JP4146321B2 - Ceramic circuit board - Google Patents

Ceramic circuit board Download PDF

Info

Publication number
JP4146321B2
JP4146321B2 JP2003334123A JP2003334123A JP4146321B2 JP 4146321 B2 JP4146321 B2 JP 4146321B2 JP 2003334123 A JP2003334123 A JP 2003334123A JP 2003334123 A JP2003334123 A JP 2003334123A JP 4146321 B2 JP4146321 B2 JP 4146321B2
Authority
JP
Japan
Prior art keywords
circuit board
ceramic
recess
metal
solder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003334123A
Other languages
Japanese (ja)
Other versions
JP2005101353A (en
Inventor
隆雄 白井
憲隆 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Materials Co Ltd
Original Assignee
Toshiba Corp
Toshiba Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Materials Co Ltd filed Critical Toshiba Corp
Priority to JP2003334123A priority Critical patent/JP4146321B2/en
Publication of JP2005101353A publication Critical patent/JP2005101353A/en
Application granted granted Critical
Publication of JP4146321B2 publication Critical patent/JP4146321B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Structures For Mounting Electric Components On Printed Circuit Boards (AREA)
  • Structure Of Printed Boards (AREA)

Description

本発明は、主として高出力トランジスタ、パワーモジュール等の実装に使用されるセラミックス回路基板に係り、特に半導体チップ,電極端子,サーミスタ,抵抗などの実装部品の固定位置精度が高く、また実装部品を導電回路層へ接合する際に接合材としての半田やろう材が隣接する回路層や配線層へ流出することを効果的に防止できるセラミックス回路基板に関する。   The present invention mainly relates to a ceramic circuit board used for mounting high-power transistors, power modules, and the like, and in particular, mounting position accuracy of mounted components such as semiconductor chips, electrode terminals, thermistors, resistors, etc. is high, and the mounted components are made conductive. The present invention relates to a ceramic circuit board that can effectively prevent solder or brazing material as a bonding material from flowing out to an adjacent circuit layer or wiring layer when bonded to a circuit layer.

従来、大電力用パワーデバイス用回路基板およびペルチェモジュール用基板のように、高出力トランジスタ、パワーモジュール等を搭載するセラミックス回路基板として、セラミックス材とCu(銅)等の金属回路材とを一体に接合し、さらに金属回路材表面に半導体チップ、電極端子等の各種実装部品を半田付けやろう付けなどの接合方法により一体に接合搭載したセラミックス回路基板が広く使用されている。   Conventionally, ceramic circuit boards and metal circuit materials such as Cu (copper) are integrated as ceramic circuit boards on which high-power transistors, power modules, etc. are mounted, such as circuit boards for high-power power devices and Peltier modules. Ceramic circuit boards are widely used in which various mounting parts such as semiconductor chips and electrode terminals are integrally bonded and mounted on the surface of a metal circuit material by a bonding method such as soldering or brazing.

上記セラミックス材と金属回路材との接合方法としては、従来から回路層となるMoまたはW等の高融点金属ペーストをセラミックスのシート状成形体表面に印刷して焼結する同時焼成法、接合材を使用せずに回路構成材としての銅と酸素の共晶反応を利用して回路層(Cu回路板)を直接的にセラミックス基板表面に一体に接合する直接接合法(DBC法)、同じくセラミックス基板とAl板とを熱処理で直接接合するDBA法、およびTi等の活性金属を含有するろう材を金属回路層とセラミックス基板との接合材(ろう材層)として用いた活性金属法などが広く使用されている。   As a method of joining the ceramic material and the metal circuit material, there is conventionally used a simultaneous firing method in which a high melting point metal paste such as Mo or W, which becomes a circuit layer, is printed on the surface of a ceramic sheet-like molded body and sintered. Direct bonding method (DBC method) that directly bonds the circuit layer (Cu circuit board) directly to the surface of the ceramic substrate using the eutectic reaction of copper and oxygen as circuit components without the use of ceramics. The DBA method for directly bonding a substrate and an Al plate by heat treatment, and the active metal method using a brazing material containing an active metal such as Ti as a bonding material (brazing material layer) between a metal circuit layer and a ceramic substrate are widely used. in use.

また、セラミックス回路基板を構成するセラミックス基板としては、従来から窒化アルミニウム(AlN)、酸化アルミニウム(Al)、窒化珪素(Si)などの焼結体が使用されている。 Moreover, as a ceramic substrate constituting the ceramic circuit board, a sintered body such as aluminum nitride (AlN), aluminum oxide (Al 2 O 3 ), silicon nitride (Si 3 N 4 ) or the like has been conventionally used.

例えば、窒化アルミニウム基板は熱伝導率が160W/m・K以上であり、他のセラミックス基板と比べて高い熱伝導率を具備していることから特に放熱性に優れている。また、窒化珪素基板は三点曲げ強度(室温)が600MPa以上であるため、セラミックス基板構成材として使用した場合には回路基板の強度を向上させることができる。それに対し、酸化アルミニウム基板は熱伝導率が20W/m・K程度であり、また三点曲げ強度も360MPa程度である。そのため、特に高い放熱性や構造強度を得るためには、酸化物系セラミックス基板より窒化物系セラミックス基板を使用する方が回路基板としては好ましいと言える。   For example, an aluminum nitride substrate has a thermal conductivity of 160 W / m · K or higher, and has a higher thermal conductivity than other ceramic substrates, and therefore has particularly excellent heat dissipation. Further, since the silicon nitride substrate has a three-point bending strength (room temperature) of 600 MPa or more, when used as a ceramic substrate constituent material, the strength of the circuit substrate can be improved. In contrast, the aluminum oxide substrate has a thermal conductivity of about 20 W / m · K, and a three-point bending strength of about 360 MPa. Therefore, in order to obtain particularly high heat dissipation and structural strength, it can be said that it is preferable as a circuit board to use a nitride ceramic substrate rather than an oxide ceramic substrate.

一方、セラミックス基板と金属回路板との接合強度に着目すると前述の接合方法の中では活性金属法が好ましい。活性金属法は、Ti,Hf,Zr,Nb等の活性金属の少なくとも1種を含む金属箔、またはこれら活性金属をAg−Cuろう材に添加したペーストをセラミックス基板と金属回路板との間に塗布した後に、熱処理することにより両部材を一体に接合する方法である。窒化物系セラミックス基板を用いた活性金属法による接合を行う場合には、熱処理後に前記活性金属の窒化物から成る接合層が形成され、より強固な接合状態が形成される。このように活性金属法による窒化物系セラミックスと金属部材との接合体は回路基板として求められる特性を満たしており、パワー半導体素子を搭載した半導体モジュール用基板等の電子回路用基板として広く活用されている。   On the other hand, when attention is paid to the bonding strength between the ceramic substrate and the metal circuit board, the active metal method is preferable among the above-described bonding methods. In the active metal method, a metal foil containing at least one of active metals such as Ti, Hf, Zr, and Nb, or a paste obtained by adding these active metals to an Ag—Cu brazing material is interposed between a ceramic substrate and a metal circuit board. In this method, both members are joined together by heat treatment after coating. When joining by an active metal method using a nitride-based ceramic substrate, a joining layer made of the nitride of the active metal is formed after the heat treatment, and a stronger joining state is formed. As described above, the joined body of nitride ceramics and metal member by the active metal method satisfies the characteristics required for a circuit board, and is widely used as an electronic circuit board such as a semiconductor module board on which a power semiconductor element is mounted. ing.

従来のセラミックス回路基板として、例えば図4に示すようなセラミックス回路基板1が一般に使用されている。このセラミックス回路基板1は、窒化アルミニウム(AlN)、酸化アルミニウム(Al)、窒化珪素(Si)などの焼結体から成るセラミックス基板2表面にろう材層3を介して、銅(Cu)などの導電材料から成る金属回路板4を一体に接合して形成される。また、セラミックス基板2の反りを防止したり、実装機器との接合性を高めたりするために、セラミックス基板2の裏面側にも、ろう材層3を介して裏金属板5が接合されている。さらに、金属回路板4の所定位置には半田などのろう材を使用して半導体チップ,電極端子,コンデンサ,回路基板の温度上昇を測定するサーミスタ,抵抗等の実装部品6が一体に接合される。 As a conventional ceramic circuit board, for example, a ceramic circuit board 1 as shown in FIG. 4 is generally used. This ceramic circuit board 1 has a ceramic substrate 2 made of a sintered body such as aluminum nitride (AlN), aluminum oxide (Al 2 O 3 ), silicon nitride (Si 3 N 4 ), etc. It is formed by integrally joining metal circuit boards 4 made of a conductive material such as copper (Cu). Further, in order to prevent warping of the ceramic substrate 2 and to enhance the bonding property with the mounting device, the back metal plate 5 is also bonded to the back side of the ceramic substrate 2 via the brazing material layer 3. . Further, a mounting part 6 such as a semiconductor chip, an electrode terminal, a capacitor, a thermistor for measuring a temperature rise of the circuit board, and a resistor are integrally joined to a predetermined position of the metal circuit board 4 by using a brazing material such as solder. .

上記構成のセラミックス回路基板によれば、低抵抗で通電容量が大きい厚い金属回路板で電極接合部,回路および配線層が形成されているため、特に高出力のトランジスタやパワーモジュール等の実装に使用されるセラミックス回路基板として好適である。   According to the ceramic circuit board with the above configuration, the electrode joint, circuit and wiring layer are formed with a thick metal circuit board with low resistance and large current carrying capacity, so it is used especially for mounting high-power transistors and power modules. It is suitable as a ceramic circuit board.

しかしながら、図4に示すような従来のセラミックス回路基板1の組立て工程において、半導体素子6等の実装部品を半田等のろう材で接合しようとすると、実装部品の位置を規制する手段が接合面に存在しないために実装部品の位置ずれが生じ易く、配線位置やボンディング位置にもずれが生じ、半導体装置の製造歩留りが低下する問題点があった。また接合温度によっては、半田やろう材が流出し、隣接する回路層と短絡するため、いずれにしても製品歩留りが大幅に低下してしまう問題点もあった。   However, in the assembling process of the conventional ceramic circuit board 1 as shown in FIG. 4, when a mounting component such as the semiconductor element 6 is to be joined with a brazing material such as solder, means for regulating the position of the mounting component is provided on the joining surface. Since it does not exist, the mounting components are likely to be misaligned, and the wiring positions and bonding positions are also misaligned, resulting in a decrease in the manufacturing yield of the semiconductor device. Also, depending on the bonding temperature, solder and brazing material flow out and short circuit with the adjacent circuit layers, so that there is a problem that the product yield is greatly reduced in any case.

そこで上記のような半田付け等による接合時における各種搭載実装部品の位置ずれや半田流れを解消するための従来のセラミックス回路基板として、エポキシなどの樹脂から成るソルダーレジストなどを予め回路部に印刷することが提案されている。   Therefore, a solder resist made of resin such as epoxy is printed on the circuit portion in advance as a conventional ceramic circuit board to eliminate misalignment and solder flow of various mounted components during joining by soldering as described above. It has been proposed.

具体的には、感光用エポキシ樹脂を配線基板表面に所定厚さで塗布し、この感光用エポキシ樹脂層上に、突起形成部のみに孔が開けられた露光マスクを載せ、感光用エポキシ樹脂層の突起形成部のみに紫外線を当てて露光を行った後に、現像して余分な樹脂を除去することによって、樹脂から成る位置決め用突起を形成した配線基板も提案されている(例えば、特許文献1参照。)。
特開平10−12671号公報(請求項1、図1)
Specifically, a photosensitive epoxy resin is applied to the surface of the wiring board with a predetermined thickness, and an exposure mask having a hole formed only in the projection forming portion is placed on the photosensitive epoxy resin layer, and the photosensitive epoxy resin layer There is also proposed a wiring board in which positioning projections made of resin are formed by exposing the projections to only the projection formation portions of the substrate and then developing and removing excess resin to develop (for example, Patent Document 1). reference.).
Japanese Patent Laid-Open No. 10-12671 (Claim 1, FIG. 1)

しかしながら、近年になって電子機器の高出力化、高密度集積化、高機能化が更に進展し、高出力トランジスタ、パワーモジュールの多用化や、半導体製造装置の高信頼性化が希求される状況下において、実装部品の接合強度をさらに高めるために半田等のろう材が溶ける程度の高温度での接合操作が求められている。すなわち、接合温度を高めてろう材の粘度を低下させ流動性が高い状態で、実装部品の接合面全体にろう材を行き渡らせた状態で接合することにより、接合強度を高め半導体製品の信頼性および耐久性を高めることが技術上の課題となっている。   However, in recent years, higher output, higher density integration, and higher functionality of electronic devices have further progressed, and there is a demand for increased use of high output transistors and power modules and higher reliability of semiconductor manufacturing equipment. Below, in order to further increase the bonding strength of the mounted components, a bonding operation at a high temperature is required so as to melt the soldering material such as solder. In other words, by increasing the bonding temperature to reduce the viscosity of the brazing material and increasing its fluidity, bonding with the brazing material spread over the entire joint surface of the mounted component increases the bonding strength and improves the reliability of the semiconductor product. In addition, increasing the durability is a technical problem.

しかしながら、半田等のろう材が溶ける程度の高温度に耐え、流れ出たり焼失したりしないソルダーレジストはまれであり、特に温度400℃以上の高温条件下でのろう付け接合に使用できるソルダーレジストは現在までに未だ開発されていない。そのため、現状ででは、カーボン製の専用拘束治具を用いて実装部品を拘束した状態で接合することにより、位置ずれを防止する必要があった。しかるに、上記カーボン製の専用拘束治具は高価で耐久性も低い難点があり、また実装部品の拘束作業には高度で複雑な機構が必須であったため、セラミックス回路基板の製造コストが大幅に上昇する問題点があった。   However, solder resists that can withstand high temperatures that melt soldering materials such as solder and do not flow out or burn out are rare, especially solder resists that can be used for brazing joints at high temperatures of 400 ° C or higher. It has not been developed yet. For this reason, at present, it is necessary to prevent misalignment by joining the mounted components in a restrained state using a dedicated restraining jig made of carbon. However, the above-mentioned carbon-made exclusive restraint jig has the disadvantages of being expensive and low in durability, and a high-level and complicated mechanism is essential for restraining work of mounted parts, so the manufacturing cost of ceramic circuit boards has increased significantly. There was a problem to do.

本発明は上記従来の問題点を解決するためになされたものであり、特に半導体チップ,電極端子,サーミスタ,抵抗などの実装部品の固定位置精度が高く、また実装部品を導電回路層へ接合する際に接合材としての半田やろう材が隣接する回路層や配線層へ流出することを効果的に防止できるセラミックス回路基板を提供することを目的とする。   The present invention has been made to solve the above-described conventional problems, and in particular, mounting position accuracy of mounting components such as semiconductor chips, electrode terminals, thermistors, resistors, etc. is high, and the mounting components are joined to the conductive circuit layer. It is an object of the present invention to provide a ceramic circuit board capable of effectively preventing solder or brazing material as a bonding material from flowing out into an adjacent circuit layer or wiring layer.

上記目的を達成するために、本発明に係るセラミックス回路基板は、セラミックス基板の少なくとも一方の表面に金属回路板を一体に接合すると共に、この金属回路板に実装部品を接合したセラミックス回路基板において、上記金属回路板表面に凹部が形成されており、この凹部内に実装部品が嵌入され凹部の底面が実装部品の接合面である一方、上記凹部の深さが0.05mm以上であると共に、上記凹部の側面と、この凹部に搭載固定された実装部品の側面との間隙が0.5mm以下であり、上記金属回路板の厚さが0.1〜0.3mmであることを特徴とする。 In order to achieve the above object, a ceramic circuit board according to the present invention has a ceramic circuit board in which a metal circuit board is integrally joined to at least one surface of the ceramic board, and a mounting component is joined to the metal circuit board. a recess is formed on the metal circuit plate surface while the bottom surface of the mounting part is in recess within this recess Ru joint surfaces der mounting component, with the depth of the recess is 0.05mm or more, The gap between the side surface of the recess and the side surface of the mounting component mounted and fixed in the recess is 0.5 mm or less, and the thickness of the metal circuit board is 0.1 to 0.3 mm. .

本発明に係るセラミックス回路基板を構成するセラミックス基板は特に限定されるものではなく、絶縁性,放熱性、強度特性等の要求特性に応じて適宜選択できる。具体的には、窒化アルミニウム(AlN)、窒化珪素(Si)などの窒化物系セラミックス焼結体、アルミナ(Al)、アルミナとジルコニア(ZrO)との化合物などの酸化物系のセラミックス焼結体から成ることが好ましい。特に高温で使用されることを想定した場合、放熱特性、機械的強度に優れた窒化珪素、窒化アルミニウム、アルミナなどが望ましい。また、高出力の半導体素子を搭載する回路基板には、熱伝導率が高い窒化アルミニウム基板を用いることにより放熱性を高めることが好ましい。 The ceramic substrate constituting the ceramic circuit board according to the present invention is not particularly limited, and can be appropriately selected according to required characteristics such as insulation, heat dissipation, and strength characteristics. Specifically, oxidation of nitride ceramic sintered bodies such as aluminum nitride (AlN) and silicon nitride (Si 3 N 4 ), alumina (Al 2 O 3 ), and a compound of alumina and zirconia (ZrO 2 ). It is preferably made of a physical ceramic sintered body. In particular, assuming use at high temperatures, silicon nitride, aluminum nitride, alumina, etc. excellent in heat dissipation characteristics and mechanical strength are desirable. Moreover, it is preferable to improve heat dissipation by using an aluminum nitride substrate having a high thermal conductivity for a circuit board on which a high-power semiconductor element is mounted.

また、上記セラミックス回路基板において、前記金属回路板は銅およびアルミニウムの少なくとも1種の金属から成ることが好ましい。金属回路板は回路層として特に高い通電容量を必要とするため、導電抵抗が小さく厚さが大きい金属回路板で形成されるが、特に導電性および経済性の観点からCu,Alおよびそれらの合金材で構成することが望ましい。   In the ceramic circuit board, the metal circuit board is preferably made of at least one metal selected from copper and aluminum. Since a metal circuit board requires a particularly high current carrying capacity as a circuit layer, it is formed of a metal circuit board having a small conductive resistance and a large thickness. However, Cu, Al and their alloys are particularly preferred from the viewpoint of conductivity and economy. It is desirable to make up with materials.

上記セラミックス回路基板において、上記セラミックス基板と金属回路板とを接合するろう材としては、Ag,Cu,Ti,Zr,SiおよびAlから選択される少なくとも1種の元素から構成されることが好ましい。具体的には、質量%でCuを15〜35%、Ti,Zr,SiおよびAlから選択される少なくとも1種の元素を1〜10%、残部が実質的にAgから成る活性金属ろう材組成物が例示される。特に活性金属であるTi,Zrを含有するTi−Ag−Cu系の活性金属ろう材を使用することにより、金属回路板の接合強度を大幅に高めることが可能になる。   In the ceramic circuit board, the brazing material for joining the ceramic substrate and the metal circuit board is preferably composed of at least one element selected from Ag, Cu, Ti, Zr, Si and Al. Specifically, an active metal brazing material composition comprising, by mass%, 15 to 35% of Cu, 1 to 10% of at least one element selected from Ti, Zr, Si and Al, and the balance substantially consisting of Ag. Things are illustrated. In particular, by using a Ti—Ag—Cu-based active metal brazing material containing Ti and Zr, which are active metals, it is possible to significantly increase the bonding strength of the metal circuit board.

上記ろう材組成物を有機溶媒中に分散して調製したろう材ペーストをセラミックス基板表面にスクリーン印刷することにより、金属回路板をセラミックス基板表面に接合するためのろう材層が形成される。   By brazing the brazing material paste prepared by dispersing the brazing material composition in an organic solvent onto the surface of the ceramic substrate, a brazing material layer for joining the metal circuit board to the ceramic substrate surface is formed.

本発明において、前記金属回路板表面には所定の幅および深さを有する凹部が形成される。この凹部は実装部品の取付け位置を規制すると共に、溶融した半田やろう材を貯留して、その流出を防止するために形成される。この凹部の形成方法としては、金型プレス、エッチング処理などの加工方法が適用できる。また、実装部品を金属回路板に接合するろう材と共に凹部を形成しても良い。具体的には、上記金型プレス、エッチング処理などの加工方法により予め凹部を形成したろう材金属箔をセラミックス基板表面に接合する方法、あるいはセラミックス基板上にろう材金属箔を接合した後、エッチング、ホーニング加工などにより凹部を形成する方法などが挙げられる。   In the present invention, a recess having a predetermined width and depth is formed on the surface of the metal circuit board. The recess is formed to restrict the mounting position of the mounted component and to store molten solder and brazing material and prevent the outflow thereof. As a method for forming the recess, a processing method such as a die press or an etching process can be applied. Moreover, you may form a recessed part with the brazing material which joins a mounted component to a metal circuit board. Specifically, a method of joining a brazing material metal foil, in which a recess is formed in advance by a processing method such as the above-mentioned die press or etching process, to the surface of the ceramic substrate, or after joining the brazing material metal foil on the ceramic substrate, etching And a method of forming a recess by honing or the like.

金属回路板に形成する上記凹部の深さは、実装部品の位置決めの安定性および、半田やろう材厚さに応じた溶融物量を貯留保持する能力などの観点から0.05mm以上とすることが必要である。この凹部の深さが0.05mm未満である場合には、凹部による実装部品の位置規制効果が発揮されず、半田やろう材上の実装部品がずれてしまうと共に、溶融した半田やろう材を貯留することができず、凹部より外部の領域に半田等がはみ出したり、流出したりするために、短絡等を生じ不適である。   The depth of the concave portion formed in the metal circuit board may be 0.05 mm or more from the viewpoint of the positioning stability of the mounted component and the ability to store and hold the amount of melt according to the solder and brazing material thickness. is necessary. When the depth of the recess is less than 0.05 mm, the effect of restricting the position of the mounted component due to the recess is not exhibited, the mounted component on the solder or brazing material is displaced, and the molten solder or brazing material is used. Since it cannot be stored and solder or the like protrudes to or flows out of the region outside the concave portion, a short circuit or the like occurs, which is inappropriate.

なお、半田やろう材の厚さを考慮した場合には、上記凹部の深さは0.1mm以上であることがより望ましい。また、凹部の深さを増加させるに比例して、半田等の溶融物の貯留保持能力を高めることが可能であるが、実装部品の位置決め安定性の改善効果は少ない。また、上記凹部の深さを0.5mm以上にした場合には、金属回路板の通電面積が減少することに繋がるため、好ましくない。   In consideration of the thickness of the solder or brazing material, the depth of the recess is more preferably 0.1 mm or more. In addition, it is possible to increase the capability of storing and holding a molten material such as solder in proportion to the increase in the depth of the recess, but the effect of improving the positioning stability of the mounted component is small. Moreover, when the depth of the said recessed part shall be 0.5 mm or more, since it leads to the electricity supply area of a metal circuit board reducing, it is unpreferable.

また、上記凹部の開口の大きさは、実装部品の位置決めの安定性を確保するために、実装部品の接合部の断面積よりも僅かに大きな面積を有するように形成する。具体的には、凹部の側面と、この凹部に搭載固定される実装部品の側面との間隙が0.5mm以下であることが好ましい。すなわち、実装部品の接合面外周より0.5mm以下の張り出し量で外側に張り出した底面を有する凹部を形成することが好ましい。しかしながら、この張り出し量が0.1mm未満となると、実装部品の仕上がり寸法誤差により、凹部に実装部品を嵌入できない場合があるので、上記間隙は0.1〜0.5mmの範囲が好ましい。   Further, the size of the opening of the concave portion is formed so as to have an area slightly larger than the cross-sectional area of the joint portion of the mounted component in order to ensure the stability of positioning of the mounted component. Specifically, the gap between the side surface of the recess and the side surface of the mounting component mounted and fixed in the recess is preferably 0.5 mm or less. That is, it is preferable to form a recess having a bottom surface protruding outward with an amount of protrusion of 0.5 mm or less from the outer periphery of the joint surface of the mounted component. However, when the overhang amount is less than 0.1 mm, the mounting component may not be inserted into the recess due to a finished dimensional error of the mounting component. Therefore, the gap is preferably in the range of 0.1 to 0.5 mm.

上記凹部の側面と、この凹部に搭載固定される実装部品の側面との間隙が0.5mmを超えるように過大になると、その間隙範囲で実装部品にずれを生じることになり、実装部品の取付け位置精度が低下し、部品に接続される配線の位置やボンディング位置もずれ、隣接する配線層と干渉を起こし、何れも半導体製品の動作信頼性および製造歩留りを低下させることに繋がる。この弊害は、特に近年になって半導体製品の高集積化が進行し回路配線幅がより微細化される状況では、重大な解決すべき課題になっている。   If the gap between the side surface of the concave portion and the side surface of the mounting component mounted and fixed in the concave portion is excessively larger than 0.5 mm, the mounting component will be displaced in the gap range. The positional accuracy is lowered, the position of the wiring connected to the component and the bonding position are also shifted, and interference is caused with the adjacent wiring layer, both of which lead to a decrease in the operational reliability and manufacturing yield of the semiconductor product. This adverse effect has become a serious problem to be solved, particularly in the situation where the integration of semiconductor products has progressed in recent years and the circuit wiring width has become finer.

本発明に係るセラミックス回路基板は、例えば以下のような手順で製造される。すなわち、前記のようにプレス成形等により所定形状を有する凹部を形成した、厚さが0.1〜0.3mm程度の金属回路板を用意する。一方、セラミックス基板の少なくとも一方の表面に、Ag/Cu/Ti系等のろう材ペーストをスクリーン印刷法等にて印刷して上記金属回路板を接合するための、厚さ10〜20μm程度のろう材層をセラミックス基板表面に形成し、しかる後に金属回路板を上記ろう材層表面に貼り合わせた状態で真空雰囲気中において熱処理し、印刷されたろう材層を介して金属回路板をセラミックス基板表面に一体に接合する。接合する金属回路板は予め所定の回路パターンおよび凹部が形成された金属回路板でもよいが、接合した平板上の金属板上にレジストを塗布し、その後エッチング処理によって所定の回路状パターンおよび凹部を形成しても良い。   The ceramic circuit board according to the present invention is manufactured, for example, by the following procedure. That is, a metal circuit board having a thickness of about 0.1 to 0.3 mm, in which a recess having a predetermined shape is formed by press molding or the like as described above, is prepared. On the other hand, a brazing material paste of Ag / Cu / Ti or the like is printed on at least one surface of the ceramic substrate by a screen printing method or the like to join the metal circuit board to a thickness of about 10 to 20 μm. A material layer is formed on the surface of the ceramic substrate, and then the metal circuit board is heat-treated in a vacuum atmosphere in a state of being bonded to the surface of the brazing material layer, and the metal circuit board is applied to the surface of the ceramic substrate through the printed brazing material layer. Join together. The metal circuit board to be bonded may be a metal circuit board in which a predetermined circuit pattern and a recess are formed in advance, but a resist is applied on the metal plate on the bonded flat plate, and then the predetermined circuit pattern and the recess are formed by etching. It may be formed.

次に、上記金属回路板に形成された凹部内に実装部品の接合部分を嵌入し、凹部の底面が実装部品の接合面となるように半田やろう材等の接合材を介して固定され、しかる後に所定の高温度で熱処理を実施する。この際、半田やろう材等の接合材は高温度によって流動性が高い溶融状態になり接合面全体に均一に行き渡る上に、実装部品が凹部の対向する側壁によって対向面方向の接合位置が正確に規制されるため、実装部品は高い接合強度および位置精度で一体に接合される。こうして、実装部品の位置ずれおよび半田流れなどの欠陥がないセラミックス回路基板を、容易にかつ高い製品歩留りで作製することができる。   Next, the mounting portion of the mounting component is inserted into the concave portion formed in the metal circuit board, and is fixed via a bonding material such as solder or brazing material so that the bottom surface of the concave portion becomes the bonding surface of the mounting component, Thereafter, heat treatment is performed at a predetermined high temperature. At this time, the bonding material such as solder and brazing material is in a molten state with high fluidity due to high temperature and spreads uniformly over the entire bonding surface. Therefore, the mounted parts are integrally joined with high joining strength and positional accuracy. In this way, a ceramic circuit board free from defects such as misalignment of mounted components and solder flow can be easily manufactured with a high product yield.

本発明に係るセラミックス回路基板によれば、金属回路板表面に所定形状の凹部が形成されており、この凹部内に実装部品が嵌入され凹部の底面が実装部品の接合面となるように構成されているため、高温度の熱処理によって半田やろう材等の接合材を介して実装部品を接合固定する際に、実装部品が凹部の対向する側壁によって対向面方向の接合位置が正確に規制されるため、微細な取付け位置の誤差が修正される効果、いわゆるセルフアライメント効果(自己位置修正効果)が得られ、実装部品の位置精度が高いセラミックス回路基板を提供できる。   According to the ceramic circuit board of the present invention, the concave portion having a predetermined shape is formed on the surface of the metal circuit board, and the mounting component is inserted into the concave portion, and the bottom surface of the concave portion becomes the bonding surface of the mounting component. Therefore, when the mounting component is bonded and fixed via a bonding material such as solder or brazing material by heat treatment at a high temperature, the bonding position of the mounting component in the opposing surface direction is accurately regulated by the opposing side wall of the recess. For this reason, an effect of correcting a minute error in the mounting position, that is, a so-called self-alignment effect (self-position correcting effect) can be obtained, and a ceramic circuit board with high positional accuracy of the mounted components can be provided.

また、半田やろう材等の接合材は高温度によって流動性が高い溶融状態となり接合面全体に均一に行き渡るため、実装部品を高い接合強度および位置精度で一体に接合することが可能になる。さらに、高温度によって流動性が高い溶融状態にある半田やろう材等の接合材を使用した場合においても、半田等の接合材は凹部によって貯留保持され凹部外に流出することがない。したがって、実装部品の位置ずれおよび半田流れなどの欠陥がないセラミックス回路基板を、容易にかつ高い製品歩留りで作製することができる。   In addition, since the bonding material such as solder and brazing material is in a molten state with high fluidity at high temperatures and uniformly spreads over the entire bonding surface, the mounted components can be integrally bonded with high bonding strength and positional accuracy. Furthermore, even when a bonding material such as solder or brazing material that is in a molten state with high fluidity at a high temperature is used, the bonding material such as solder is retained and retained by the recess and does not flow out of the recess. Therefore, a ceramic circuit board free from defects such as misalignment of mounted parts and solder flow can be easily manufactured with a high product yield.

以下、本発明に係るセラミックス回路基板の実施形態について添付図面を参照してより具体的に説明する。   Hereinafter, embodiments of a ceramic circuit board according to the present invention will be described more specifically with reference to the accompanying drawings.

[実施例1〜6、9、参考例7,8および比較例1]
セラミックス基板として厚さ0.635mmの窒化アルミニウム(AlN)基板、窒化珪素(Si3N4)基板およびアルミナ(Al)基板を多数用意し、これらのセラミックス基板の表面上に、Ag/Cu/Ti系のろう材ペーストをスクリーン印刷法により塗布し、厚さが15μmのろう材層を形成した。さらに、各セラミックス基板の裏面側にも、Ag/Cu/Ti系のろう材ペーストをスクリーン印刷法により塗布し、裏金属板を接合するための厚さが15μmのろう材層を形成した。
[Examples 1 to 6, 9, Reference Examples 7 and 8 and Comparative Example 1]
A large number of 0.635 mm thick aluminum nitride (AlN) substrates, silicon nitride (Si3N4) substrates and alumina (Al 2 O 3 ) substrates are prepared as ceramic substrates, and Ag / Cu / Ti is formed on the surface of these ceramic substrates. The brazing material paste of the system was applied by a screen printing method to form a brazing material layer having a thickness of 15 μm. Furthermore, an Ag / Cu / Ti-based brazing paste was applied to the back side of each ceramic substrate by a screen printing method to form a brazing filler metal layer having a thickness of 15 μm for joining the back metal plate.

次に、ろう材ペーストが印刷された各セラミックス基板の表裏両面上に、表1に示すような厚さ0.25〜0.3mmである回路用金属板および裏金属板としてのCu板またはAl板をそれぞれ押圧して接触させた状態で、真空度が1×10−4torr以下の雰囲気中において温度800℃で15分間熱処理を実施することにより、上記金属回路用金属板および裏金属板をセラミックス基板に一体に接合することによりCu張りセラミックス基板およびAl張りセラミックス基板を調製した。 Next, on both front and back surfaces of each ceramic substrate on which the brazing paste is printed, a circuit metal plate having a thickness of 0.25 to 0.3 mm as shown in Table 1 and a Cu plate or Al as a back metal plate The metal plate for metal circuit and the back metal plate are obtained by performing heat treatment at a temperature of 800 ° C. for 15 minutes in an atmosphere having a degree of vacuum of 1 × 10 −4 torr or less in a state where the plates are pressed and contacted. A Cu-clad ceramic substrate and an Al-clad ceramic substrate were prepared by integrally bonding to a ceramic substrate.

しかる後に、各セラミックス基板の表面側に接合した回路用金属板をエッチング処理することにより、表1に示すような深さDが0.03〜0.15mmであり、実装部品との間隙Wが0.08〜0.5mmである凹部を形成した。   Thereafter, by etching the metal plate for circuit bonded to the surface side of each ceramic substrate, the depth D as shown in Table 1 is 0.03 to 0.15 mm, and the gap W with the mounted component is A recess having a thickness of 0.08 to 0.5 mm was formed.

一方、比較例1として上記凹部を形成せずに、セラミックス基板表面にエポキシ樹脂性のソルダーレジストを印刷して半田の流れ止め用の突起を形成したセラミックス回路基板を作製した。   On the other hand, as Comparative Example 1, a ceramic circuit board in which a protrusion for preventing solder flow was formed by printing an epoxy resin solder resist on the surface of the ceramic board without forming the concave portion was produced.

次に、上記のように調製した各種のセラミックス回路基板の凹部に厚さが0.05mmであるAg−Cu系ろう材箔(BAG−18)を配設し、さらにそのろう材箔の上面に、接合断面が5mm角である実装部品としてのCu製の電極端子を押し当てることにより、電極端子を凹部に嵌入せしめた状態で温度730℃に加熱して、上記凹部の底面が実装部品の接合面となるように電極端子をろう付接合した。こうして、各実施例、参考例および比較例に係るセラミックス回路基板を製造した。 Next, an Ag—Cu-based brazing foil (BAG-18) having a thickness of 0.05 mm is disposed in the recesses of the various ceramic circuit boards prepared as described above, and further on the upper surface of the brazing foil. Then, by pressing a Cu electrode terminal as a mounting component having a bonding cross section of 5 mm square, the electrode terminal is heated to a temperature of 730 ° C. with the electrode terminal fitted into the recess, and the bottom surface of the recess is bonded to the mounting component. The electrode terminal was brazed and joined so as to be a surface. Thus, ceramic circuit boards according to the respective examples , reference examples, and comparative examples were manufactured.

こうして調製された各実施例に係るセラミックス回路基板1aは、図1および図2に示すように、セラミックス基板2の表面側にろう材層3を介して金属回路板4aが一体に接合されており、この金属回路板4aの表面部に形成された凹部7に実装部品6としての電極端子がろう付け接合されており、さらにセラミックス基板2の裏面側には、ろう材層3を介して裏金属板5が一体に接合された構造を有している。   As shown in FIGS. 1 and 2, the ceramic circuit board 1 a according to each example prepared in this manner has a metal circuit board 4 a integrally bonded to the surface side of the ceramic board 2 via a brazing material layer 3. The electrode terminals as the mounting components 6 are brazed and joined to the recesses 7 formed on the surface portion of the metal circuit board 4a, and the back metal side of the ceramic substrate 2 is connected to the back metal via the brazing material layer 3. The plate 5 has a structure joined together.

上記のように調製した各実施例、参考例および比較例に係るセラミックス回路基板を評価するために、各回路基板について、凹部7に嵌入接合した電極端子のずれが所定位置から0.25mm以上であった回路基板の発生率を測定した。また、電極端子の接合部を目視観察して、凹部7から半田が流れ出た回路基板数および短絡が発生した回路基板数を計数し、その発生率を測定した。測定結果を下記表1に示す。

Figure 0004146321
In order to evaluate the ceramic circuit boards according to the examples , reference examples, and comparative examples prepared as described above, the displacement of the electrode terminals fitted and joined to the recesses 7 is 0.25 mm or more from the predetermined position for each circuit board. The occurrence rate of the circuit board was measured. Moreover, the joint part of the electrode terminal was visually observed, the number of circuit boards in which the solder flowed out from the recesses 7 and the number of circuit boards in which a short circuit occurred were counted, and the occurrence rate was measured. The measurement results are shown in Table 1 below.
Figure 0004146321

上記表1に示す結果から明らかなように、金属回路板4a表面に深さDが0.05m以上であり、凹部側面と実装部品側面との間隙Wが0.1〜0.5mmの範囲である所定形状の凹部7を形成した実施例1〜6に係るセラミックス回路基板1aによれば、凹部7内に実装部品6としての電極端子が嵌入され凹部7の底面が電極端子の接合面となるように構成されているため、高温度の熱処理によって半田やろう材等の接合材を介して実装部品6を接合固定する際に、実装部品6としての電極端子が凹部7の対向する側壁によって対向面方向の接合位置が正確に規制されるため、微細な取付け位置の誤差が修正される効果、いわゆるセルフアライメント効果(自己位置修正効果)が得られ、実装部品6の固定位置精度が高いセラミックス回路基板を提供できた。なお、当然のことながら、使用したAlN基板、Si基板およびAl基板などのいずれの場合においても、セラミックス基板の種類の相違に基づいた上記効果の差異は観察されなかった。 As is clear from the results shown in Table 1, the depth D to the metal circuit plate 4a surface is not less 0.05 m m or more, the gap W between the concave side and the mounting part side of 0.1~0.5mm According to the ceramic circuit boards 1a according to Examples 1 to 6 in which the concave portion 7 having a predetermined shape as a range is formed, the electrode terminal as the mounting component 6 is fitted into the concave portion 7, and the bottom surface of the concave portion 7 is the bonding surface of the electrode terminal. Therefore, when the mounting component 6 is bonded and fixed via a bonding material such as solder or brazing material by high-temperature heat treatment, the electrode terminal as the mounting component 6 faces the side wall facing the recess 7. Since the joint position in the opposing surface direction is accurately regulated by the above, an effect of correcting a fine attachment position error, that is, a so-called self-alignment effect (self-position correction effect) is obtained, and the fixed position accuracy of the mounting component 6 is high. Ceramics It was able to provide the road board. Of course, in any case of the used AlN substrate, Si 3 N 4 substrate, Al 2 O 3 substrate, or the like, the difference in the above effects based on the difference in the type of the ceramic substrate was not observed.

また、半田やろう材等の接合材は高温度によって流動性が高い溶融状態となり接合面全体に均一に行き渡るため、実装部品6としての電極端子を高い接合強度および位置精度で一体に接合することが可能になった。さらに、高温度によって流動性が高い溶融状態にある半田やろう材等の接合材を使用した場合においても、半田等の接合材は凹部7によって貯留保持され凹部7の外部に流出することがない。したがって、実装部品としての電極端子の位置ずれおよび半田流れなどの欠陥がないセラミックス回路基板1aを、容易にかつ高い製品歩留りで作製することができた。   In addition, since bonding materials such as solder and brazing material are in a molten state with high fluidity due to high temperature and are uniformly distributed over the entire bonding surface, the electrode terminals as the mounting components 6 should be integrally bonded with high bonding strength and positional accuracy. Became possible. Furthermore, even when a bonding material such as solder or brazing material that is in a molten state with high fluidity at high temperatures is used, the bonding material such as solder is retained and retained by the recess 7 and does not flow out of the recess 7. . Therefore, the ceramic circuit board 1a free from defects such as misalignment of electrode terminals and solder flow as a mounting component can be easily produced at a high product yield.

しかしながら、凹部7を形成した場合であっても、その深さDが過小である参考例7および参考例8に係るセラミックス回路基板においては、凹部7による実装部品のセルフアライメント効果および半田流れ防止効果が十分に発揮されないため、ずれの発生率および半田流れによる短絡の発生率が相対的に上昇した。 However, in the ceramic circuit boards according to Reference Example 7 and Reference Example 8 in which the depth D is too small even when the recess 7 is formed, the self-alignment effect of the mounted component and the solder flow prevention effect by the recess 7 However, the occurrence rate of deviation and the occurrence rate of short circuit due to the solder flow were relatively increased.

一方、凹部7を形成せずに、セラミックス基板2の表面にエポキシ樹脂性のソルダーレジストを印刷して半田の流れ止め用の突起を形成した比較例1に係るセラミックス回路基板においては、印刷したソルダーレジストが高温度での接合処理を実施した際に焼失してしまい、電極端子の位置決め効果および半田流れ防止効果が十分に得られず、不良発生率が増加することが再確認できた。   On the other hand, in the ceramic circuit board according to Comparative Example 1 in which an epoxy resin solder resist is printed on the surface of the ceramic substrate 2 without forming the recesses 7 and the protrusions for preventing solder flow are formed, the printed solder It was reconfirmed that the resist burned out when the bonding treatment was performed at a high temperature, the electrode terminal positioning effect and the solder flow prevention effect were not sufficiently obtained, and the defect occurrence rate increased.

また、本実施例に係るセラミックス回路基板によれば、形成する凹部7の全容積から、この凹部7に嵌入される実装部品6の接合部の容積を差し引いた容積が、溶融したろう材の最大貯留量として容易に計算できる。したがって、従前のように半田流れを引き起こさないように半田量を厳正に管理制御することが不要となり、製造管理が極めて簡素化される顕著な作用効果も得られる。   Moreover, according to the ceramic circuit board according to the present embodiment, the volume obtained by subtracting the volume of the joint portion of the mounting component 6 inserted into the recess 7 from the total volume of the recess 7 to be formed is the maximum of the molten brazing material. It can be easily calculated as the amount of storage. Therefore, it becomes unnecessary to strictly control and control the amount of solder so as not to cause solder flow as before, and a remarkable operational effect is achieved in which manufacturing management is greatly simplified.

なお、上記実施例においては、図1に示すように実装部品6の接合面より外方向にやや張り出した形状の底面を有する正方形状の凹部7を金属回路板4aの表面領域内に形成した実施例を示しているが、本発明はこの構成に限定されず、例えば図3に示すように、金属回路板4bの表面領域を突き抜けるように溝状の凹部7aを形成し、この凹部7aに複数の実装部品6,6としての半導体チップや電極端子を嵌入させてろう付け接合した場合においても、前記実施例と同様な作用効果が得られることが確認されている。   In the above embodiment, as shown in FIG. 1, a square-shaped recess 7 having a bottom surface slightly protruding outward from the joint surface of the mounting component 6 is formed in the surface region of the metal circuit board 4a. Although an example is shown, the present invention is not limited to this configuration. For example, as shown in FIG. 3, a groove-like recess 7a is formed so as to penetrate the surface region of the metal circuit board 4b, and a plurality of recesses 7a are formed in the recess 7a. Even when the semiconductor chip or the electrode terminal as the mounting parts 6 and 6 is inserted and brazed and joined, it is confirmed that the same effect as the above-described embodiment can be obtained.

本発明に係るセラミックス回路基板の一実施例を示す平面図。The top view which shows one Example of the ceramic circuit board based on this invention. 図1に示すセラミックス回路基板の断面図。Sectional drawing of the ceramic circuit board shown in FIG. 本発明に係るセラミックス回路基板の他の実施例を示す平面図。The top view which shows the other Example of the ceramic circuit board based on this invention. 従来のセラミックス回路基板の構成例を示す断面図。Sectional drawing which shows the structural example of the conventional ceramic circuit board.

符号の説明Explanation of symbols

1,1a,1b セラミックス回路基板
2 セラミックス基板
3 ろう材層
4 金属回路板(金属回路層、銅回路板)
5 裏金属板
6 実装部品(半導体チップ,電極端子,抵抗,コンデンサ,サーミスタ等)
7,7a 凹部
D 凹部の深さ
W 凹部側面と実装部品側面との間隙
1, 1a, 1b Ceramic circuit board 2 Ceramic board 3 Brazing material layer 4 Metal circuit board (metal circuit layer, copper circuit board)
5 Back metal plate 6 Mounting parts (semiconductor chip, electrode terminal, resistor, capacitor, thermistor, etc.)
7, 7a Concave part D Depth depth W Clearance between the concave part side surface and the mounted component side

Claims (4)

セラミックス基板の少なくとも一方の表面に金属回路板を一体に接合すると共に、この金属回路板に実装部品を接合したセラミックス回路基板において、上記金属回路板表面に凹部が形成されており、この凹部内に実装部品が嵌入され凹部の底面が実装部品の接合面である一方、上記凹部の深さが0.05mm以上であると共に、上記凹部の側面と、この凹部に搭載固定された実装部品の側面との間隙が0.5mm以下であり、上記金属回路板の厚さが0.1〜0.3mmであることを特徴とするセラミックス回路基板。 In the ceramic circuit board in which the metal circuit board is integrally joined to at least one surface of the ceramic substrate and the mounting component is joined to the metal circuit board, a recess is formed on the surface of the metal circuit board. while the bottom surface of the mounting part is fitted recess Ru joint surfaces der mounting component, with the depth of the recess is 0.05mm or more, and a side surface of the recess, side surfaces of the mounting fixed mounting component in the recess A ceramic circuit board , wherein the metal circuit board has a thickness of 0.1 to 0.3 mm . 請求項1記載のセラミックス回路基板において、前記凹部が金型プレス成形により形成されていることを特徴とするセラミックス回路基板。 2. The ceramic circuit board according to claim 1, wherein the recess is formed by die press molding . 請求項1記載のセラミックス回路基板において、前記凹部がエッチング処理により形成されていることを特徴とするセラミックス回路基板。 2. The ceramic circuit board according to claim 1, wherein the recess is formed by an etching process . 請求項1記載のセラミックス回路基板において、前記セラミックス基板がAlN基板またはSi2. The ceramic circuit board according to claim 1, wherein the ceramic substrate is an AlN substrate or Si. 3 N 4 基板であることを特徴とするセラミックス回路基板。A ceramic circuit board characterized by being a substrate.
JP2003334123A 2003-09-25 2003-09-25 Ceramic circuit board Expired - Fee Related JP4146321B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003334123A JP4146321B2 (en) 2003-09-25 2003-09-25 Ceramic circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003334123A JP4146321B2 (en) 2003-09-25 2003-09-25 Ceramic circuit board

Publications (2)

Publication Number Publication Date
JP2005101353A JP2005101353A (en) 2005-04-14
JP4146321B2 true JP4146321B2 (en) 2008-09-10

Family

ID=34461933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003334123A Expired - Fee Related JP4146321B2 (en) 2003-09-25 2003-09-25 Ceramic circuit board

Country Status (1)

Country Link
JP (1) JP4146321B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022101523A1 (en) 2021-03-09 2022-09-15 Mitsubishi Electric Corporation Semiconductor device and method of manufacturing the same

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8018056B2 (en) * 2005-12-21 2011-09-13 International Rectifier Corporation Package for high power density devices
JP4682889B2 (en) * 2006-03-23 2011-05-11 三菱マテリアル株式会社 Power module substrate, power module, and method of manufacturing power module substrate
JP4930829B2 (en) * 2006-07-04 2012-05-16 凸版印刷株式会社 Component mounting board and manufacturing method thereof
JP2008021716A (en) * 2006-07-11 2008-01-31 Mitsubishi Materials Corp Power module substrate and method of manufacturing the same, and power module
DE102007037538A1 (en) 2007-08-09 2009-02-12 Robert Bosch Gmbh Assembly and manufacture of an assembly
JP2013115338A (en) * 2011-11-30 2013-06-10 Sumitomo Wiring Syst Ltd Fitting structure for diode
JP6004579B2 (en) * 2013-03-12 2016-10-12 新電元工業株式会社 Semiconductor device
JP6829204B2 (en) * 2015-09-28 2021-02-10 株式会社東芝 Silicon nitride circuit board and semiconductor module using it
JP7207904B2 (en) * 2017-08-25 2023-01-18 京セラ株式会社 Substrates for power modules and power modules
JP7170501B2 (en) * 2018-10-26 2022-11-14 京セラ株式会社 Substrates for power modules and power modules
EP3961695B1 (en) * 2019-04-26 2023-08-02 Denka Company Limited Ceramic circuit substrate and electronic component module
KR20240032414A (en) * 2022-09-02 2024-03-12 주식회사 아모그린텍 Ceramic board manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022101523A1 (en) 2021-03-09 2022-09-15 Mitsubishi Electric Corporation Semiconductor device and method of manufacturing the same

Also Published As

Publication number Publication date
JP2005101353A (en) 2005-04-14

Similar Documents

Publication Publication Date Title
JP4146321B2 (en) Ceramic circuit board
CN104704618B (en) The manufacture method of semiconductor device, ceramic circuit board and semiconductor device
JP4334054B2 (en) Ceramic circuit board
KR20140147090A (en) Power module substrate, power module substrate with heat sink, and power module
JP4961165B2 (en) Electronic component mounting substrate, electronic component and electronic device
JP5002614B2 (en) Manufacturing method of ceramic circuit board
JP3840132B2 (en) Peltier device mounting circuit board
JPWO2018131310A1 (en) Power semiconductor device and method of manufacturing power semiconductor device
JP2014011423A (en) Substrate for power module and method for manufacturing the same
JP4471470B2 (en) Semiconductor device
JP2005072456A (en) Electric element module
JP6213204B2 (en) Ag base layer forming paste
JP6160037B2 (en) Manufacturing method of joined body, manufacturing method of power module, joined body, power module, and substrate for power module
JP2014154571A (en) Power module substrate
JP3447043B2 (en) Package for electronic components
JP5665479B2 (en) Circuit board and electronic device
JP3939979B2 (en) Nitride ceramic copper circuit board and power module
JP2005101415A (en) Ceramic circuit board and method for manufacturing the same
JP2003100983A (en) Ceramic circuit board
JP7340009B2 (en) Electronic component module and silicon nitride circuit board
JP7208439B2 (en) Ceramic circuit board, electronic device, metal member, and method for manufacturing ceramic circuit board
JP2005019750A (en) Ceramic circuit board and its manufacturing method, and electric circuit module
JP2006319313A (en) Circuit board and electronic parts module
JP3973727B2 (en) Ceramic circuit board
JP2002076213A (en) Semiconductor device module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060913

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080617

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080619

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4146321

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees