JP2829315B2 - Apparatus and method for producing high dissociation pressure compound semiconductor single crystal - Google Patents

Apparatus and method for producing high dissociation pressure compound semiconductor single crystal

Info

Publication number
JP2829315B2
JP2829315B2 JP7295990A JP7295990A JP2829315B2 JP 2829315 B2 JP2829315 B2 JP 2829315B2 JP 7295990 A JP7295990 A JP 7295990A JP 7295990 A JP7295990 A JP 7295990A JP 2829315 B2 JP2829315 B2 JP 2829315B2
Authority
JP
Japan
Prior art keywords
container
sealed container
single crystal
compound semiconductor
dissociation pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7295990A
Other languages
Japanese (ja)
Other versions
JPH03285886A (en
Inventor
紘一 佐々
敬治 白田
貴 熱海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kagaku Gijutsu Shinko Jigyodan
Mitsubishi Materials Corp
Original Assignee
Kagaku Gijutsu Shinko Jigyodan
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kagaku Gijutsu Shinko Jigyodan, Mitsubishi Materials Corp filed Critical Kagaku Gijutsu Shinko Jigyodan
Priority to JP7295990A priority Critical patent/JP2829315B2/en
Publication of JPH03285886A publication Critical patent/JPH03285886A/en
Application granted granted Critical
Publication of JP2829315B2 publication Critical patent/JP2829315B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、レーザー素子やIC基板として用いられるGa
As等の高解離圧化合物半導体結晶の製造装置および製造
方法に係わり、特に、結晶の成長に先立って密封容器内
での原料合成を確実に行なうための改良に関する。
DETAILED DESCRIPTION OF THE INVENTION "Industrial application field" The present invention relates to a laser device or a Ga
The present invention relates to an apparatus and a method for producing a compound semiconductor crystal having a high dissociation pressure such as As, and more particularly to an improvement for surely synthesizing raw materials in a sealed vessel prior to crystal growth.

「従来の技術」 GaAs等の高解離圧化合物半導体単結晶をチョクラルス
キー法(CZ法)によって製造する場合には、不活性ガス
で満たした容器内にるつぼを配置するとともに、るつぼ
内の原料融液にB2O3等の液体封止剤を浮かべ、原料融液
からの高解離圧成分(この場合As)の飛散を防ぎながら
単結晶を引き上げるLEC法が多く行なわれている。
[Prior art] When manufacturing a high dissociation pressure compound semiconductor single crystal such as GaAs by the Czochralski method (CZ method), a crucible is placed in a container filled with an inert gas and the raw material in the crucible is placed. There are many LEC methods in which a liquid sealant such as B 2 O 3 is floated on a melt and a single crystal is pulled while preventing a high dissociation pressure component (in this case, As) from scattering from the raw material melt.

ところが、このLEC法では、原料をチャージして単結
晶引き上げを開始するともはや融液組成の制御ができな
い欠点があった。また、液体封止剤(B2O3)から引き上
げた単結晶表面の高解離圧成分の飛散を押さえるため
に、単結晶はできるだけ速く冷却する必要があり、単結
晶の固液界面直上での温度勾配を小さく出来ず、熱歪み
や非ストイキオメトリに由来する転位が高密度に発生し
単結晶の高品質化を阻害する欠点があった。
However, this LEC method has a disadvantage that the melt composition can no longer be controlled when the raw material is charged and single crystal pulling is started. In addition, the single crystal needs to be cooled as quickly as possible in order to suppress the scattering of high dissociation pressure components on the surface of the single crystal pulled up from the liquid sealant (B 2 O 3 ). The temperature gradient could not be reduced, and there was a disadvantage that dislocations originating in thermal strain and non-stoichiometry occurred at high density and hindered the improvement of the quality of the single crystal.

そこで、液体封止剤で原料融液を覆う代わりに、気密
容器内に高解離圧化合物中の高解離圧成分元素(GaAsの
場合にはAs)の蒸気を満たし、その蒸気圧を制御するこ
とにより、るつぼ内の融液組成を制御し、上記問題の解
決を図った方法が提案されている。
Therefore, instead of covering the raw material melt with a liquid sealant, fill the vapor of the high-dissociation pressure component element (As in the case of GaAs) of the high-dissociation pressure compound in an airtight container and control the vapor pressure. Thus, a method has been proposed in which the composition of the melt in the crucible is controlled to solve the above problem.

このような方法としては、特許1490669号あるいは特
開昭59−13691号公報に開示されたものが知られてお
り、前者に用いられる装置の一例を第5図に示す。
As such a method, those disclosed in Japanese Patent No. 1490669 or JP-A-59-13691 are known. FIG. 5 shows an example of the former device.

第5図において、密封容器1は容器上部2と容器下部
3とから分割可能に構成され、これらの接合部4にはシ
ール剤5が挿入されている。また容器下部3の押し上げ
下軸6には、応力緩衝機構7が付設され、接合部4にか
かる応力を適性値に保つ構成となっている。シール剤5
としてはB2O3やGaのような液体シール剤、あるいは可撓
性黒鉛のような固体シール剤が用いられる。
In FIG. 5, a sealed container 1 is configured to be dividable from a container upper portion 2 and a container lower portion 3, and a sealing agent 5 is inserted into these joints 4. Further, a stress buffering mechanism 7 is attached to the push-up lower shaft 6 of the container lower part 3 so as to keep the stress applied to the joint 4 at an appropriate value. Sealant 5
For example, a liquid sealant such as B 2 O 3 or Ga or a solid sealant such as flexible graphite is used.

密封容器1の内部には、サセプタ8に支持されたるつ
ぼ9が配置され、このるつぼ9は下軸10によって回転さ
れるとともに、ヒーター11a,11bによって密封容器1ご
とに加熱される。
A crucible 9 supported by a susceptor 8 is disposed inside the sealed container 1, and the crucible 9 is rotated by a lower shaft 10 and heated by the heaters 11 a and 11 b for each sealed container 1.

また、容器上部2には蒸気圧制御部12が設けられ、こ
の部分の温度を容器壁上で最も低く且つ適切な一定温度
に制御し、ここに濃縮する高解離圧成分量を調整するこ
とにより、密閉容器1内の高解離圧成分ガス圧力を制御
し、るつぼ9内の原料融液13の組成を制御する。
A vapor pressure controller 12 is provided in the upper part 2 of the vessel, and the temperature of this part is controlled to the lowest and appropriate constant temperature on the vessel wall, and the amount of the high dissociation pressure component concentrated here is adjusted. The pressure of the high dissociation pressure component gas in the closed vessel 1 is controlled, and the composition of the raw material melt 13 in the crucible 9 is controlled.

また、密封容器1には、単結晶18の成長部を観察する
ためのビューロット14が設けられ、さらに引上軸15およ
び下軸10の各貫通部には、B2O3等の液体シール剤を満た
した回転シール16がそれぞれ設けられている。また、こ
の装置全体は外部容器17内に収納されている。
The hermetic vessel 1 is provided with a view lot 14 for observing a growth portion of the single crystal 18. Further, a liquid seal such as B 2 O 3 Each of the rotary seals 16 filled with the agent is provided. Further, the entire device is housed in an external container 17.

次に、上記の装置を用いたGaAs単結晶の成長を行なう
方法を説明する。この場合、高解離圧成分原料はAsであ
り、他の原料成分はGaである。
Next, a method for growing a GaAs single crystal using the above-described apparatus will be described. In this case, the raw material for the high dissociation pressure component is As, and the other raw material component is Ga.

まず、るつぼ9内にGaを充填し、密封容器1の底部1a
にAsを載置する。そして装置内全体を真空排気した後、
押し上げ下軸6を上昇させて密封容器1を接合し、次
に、密封容器1の底部1aを除く内壁をヒーター11aによ
って所定の温度まで加熱した後、密封容器1の底部1aを
ヒーター11bによって加熱し、Asを加熱して昇華させる
とともに、るつぼ8内のGa原料を密封容器1ごと加熱し
て、るつぼ9内にGaAs原料を合成する。この時、密封容
器1内の温度分布は、底部1aと蒸気圧制御部12が他の部
分より低くなるようにして、昇華したAsが密封容器1内
の他の部分に濃縮するのを防ぐ。また、合成作業の間、
密封容器1の外の空間に不活性ガスを導入して密封容器
1内外の圧力バランスをとる。
First, the crucible 9 is filled with Ga, and the bottom 1a of the sealed container 1 is filled.
Place As on. After evacuating the entire device,
After raising the lower shaft 6, the sealed container 1 is joined, and the inner wall except the bottom 1a of the sealed container 1 is heated to a predetermined temperature by the heater 11a, and then the bottom 1a of the sealed container 1 is heated by the heater 11b. Then, As is heated and sublimated, and the Ga raw material in the crucible 8 is heated together with the sealed container 1 to synthesize the GaAs raw material in the crucible 9. At this time, the temperature distribution in the sealed container 1 is set such that the bottom 1a and the vapor pressure control unit 12 are lower than other portions, thereby preventing the sublimated As from being concentrated in other portions in the sealed container 1. Also, during the synthesis work,
An inert gas is introduced into the space outside the sealed container 1 to balance the pressure inside and outside the sealed container 1.

GaAs原料の合成が完了したら、引上軸15の下端の種結
晶(図示せず)をGaAs融液に浸漬し、引上軸15を回転さ
せながら引き上げつつ、ヒーター11aおよび11bの温度を
徐々に下げながら単結晶18を成長させる。
When the synthesis of the GaAs raw material is completed, a seed crystal (not shown) at the lower end of the pulling shaft 15 is immersed in a GaAs melt, and the temperature of the heaters 11a and 11b is gradually raised while rotating the pulling shaft 15 while pulling. The single crystal 18 is grown while lowering.

密封容器1の底部1aにはGaAs原料合成に必要な量以上
のAsを置いておき、余分のAsは合成終了後に密封容器12
内を一定圧力のAsガスで満たす為に用いられる。ここで
蒸気圧制御部12は結晶成長中に失われるAsの量も考慮し
て、結晶成長が終了するまでAs固体を収納しておける容
積および構造となっている。
In the bottom 1a of the sealed container 1, as much As as necessary for the synthesis of the GaAs raw material is placed, and excess As is removed from the sealed container 12 after the synthesis.
It is used to fill the inside with As gas at a constant pressure. Here, the vapor pressure control unit 12 has a capacity and a structure capable of storing As solids until the crystal growth is completed, in consideration of the amount of As lost during the crystal growth.

「発明が解決しようとする課題」 しかしながら、上記の高解離圧化合物半導体単結晶の
製造装置および製造方法では、次のような欠点があっ
た。
“Problems to be Solved by the Invention” However, the above-described apparatus and method for producing a high dissociation pressure compound semiconductor single crystal have the following disadvantages.

すなわち、GaAsの合成に際して、るつぼ9内のGa原料
を十分高温(例えば、GaAsの融点1238℃以上)に保ち、
密封容器1の底部のAs固体を徐々に加熱していくと、昇
華したAsは直ちにGaと反応してGaAsとなり、しかもこの
GaAsは溶融状態であるので以後の反応を妨げることはな
い。
That is, when synthesizing GaAs, the Ga raw material in the crucible 9 is kept at a sufficiently high temperature (for example, the melting point of GaAs is 1238 ° C. or more),
As the As solid at the bottom of the sealed container 1 is gradually heated, the sublimed As immediately reacts with Ga to form GaAs.
Since GaAs is in a molten state, it does not hinder subsequent reactions.

しかしGaが十分に昇温しておらず、かつAsの昇華が激
しすぎる場合には、Ga表面にGaAs固体が生じて、以後の
反応進行が妨げられる。このため、密封容器1のAs圧が
過度に上昇し、密封容器1の外圧とのバランスが崩れて
回転シール部16等の比較的強度の低い箇所からAsガスが
噴出し、Asが大量に失われる原因となる。このような事
態が生じれば、当然、組成制御が妨害され、高品質の単
結晶を得ることはできない。
However, when the temperature of Ga is not sufficiently raised and the sublimation of As is too intense, GaAs solids are formed on the surface of Ga, and the subsequent reaction progress is hindered. As a result, the As pressure in the sealed container 1 excessively increases, the balance with the external pressure of the sealed container 1 is lost, and As gas is ejected from a relatively low-strength portion such as the rotary seal portion 16 and a large amount of As is lost. Cause it to be If such a situation occurs, the composition control is naturally hindered, and a high-quality single crystal cannot be obtained.

第5図に示した従来の装置では、このトラブルを避け
るために、密封容器1の各部の昇華タイミングをとるの
に非常な注意を払う必要があり、操作の自動化が妨げら
れていた。
In the conventional apparatus shown in FIG. 5, in order to avoid this trouble, it is necessary to pay great attention to the sublimation timing of each part of the sealed container 1, and this has impeded the automation of the operation.

この困難は、密閉容器1内の各部の温度が独立せず、
互いに影響し合っていることに原因がある。るつぼ9内
のGaの温度を高めれば、たとえ熱遮断を密封容器1内で
行なったとしても限度があり、その下に置かれたAs固体
の温度も上がってしまう。さらにチャージするAsの量が
多い場合にはAs圧等の制御が不能となる危険性が高くな
る。
This difficulty is caused by the temperature of each part in the closed container 1 being independent,
It is because they influence each other. If the temperature of Ga in the crucible 9 is increased, there is a limit even if the thermal insulation is performed in the sealed container 1, and the temperature of the As solid placed thereunder also increases. Further, when the amount of As to be charged is large, there is a high risk that control of the As pressure or the like becomes impossible.

この対策として密封容器1を長くし、つるぼと容器底
部を離し、温度的に隔離することが有効であるが、この
ことは装置の大型化を招いて、装置の取り扱いを不便に
するので望ましくない。
As a countermeasure, it is effective to lengthen the sealed container 1 and separate the crucible from the container bottom to isolate the container thermally. However, this increases the size of the device and makes it difficult to handle the device. Absent.

本発明は前記事情に鑑みてなされたもので、装置の操
作性を犠牲にすることなく、高解離圧化合物半導体の原
料の合成を確実かつ容易に行うことのできる高解離圧化
合物半導体単結晶の製造装置および製造方法を提供する
ことを課題としている。
The present invention has been made in view of the above circumstances, and without sacrificing the operability of the apparatus, a high-dissociation pressure compound semiconductor single crystal capable of reliably and easily synthesizing a raw material of a high-dissociation pressure compound semiconductor. It is an object to provide a manufacturing apparatus and a manufacturing method.

「課題を解決するための手段」 本発明は上記課題を解決するためになされたもので、
本発明の請求項1に係わる高解離圧化合物半導体単結晶
の製造装置は、密封容器と、この密封容器の底部を貫通
して密封容器内に気密的かつ回転自在に挿入された下軸
と、この下軸の上端に固定され前記密封容器内に保持さ
れたるつぼと、前記密封容器の天板部を貫通して密封容
器内に気密的かつ回転自在に挿入された上軸とを具備
し、 前記密封容器の内側に高解離圧成分原料が充填される
第1容器を設けるとともに、密封容器の下方には、密封
容器の底部から下軸と同軸に延びる連通部を介して密封
容器と気密的に連通する第2容器を設け、この第2容器
の内部には下軸を囲む支持筒を設け、この支持筒の内部
には下軸を回転自在に支持する軸受を設け、さらに支持
筒の内部には前記軸受の上方にシール剤を充填し、 さらに、少なくとも密封容器の上部の周囲、密封容器
のるつぼと対応する箇所の周囲、密封容器の第1容器と
対応する箇所の周囲、および第2容器の周囲には、それ
ぞれ独立した加熱手段が設けられていることを特徴とす
る。
"Means for solving the problem" The present invention has been made to solve the above problems,
An apparatus for producing a high dissociation pressure compound semiconductor single crystal according to claim 1 of the present invention comprises a hermetically sealed container, a lower shaft penetrating through the bottom of the hermetically sealed container and hermetically and rotatably inserted into the hermetically sealed container, A crucible fixed to the upper end of the lower shaft and held in the sealed container, and an upper shaft that is hermetically and rotatably inserted into the sealed container through a top plate portion of the sealed container, A first container filled with the high-dissociation pressure component material is provided inside the sealed container, and the lower portion of the sealed container is airtightly connected to the sealed container via a communication portion extending coaxially with the lower shaft from the bottom of the sealed container. And a support cylinder surrounding the lower shaft is provided inside the second container, a bearing for rotatably supporting the lower shaft is provided inside the support cylinder, and a support cylinder is provided inside the support cylinder. Is filled with a sealant above the bearing, and at least Independent heating means are provided around the upper portion of the sealed container, around the portion of the sealed container corresponding to the crucible, around the portion of the sealed container corresponding to the first container, and around the second container. It is characterized by the following.

また、本発明の請求項2に係わる製造装置は、密封容
器の上方に、密封容器の天板部から上軸と同軸に延びる
連通部を介し密封容器と気密的に連通する第2容器を設
け、この第2容器の内部には上軸を囲む支持筒を設け、
この支持筒の内部には上軸を回転自在に支持する軸受を
設け、さらに支持筒の内部には前記軸受の上方にシール
剤を充填した点で、前記請求項1の製造装置と構成が異
なる。
Further, in the manufacturing apparatus according to claim 2 of the present invention, a second container is provided above the sealed container and airtightly communicates with the sealed container via a communication portion extending coaxially with the upper axis from the top plate of the sealed container. , A support cylinder surrounding the upper shaft is provided inside the second container,
A structure different from the manufacturing apparatus of claim 1 is that a bearing for rotatably supporting an upper shaft is provided inside the support cylinder, and a sealant is filled inside the support cylinder above the bearing. .

一方、本発明の請求項3に係わる高解離圧化合物半導
体単結晶の製造方法は、請求項1または2記載の高解離
圧化合物半導体単結晶の製造装置を用い、単結晶引き上
げに先だって、前記第1容器に高解離圧成分原料を充填
するとともに、前記るつぼ内に他の成分原料を充填し、
第1容器と前記第2容器を除く密封容器の他の部分を所
定の温度に加熱し、第1容器を加熱して高解離圧成分原
料を昇華させ、これを第2容器に移して凝縮させるとと
もに、あるいは凝縮させた後、 つるぼ内の他の成分原料を高解離圧化合物半導体の融
点以上に加熱し、第2容器内の高解離圧成分原料を加熱
することにより、つるぼ内で高解離圧化合物半導体の原
料融液を合成し、しかる後に第2容器の温度を制御して
密封容器内の高解離圧成分ガスの圧力を一定に保ちつ
つ、単結晶の引き上げを行なうことを特徴としている。
On the other hand, a method for producing a high dissociation pressure compound semiconductor single crystal according to claim 3 of the present invention uses the apparatus for producing a high dissociation pressure compound semiconductor single crystal according to claim 1 or 2, and the method for producing a single crystal comprises: A container is filled with a high dissociation pressure component material, and the crucible is filled with another component material,
The other parts of the sealed container except the first container and the second container are heated to a predetermined temperature, and the first container is heated to sublimate the high dissociation pressure component raw material, which is transferred to the second container and condensed. Together with or after condensing, the other component materials in the crucible are heated to a temperature higher than the melting point of the high dissociation pressure compound semiconductor, and the high dissociation pressure component materials in the second container are heated, thereby increasing the temperature in the crucible. The method comprises synthesizing a raw material melt of a dissociation pressure compound semiconductor, and thereafter pulling a single crystal while controlling the temperature of the second container to keep the pressure of the high dissociation pressure component gas in the sealed container constant. I have.

「作 用」 本発明の高解離圧化合物半導体単結晶の製造装置およ
び製造方法によれば、密封容器とは温度的に隔離され独
立して温度制御される第2容器を設け、密封容器内の第
1容器に充填した高解離圧成分原料を加熱昇華させて第
2容器に移行させた後、あるいは移行させると同時に、
この第2容器を温度制御して高解離圧成分ガスを密封容
器内に供給するため、密封容器からの温度影響を受ける
ことなく、高解離圧成分ガスの供給量を容易かつ正確に
制御することが可能である。したがって、化合物半導体
原料の合成作業を正確に制御することが容易になり、合
成に失敗して密封容器内の圧力を上昇させ、高解離圧成
分ガスの損失を生じる等の問題が生じにくく、合成作業
の自動化も容易である。
[Operation] According to the apparatus and method for producing a high dissociation pressure compound semiconductor single crystal of the present invention, a second container is provided which is temperature-separated and independently controlled in temperature from a sealed container, After the high dissociation pressure component raw material filled in the first container is heated and sublimated and transferred to the second container, or simultaneously with the transfer,
Since the temperature of the second container is controlled to supply the high dissociation pressure component gas into the sealed container, the supply amount of the high dissociation pressure component gas can be easily and accurately controlled without being affected by the temperature from the sealed container. Is possible. Therefore, it is easy to accurately control the compound semiconductor raw material synthesizing operation, and it is difficult to cause problems such as a failure in the synthesis to increase the pressure in the sealed container and a loss of a high dissociation pressure component gas. Automation of work is also easy.

また、第2容器は、密封容器と離れるとともに、下軸
(あるいは上軸)と同軸に設けられているため、その内
容積が大きく確保できるにも拘わらず、装置全体を大型
化しなくて済む。
Further, since the second container is provided apart from the sealed container and provided coaxially with the lower shaft (or the upper shaft), it is not necessary to increase the size of the entire apparatus despite the fact that a large internal volume can be secured.

さらに、第2容器を下軸(または上軸)を取り巻く同
心状に設けているため、加熱時のるつぼや密封容器の高
温部による第2容器の内壁温度分布の不均一が生じにく
く、第2容器の内壁面温度分布を円周方向および長さ方
向のいずれにも均等化することができ、高解離圧成分ガ
スの圧力制御が正確に行なえる。
Further, since the second container is provided concentrically around the lower shaft (or the upper shaft), unevenness in the inner wall temperature distribution of the second container due to the high temperature portion of the crucible or the sealed container during heating hardly occurs, and The inner wall surface temperature distribution of the container can be equalized in both the circumferential direction and the length direction, and the pressure of the high dissociation pressure component gas can be accurately controlled.

「実施例」 以下、図面を参照して本発明の高解離圧化合物半導体
単結晶の製造装置および製造方法の実施例を詳しく説明
する。
Examples Examples of the apparatus and method for producing a high dissociation pressure compound semiconductor single crystal of the present invention will be described below in detail with reference to the drawings.

第1図は本発明の高解離圧化合物半導体単結晶の製造
装置(以下、装置と略称する)の一例を示すものであ
る。
FIG. 1 shows an example of an apparatus for producing a high dissociation pressure compound semiconductor single crystal of the present invention (hereinafter abbreviated as an apparatus).

この装置21は、容器上部22と容器下部23からなる密封
容器24が、容器支持台26の上に固定され、これらが外部
容器26内に収納されてなるものである。容器上部22と容
器下部23は、シール剤27が介装された接合部28におい
て、容器下部23の下方の押上下軸29を上昇させることに
よって接合される。
In this apparatus 21, a sealed container 24 composed of a container upper part 22 and a container lower part 23 is fixed on a container support 26, and these are stored in an external container 26. The container upper part 22 and the container lower part 23 are joined by raising a push-up / down shaft 29 below the container lower part 23 at a joint part 28 in which a sealant 27 is interposed.

容器上部22には、天板部を気密的に貫通して引上軸31
が挿入されている。また引上軸31の周辺には引上軸31を
中心とする枠32が設けられており、この枠32内にはB2O3
等が入れられて上軸回転シール33となされている。ま
た、容器上部22にはビューロット34が外部から挿入され
て設けられている。
In the container upper part 22, a pulling shaft 31 is passed through the top plate part in an airtight manner.
Is inserted. Further, a frame 32 centered on the pulling shaft 31 is provided around the pulling shaft 31, and B 2 O 3
The upper shaft rotating seal 33 is formed by inserting therein. In the container upper part 22, a view lot 34 is inserted and provided from the outside.

また、容器下部23の下フランジ(底部)23A上には高
解離圧成分原料の第1容器35が設けられ、この下フラン
ジ23Aを貫通して下軸37が挿入され、その上端にるつぼ3
6が保持されている。
Further, on the lower flange (bottom) 23A of the lower part 23 of the container, a first container 35 of a high dissociation pressure component material is provided, and a lower shaft 37 is inserted through the lower flange 23A, and the crucible 3
6 is held.

さらに、下フランジ23Aには、下軸37と同軸な連通管3
8を経て延びる有底円筒状の第2容器39が設けられてい
る。この第2容器39の内部には下軸37を同軸に囲む円筒
形の支持筒40が設けられ、この支持筒40と第2容器39と
の間に高解離圧成分固体が収容される。この空隙42の内
容積は第1容器35の内容積の40%以上であれば良い。
Further, the lower flange 23A has a communication pipe 3 coaxial with the lower shaft 37.
A bottomed cylindrical second container 39 extending through 8 is provided. Inside the second container 39, there is provided a cylindrical support cylinder 40 coaxially surrounding the lower shaft 37, and a high dissociation pressure component solid is accommodated between the support cylinder 40 and the second container 39. The internal volume of the space 42 may be 40% or more of the internal volume of the first container 35.

また、支持筒40の下部には下軸37のための回転軸受け
43が設けられ、支持筒40と下軸37と回転軸受け43とで囲
まれた空間にはB2O3等の液体封止剤が充填され、回転シ
ール44が構成されている。なお、回転シール44の液体の
液面は第2容器39の上端よりも高く、連通管38内に設定
されている。
In addition, a rotation bearing for the lower shaft 37 is provided at a lower portion of the support cylinder 40.
A space surrounded by the support cylinder 40, the lower shaft 37, and the rotary bearing 43 is filled with a liquid sealant such as B 2 O 3 to form a rotary seal 44. The liquid level of the liquid in the rotary seal 44 is higher than the upper end of the second container 39 and is set in the communication pipe 38.

さらに容器上部22、るつぼ36、第1容器35、第2容器
39のそれぞれには、これらを独立に加熱するヒーター4
5、ヒーター46、ヒーター47、ヒーター48が設けられて
いる。
Further, the container upper part 22, the crucible 36, the first container 35, the second container
Each of the 39 has 4 heaters to heat them independently
5, a heater 46, a heater 47, and a heater 48 are provided.

また、引上軸31の下端には種結晶49が固定されてお
り、つるぼ36にはGa50等の原料が入れられるようになっ
ている。
A seed crystal 49 is fixed to the lower end of the pulling shaft 31, and a material such as Ga50 is put in the crucible 36.

第1図に示したような第2容器を作り付ける場所とし
ては、他に第2図に示すような構造も可能である。第2
図において第1図と同一の構成要素には同一の符号を付
して説明を省略する。
As a place where the second container as shown in FIG. 1 is formed, a structure as shown in FIG. 2 is also possible. Second
In the figure, the same components as those in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted.

この例の第2容器39は、容器上部22の上部フランジ22
Aの上方に設けられ、支持筒40の上端は開口し、支持筒4
0の下部に回転シール44が設けられている。この回転シ
ール44の液面は第1図において示した回転シール44のよ
うな制約は受けない。第2容器42の内側に安定で均一な
温度分布を得るためにはヒーター48を多段にするか、他
にヒートパイプ(図示せず)等を設けるのが望ましい。
The second container 39 of this example includes an upper flange 22 of the container upper portion 22.
A is provided above A, the upper end of the support cylinder 40 is open,
A rotary seal 44 is provided below the zero. The liquid level of the rotary seal 44 is not restricted as in the rotary seal 44 shown in FIG. In order to obtain a stable and uniform temperature distribution inside the second container 42, it is desirable to provide the heater 48 in multiple stages or to provide a heat pipe (not shown) or the like.

次に、第1図の装置を用いて、高解離圧化合物半導体
としてGaAsを製造する方法を説明する。
Next, a method of manufacturing GaAs as a high dissociation pressure compound semiconductor using the apparatus shown in FIG. 1 will be described.

まず、密封容器24の接合部28を開いた状態で、第1容
器35内にAs51、るつぼ36内にGa50をそれぞれ充填する。
次いで、装置21全体を真空排気し、押上下軸29を押し上
げることによって密封容器24を封止し、ヒーター45,46
を用いて密封容器24の上部を700℃〜1000℃程度に加熱
する。
First, with the joint 28 of the sealed container 24 opened, the first container 35 is filled with As51 and the crucible 36 is filled with Ga50.
Next, the entire device 21 is evacuated and the vertical axis 29 is pushed up to seal the sealed container 24, and the heaters 45, 46
Is used to heat the upper portion of the sealed container 24 to about 700 ° C. to 1000 ° C.

次に、ヒーター47によって第1容器35を550℃〜700℃
に加熱し、As51を昇華させる。この時、第2容器39は他
の部分より温度が低いため、昇華したAs51はこの第2容
器39の内壁に順次凝縮して行く。この操作は、第1容器
35のAsをすべて第2容器39に移し終わるまで続ける。第
3図はAs51が第2容器39に移し終わった状態を示すもの
である。
Next, the first container 35 is heated at 550 to 700 ° C. by the heater 47.
To sublimate As51. At this time, since the temperature of the second container 39 is lower than that of the other portions, the sublimed As51 sequentially condenses on the inner wall of the second container 39. This operation is performed on the first container
Continue until all 35 As has been transferred to the second container 39. FIG. 3 shows a state in which As51 has been transferred to the second container 39.

次いで、ヒーター46によって、るつぼ36内のGa50の温
度をGaAsの融点1238℃以上になるように加熱すると共
に、今度は第2容器39のAs51を加熱して昇華させ、密封
容器24内にAsガスを供給する。するとGa50との反応が起
こり、るつぼ36内にGaAs融液が合成される。なお、これ
ら昇華・合成操作の間、密封容器24内の圧力が上がるの
で、密封容器24外の空間53に不活性ガスを導入して圧力
のバランスを取る。
Next, the temperature of Ga50 in the crucible 36 is heated by the heater 46 so that the melting point of GaAs becomes 1238 ° C. or higher, and the As51 of the second container 39 is heated and sublimated. Supply. Then, a reaction with Ga50 occurs, and a GaAs melt is synthesized in the crucible 36. During the sublimation / synthesis operation, the pressure in the sealed container 24 increases. Therefore, an inert gas is introduced into the space 53 outside the sealed container 24 to balance the pressure.

第2容器39の温度は、最終的に600〜620℃の一定の温
度に保つ。すると、余分のAs51は第2容器39内に凝縮し
たまま、この温度における蒸気圧のAsガスが密封容器24
内を満たし、るつぼ36内のGaAs融液52と平衡を保って、
その組成を一定に保つ。
The temperature of the second container 39 is finally maintained at a constant temperature of 600 to 620 ° C. Then, while the excess As51 is condensed in the second container 39, the vapor pressure As gas at this temperature is supplied to the sealed container 24.
Fill the inside, keeping the balance with the GaAs melt 52 in the crucible 36,
Keep its composition constant.

また、第1図の装置では、回転シール44の液面位置の
温度は第2容器39の温度よりも高いので、この部分には
As51の凝縮は起こらず、凝縮したAsの固体によって下軸
37の回転が妨げられることはない。
In the apparatus shown in FIG. 1, the temperature of the liquid surface position of the rotary seal 44 is higher than the temperature of the second container 39.
As51 condensation does not occur, and the condensed As solid lowers the axis.
The rotation of 37 is not hindered.

次いで、第4図に示すように、引上軸31の下端に固定
された種結晶をGaAs融液52に浸漬し、回転しながら単結
晶54を引き上げる。
Next, as shown in FIG. 4, the seed crystal fixed to the lower end of the pull-up shaft 31 is immersed in the GaAs melt 52, and the single crystal 54 is pulled up while rotating.

上記のGaAs融液52の合成方法の変形例としては、第2
容器39をその温度でのAsの蒸気圧が高くなり過ぎない温
度範囲550〜610℃に保ち、空間53に不活性ガスを導入し
圧力バランスをとりながら、第1容器のAs51を昇華させ
るとともに、るつぼ36内のGa50の温度を徐々にGaAsの合
成温度(1240℃以上)に上げる方法も可能である。
As a modified example of the method for synthesizing the GaAs melt 52 described above,
While keeping the container 39 in a temperature range of 550 to 610 ° C. at which the vapor pressure of As at that temperature does not become too high, while introducing an inert gas into the space 53 and balancing the pressure, the As51 in the first container is sublimated, A method is also possible in which the temperature of Ga50 in the crucible 36 is gradually raised to the synthesis temperature of GaAs (1240 ° C. or higher).

この場合、第1容器35内のAs51は、るつぼ36の加熱の
影響をうけて昇華が速まるが、上記のように第2容器39
の温度を適切に制御することにより、GaAs融液52の合成
詠と、第2容器39へのAs濃縮を同時に起こし、GaAs融液
52の合成を効率良く行なえる。
In this case, the sublimation of As51 in the first container 35 is accelerated by the influence of the heating of the crucible 36, but as described above, the second container 39
By appropriately controlling the temperature of the GaAs melt 52, the synthesis of the GaAs melt 52 and the enrichment of As in the second container 39 simultaneously occur.
52 can be efficiently synthesized.

また、第2図に示した装置を用いて単結晶54の成長を
行う場合にも、第1図に示した装置21を用いて行った操
作と同様に行うことができ、第1図の場合と全く同様の
効果を得ることができる。
Also, when the single crystal 54 is grown using the apparatus shown in FIG. 2, the same operation as that performed using the apparatus 21 shown in FIG. 1 can be performed. The same effect can be obtained.

以上のように引上軸31あるいは下軸37の回りに高解離
圧成分原料の第2容器39を設置することで、高解離圧成
分原料の加熱の均熱性を容易に得ることができる。ま
た、装置の大型化も防ぐことができる。このような機能
を持つ第2容器を第5図において示した従来の装置の蒸
気圧制御部12において実現しようとすると、例えば6kg
のAsを収容する場合には、Asをすべて固体で収容しても
1050cm3もの体積を必要とする。従来装置(第5図)の
蒸気圧制御部12の体積は通常35cm3程度で十分である
が、この容積を増大するには引上軸15が制約になるため
大径化することができず、長さ方向で拡大するしか方法
がない。したがって、装置が相当大型化する欠点があっ
たが、本発明の装置であれば、そのような問題が生じな
い。
As described above, by disposing the second container 39 of the high dissociation pressure component raw material around the pull-up shaft 31 or the lower shaft 37, it is possible to easily obtain the uniformity of heating of the high dissociation pressure component raw material. In addition, an increase in the size of the device can be prevented. If the second container having such a function is to be realized in the vapor pressure control unit 12 of the conventional apparatus shown in FIG.
If all As is contained in a solid
Requires a volume of as much as 1050 cm 3 . The volume of the vapor pressure control unit 12 of the conventional apparatus (FIG. 5) is usually about 35 cm 3 , but it is not possible to increase the diameter because the pulling shaft 15 is restricted. There is no other way but to enlarge in the length direction. Therefore, there is a drawback that the device becomes considerably large, but such a problem does not occur in the device of the present invention.

また、本発明のように高解離圧成分原料の第2容器39
を設けることによって、密封容器24の長さを増すことが
なく、高解離圧成分原料と他の原料との加熱を独立して
行なうことができるうえ、もしAs51の昇華が激しすぎた
場合でも、このAsガスは第2容器39に吸収されるため、
密封容器24内の圧力が過度に高まり、Asガスがシール部
等から噴出して高解離圧成分原料の損失を招くことがな
い。すなわちこの場合、第2容器39はバッフアーとして
機能する。
Also, as in the present invention, the second container 39 of the high dissociation pressure component raw material
By providing the above, the heating of the high dissociation pressure component raw material and other raw materials can be performed independently without increasing the length of the sealed container 24, and even if the sublimation of As51 is excessive, Since this As gas is absorbed by the second container 39,
The pressure in the sealed container 24 is not excessively increased, and the As gas does not erupt from the seal portion or the like, thereby causing loss of the high dissociation pressure component raw material. That is, in this case, the second container 39 functions as a buffer.

「実験例1」 第1図に示した装置21を用いて、GaAsの単結晶の成長
を行った。
Experimental Example 1 A single crystal of GaAs was grown using the apparatus 21 shown in FIG.

装置21の密封容器24と第1容器35および第2容器はPB
Nをコートしたグラフアイトとモリブデンを用いて作製
し、接合部28にはガスケットを用いた。第1容器の容積
は2500cm3、第2容器の容積は1100cm3とした。るつぼ36
に5kgのGaを入れ、第1容器35に5.6kgのAsを入れた後、
装置24全体を排気し、押上げ下軸29を押し上げて接合部
28に接合した。
The sealed container 24, the first container 35 and the second container of the device 21 are PB
It was manufactured using graphite coated with N and molybdenum, and a gasket was used for the joint 28. The volume of the first container 2500 cm 3, the volume of the second container was 1100 cm 3. Crucible 36
After putting 5kg of Ga into the first container 35 and putting 5.6kg of As into the first container 35,
Exhaust the entire device 24 and push up the lower shaft 29 to join
28.

次いで、ヒーター45,46によって容器上部22の温度を7
00℃〜1000℃程度に上げるとともに、ヒーター48によっ
て第2容器の温度を500℃(この温度でのAsの蒸気圧は
0.08atm)に上げてから、ヒーター47によって第1容器3
5の温度を680℃程度まで徐々に上げたところ第1容器35
のAs51が昇華して無くなるのが観察された。
Next, the temperature of the upper part 22 of the container was reduced to 7 by the heaters 45 and 46.
The temperature of the second vessel is raised to 500 ° C. by the heater 48 while the vapor pressure of As is
0.08 atm), and the first container 3
Gradually raise the temperature of 5 to about 680 ° C.
Was observed to sublime and disappear.

次にヒーター46により、第2容器39の温度を600〜680
℃に上げたところ、るつぼ36内でGaAs融液52の合成反応
が起きた。この反応速度は第2容器39の温度によって良
く制御することができた。この間、密封容器24内外の圧
力バランスのために密封容器外の空間53に約1気圧の不
活性ガスを入れた。GaAs融液52の合成過程に要した時間
は約5時間であった。合成終了後、ヒーター48によって
第2容器の温度を615℃に保ったまま、ヒーター46の電
力を徐々に下げながら種結晶49を付けた引上軸31をGaAs
融液52に浸けて回転しながら引き上げ、直径110mm、長
さ160mmの単結晶を成長した。
Next, the temperature of the second container 39 is set to 600 to 680 by the heater 46.
When the temperature was raised to ° C., a synthesis reaction of the GaAs melt 52 occurred in the crucible 36. The reaction rate could be controlled well by the temperature of the second container 39. During this time, an inert gas of about 1 atm was introduced into the space 53 outside the sealed container to balance the pressure inside and outside the sealed container 24. The time required for the synthesis process of the GaAs melt 52 was about 5 hours. After completion of the synthesis, while the temperature of the second container is kept at 615 ° C. by the heater 48, the power of the heater 46 is gradually lowered while the pull-up shaft 31 with the seed crystal 49 is attached to the GaAs.
The crystal was immersed in the melt 52 and pulled up while rotating to grow a single crystal having a diameter of 110 mm and a length of 160 mm.

この結晶はシード端部、テイル部においてそれぞれ、
ホール測定による抵抗率,電子移動度の値は、それぞれ
1.4E7Ω,6700cm2/V.sおよび1.3E7Ω,6600cm2/V.sであっ
た。また、不純物濃度に関しては、SIMS分析によってS
i,Sの濃度はそれぞれ4E4cm-3,3E14cm-3であり、さらにF
TIR分析によるC濃度は8E14cm-3であった。
This crystal at the seed end and tail, respectively
The values of resistivity and electron mobility obtained by Hall measurement are respectively
1.4E7Ω, 6700 cm 2 / Vs and 1.3E7Ω, 6600 cm 2 / Vs. Regarding the impurity concentration, SIMS analysis
The concentrations of i and S are 4E4cm -3 and 3E14cm -3 , respectively,
C concentration by TIR analysis was 8E14 cm -3 .

これらの特性からGaAsの原料融液の合成が一定の組成
で行なわれたことが明らかである。また、上記の結晶成
長の全過程でAsのロスは42gと少なく、GaAs融液合成中
に密封容器24内の圧力バランスの崩れが無かったことを
示していた。
From these characteristics, it is clear that the synthesis of the GaAs raw material melt was performed with a constant composition. In addition, the loss of As was as small as 42 g in the whole process of the crystal growth, indicating that the pressure balance in the sealed vessel 24 was not lost during the synthesis of the GaAs melt.

「実験例2」 実験例1と同じ装置および同じ原料を用いて、GaAsの
結晶成長を行った。
"Experimental Example 2" Crystal growth of GaAs was performed using the same apparatus and the same raw materials as in Experimental Example 1.

GaAs融液52の合成過程において、第2容器39の温度を
570〜600℃(この温度でのAsの蒸気圧は0.4〜0,9atm程
度)に保ち、第1容器35のAs51を昇華させるのと同時
に、るつぼ36内のGa50を徐々に1250℃まで昇温したとこ
ろ、Ga50の温度が上昇するに伴ってGaAs融液52の合成反
応が起こった。
In the process of synthesizing the GaAs melt 52, the temperature of the second
Maintain 570-600 ° C (the vapor pressure of As at this temperature is about 0.4-0.9atm). At the same time as sublimating As51 in the first container 35, gradually raise the Ga50 in the crucible 36 to 1250 ° C. As a result, a synthesis reaction of the GaAs melt 52 occurred with an increase in the temperature of Ga50.

この間、密封容器24の外側53に約1気圧の不活性ガス
を入れて密封容器24内外の圧力バランスをとった。第1
容器35のAs51が無くなった後、第2容器39の温度をさら
に600〜680℃に上げたところGaAs融液の合成反応が継続
するのが確認された。
During this time, about 1 atm of inert gas was introduced into the outside 53 of the sealed container 24 to balance the pressure inside and outside the sealed container 24. First
After the As51 in the container 35 was exhausted, when the temperature of the second container 39 was further increased to 600 to 680 ° C., it was confirmed that the synthesis reaction of the GaAs melt continued.

このGaAs融液52から実験例1と同様にGaAs結晶の引き
上げを行い、実験例1で得られたものと同等のGaAs結晶
を得た。
A GaAs crystal was pulled from the GaAs melt 52 in the same manner as in Experimental Example 1, and a GaAs crystal equivalent to that obtained in Experimental Example 1 was obtained.

また、上記結晶成長の全過程においてAsのロスは50g
であり、GaAs融液合成中に密封容器24内の圧力バランス
の崩れが無く十分制御されて合成が行なわれたことを示
していた。
In addition, the loss of As is 50 g in the whole process of the crystal growth.
This indicates that the synthesis was carried out with sufficient control without the collapse of the pressure balance in the sealed container 24 during the synthesis of the GaAs melt.

「発明の効果」 以上説明したように、本発明に係わる高解離圧化合物
半導体単結晶の製造装置および製造方法によれば、密封
容器とは温度的に隔離され独立して温度制御される第2
容器を設け、密封容器内の第1容器に充填した高解離圧
成分原料を加熱昇華させて第2容器に移行させた後、あ
るいは移行させると同時に、この第2容器を温度制御し
て高解離圧成分ガスを密封容器内に供給するため、密封
容器からの温度影響を受けることなく、高解離圧成分ガ
スの供給量を容易かつ正確に制御することが可能であ
る。したがって、化合物半導体原料の合成作業を正確に
制御することが容易になり、合成に失敗して密閉容器内
の圧力を上昇させ、高解離圧成分ガスの損失を生じる等
の問題が生じにくく、合成作業の自動化も容易である。
[Effect of the Invention] As described above, according to the apparatus and method for manufacturing a high dissociation pressure compound semiconductor single crystal according to the present invention, the second container whose temperature is isolated from the sealed container and whose temperature is controlled independently is controlled.
A container is provided, and after the high dissociation pressure component material filled in the first container in the sealed container is heated and sublimated and transferred to the second container, or simultaneously with the transfer, the second container is temperature-controlled to perform high dissociation. Since the pressure component gas is supplied into the sealed container, the supply amount of the high dissociation pressure component gas can be easily and accurately controlled without being affected by the temperature from the sealed container. Therefore, it is easy to accurately control the compound semiconductor raw material synthesizing operation, and it is difficult to cause a problem such as failure of synthesis to increase the pressure in the closed vessel and loss of high dissociation pressure component gas. Automation of work is also easy.

また、第2容器は、密封容器と離されるとともに、下
軸(あるいは上軸)と同軸に設けられているため、その
内容積が大きく確保できるにも拘わらず、装置全体を大
型化しなくて済む。
Further, since the second container is separated from the sealed container and provided coaxially with the lower shaft (or the upper shaft), it is not necessary to increase the size of the entire apparatus despite the fact that a large inner volume can be secured. .

さらに、第2容器を下軸(または上軸)を取り巻く同
心状に設けているため、加熱時のるつぼや密封容器の高
温部による第2容器の内壁温度分布の不均一が生じにく
く、第2容器の内壁面温度分布を円周方向および長さ方
向のいずれにも均等化することができ、高解離圧成分ガ
スの圧力制御が正確に行なえるという利点も有する。
Further, since the second container is provided concentrically around the lower shaft (or the upper shaft), unevenness in the inner wall temperature distribution of the second container due to the high temperature portion of the crucible or the sealed container during heating hardly occurs, and The temperature distribution of the inner wall surface of the container can be equalized in both the circumferential direction and the length direction, and the pressure of the high dissociation pressure component gas can be accurately controlled.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明に係わる高解離圧化合物半導体単結晶の
製造装置の一実施例を示す縦断面図、第2図は本発明の
製造装置の他の実施例の縦断面図、第3図および第4図
は第1図に示した装置を用いた製造方法を示す縦断面図
である。 また、第5図は、従来の高解離圧化合物半導体結晶製造
装置を示す縦断面図である。 21……高解離圧化合物半導体単結晶の製造装置、22……
容器上部、22A……上部フランジ(天板部)、23……容
器下部、23A……下フランジ(底部)、24……密封容
器、31……上軸、35……第1容器、36……るつぼ、37…
…下軸、38……連通部、39……第2容器、40……支持
筒、43……回転シール、44……シール剤、45,46,47,48
……ヒーター、50……他の成分原料、51……高解離圧成
分原料、52……原料融液、54……単結晶。
FIG. 1 is a longitudinal sectional view showing one embodiment of the apparatus for producing a high dissociation pressure compound semiconductor single crystal according to the present invention, FIG. 2 is a longitudinal sectional view showing another embodiment of the producing apparatus of the present invention, and FIG. FIG. 4 is a longitudinal sectional view showing a manufacturing method using the device shown in FIG. FIG. 5 is a longitudinal sectional view showing a conventional high dissociation pressure compound semiconductor crystal manufacturing apparatus. 21 …… High dissociation pressure compound semiconductor single crystal manufacturing equipment, 22 ……
Upper part of container, 22A ... Upper flange (top plate), 23 ... Lower part of container, 23A ... Lower flange (bottom), 24 ... Sealed container, 31 ... Upper shaft, 35 ... First container, 36 ... … Crucible, 37…
… Lower shaft, 38… Communication part, 39… Second container, 40… Support cylinder, 43… Rotary seal, 44 …… Sealant, 45,46,47,48
... heater, 50 ... other component raw material, 51 ... high dissociation pressure component raw material, 52 ... raw material melt, 54 ... single crystal.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 白田 敬治 埼玉県大宮市北袋町1丁目297番地 三 菱金属株式会社化合物半導体センター内 (72)発明者 熱海 貴 埼玉県大宮市北袋町1丁目297番地 三 菱金属株式会社化合物半導体センター内 (58)調査した分野(Int.Cl.6,DB名) C30B 1/00 - 35/00──────────────────────────────────────────────────続 き Continuing on the front page (72) Keiji Shirata, Inventor Keiji Shirata, 1-297 Kitabukuro-cho, Omiya City, Saitama Pref. (58) Field surveyed (Int. Cl. 6 , DB name) C30B 1/00-35/00

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】密封容器と、この密封容器の底部を貫通し
て密封容器内に気密的かつ回転自在に挿入された下軸
と、この下軸の上端に固定され前記密封容器内に保持さ
れたるつぼと、前記密封容器の天板部を貫通して密封容
器内に気密的かつ回転自在に挿入された上軸とを具備
し、前記密封容器に満たされた高解離圧成分ガスの圧力
を制御しつつ、るつぼ内に支持された原料融液から、上
軸によって化合物半導体単結晶を回転しつつ引き上げる
高解離圧化合物半導体単結晶の製造装置において、 前記密封容器の内側に高解離圧成分原料が充填される第
1容器を設けるとともに、密封容器の下方には、密封容
器の底部から下軸と同軸に延びる連通部を介し密封容器
と気密的に連通する第2容器を設け、この第2容器の内
部には下軸を囲む支持筒を設け、この支持筒の内部には
下軸を回転自在に支持する軸受を設け、さらに支持筒の
内部には前記軸受の上方にシール剤を充填し、 さらに、少なくとも密封容器の上部の周囲、密封容器の
るつぼと対応する箇所の周囲、密封容器の第1容器と対
応する箇所の周囲、および第2容器の周囲には、それぞ
れ独立した加熱手段が設けられていることを特徴とする
高解離圧化合物半導体単結晶の製造装置。
1. A sealed container, a lower shaft penetrating through the bottom of the sealed container and hermetically and rotatably inserted into the sealed container, and fixed to an upper end of the lower shaft and held in the sealed container. A crucible, and an upper shaft that penetrates through the top plate of the sealed container and is hermetically and rotatably inserted into the sealed container, and controls the pressure of the high dissociation pressure component gas filled in the sealed container. An apparatus for manufacturing a high-dissociation pressure compound semiconductor single crystal, which pulls up while rotating a compound semiconductor single crystal by an upper axis from a raw material melt supported in a crucible while controlling, wherein a high-dissociation pressure component material is provided inside the sealed container. Is provided, and a second container is provided below the hermetically sealed container through a communication portion extending coaxially with the lower shaft from the bottom of the hermetically sealed container. Inside the container, there is a support cylinder surrounding the lower shaft A bearing for rotatably supporting the lower shaft is provided inside the support cylinder, and a sealant is filled inside the support cylinder above the bearing. A high dissociation pressure, wherein independent heating means are provided around a portion corresponding to the crucible of the container, around a portion corresponding to the first container of the sealed container, and around the second container. Equipment for manufacturing compound semiconductor single crystals.
【請求項2】密封容器と、この密封容器の底部を貫通し
て密封容器内に気密的かつ回転自在に挿入された下軸
と、この下軸の上端に固定され前記密封容器内に保持さ
れたるつぼと、前記密封容器の天板部を貫通して密封容
器内に気密的かつ回転自在に挿入された上軸とを具備
し、前記密封容器に満たされた高解離圧成分ガスの圧力
を制御しつつ、るつぼ内に支持された原料融液から、上
軸によって化合物半導体単結晶を回転しつつ引き上げる
高解離圧化合物半導体単結晶の製造装置において、 前記密封容器の内側に高解離圧成分原料が充填される第
1容器を設けるとともに、密封容器の上方には、密封容
器の天井部から上軸と同軸に延びる連通部を介し密封容
器と気密的に連通する第2容器を設け、この第2容器の
内部には上軸を囲む支持筒を設け、この支持筒の内部に
は上軸を回転自在に支持する軸受を設け、さらに支持筒
の内部には前記軸受の上方にシール剤を充填し、 さらに、少なくとも密封容器の上部の周囲、密封容器の
るつぼと対応する箇所の周囲、密封容器の第1容器と対
応する箇所の周囲、および第2容器の周囲には、それぞ
れ独立した加熱手段が設けられていることを特徴とする
高解離圧化合物半導体単結晶の製造装置。
2. A sealed container, a lower shaft penetrating through the bottom of the sealed container and hermetically and rotatably inserted into the sealed container, and fixed to an upper end of the lower shaft and held in the sealed container. A crucible, and an upper shaft that penetrates through the top plate of the sealed container and is hermetically and rotatably inserted into the sealed container, and controls the pressure of the high dissociation pressure component gas filled in the sealed container. An apparatus for manufacturing a high-dissociation pressure compound semiconductor single crystal, which pulls up while rotating a compound semiconductor single crystal by an upper axis from a raw material melt supported in a crucible while controlling, wherein a high-dissociation pressure component material is provided inside the sealed container. Is provided, and a second container is provided above the hermetically sealed container and airtightly communicates with the hermetically sealed container via a communication portion extending coaxially from the ceiling of the hermetically sealed container. Support tube surrounding the upper shaft inside the two containers Is provided inside the support cylinder, a bearing for rotatably supporting the upper shaft is provided, and further, the inside of the support cylinder is filled with a sealant above the bearing, and at least a periphery of an upper portion of the sealed container, Independent heating means is provided around a portion corresponding to the crucible of the sealed container, around a portion corresponding to the first container of the sealed container, and around the second container. Pressure compound semiconductor single crystal manufacturing equipment.
【請求項3】請求項1または2記載の高解離圧化合物半
導体単結晶の製造装置を用い、前記密封容器内に満たさ
れた高解離圧成分ガスの圧力を制御しつつ、前記るつぼ
内に支持された原料融液から、前記上軸によって化合物
半導体単結晶を回転しつつ引き上げる高解離圧化合物半
導体単結晶の製造方法であって、 単結晶引き上げに先だって、前記第1容器に高解離圧成
分原料を充填するとともに、前記るつぼ内に他の成分原
料を充填し、第1容器と前記第2容器を除く密封容器の
他の部分を所定の温度に加熱し、第1容器を加熱して高
解離圧成分原料を昇華させ、これを第2容器に移して凝
縮させるとともに、あるいは凝縮させた後、 るつぼ内の他の成分原料を高解離圧化合物半導体の融点
以上に加熱し、第2容器内の高解離圧成分原料を加熱す
ることにより、るつぼ内で高解離圧化合物半導体の原料
融液を合成し、しかる後に第2容器の温度を制御して密
封容器内の高解離圧成分ガスの圧力を一定に保ちつつ、
単結晶の引き上げを行なうことを特徴とする高解離圧化
合物半導体単結晶の製造方法。
3. A high dissociation pressure compound semiconductor single crystal manufacturing apparatus according to claim 1, which is supported in said crucible while controlling the pressure of the high dissociation pressure component gas filled in said sealed container. A method for producing a compound semiconductor single crystal having a high dissociation pressure, wherein a compound semiconductor single crystal is pulled up while rotating the compound semiconductor single crystal by the upper axis from the raw material melt, wherein the high dissociation pressure component raw material is added to the first container before the single crystal is pulled up. And the crucible is filled with other ingredient materials, and the other parts of the sealed container except the first container and the second container are heated to a predetermined temperature, and the first container is heated to achieve high dissociation. After sublimating the pressure component material and transferring it to the second container to condense, or condensing, the other component material in the crucible is heated to a temperature higher than the melting point of the high dissociation pressure compound semiconductor, and High dissociation pressure component raw material By heat, to synthesize a high dissociation pressure compound semiconductor raw material melt in the crucible, while maintaining the pressure of the high dissociation pressure component gas sealed vessel constant by controlling the temperature of the second container and thereafter,
A method for producing a high dissociation pressure compound semiconductor single crystal, comprising pulling a single crystal.
JP7295990A 1990-03-22 1990-03-22 Apparatus and method for producing high dissociation pressure compound semiconductor single crystal Expired - Fee Related JP2829315B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7295990A JP2829315B2 (en) 1990-03-22 1990-03-22 Apparatus and method for producing high dissociation pressure compound semiconductor single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7295990A JP2829315B2 (en) 1990-03-22 1990-03-22 Apparatus and method for producing high dissociation pressure compound semiconductor single crystal

Publications (2)

Publication Number Publication Date
JPH03285886A JPH03285886A (en) 1991-12-17
JP2829315B2 true JP2829315B2 (en) 1998-11-25

Family

ID=13504428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7295990A Expired - Fee Related JP2829315B2 (en) 1990-03-22 1990-03-22 Apparatus and method for producing high dissociation pressure compound semiconductor single crystal

Country Status (1)

Country Link
JP (1) JP2829315B2 (en)

Also Published As

Publication number Publication date
JPH03285886A (en) 1991-12-17

Similar Documents

Publication Publication Date Title
EP0186213B1 (en) Method for synthesizing compound semiconductor polycrystals and apparatus therefor
JP2829315B2 (en) Apparatus and method for producing high dissociation pressure compound semiconductor single crystal
US5373808A (en) Method and apparatus for producing compound semiconductor single crystal of high decomposition pressure
USRE40662E1 (en) Method of preparing a compound semiconductor crystal
JP2979770B2 (en) Single crystal manufacturing equipment
JPS60264390A (en) Growing method for single crystal
JP2517803B2 (en) Method for synthesizing II-VI compound semiconductor polycrystal
JP2690420B2 (en) Single crystal manufacturing equipment
JP3170577B2 (en) Processing equipment for high dissociation pressure compounds
JP2830411B2 (en) Method and apparatus for growing compound semiconductor single crystal
JP2927065B2 (en) Method and apparatus for growing compound semiconductor single crystal
JP2830437B2 (en) Method and apparatus for producing high dissociation pressure single crystal
JP2992539B2 (en) Processing equipment for high dissociation pressure compounds
JPS6395194A (en) Production of compound single crystal
JP3392245B2 (en) Method for manufacturing compound semiconductor single crystal
JPH01242489A (en) Single crystal growth apparatus
JP2719672B2 (en) Single crystal growth method
JP2900577B2 (en) Method and apparatus for growing compound single crystal
JPH0558772A (en) Production of compound semiconductor single crystal
JPH01286992A (en) Apparatus for growing single crystal
JPH0364477B2 (en)
JPH04139030A (en) Method and device for growing single crystal
JPH10167873A (en) Device for producing compound crystal and production of compound crystal, using the same
JPH0616493A (en) Method for growing gallium arsenide single crystal
JPS62275085A (en) Sealing method for ampule for synthesizing crystal and vacuum exhauster

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees