JP4144259B2 - Semiconductor heat treatment equipment - Google Patents

Semiconductor heat treatment equipment Download PDF

Info

Publication number
JP4144259B2
JP4144259B2 JP2002156924A JP2002156924A JP4144259B2 JP 4144259 B2 JP4144259 B2 JP 4144259B2 JP 2002156924 A JP2002156924 A JP 2002156924A JP 2002156924 A JP2002156924 A JP 2002156924A JP 4144259 B2 JP4144259 B2 JP 4144259B2
Authority
JP
Japan
Prior art keywords
heat treatment
container part
container
semiconductor
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002156924A
Other languages
Japanese (ja)
Other versions
JP2004002075A (en
Inventor
伸司 矢吹
三千則 和地
幸司 大宝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2002156924A priority Critical patent/JP4144259B2/en
Publication of JP2004002075A publication Critical patent/JP2004002075A/en
Application granted granted Critical
Publication of JP4144259B2 publication Critical patent/JP4144259B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、金属等で蒸気圧制御を必要とする熱処理に適した熱処理装置、特にGaAs、GaP、InPなどIII −V族およびZnSeなどのII−VI族化合物半導体単結晶の電気的特性を制御するための半導体熱処理装置に関するものである。
【0002】
【従来の技術】
通常、金属の熱処理においてはBOX炉等で大気中での加熱処理、又は圧力容器等で容器内に不活性ガスを充填した状態で加熱処理を行うのが一般的であり、蒸気圧制御が可能な熱処理炉は殆ど前例が無い。
【0003】
又、一部の化合物半導体等の合金で、加熱すると金属表面から解離が起こる為、製品特性を維持する為に蒸気圧制御を必要する金属がある。これら金属の熱処理方法としては、石英製のアンプル等に金属と蒸気圧補償分の金属を入れ真空封止し、そのアンプルを熱処理炉に投入にして熱処理を行うのが一般的な手法である。
【0004】
このような化合物半導体等の合金で、その熱処理温度によって表面からの解離が問題となってくる材料に関しては、従来あるBOX炉や一般的な圧力容器型の熱処理炉等では所定の熱処理温度まで上げると金属表面からの解離が発生し、製品特性に影響を及ぼしてしまう。又、解離を避ける為に熱処理温度を下げることで、十分な熱処理効果が得られないという問題点があった。
【0005】
また、石英アンプルに真空封止して熱処理を行う方法においては、石英アンプルに封止するという工程が発生する為、石英アンプルの費用、封止に用いる設備、及びこれら作業費用等が発生する為、コスト面に問題がある。又、石英の強度的な問題から処理を行う金属の重量が10kgを超えると当方法では非常に処理が困難となる。
【0006】
詳述するに、化合物半導体単結晶の育成方法としては、液体封止チョクラルスキー法(LEC法)や徐冷法(GF)、水平ブリッジマン法(HB法)、垂直ブリッジマン法(VB法)等幾つも提案されているが、いずれも結晶内の特性が不均一になるのを避けられないため、育成後に、熱処理装置を用いて、結晶をインゴットのままあるいは円筒研削したブロック状態やウェハに切断して熱処理することで結晶の特性の改善、均一化を図ることが行なわれている。
【0007】
しかし、従来の熱処理装置においては、被熱処理物を石英アンプルに入れて真空封止してから熱処理を行なうため、単結晶の大口径化に伴って被熱処理物が大型化すると石英アンプルも大きなものを使用しなければならないので封止作業が困難になるとともに、熱処理後に石英アンプルを破壊して被熱処理物を取り出すので経済性が悪くコスト高になるという問題点があった。
【0008】
そこで、従来、半導体の被処理単結晶が収納可能となるよう開閉ができる耐熱容器の構造とし、さらには耐圧性能を向上すべく、この耐熱容器を圧力容器内に収めた構造、つまり高圧炉の中にさらにインナーチャンバーを設けた構造の蒸気圧制御機構とすることが提案されている(特開平11−310499号公報)。
【0009】
【発明が解決しようとする課題】
しかしながら、上記公報にはシール部を介して開閉自在に二分割された耐熱容器という概念が示されているだけであり、具体的な耐熱容器の開閉手段についてまでは開示が無い。従って、被熱処理物を安全、且つ容易に出し入れすることができる、操作が容易で、実用性に富む熱処理装置の提供が望まれる。
【0010】
また、耐熱容器をシール部を介して開閉自在な二分割構造とした場合、その開閉部であるインナーチャンバー下部におけるシールを高温下で確実に行うことは困難であり、高蒸気圧成分のインナーチャンバーからの微量の漏洩があるため、特にAsやPのように毒性を有し又は発火の恐れのある高蒸気圧成分を使う系への適用については、より完全なシール構造が求められている。
【0011】
そこで、本発明の目的は、上記した従来技術の問題点を解決し、被熱処理物の出し入れが容易で実用性に富む半導体熱処理装置、更には耐熱容器のシールをより完全なものにした半導体熱処理装置を提供することにある。
【0012】
【課題を解決するための手段】
上記目的を達成するため、本発明は、次のように構成したものである。
【0013】
請求項1の発明は、圧力容器内に、ヒータが設置されたヒータチャンバーを設け、更に上記ヒータチャンバー内に、半導体の被処理単結晶が収納可能となるよう開閉ができるガス不透過性耐熱容器からなるインナーチャンバーを設けた半導体熱処理装置において、上記耐熱容器を、シール材を介して互いに対接する下側容器部と上側容器部とに二分割し、その下側容器部及び上側容器部の少なくとも一方を上下移動可能な支持軸に取り付け、これにより下側容器部及び上側容器部が互いに離間及び対接して上記耐熱容器がシール材を介して開閉し得るように構成したことを特徴とする。
【0014】
この特徴によれば、圧力容器内にヒータチャンバーを有し、更にヒータチャンバー内にインナーチャンバーを有する半導体熱処理装置において、容易に耐熱容器からなるインナーチャンバーがシール材を介して開閉し得るので、実用的な熱処理装置を構成することができ、石英アンプル等による封止作業が一切不必要となる。また、耐熱容器内および耐熱容器外の圧力は圧力容器内圧力に等しく、差圧を生じることがないので、圧力容器内にヒータチャンバーとインナーチャンバーを有する構造とし、インナーチャンバー外部に不活性ガス等のガスを充填することで、インナーチャンバー内外部の差圧をなくすことができ、インナーチャンバー内部から外部へのガス放出を抑止することが可能となる。
【0015】
請求項1の発明は、より具体的には、圧力容器内に、ヒータが設置されたヒータチャンバーを設け、更に上記ヒータチャンバー内に、化合物半導体からなる被処理単結晶が収納可能となるよう開閉ができる耐熱容器を設けた構造を有し、該耐熱容器内に上記化合物半導体を構成する高解離圧成分の元素を予め封入し、上記単結晶の構成元素のうち蒸気圧の高い元素のガス雰囲気下で、上記単結晶の熱処理を行う半導体熱処理装置において、上記耐熱容器を、シール材を介して下側容器部と上側容器部とに二分割可能な構造とし、その下側容器部及び上側容器部を下部支持軸及び上部支持軸にそれぞれ取り付けて互いに対接させ及び離間し得るように構成した形態を含むものである。
【0016】
請求項2の発明は、請求項1に記載の半導体熱処理装置において、上記下側容器部を試料台として構成すると共に、上記上側容器部をこの試料台に上記シール材を介して気密に被さる下部開放口を有する容器として構成し、上記支持軸を上下方向に変移可能とする駆動機構に装置することにより、上記試料台と上部容器との接合部に外部から機械的に圧力をかけ得る構造としたことを特徴とする。
【0017】
この特徴によれば、開閉ができる耐熱容器を構成する下側容器部及び上側容器部に対し、両者が対接する上下方向に外部から機械的に圧力をかける構造を実現することができ、これにより下側容器部及び上側容器部間のシール部でのシール効果を更に向上させることが可能となる。また万が一、耐熱容器内部のガス圧力が耐熱容器外部のガス圧力より高くなった場合、耐熱容器が開口するため、内部の蒸気圧制御ができなくなるといった事態を回避することが可能となる。
【0018】
請求項3の発明は、請求項2に記載の半導体熱処理装置において、上記下側容器部及び上側容器部をそれぞれ独立に上下移動可能な支持軸に取り付け、上記上側容器部にはその頂部付近周囲に鍔部を設け、この鍔部が圧力容器内に上記加熱要素を取り囲んで立設された筒状支持部材の頂面に載置されて支持され、この上側容器部の下部開口に対して下側容器部を当接させてインナーチャンバーを形成し得る構成としたことを特徴とする半導体熱処理装置。
【0019】
この特徴によれば、上側容器部を圧力容器内に立設された筒状支持部材の頂面に載置させて圧力容器内に位置決めすることができ、この圧力容器内に位置決めされた上側容器部の下部開口に対して下側容器部の試料台を当接させてインナーチャンバーを形成し、これを気密に保持することができる。
【0020】
請求項4の発明は、請求項1〜3のいずれかに記載の半導体熱処理装置において、上記ガス不透過性耐熱容器の材質に、表面にCVDコートを施したグラファイト、金属製の材質、セラミックス製の材質、気密性を有する特殊炭素材料、又はガラス材料を使用したことを特徴とする。
【0021】
このようにインナーチャンバーを構成する耐熱容器の材質としてガス透過率が極めて低い緻密な材質を用いることで、耐熱容器から透過するガスの放出を抑止することが可能となる。また、これはインナーチャンバー内の蒸気圧保持効率を高める結果となる。
【0022】
請求項5の発明は、請求項1〜4のいずれかに記載の半導体熱処理装置において、上記ガス不透過性耐熱容器の開閉部分を気密に保持する上記シール材の材質にグラフォイルを用いたことを特徴とする。
【0023】
本発明の処理装置においては、インナーチャンバーへ処理物の金属を入れる必要から、インナーチャンバーにはその構造上開閉部が存在する。インナーチャンバーからの蒸気圧が漏れる可能性が一番高いのはこの開閉部からであり、ここからの漏れを抑える目的で開口部のシール材としてグラフォイル(劈開性グラファイト)を用いるものである。このグラフォイルを用いると、インナーチャンバーからの漏れを簡易、且つ効果的に抑止することが可能となる。
【0024】
【発明の実施の形態】
以下、本発明を図示の実施形態に基づいて説明する。
【0025】
図1はGaAs単結晶の熱処理装置に適用した例を示している。この半導体熱処理装置は、圧力容器1内に加熱要素であるヒータ5を有するヒータチャンバー30を設け、更にヒータチャンバー内にガス不透過性耐熱容器21から成るインナーチャンバー20を設けた構造となっている。耐熱容器21は化合物半導体の被処理単結晶であるGaAsインゴット2が収納可能となるよう開閉ができる構造となっており、この耐熱容器21内に化合物半導体を構成する高解離圧成分の元素3(ここではAs)を予め封入し、上記GaAsインゴット2の構成元素のうち蒸気圧の高い元素のガス雰囲気下で、インゴット2の熱処理を行えるように構成されている。
【0026】
上記耐熱容器21は、シール材9を介して互いに対接する下側容器部4(下部インナーチャンバー部)と上側容器部7(上部インナーチャンバー部)とに二分割されており、その下側容器部4及び上側容器部7の少なくとも一方は上下移動可能な支持軸に取り付け、互いに対接及び離間し得るように構成されている。ここでは、下側容器部4及び上側容器部7が、それぞれ下部支持軸6及び上部支持軸8に取り付けられ、これにより下側容器部4及び上側容器部7が互いに離間及び対接して上記耐熱容器がシール材を介して開閉し得るように構成されている。
【0027】
本実施形態の場合、下側容器部4は試料台として構成され、また上側容器部7はこの試料台に上記シール材9を介して気密に被さる下部開放口を有する容器として構成されている。そして、上記下部支持軸6及び上部支持軸8は、これを上下方向に変移可能に駆動する駆動機構(図示せず)に装置されている。これにより下側容器部4と上側容器部7との接合部に外部から機械的に圧力をかけ得る構造となっている。
【0028】
上記上側容器部7にはその頂部7a付近の周囲に鍔部7bが設けてあり、この鍔部7bが圧力容器1内に上記ヒータ5を取り囲んで立設された筒状支持部材10の頂面に載置されて支持され、これにより圧力容器1内に上側容器部7が位置決めされると共に、当該頂部7a及び鍔部7bと筒状支持部材10によりヒータチャンバー30が形成される構成となっている。そして、このヒータチャンバー30内において、上側容器部7の下部開口に対して下側容器部4たる試料台を当接させることにより、インナーチャンバー20を形成し得る構成となっている。
【0029】
上記インナーチャンバー20を形成するガス不透過性耐熱容器21は、ガスの透過抑止のため表面にCVDコートを施したグラファイトから成る。しかし、ガス透過率が極めて低い緻密な材質、例えば石英ガラス、アルミナ、炭化珪素、窒化珪素、グラッシーカーボン、またはモリブデンなどで製作することもできる。
【0030】
また上記ガス不透過性耐熱容器21(インナーチャンバー20)の開閉部分を気密に保持する上記シール材9には、グラフォイル(劈開性グラファイト)を用いている。
【0031】
上記の熱処理装置によれば、容易に耐熱容器21がシール材9を介して開閉し得る構造となっているので、取り扱いが容易な実用的な熱処理装置を構成することができる。石英アンプル等による封止作業は一切不要である。
【0032】
また、圧力容器1内にヒータチャンバー30を有し、更にヒータチャンバー30内にインナーチャンバー20を有する構造にしており、耐熱容器21の内外の圧力は圧力容器1内の圧力に等しく、差圧を生じることがないので、例えばインナーチャンバー20の外部に不活性ガス等のガスを充填することで、インナーチャンバー20の内外部の差圧をなくすことができ、インナーチャンバー20内部から外部へのガス放出を抑止することが可能となる。
【0033】
また、インナーチャンバー20を構成する下側容器部4及び上側容器部7を駆動機構により上下方向に変移可能な下部支持軸6及び上部支持軸8に取り付けているので、下側容器部4及び上側容器部7に対し、両者が対接する上下方向に外部から機械的に圧力をかけることができる。従って、グラフォイルから成るシール材9により営まれるところの、下側容器部4及び上側容器部7間のシール材9での機密保持作用を、更に向上させることが可能となる。万が一、耐熱容器21内部のガス圧力が耐熱容器21外部のガス圧力より高くなった場合にも、耐熱容器21の下側容器部4及び上側容器部7のいずれかが変位して開口するため、内部の蒸気圧制御ができなくなるといった事態を回避することができる。
【0034】
次に実際の熱処理例について説明する。
【0035】
本発明の効果を確認するため、熱処理例として化合物半導体材料として知られているGaAsを用いて実験を行った。GaAsはその製品特性の向上を図る為に熱処理をするのが一般的である。又、GaAsは加熱すると表面からAsの解離が発生する為、熱処理を行う際にはAsのガス圧を保持した状態で行う必要がある。
【0036】
先ず、実験に用いた熱処理装置の構造について説明する。図1に示すように、圧力容器1の内部に上側容器部7(上部インナーチャンバー部)と下側容器部4(下部インナーチャンバー部)から成る耐熱容器21(インナーチャンバー20)を配置した。下側容器部4は圧力容器1の底部から圧力容器1内に貫通している下部支持軸6に乗せた状態に取り付けた。又、下部支持軸6は上下駆動が可能な構造を持たせてある。上側容器部7は鍔部7bを支持部材10に乗せた状態に配置してある。上側容器部7の上部には、圧力容器1内に上部から貫通している上部支持軸8を取り付けた。この上部支持軸8にも下部支持軸6と同様に上下駆動機能を持たせてある。上部支持軸8と下部支持軸6を駆動させることで、上側容器部7と下側容器部4の封止、開口ができる。又、上側容器部7と下側容器部4の接触部分にはシール材9としてグラフォイルが設置してある。又、インナーチャンバー20の外周部にヒータ5を設置し、このヒータにより加熱を行う。
【0037】
又、圧力容器1には真空排気装置及び不活性ガス導入用の配管を施し、圧力容器1内の真空引き、ガスパージが可能な構造としてある。
【0038】
試作実験に当っては、耐熱容器21の素材としてガスの透過抑止のため表面にCVDコートを施したグラファイトを用いた。又、ヒータとしてグラファイト製の抵抗加熱ヒータを用いた。
【0039】
試作は20kgのGaAsインゴット2を用いて到達温度1100℃で20hの熱処理実験を30回に渡り実施した。
【0040】
実験では、先ず下側容器部4にGaAsインゴット2をセットし、又、同時に1100℃でのGaAsのAs解離圧相当分のAsを元素3としてセットした。セット後、図1の様にインナーチャンバー20を開口させた状態で、圧力容器1内を真空ポンプにより真空引きを行い、その後不活性ガスを1.0kg/cm2充填した。不活性ガス充填後、上部支持軸8及び下部支持軸6を駆動させインナーチャンバー20を閉じて、更に上下から約5.0kg/cm2の加重をかけて封止を行った。その後、ヒータ5に通電し1100℃まで温度を上昇させ20h熱処理を実施した。
【0041】
その結果、実験した30回全てにおいてインナーチャンバー20からのガス漏れが無く、また、GaAsインゴット2の表面からもAsの解離した痕跡が全く見られず、蒸気圧制御が確実に行われたことが実証できた。
【0042】
【発明の効果】
以上説明したように本発明によれば、次のような優れた効果が得られる。
【0043】
本発明の熱処理装置によれば、インナーチャンバーを構成する下側容器部及び上側容器部を上下方向に変移可能な下部支持軸及び上部支持軸に取り付けているので、耐熱容器をシール材を介して容易に開閉することができ、蒸気圧制御が必要な半導体の熱処理における取り扱いが容易な実用的な熱処理装置を、低コストでしかも簡易に達成することができる。
【0044】
また、圧力容器内にヒータチャンバーを有し、更にヒータチャンバー内にインナーチャンバーを有する構造にしており、耐熱容器の内外の圧力が圧力容器内の圧力に等しく、差圧を生じることがないので、例えばインナーチャンバーの外部に不活性ガス等のガスを充填することで、インナーチャンバーの内外部の差圧をなくすことができ、インナーチャンバー内部から外部へのガス放出を抑止することが可能となる。
【0045】
またシール材がグラフォイルから成るためシール作用をより効果的に行わせることができる。さらにまた、下側容器部及び上側容器部の両者が対接する上下方向に外部から機械的に圧力をかけることができるので、グラフォイルから成るシール材により営まれるところの、下側容器部及び上側容器部間のシール材での機密保持作用を、更に向上させることが可能となる。
【図面の簡単な説明】
【図1】本発明の半導体熱処理装置の概略図である。
【符号の説明】
1 圧力容器
2 GaAsインゴット(半導体の被処理単結晶)
3 元素(As)
4 下側容器部(下部インナーチャンバー部)
5 ヒータ(加熱要素)
6 下部支持軸
7 上側容器部(上部インナーチャンバー部)
8 上部支持軸
9 シール材(グラフォイル)
10 支持部材
20 インナーチャンバー
21 耐熱容器
30 ヒータチャンバー
[0001]
BACKGROUND OF THE INVENTION
The present invention controls the electrical characteristics of a heat treatment apparatus suitable for heat treatment that requires vapor pressure control with a metal or the like, in particular, a III-V group semiconductor semiconductor such as GaAs, GaP, InP or a II-VI group compound semiconductor single crystal such as ZnSe. The present invention relates to a semiconductor heat treatment apparatus.
[0002]
[Prior art]
Usually, in heat treatment of metals, heat treatment in the atmosphere in a BOX furnace or the like is generally performed in a state where an inert gas is filled in a vessel with a pressure vessel or the like, and vapor pressure control is possible. There are few unprecedented heat treatment furnaces.
[0003]
Also, some alloys such as compound semiconductors dissociate from the metal surface when heated, so there are metals that require vapor pressure control to maintain product characteristics. As a heat treatment method for these metals, a general method is to put a metal and a metal for vapor pressure compensation into a quartz ampoule or the like and seal it in a vacuum, and put the ampoule into a heat treatment furnace for heat treatment.
[0004]
With regard to materials such as compound semiconductors whose dissociation from the surface becomes a problem due to the heat treatment temperature, the temperature is raised to a predetermined heat treatment temperature in a conventional BOX furnace or a general pressure vessel type heat treatment furnace. Dissociation from the metal surface occurs, affecting the product characteristics. Further, there is a problem that a sufficient heat treatment effect cannot be obtained by lowering the heat treatment temperature in order to avoid dissociation.
[0005]
Further, in the method of performing heat treatment by vacuum-sealing on a quartz ampule, a process of sealing on the quartz ampule occurs, so that the cost of the quartz ampule, the equipment used for sealing, and the cost of these operations are generated. There is a problem in cost. Further, if the weight of the metal to be processed exceeds 10 kg due to the strength problem of quartz, it is very difficult to process with this method.
[0006]
In detail, as a method for growing a compound semiconductor single crystal, liquid sealing Czochralski method (LEC method), slow cooling method (GF), horizontal Bridgman method (HB method), vertical Bridgman method (VB method), etc. Several proposals have been made, but since it is inevitable that the characteristics in the crystal will be non-uniform, after the growth, the crystal is cut into a block or wafer that is ingot or cylindrically ground using a heat treatment device. Then, heat treatment is performed to improve and homogenize the crystal characteristics.
[0007]
However, in the conventional heat treatment equipment, the heat treatment object is placed in a quartz ampoule and vacuum sealed, and then the heat treatment is performed. Therefore, if the heat treatment object becomes larger as the diameter of the single crystal becomes larger, the quartz ampule becomes larger. Therefore, there is a problem that the sealing operation becomes difficult and the quartz ampule is destroyed after the heat treatment to take out the heat-treated material, so that the economy is low and the cost is high.
[0008]
Therefore, in the past, a structure of a heat-resistant container that can be opened and closed so that a single crystal to be processed of a semiconductor can be accommodated, and further, a structure in which the heat-resistant container is housed in a pressure container in order to improve pressure resistance performance, that is, a high-pressure furnace. It has been proposed to use a vapor pressure control mechanism having a structure in which an inner chamber is further provided (Japanese Patent Laid-Open No. 11-310499).
[0009]
[Problems to be solved by the invention]
However, the above publication only shows the concept of a heat-resistant container that is divided into two openable and closable via a seal portion, and does not disclose any specific means for opening and closing the heat-resistant container. Therefore, it is desirable to provide a heat treatment apparatus that can safely and easily take in and out the heat-treated material, is easy to operate, and is highly practical.
[0010]
In addition, when the heat-resistant container has a two-part structure that can be opened and closed through a seal portion, it is difficult to reliably perform sealing at the lower portion of the inner chamber, which is the open / close portion, at a high temperature. In particular, a more complete seal structure is required for application to a system using a high vapor pressure component such as As or P, which has toxicity or may ignite.
[0011]
Accordingly, the object of the present invention is to solve the above-mentioned problems of the prior art, a semiconductor heat treatment apparatus that is easy to put in and out of the heat-treated material and is highly practical, and further a semiconductor heat treatment with a more complete heat-resistant container seal. To provide an apparatus.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, the present invention is configured as follows.
[0013]
According to the first aspect of the present invention, there is provided a gas impermeable heat-resistant container which is provided with a heater chamber in which a heater is installed in a pressure vessel, and which can be opened and closed so that a semiconductor single crystal to be processed can be accommodated in the heater chamber. In the semiconductor heat treatment apparatus provided with the inner chamber , the heat-resistant container is divided into two parts, a lower container part and an upper container part that are in contact with each other via a sealing material, and at least of the lower container part and the upper container part One is attached to a support shaft that can be moved up and down, whereby the lower container part and the upper container part are separated from and in contact with each other, and the heat-resistant container can be opened and closed via a sealing material.
[0014]
According to this feature, has a heater chamber into the pressure vessel, further in the semiconductor heat treatment apparatus having an inner chamber in the heater chamber, the inner chamber easily made of heat-resistant container can be opened and closed through a sealing material, practical A typical heat treatment apparatus can be constructed, and no sealing work with a quartz ampule or the like is required. In addition, the pressure inside and outside the heat-resistant container is equal to the pressure inside the pressure container and does not cause a differential pressure. Therefore, a structure having a heater chamber and an inner chamber inside the pressure container is used. By filling this gas, the differential pressure inside and outside the inner chamber can be eliminated, and the release of gas from the inside of the inner chamber to the outside can be suppressed.
[0015]
More specifically, according to the first aspect of the present invention, a heater chamber in which a heater is installed is provided in a pressure vessel, and the opening and closing of the single crystal made of a compound semiconductor can be accommodated in the heater chamber. has a structure in which a heat-resistant container that can advance to encapsulate high dissociation pressure component of elements constituting the compound semiconductor in the heat-resistant container, a gas atmosphere of high elemental vapor pressure of the constituent elements of the single crystal In the semiconductor heat treatment apparatus for performing heat treatment of the single crystal below, the heat-resistant container has a structure that can be divided into a lower container part and an upper container part via a sealing material, and the lower container part and the upper container It includes a configuration in which the portion is attached to the lower support shaft and the upper support shaft so that they can be brought into contact with and separated from each other.
[0016]
According to a second aspect of the present invention, there is provided the semiconductor heat treatment apparatus according to the first aspect, wherein the lower container portion is configured as a sample stage, and the upper container portion is hermetically covered with the sample stage via the sealing material. A structure that can be mechanically applied externally to the joint between the sample stage and the upper container by being configured as a container having an open port, and being installed in a drive mechanism that allows the support shaft to be moved vertically. It is characterized by that.
[0017]
According to this feature, it is possible to realize a structure in which mechanical pressure is applied to the lower and upper container parts constituting the heat-resistant container that can be opened and closed from the outside in the vertical direction in which both are in contact with each other. It becomes possible to further improve the sealing effect at the seal part between the lower container part and the upper container part. In the unlikely event that the gas pressure inside the heat-resistant container becomes higher than the gas pressure outside the heat-resistant container, it is possible to avoid a situation in which the internal vapor pressure cannot be controlled because the heat-resistant container opens.
[0018]
According to a third aspect of the present invention, in the semiconductor heat treatment apparatus according to the second aspect, the lower container part and the upper container part are each attached to a support shaft that can be moved up and down independently, and the upper container part has a periphery near its top. A flange is provided on the top surface of the cylindrical support member that is erected so as to surround the heating element in the pressure vessel. A semiconductor heat treatment apparatus characterized in that an inner chamber can be formed by contacting a side container portion.
[0019]
According to this feature, the upper container portion can be placed on the top surface of the cylindrical support member standing in the pressure vessel and positioned in the pressure vessel, and the upper vessel positioned in the pressure vessel can be positioned. The inner chamber can be formed by bringing the sample stage of the lower container part into contact with the lower opening of the part, and this can be kept airtight.
[0020]
A fourth aspect of the present invention is the semiconductor heat treatment apparatus according to any one of the first to third aspects, wherein the gas-impermeable heat-resistant container is made of graphite having a surface coated with CVD, a metal material, and ceramics. material, characterized by using special carbon material, or a glass material having airtightness.
[0021]
As described above, by using a dense material having a very low gas permeability as the material of the heat-resistant container constituting the inner chamber, it is possible to suppress the release of gas that permeates from the heat-resistant container. This also results in increasing the vapor pressure retention efficiency in the inner chamber.
[0022]
According to a fifth aspect of the present invention, in the semiconductor heat treatment apparatus according to any one of the first to fourth aspects, the foil is used as a material for the sealing material that holds the open / close portion of the gas-impermeable heat-resistant container in an airtight manner. Features.
[0023]
In the processing apparatus according to the present invention, since it is necessary to put a metal to be processed into the inner chamber, the inner chamber has an opening / closing part due to its structure. It is from this opening / closing part that the vapor pressure from the inner chamber is most likely to leak, and for the purpose of suppressing the leakage from here, a graphite foil (cleavable graphite) is used as a sealing material for the opening. Using this graphoil makes it possible to suppress leakage from the inner chamber easily and effectively.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described based on the illustrated embodiments.
[0025]
FIG. 1 shows an example applied to a heat treatment apparatus for GaAs single crystal. The semiconductor heat treatment apparatus, the provided heater chamber 30 having a heater 5 is a heating element into the pressure vessel 1, and further a inner chamber 20 provided a structure consisting of a gas-impermeable heat-resistant container 21 in the heater chamber . The heat-resistant container 21 has a structure that can be opened and closed so that the GaAs ingot 2 that is a single crystal to be processed of the compound semiconductor can be accommodated, and the element 3 (high dissociation pressure component element constituting the compound semiconductor in the heat-resistant container 21 ( Here, As) is sealed in advance, and the ingot 2 can be heat-treated in a gas atmosphere of an element having a high vapor pressure among the constituent elements of the GaAs ingot 2.
[0026]
The heat-resistant container 21 is divided into a lower container part 4 (lower inner chamber part) and an upper container part 7 (upper inner chamber part) that are in contact with each other via a sealing material 9, and the lower container part. At least one of the 4 and the upper container part 7 is attached to a support shaft that can move up and down, and is configured to be able to contact and separate from each other. Here, the lower container part 4 and the upper container part 7 are attached to the lower support shaft 6 and the upper support shaft 8, respectively, whereby the lower container part 4 and the upper container part 7 are separated from and in contact with each other. It is comprised so that a container can be opened and closed via a sealing material.
[0027]
In the case of the present embodiment, the lower container part 4 is configured as a sample stage, and the upper container part 7 is configured as a container having a lower opening that is airtightly covered on the sample stage via the sealing material 9. The lower support shaft 6 and the upper support shaft 8 are mounted on a drive mechanism (not shown) that drives the lower support shaft 6 and the upper support shaft 8 so as to be movable in the vertical direction. Thereby, it has a structure in which pressure can be mechanically applied to the joint portion between the lower container portion 4 and the upper container portion 7 from the outside.
[0028]
The upper container part 7 is provided with a flange part 7b around the top part 7a, and the flange part 7b surrounds the heater 5 in the pressure vessel 1 and is a top surface of a cylindrical support member 10 that stands upright. Thus, the upper container portion 7 is positioned in the pressure vessel 1, and the heater chamber 30 is formed by the top portion 7 a and the flange portion 7 b and the cylindrical support member 10. Yes. In the heater chamber 30, the inner chamber 20 can be formed by bringing the sample stage as the lower container part 4 into contact with the lower opening of the upper container part 7.
[0029]
The gas-impermeable heat-resistant container 21 forming the inner chamber 20 is made of graphite having a CVD coating on its surface to prevent gas permeation. However, it can also be made of a dense material with extremely low gas permeability, such as quartz glass, alumina, silicon carbide, silicon nitride, glassy carbon, or molybdenum.
[0030]
The foil 9 (cleavable graphite) is used for the sealing material 9 that hermetically holds the open / close portion of the gas-impermeable heat-resistant container 21 (inner chamber 20).
[0031]
According to the above heat treatment apparatus, since the heat-resistant container 21 has a structure that can be easily opened and closed via the sealing material 9, a practical heat treatment apparatus that can be easily handled can be configured. No sealing work with quartz ampules is required.
[0032]
Also, having a heater chamber 30 into the pressure vessel 1, further has a structure having an inner chamber 20 into the heater chamber 30, and out of the pressure of the heat-resistant container 21 is equal to the pressure in the pressure vessel 1, the pressure difference For example, by filling the outside of the inner chamber 20 with a gas such as an inert gas, the pressure difference between the inside and outside of the inner chamber 20 can be eliminated. Can be suppressed.
[0033]
Moreover, since the lower container part 4 and the upper container part 7 which comprise the inner chamber 20 are attached to the lower support shaft 6 and the upper support shaft 8 which can be moved up and down by a drive mechanism, the lower container part 4 and the upper container part A pressure can be mechanically applied to the container part 7 from the outside in the up-down direction where both are in contact with each other. Accordingly, it is possible to further improve the confidentiality retaining action of the seal material 9 between the lower container part 4 and the upper container part 7, which is performed by the seal material 9 made of graphoyl. Even if the gas pressure inside the heat-resistant container 21 becomes higher than the gas pressure outside the heat-resistant container 21, either the lower container part 4 or the upper container part 7 of the heat-resistant container 21 is displaced and opened. It is possible to avoid a situation in which internal vapor pressure control cannot be performed.
[0034]
Next, an actual heat treatment example will be described.
[0035]
In order to confirm the effect of the present invention, an experiment was conducted using GaAs known as a compound semiconductor material as an example of heat treatment. GaAs is generally heat-treated to improve its product characteristics. In addition, as GaAs dissociates As from the surface when heated, it is necessary to perform the heat treatment while maintaining the As gas pressure.
[0036]
First, the structure of the heat treatment apparatus used in the experiment will be described. As shown in FIG. 1, a heat-resistant container 21 (inner chamber 20) composed of an upper container part 7 (upper inner chamber part) and a lower container part 4 (lower inner chamber part) is arranged inside the pressure vessel 1. The lower container portion 4 was attached in a state of being placed on the lower support shaft 6 penetrating into the pressure vessel 1 from the bottom of the pressure vessel 1. The lower support shaft 6 has a structure that can be driven up and down. The upper container part 7 is arranged in a state where the flange part 7 b is placed on the support member 10. An upper support shaft 8 penetrating from above into the pressure vessel 1 is attached to the upper portion of the upper vessel portion 7. Similar to the lower support shaft 6, the upper support shaft 8 has a vertical drive function. By driving the upper support shaft 8 and the lower support shaft 6, the upper container portion 7 and the lower container portion 4 can be sealed and opened. In addition, a graphic foil is provided as a sealing material 9 at a contact portion between the upper container portion 7 and the lower container portion 4. Moreover, the heater 5 is installed in the outer peripheral part of the inner chamber 20, and it heats with this heater.
[0037]
Further, the pressure vessel 1 is provided with a vacuum exhaust device and an inert gas introduction pipe so that the pressure vessel 1 can be evacuated and purged.
[0038]
In the prototype experiment, graphite having a CVD coating on its surface was used as a material for the heat-resistant container 21 in order to suppress gas permeation. Moreover, a resistance heater made of graphite was used as the heater.
[0039]
In the trial production, a 20 kg GaAs ingot 2 was used, and a heat treatment experiment of 20 hours at an ultimate temperature of 1100 ° C. was performed 30 times.
[0040]
In the experiment, first, the GaAs ingot 2 was set in the lower container portion 4, and at the same time, As corresponding to the As dissociation pressure of GaAs at 1100 ° C. was set as the element 3. After setting, the inside of the pressure vessel 1 was evacuated by a vacuum pump with the inner chamber 20 opened as shown in FIG. 1, and then filled with 1.0 kg / cm 2 of inert gas. After filling with the inert gas, the upper support shaft 8 and the lower support shaft 6 were driven to close the inner chamber 20, and further, sealing was performed by applying a load of about 5.0 kg / cm 2 from above and below. Thereafter, the heater 5 was energized, the temperature was raised to 1100 ° C., and heat treatment was performed for 20 hours.
[0041]
As a result, in all 30 experiments, there was no gas leakage from the inner chamber 20, and no trace of As dissociated from the surface of the GaAs ingot 2 was observed, and the vapor pressure control was performed reliably. I was able to prove.
[0042]
【The invention's effect】
As described above, according to the present invention, the following excellent effects can be obtained.
[0043]
According to the heat treatment apparatus of the present invention, since the lower container part and the upper container part constituting the inner chamber are attached to the lower support shaft and the upper support shaft that can be moved in the vertical direction, the heat-resistant container is interposed via the sealing material. A practical heat treatment apparatus that can be easily opened and closed and is easy to handle in heat treatment of semiconductors that require vapor pressure control can be achieved at low cost and easily.
[0044]
In addition, it has a structure having a heater chamber in the pressure vessel and an inner chamber in the heater chamber, and the pressure inside and outside the heat-resistant vessel is equal to the pressure inside the pressure vessel, so there is no difference in pressure. For example, by filling the inside of the inner chamber with a gas such as an inert gas, the pressure difference between the inside and outside of the inner chamber can be eliminated, and the release of gas from the inside of the inner chamber to the outside can be suppressed.
[0045]
Further, since the sealing material is made of graphoyl, the sealing action can be performed more effectively. Furthermore, since the pressure can be mechanically applied from the outside in the vertical direction in which both the lower container part and the upper container part are in contact with each other, the lower container part and the upper container are operated by a sealing material made of a graphoil. It is possible to further improve the confidentiality keeping action of the seal material between the parts.
[Brief description of the drawings]
FIG. 1 is a schematic view of a semiconductor heat treatment apparatus of the present invention.
[Explanation of symbols]
1 Pressure Vessel 2 GaAs Ingot (Semiconductor Processing Single Crystal)
3 Elements (As)
4 Lower container (lower inner chamber)
5 Heater (heating element)
6 Lower support shaft 7 Upper container part (upper inner chamber part)
8 Upper support shaft 9 Sealing material (Graph foil)
10 Support member 20 Inner chamber 21 Heat-resistant container 30 Heater chamber

Claims (5)

圧力容器内に、ヒータが設置されたヒータチャンバーを設け、更に上記ヒータチャンバー内に、半導体の被処理単結晶が収納可能となるよう開閉ができるガス不透過性耐熱容器からなるインナーチャンバーを設けた半導体熱処理装置において、
上記耐熱容器を、シール材を介して互いに対接する下側容器部と上側容器部とに二分割し、その下側容器部及び上側容器部の少なくとも一方を上下移動可能な支持軸に取り付け、これにより下側容器部及び上側容器部が互いに離間及び対接して上記耐熱容器がシール材を介して開閉し得るように構成したことを特徴とする半導体熱処理装置。
A heater chamber in which a heater is installed is provided in the pressure vessel, and an inner chamber made of a gas-impermeable heat-resistant vessel that can be opened and closed to accommodate a semiconductor single crystal to be processed is provided in the heater chamber. In semiconductor heat treatment equipment,
The heat-resistant container is divided into a lower container part and an upper container part that are in contact with each other via a sealing material, and at least one of the lower container part and the upper container part is attached to a support shaft that can move up and down. A semiconductor heat treatment apparatus, wherein the lower container part and the upper container part are separated from and in contact with each other so that the heat-resistant container can be opened and closed via a sealing material.
請求項1に記載の半導体熱処理装置において、
上記下側容器部を試料台として構成すると共に、上記上側容器部をこの試料台に上記シール材を介して気密に被さる下部開放口を有する容器として構成し、
上記支持軸を上下方向に変移可能とする駆動機構に装置することにより、上記試料台と上部容器との接合部に外部から機械的に圧力をかけ得る構造としたことを特徴とする半導体熱処理装置。
The semiconductor heat treatment apparatus according to claim 1,
The lower container part is configured as a sample stage, and the upper container part is configured as a container having a lower opening that covers the sample stage airtightly through the sealing material,
A semiconductor heat treatment apparatus characterized by having a structure in which mechanical pressure can be applied from the outside to a joint portion between the sample stage and the upper container by installing in a drive mechanism that allows the support shaft to be moved in the vertical direction. .
請求項2に記載の半導体熱処理装置において、
上記下側容器部及び上側容器部をそれぞれ独立に上下移動可能な支持軸に取り付け、
上記上側容器部にはその頂部付近周囲に鍔部を設け、この鍔部が圧力容器内に上記加熱要素を取り囲んで立設された筒状支持部材の頂面に載置されて支持され、この上側容器部の下部開口に対して下側容器部を当接させてインナーチャンバーを形成し得る構成としたことを特徴とする半導体熱処理装置。
The semiconductor heat treatment apparatus according to claim 2,
The lower container part and the upper container part are each attached to a support shaft that can move up and down independently,
The upper container part is provided with a collar part around the top part, and this collar part is placed and supported on the top surface of a cylindrical support member which stands up in the pressure container so as to surround the heating element. A semiconductor heat treatment apparatus characterized in that an inner chamber can be formed by bringing a lower container part into contact with a lower opening of an upper container part.
請求項1〜3のいずれかに記載の半導体熱処理装置において、
上記ガス不透過性耐熱容器の材質に、表面にCVDコートを施したグラファイト、金属製の材質、セラミックス製の材質、気密性を有する特殊炭素材料、又はガラス材料を使用したことを特徴とする半導体熱処理装置。
In the semiconductor heat processing apparatus in any one of Claims 1-3,
A semiconductor characterized in that the gas-impermeable heat-resistant container is made of graphite having a CVD coating on its surface, a metal material, a ceramic material, a special carbon material having airtightness, or a glass material. Heat treatment equipment.
請求項1〜4のいずれかに記載の半導体熱処理装置において、
上記ガス不透過性耐熱容器の開閉部分を気密に保持する上記シール材の材質にグラフォイルを用いたことを特徴とする半導体熱処理装置。
In the semiconductor heat processing apparatus in any one of Claims 1-4,
A semiconductor heat treatment apparatus, characterized in that a graphite foil is used as a material of the sealing material for hermetically holding an open / close portion of the gas-impermeable heat-resistant container.
JP2002156924A 2002-05-30 2002-05-30 Semiconductor heat treatment equipment Expired - Fee Related JP4144259B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002156924A JP4144259B2 (en) 2002-05-30 2002-05-30 Semiconductor heat treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002156924A JP4144259B2 (en) 2002-05-30 2002-05-30 Semiconductor heat treatment equipment

Publications (2)

Publication Number Publication Date
JP2004002075A JP2004002075A (en) 2004-01-08
JP4144259B2 true JP4144259B2 (en) 2008-09-03

Family

ID=30428362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002156924A Expired - Fee Related JP4144259B2 (en) 2002-05-30 2002-05-30 Semiconductor heat treatment equipment

Country Status (1)

Country Link
JP (1) JP4144259B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7233621B1 (en) 2020-03-31 2023-03-06 ヒタチ・エナジー・スウィツァーランド・アクチェンゲゼルシャフト Power module device with improved thermal performance

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1739213B1 (en) * 2005-07-01 2011-04-13 Freiberger Compound Materials GmbH Apparatus and method for annealing of III-V wafers and annealed III-V semiconductor single crystal wafers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7233621B1 (en) 2020-03-31 2023-03-06 ヒタチ・エナジー・スウィツァーランド・アクチェンゲゼルシャフト Power module device with improved thermal performance

Also Published As

Publication number Publication date
JP2004002075A (en) 2004-01-08

Similar Documents

Publication Publication Date Title
KR101488124B1 (en) METHOD FOR PRODUCING n-TYPE SiC MONOCRYSTAL
US4599247A (en) Semiconductor processing facility for providing enhanced oxidation rate
JP4144259B2 (en) Semiconductor heat treatment equipment
JP5224256B2 (en) Single crystal silicon carbide substrate processing method, semiconductor device manufacturing method
JP4830976B2 (en) Group III nitride semiconductor manufacturing equipment
JP3596337B2 (en) Method for manufacturing compound semiconductor crystal
EP2554720A1 (en) Method for synthesizing group ii-vi compound semiconductor polycrystals
JP3697341B2 (en) Compound single crystal production equipment and / or heat treatment equipment
JP2000026190A (en) Equipment for growing compound single crystal and method for growing compound single crystal, using the same
JP3072659B2 (en) Semiconductor heat treatment equipment
JP4418879B2 (en) Heat treatment apparatus and heat treatment method
JPS60255692A (en) Apparatus for treating compound semiconductor single crystal having high dissociation pressure
JPS63166215A (en) Semiconductor vapor growth system
JPH0364477B2 (en)
JP2715645B2 (en) Semiconductor closed tube diffusion method and closed tube diffusion device
JP3146021B2 (en) Semiconductor vapor deposition equipment
JPH09208375A (en) Apparatus for heat treatment
JP2829315B2 (en) Apparatus and method for producing high dissociation pressure compound semiconductor single crystal
JPH092890A (en) Single crystal growth of compound semiconductor and apparatus therefor
JP3116339B2 (en) Quartz ampoule for diffusion
JPH1187254A (en) Vacuum heat-treatment apparatus
JPH0959100A (en) Crystal growing device
JPH11100292A (en) Crystal growth apparatus
JPH0616493A (en) Method for growing gallium arsenide single crystal
JPH0959083A (en) Device for producing single crystal of compound semiconductor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040618

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20040618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060912

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061110

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080527

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080609

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140627

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees