuration using the stage having the protrusion shape has been described as an example. However, even a flat stage can be implemented. .
[0054]
【The invention's effect】
The back surface potential of the semiconductor pellet can be controlled, and the thickness of the semiconductor pellet can be reduced by inserting the semiconductor pellet into the through hole of the printed board, so that the thickness of the semiconductor device can be reduced. Since the surface of the semiconductor pellet and the printed board can be wired without using an insulating adhesive, the area for applying the insulating resin can be reduced. As a result, the entire area of the semiconductor device can be reduced.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an example of a resin-encapsulated semiconductor device .
FIG. 2 is a cross-sectional view showing another example of a resin-encapsulated semiconductor device .
FIG. 3 is a cross-sectional view showing the resin-encapsulated semiconductor device according to the first embodiment .
FIG. 4 is a cross-sectional view showing a resin-encapsulated semiconductor device according to a second embodiment .
FIG. 5 is a process cross-sectional view for explaining a manufacturing process of the resin-encapsulated semiconductor device according to the third embodiment .
FIG. 6 is a process cross-sectional view for explaining a manufacturing process illustrating the resin-encapsulated semiconductor device according to the third embodiment .
FIG. 7 is a process cross-sectional view for explaining a manufacturing process of the resin-encapsulated semiconductor device according to the fourth embodiment .
FIG. 8 is a cross-sectional view showing a conventional resin-encapsulated semiconductor device.
FIG. 9 is a process cross-sectional view for explaining a conventional manufacturing process of a resin-encapsulated semiconductor device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 101 Printed circuit board 102 Semiconductor pellet 103 Metal wire 104 Insulation resin 105 Conductive resin 120 Through-hole 209 Copper foil 210 Conductive adhesive 311 Conductive tape 507 Conductive resin 510 Conductive adhesive 512 Adhesive tape 513 Stage 514 Protrusion 515 Metal mask 516 Squeegee 517 Coating nozzle 518 Polishing machine

Claims (4)

プリント基板表面の所定位置に半導体ペレットを挿入するための凹部溝あるいは貫通孔が形成され,
前記凹部溝あるいは前記貫通孔に挿入された前記半導体ペレット表面は金属ワイヤを介して前記プリント基板と電気的に接続され,かつ,前記半導体ペレット裏面は導電配線が形成される導電配線テープを介して前記プリント基板と電気的に接続され,
前記半導体ペレット及び前記金属ワイヤ及び前記導電配線テープが絶縁樹脂で封止されていることを特徴とする樹脂封止型半導体装置。
A recessed groove or through hole for inserting a semiconductor pellet is formed at a predetermined position on the surface of the printed circuit board,
The surface of the semiconductor pellet inserted into the recessed groove or the through hole is electrically connected to the printed circuit board via a metal wire, and the back surface of the semiconductor pellet is connected to a conductive wiring tape on which conductive wiring is formed. Electrically connected to the printed circuit board;
The resin-sealed semiconductor device, wherein the semiconductor pellet, the metal wire, and the conductive wiring tape are sealed with an insulating resin.
プリント基板の所定位置に半導体ペレットを挿入するための凹部溝あるいは貫通孔が形成され,
前記凹部溝あるいは前記貫通孔に挿入された前記半導体ペレット表裏両面共に,導電配線が形成される導電配線テープを介して前記プリント基板と電気的に接続され,
前記半導体ペレット及び前記導電配線テープが絶縁樹脂で封止されていることを特徴とする樹脂封止型半導体装置。
A recessed groove or a through hole for inserting a semiconductor pellet is formed at a predetermined position of the printed circuit board,
Both the front and back surfaces of the semiconductor pellet inserted into the recessed groove or the through hole are electrically connected to the printed circuit board through a conductive wiring tape on which conductive wiring is formed,
The resin-sealed semiconductor device, wherein the semiconductor pellet and the conductive wiring tape are sealed with an insulating resin.
プリント基板の所定位置に貫通孔を形成する工程と,
前記貫通孔を覆い,かつ前記貫通孔内部方向が粘着面となるように粘着テープを前記プリント基板の裏面に貼り付ける工程と,
前記半導体ペレットを前記プリント基板の前記貫通孔に挿入して,前記粘着テープの前記粘着面に前記半導体ペレットを接着する工程と,
選択的に,前記粘着テープを介して前記貫通孔に突起形状物を挿入して前記半導体ペレットを所定高さ位置に固定する,あるいは平坦なステージで前記半導体ペレットを所定位置に固定する工程と,
前記半導体ペレット表面と前記プリント基板とを金属ワイヤで電気的に接続する工程と,
前記半導体ペレット表面と前記金属ワイヤとを絶縁樹脂により封止する工程と,
前記プリント基板に貼り付けられた前記粘着テープを剥ぎ取る工程と,
前記プリント基板の上下を反対にした後,前記プリント基板裏面の所定位置にメタルマスクを貼り付け,前記半導体ペレット裏面と前記プリント基板裏面とが電気的に導通するように印刷法により所定範囲に導電樹脂を塗布する工程と,
前記導電樹脂の充填により形成された凸部をスキージにより平坦にする工程と,
を有することを特徴とする樹脂封止型半導体装置の製造方法。
Forming a through hole at a predetermined position on the printed circuit board;
A step of covering the through-hole and attaching an adhesive tape to the back surface of the printed circuit board so that the inside direction of the through-hole is an adhesive surface;
Inserting the semiconductor pellet into the through-hole of the printed circuit board and bonding the semiconductor pellet to the adhesive surface of the adhesive tape;
Optionally, inserting a protrusion-shaped object into the through-hole via the adhesive tape and fixing the semiconductor pellet at a predetermined height position, or fixing the semiconductor pellet at a predetermined position on a flat stage;
Electrically connecting the semiconductor pellet surface and the printed circuit board with a metal wire;
Sealing the semiconductor pellet surface and the metal wire with an insulating resin;
Peeling the adhesive tape affixed to the printed circuit board;
After the printed circuit board is turned upside down, a metal mask is attached to a predetermined position on the back surface of the printed circuit board, and the back surface of the semiconductor pellet and the back surface of the printed circuit board are electrically connected within a predetermined range by a printing method. Applying a resin;
Flattening a convex portion formed by filling the conductive resin with a squeegee;
A method for manufacturing a resin-encapsulated semiconductor device, comprising:
プリント基板の所定位置に貫通孔を形成する工程と,
前記貫通孔を覆い,かつ前記貫通孔内部方向が粘着面となるように粘着テープを前記プリント基板の裏面に貼り付ける工程と,
前記半導体ペレットを前記プリント基板の前記貫通孔に挿入して,前記粘着テープの前記粘着面に前記半導体ペレットを接着する工程と,
選択的に,前記粘着テープを介して前記貫通孔に突起形状物を挿入して前記半導体ペレットを所定高さ位置に固定する,あるいは平坦なステージで前記半導体ペレットを所定位置に固定する工程と,
前記半導体ペレット表面と前記プリント基板とを金属ワイヤで電気的に接続する工程と,
前記半導体ペレット表面と前記金属ワイヤとを絶縁樹脂により封止する工程と,
前記プリント基板に貼り付けられた前記粘着テープを剥ぎ取る工程と,
前記プリント基板の上下を反対にした後,前記半導体ペレット裏面と前記プリント基板裏面とが電気的に導通するように,塗布法により塗布ノズルを介して所定範囲に導電樹脂を塗布する工程と,
前記導電樹脂の充填により形成された凸部を研磨により平坦にする工程と,
を有することを特徴とする樹脂封止型半導体装置の製造方法。
Forming a through hole at a predetermined position on the printed circuit board;
A step of covering the through-hole and attaching an adhesive tape to the back surface of the printed circuit board so that the inside direction of the through-hole is an adhesive surface;
Inserting the semiconductor pellet into the through-hole of the printed circuit board and bonding the semiconductor pellet to the adhesive surface of the adhesive tape;
Optionally, inserting a protrusion-shaped object into the through-hole via the adhesive tape and fixing the semiconductor pellet at a predetermined height position, or fixing the semiconductor pellet at a predetermined position on a flat stage;
Electrically connecting the semiconductor pellet surface and the printed circuit board with a metal wire;
Sealing the semiconductor pellet surface and the metal wire with an insulating resin;
Peeling the adhesive tape affixed to the printed circuit board;
Applying the conductive resin to a predetermined range via a coating nozzle by a coating method so that the back side of the semiconductor pellet and the back side of the printed circuit board are electrically connected after the printed board is turned upside down;
A step of flattening the projection formed by filling the conductive resin by polishing;
A method for manufacturing a resin-encapsulated semiconductor device, comprising:
JP2000204813A 2000-07-06 2000-07-06 Resin-sealed semiconductor device and manufacturing method thereof Expired - Fee Related JP4147729B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000204813A JP4147729B2 (en) 2000-07-06 2000-07-06 Resin-sealed semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000204813A JP4147729B2 (en) 2000-07-06 2000-07-06 Resin-sealed semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2002026170A JP2002026170A (en) 2002-01-25
JP4147729B2 true JP4147729B2 (en) 2008-09-10

Family

ID=18702011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000204813A Expired - Fee Related JP4147729B2 (en) 2000-07-06 2000-07-06 Resin-sealed semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4147729B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004043663B4 (en) * 2004-09-07 2006-06-08 Infineon Technologies Ag Semiconductor sensor component with cavity housing and sensor chip and method for producing a semiconductor sensor component with cavity housing and sensor chip
JP4586167B2 (en) * 2007-03-22 2010-11-24 独立行政法人国立高等専門学校機構 Ultra-narrow band sensor in distributed measurement system using optical wavelength detection method and method for increasing the number of sensors that can be connected to the system
JP4742274B2 (en) * 2007-03-22 2011-08-10 独立行政法人国立高等専門学校機構 Measuring system
DE102015107591B4 (en) * 2015-05-13 2021-09-02 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Optoelectronic semiconductor component and method for producing an optoelectronic semiconductor component

Also Published As

Publication number Publication date
JP2002026170A (en) 2002-01-25

Similar Documents

Publication Publication Date Title
US6137184A (en) Flip-chip type semiconductor device having recessed-protruded electrodes in press-fit contact
US5874784A (en) Semiconductor device having external connection terminals provided on an interconnection plate and fabrication process therefor
US6459145B1 (en) Semiconductor device having an improved structure for preventing cracks, and improved small-sized semiconductor
JPH01205544A (en) Assembly tape of integrated circuit device
JPH1012773A (en) Resin-sealed semiconductor device and its manufacture
JP2002252318A (en) Chip-type semiconductor device
JP4147729B2 (en) Resin-sealed semiconductor device and manufacturing method thereof
JPH0951020A (en) Semiconductor device and its manufacturing method and ic card
JP2000277665A (en) Semiconductor device and manufacture thereof
JP2000243875A (en) Semiconductor device
JP4035949B2 (en) Wiring board, semiconductor device using the same, and manufacturing method thereof
JP3699271B2 (en) Semiconductor package and manufacturing method thereof
JP3362007B2 (en) Semiconductor device, method of manufacturing the same, and tape carrier
JP3337911B2 (en) Semiconductor device and manufacturing method thereof
JPH11176849A (en) Manufacture of semiconductor device
JP2003017644A (en) Method of fabricating resin-sealed semiconductor device
JP2970595B2 (en) BGA type semiconductor device
JP3589093B2 (en) TAB tape with heat sink and reinforcing plate and semiconductor device
JP3820991B2 (en) Semiconductor device and manufacturing method thereof
JPH11135536A (en) Semiconductor device and its manufacture
JP2883065B2 (en) Semiconductor device
JP2000174442A (en) Packaging of electronic component and semiconductor device
JPH1168010A (en) Insulating sealed electronic device and manufacture thereof
JP2001015561A (en) Radiating plate/reinforcing plate-attached tab tape and semiconductor device
JP2006128515A (en) Circuit device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080603

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080616

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130704

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees