JP4140959B2 - Method for fusion welding of Zn-based plated steel sheet - Google Patents

Method for fusion welding of Zn-based plated steel sheet Download PDF

Info

Publication number
JP4140959B2
JP4140959B2 JP2003142891A JP2003142891A JP4140959B2 JP 4140959 B2 JP4140959 B2 JP 4140959B2 JP 2003142891 A JP2003142891 A JP 2003142891A JP 2003142891 A JP2003142891 A JP 2003142891A JP 4140959 B2 JP4140959 B2 JP 4140959B2
Authority
JP
Japan
Prior art keywords
welding
steel sheet
plated steel
welded
based plated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003142891A
Other languages
Japanese (ja)
Other versions
JP2004344905A (en
Inventor
淳 黒部
智和 延時
博 朝田
保徳 服部
信彦 山木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nippon Steel Nisshin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Nisshin Co Ltd filed Critical Nippon Steel Nisshin Co Ltd
Priority to JP2003142891A priority Critical patent/JP4140959B2/en
Publication of JP2004344905A publication Critical patent/JP2004344905A/en
Application granted granted Critical
Publication of JP4140959B2 publication Critical patent/JP4140959B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は、Zn系めっき鋼板を溶融溶接する際に、溶融金属脆化割れの発生を抑制した溶接方法に関する。
【0002】
【従来の技術】
自動車用はもとより、建築構造物や家電製品等、腐食が問題となる箇所に使用される鋼材として、耐食性に優れるZn系めっき鋼が広く用いられている。そして、板状のままで使用されることはほとんどなく、何らかの手段で所要の形状に成形した後、各々の部品を溶接して最終製品を製造している。つまり、Zn系めっき鋼板を用いて所望製品を製造する際には、ほとんどで溶接工程が入ってくる。
溶接の種類としては、スポット溶接に代表されるような抵抗溶接と、アーク溶接に代表されるような溶融溶接がある。建築構造物や自動車の足廻り部品などでは、比較的高い接合強度が必要なことや板厚が比較的厚いこと、抵抗溶接での電極の低寿命などを考慮して、溶融溶接を用いる場合が多い。
【0003】
溶融溶接は、非常に高い熱量を被溶接材に与えて溶融・凝固、場合によっては溶接ワイヤーを供給して溶接する方法である。Zn系めっき鋼板を溶融溶接するとめっき原板である鋼母材も溶融するが、その母材表面に被覆されているめっき層も再溶融や蒸発を起こす。
Zn系めっき鋼板の場合、めっき層の融点が母材である鋼板の融点よりもかなり低いことから、溶接部の一部の領域や溶接部の周辺では、溶接中あるいは溶接後のある一定期間の間、めっき層が溶融状態で鋼板表面に存在することになる。鋼板上にSn,Cu,Znなどが溶融状態で存在した状態である一定の引張り応力が作用すると、鋼板に割れが発生することが知られている。いわゆる「溶融金属脆化割れ」と称されているものである(例えば、上田修三著「叢書 鉄鋼技術の流れ 第1シリーズ 第9巻 構造用鋼の溶接−低合金鋼の諸性質とメタラジー−」1997.6.1 株式会社地人書館,p274−276参照)。
【0004】
【発明が解決しようとする課題】
溶融金属脆化割れは、溶融金属と固体金属の特定の組み合わせのもとで固体金属に一定以上の引張り応力が働いた場合に、固体金属の結晶粒界に溶融金属が浸透して脆化し、割れる現象である。固体金属が鋼の場合、溶接後の部品を溶融Zn浴に浸漬して溶融Znめっきを施すとき,Cuろう接するとき,あるいはZn系めっき鋼板を溶融溶接するときに、溶接やろう接で発生する熱影響部の粗粒域でZnが浸透して割れが発生する場合が多くなっている。
特に、最近では、耐食性に優れたZn系めっき鋼板が幅広く使用されるようになった。しかし溶接時にある複数の条件が重なると、熱影響部近傍に溶融金属脆化割れが発生しやすく、問題となっている。
【0005】
熱影響部近傍での溶融金属脆化割れの発生を抑制するために、溶接に先立って溶接部近傍のめっき層を除去することも行われている。しかしながら、めっき層の除去工程で粉塵を撒き散らすことになって作業環境を悪化させるばかりでなく、めっき層が除去された溶接部は、下地鋼が露出しているため母材部に比較して耐食性が劣る。耐食性の低下は溶接部にめっき層と同種材料からなる溶射層等を形成することにより防止できるものの、溶接前のめっき層除去及び溶接後の溶射層形成と余分な工程を必要とするため、製造にかかる負荷が大きくなり、現実的ではない。
また、被溶接材の拘束方法を変更して作用する引張り応力を緩和させたり、被溶接材の残留応力を事前に低減させるなどの処置も施されている。しかし、この方法も、各種応力量が一定でないために、確実性に欠けるという問題がある。さらに溶接する際の入熱量をできるだけ低くして、発生・残存する熱応力を低減する方法もあるが、溶接する際の入熱量が少ないと十分な溶込みが得られないことがあり、溶接部の接合強度が不安定になるという問題がある。
【0006】
本出願人は、特開2003−3238号公報で、下地鋼の組成と溶融めっき層の組成を特定の組み合わせにすることにより、溶接時の溶融金属脆化割れを抑制する技術に関する提案をした。しかし、Zn系めっき鋼板を適宜形状に成形した後溶接して構造物を構築する際に、溶接時に熱影響部に発生しやすい溶融金属脆化割れを防止する技術について、溶接手法から検討した先行例は少ない。
本発明は、このような問題を解消すべく案出されたものであり、Zn系めっき鋼板を溶融溶接する際に、めっき層を予め除去することなく、また入熱量を抑えることなく溶融溶接しても、溶接熱影響部に溶融金属脆化割れが発生することのない溶融溶接方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明のZn系めっき鋼板の溶融溶接方法は、その目的を達成するため、Zn系合金を鋼板表面にめっきしたZn系めっき鋼板を溶融溶接する際に、前記Zn系めっき鋼板の溶接部外側に900℃以上の耐熱性を有する溶融めっき金属移動阻止用壁を設けたことを特徴とする。
【0008】
【作用】
本発明者等は、Zn系合金をめっきした鋼板を溶融溶接した際に溶接熱影響部近傍に生じる割れ発生状況を、めっき鋼板としてZnめっき鋼板より割れ感受性が若干高いZn−Al−Mg系めっき鋼板を用い、CO2アーク溶接によるすみ肉溶接を行って観察した。
すなわち、図1に示すように、Zn−Al−Mg系めっき鋼板1とめっきを施していない普通鋼2のすみ肉部3を、溶接ワイヤー4を用いてCO2トーチ5によりアーク溶接した。溶接部6を詳しく観察してみると、図2に示すように、割れ9は、溶着金属8の近傍の結晶粒が粗大化した熱影響部7の前記めっき鋼板の表面近傍に発生している。そして、割れの近傍について成分分析を行なったところ、割れ9の側壁には、Znが付着していることがわかった。したがって、その割れ9は、Znによる溶融金属脆化割れであることが判明した。
【0009】
また、溶接後のめっき層の分布状態を見ると、同じく図2に示すように、Zn−Al−Mg系めっき鋼板のめっき原板である母材部が溶融した溶着金属8の上や1000℃以上となる熱影響部7の粗粒域にはめっき層10が点在していた。さらに、熱影響部7以外の領域の前記めっき鋼板表面には、波状になっためっき層11の後には、ほぼ同じ厚みのめっき層12が存在していた。それらのめっき層10,11,12の成分を分析したところ、いずれもZn,Al,Mgを含んでいた。
【0010】
ところで、鋼をアーク溶接した場合、溶着金属8では鋼が溶融している部分であるために1500℃以上となるし、熱影響部7の粗粒域も1000℃以上となることが知られている。これに対して、Zn,Al,Mgの溶融温度は各々420℃,660℃,650℃であり、蒸発温度は各々930℃,2060℃,1107℃である。つまり、溶接時には、溶着金属8の付近や熱影響部7の粗粒域では少なくともZnが蒸発していることになる。したがって、溶着金属8の上や1000℃以上となる熱影響部7の粗粒域に点在するめっき層10は、溶接部6よりも外側のめっき層が再溶融して周辺より流れ込んだ可能性がある。
【0011】
また、アーク溶接では、図3に示すように、溶接ワイヤー13が溶融した溶滴14に通電することによって内向きの電磁力15が発生する。その電磁力15はピンチ力と呼ばれ、溶融金属に電流を流すと発生する。
めっき鋼板上の再溶融しためっき層も溶融金属状態であるため、アーク16により通電されると、上記溶滴と同様に内向きの電磁力が作用することになる。この電磁力によって溶融しためっき金属が溶接部6に近づき、溶着金属8の付近や熱影響部7の粗粒域にめっき層10が点在したものと考えられる。
熱影響部7の粗粒域に溶融金属が存在し、溶接による熱膨張と収縮に起因する熱応力の作用と相俟って、粗粒化した結晶粒界に溶融したZnが極めて容易に浸入し、溶融金属脆化割れが発生したものと推測される。
【0012】
そこで、本発明者等は、溶融金属脆化割れの発生を防止するためには、溶接時に、溶融しためっき金属を堰き止め、溶接部6に近づかないようにすればよいことを見出した。例えば図4に示すように、溶接前のZn−Al−Mg系めっき鋼板の表面で、溶接部6が存在することになる位置の外側に900℃以上の耐熱性を有する溶融めっき金属移動阻止用壁17を設けて、再溶融して溶融体となっためっき金属を堰き止め、そのめっき金属が溶接部6に近づかないようにした。
実際にその状態で溶接を行ったところ、溶融金属脆化割れは発生せず、溶着金属8の付近や熱影響部7の粗粒域にめっき層10が点在することもなくなった。そして、このような方法で良質の溶接継手を得ることができた。
【0013】
なお、本発明の特徴である溶融めっき金属移動阻止用壁17の設置位置は、Znの蒸発温度が930℃であるから、溶接時にめっき原板の温度が930℃に到達する直前の位置、安全を見込んで900℃に達する以前の位置に設けることが好ましい。
溶融めっき金属移動阻止用壁の材質としては、Zn系めっき鋼板のめっき金属と反応せず900℃以上の耐熱性を有するものであれば種類を問わない。使い易さを考慮するとセラミックスを使用することが好ましい。壁の幅は、Zn系めっき鋼板上に安定して設置できる寸法であればどのような大きさでも良い。しかし壁の高さは、めっき層の厚みで異なってくる。つまり、めっき層が厚い場合には、移動の阻止を必要とするめっき金属の量も増えるため、その分高くする必要がある。例えば、めっき層の厚みが20μmの場合では、壁の高さを1mmにすることによって割れを防止することができた。
【0014】
【実施例】
Zn系めっき鋼板として、Zn−6%Al−3%Mg合金めっき浴に浸漬してZn−Al−Mg合金めっきを施しためっき層厚20μm,板厚4mm,板幅100mm,全長100mmのめっき鋼板を使用した。このめっき鋼板1に、図1に示すような、板厚10mm,幅30mm,高さ40mmの、めっきを施していない普通鋼製の条材2をすみ肉アーク溶接した。
アーク溶接はCO2溶接を用い、溶接電流を220A,溶接電圧を26V,溶接速度を0.3m/分,トーチ角を45度,CO2シールドガスの流量を20l/分とした。溶接ワイヤー4には直径1.2mmのYGW12を用いた。
溶接部6となる領域は、事前に確認したところ、普通鋼条材2の中心から18mmの範囲であったため、普通鋼条材2の中心から18mm離れた位置に幅10mm,高さ5mmのAl23製セラミックの壁を設けた。
その状態でアーク溶接した結果、溶融金属脆化割れは発生せず、良好な溶接継手を得ることができた。
【0015】
【比較例】
壁を設けないこと以外は、上記実施例と同じ条件でアーク溶接を行った。
その結果、熱影響部の粗粒域で割れが発生し、その割れの側壁にはZnが付着していた。このことから、壁が設けられていないと、Znによる溶融金属脆化割れが生じていることがわかった。また、溶着金属の付近や熱影響部の粗粒域にZn,Al,Mgを含むめっき層が点在していた。
【0016】
【発明の効果】
以上に説明したように、本発明の方法によると、Zn系合金を鋼板表面にめっきしたZn系めっき鋼板を溶融溶接する際に、当該Zn系めっき鋼板の溶接部外側に900℃以上の耐熱性を有する溶融めっき金属移動阻止用壁を設けたことにより、溶接時に、溶融しためっき金属が堰き止められ、溶接部6に近づかないので、溶接熱影響部の粗粒結晶粒の粒界に溶融Znが浸透することがなく、溶融金属脆化割れの発生を抑制することが可能となった。
このため、Zn系めっき鋼板、特に耐食性に優れるZn−Al−Mg系めっき鋼板を溶融溶接しても、溶融金属脆化に起因する割れが発生することなく、健全な溶接部をもつ溶接製品が製造される。得られた溶接製品は、Zn系めっき鋼板、特にZn−Al−Mg系めっき鋼板の本来の高耐食性を活用し、各種分野における構造部材等として使用される。
【図面の簡単な説明】
【図1】 めっき鋼板上に条材を、アーク溶接法によりすみ肉溶接する態様を説明する図
【図2】 めっき鋼板上に条材をすみ肉溶接した際に、熱影響部に発生した溶融金属脆化割れを説明する図
【図3】 アーク溶接する際の、電磁力を説明する図
【図4】 めっき鋼板上に条材をすみ肉溶接する際に、熱影響部の周辺部に設けた溶融めっき金属移動阻止用壁の作用を説明する図
【符号の説明】
1:Zn系めっき鋼板 2:すみ肉溶接する条材 3:すみ肉溶接部
4:溶接ワイヤー 5:トーチ 6:溶接部 7:溶接熱影響部
8:溶着金属 9:溶融金属脆化割れ 10:めっき層 11:めっき層 12:めっき層 13:溶接ワイヤー 14:溶滴 15:電磁力
16:アーク 17:溶融めっき金属移動阻止用壁
[0001]
[Industrial application fields]
The present invention relates to a welding method that suppresses the occurrence of molten metal embrittlement cracks when a Zn-based plated steel sheet is fusion welded.
[0002]
[Prior art]
Zn-based plated steel having excellent corrosion resistance is widely used as a steel material used not only for automobiles but also in places where corrosion is a problem, such as building structures and home appliances. And it is rarely used in the form of a plate, and after forming into a required shape by some means, each part is welded to produce a final product. That is, when a desired product is manufactured using a Zn-based plated steel sheet, a welding process is mostly included.
As types of welding, there are resistance welding as typified by spot welding and fusion welding as typified by arc welding. For building structures and undercarriage parts of automobiles, fusion welding may be used in consideration of the fact that relatively high joint strength is required, the plate thickness is relatively large, and the electrode has a low life in resistance welding. Many.
[0003]
Melt welding is a method in which a very high amount of heat is applied to a material to be welded to melt and solidify, and in some cases, a welding wire is supplied for welding. When a Zn-based plated steel sheet is melt welded, the steel base material, which is the plating base plate, is also melted, but the plating layer coated on the surface of the base material also remelts and evaporates.
In the case of Zn-based plated steel sheets, the melting point of the plating layer is considerably lower than the melting point of the steel sheet that is the base material. Meanwhile, the plating layer is present on the steel sheet surface in a molten state. It is known that when a certain tensile stress, which is a state in which Sn, Cu, Zn or the like is present in a molten state, acts on a steel plate, a crack occurs in the steel plate. This is what is called "molten metal embrittlement cracking" (for example, Shuzo Ueda, "Shusho, the flow of steel technology, 1st series, volume 9, welding of structural steel-properties and metallurgy of low alloy steel") 1997.6.1 Jinjinshokan, p.274-276).
[0004]
[Problems to be solved by the invention]
Molten metal embrittlement cracking occurs when a certain level of tensile stress is applied to a solid metal under a specific combination of molten metal and solid metal. It is a phenomenon that breaks. When the solid metal is steel, it is generated by welding or brazing when the parts after welding are immersed in a molten Zn bath and hot-dip Zn plating is applied, when Cu brazing is performed, or when a Zn-based plated steel sheet is fusion welding. In many cases, Zn is infiltrated in the coarse-grained region of the heat-affected zone and cracking occurs.
In particular, recently, Zn-based plated steel sheets having excellent corrosion resistance have been widely used. However, when a plurality of conditions at the time of welding overlap, it is a problem because molten metal embrittlement cracks are likely to occur in the vicinity of the heat affected zone.
[0005]
In order to suppress the occurrence of molten metal embrittlement cracks in the vicinity of the heat-affected zone, the plating layer in the vicinity of the weld zone is also removed prior to welding. However, not only does the plating layer removal process disperse dust, but the working environment is deteriorated, and the welded part from which the plating layer has been removed is exposed compared with the base metal part because the base steel is exposed. Corrosion resistance is poor. Although degradation of corrosion resistance can be prevented by forming a sprayed layer made of the same material as the plating layer in the weld zone, it requires manufacturing by removing the plating layer before welding and forming a sprayed layer after welding and an extra step. This increases the load on the system and is not realistic.
In addition, measures are taken such as relaxing the tensile stress acting by changing the method of restraining the material to be welded and reducing the residual stress of the material to be welded in advance. However, this method also has a problem of lack of certainty because various amounts of stress are not constant. There is also a method to reduce the heat stress generated and remaining by reducing the heat input during welding as much as possible, but if the heat input during welding is small, sufficient penetration may not be obtained, There is a problem that the bonding strength of this becomes unstable.
[0006]
In Japanese Patent Application Laid-Open No. 2003-3238, the present applicant has proposed a technique for suppressing molten metal embrittlement cracking at the time of welding by combining the composition of the base steel and the composition of the hot dip plating layer. However, prior to investigating the technique to prevent molten metal embrittlement cracking that is likely to occur in the heat affected zone during welding when a Zn-plated steel sheet is formed into an appropriate shape and then welded to construct a structure. There are few examples.
The present invention has been devised to solve such a problem. When a Zn-plated steel sheet is fusion welded, it is melt-welded without removing the plating layer in advance and without suppressing the heat input. However, it aims at providing the fusion welding method in which a molten metal embrittlement crack does not generate | occur | produce in a welding heat affected zone.
[0007]
[Means for Solving the Problems]
In order to achieve the object, the method for fusion welding of a Zn-based plated steel sheet according to the present invention, on the outside of the welded portion of the Zn-based plated steel sheet, when the Zn-based plated steel sheet obtained by plating a Zn-based alloy on the steel sheet surface is fusion welded. The present invention is characterized in that a wall for preventing movement of a hot- dip metal having a heat resistance of 900 ° C. or higher is provided.
[0008]
[Action]
The inventors of the present invention have reported that the occurrence of cracks in the vicinity of the weld heat affected zone when a steel sheet plated with a Zn alloy is melt welded is a Zn-Al-Mg based plating that is slightly more sensitive to cracking than a Zn plated steel sheet as a plated steel sheet. Observation was made by performing fillet welding by CO 2 arc welding using a steel plate.
That is, as shown in FIG. 1, a Zn—Al—Mg-based plated steel sheet 1 and a fillet portion 3 of plain steel 2 that has not been plated were arc welded by a CO 2 torch 5 using a welding wire 4. When the welded portion 6 is observed in detail, as shown in FIG. 2, the crack 9 is generated in the vicinity of the surface of the plated steel plate of the heat affected zone 7 in which the crystal grains in the vicinity of the weld metal 8 are coarsened. . And when the component analysis was performed about the vicinity of a crack, it turned out that Zn has adhered to the side wall of the crack 9. FIG. Therefore, the crack 9 was found to be a molten metal embrittlement crack due to Zn.
[0009]
Moreover, when the distribution state of the plating layer after welding is seen, similarly as shown in FIG. 2, it is 1000 degreeC or more on the welding metal 8 with which the base material part which is a plating base plate of a Zn-Al-Mg type plated steel plate was fuse | melted. The plated layer 10 was scattered in the coarse grain region of the heat affected zone 7. Furthermore, on the surface of the plated steel sheet in a region other than the heat-affected zone 7, a plating layer 12 having substantially the same thickness was present after the corrugated plating layer 11. When the components of the plating layers 10, 11, and 12 were analyzed, all of them contained Zn, Al, and Mg.
[0010]
By the way, when the steel is arc-welded, it is known that the weld metal 8 is a portion where the steel is melted, so that the temperature is 1500 ° C. or higher, and the coarse region of the heat affected zone 7 is also 1000 ° C. Yes. On the other hand, the melting temperatures of Zn, Al, and Mg are 420 ° C., 660 ° C., and 650 ° C., respectively, and the evaporation temperatures are 930 ° C., 2060 ° C., and 1107 ° C., respectively. That is, at the time of welding, Zn is evaporated at least in the vicinity of the weld metal 8 and in the coarse grain region of the heat affected zone 7. Therefore, the plating layer 10 scattered on the weld metal 8 or in the coarse-grained region of the heat-affected zone 7 at 1000 ° C. or higher may flow from the periphery due to the re-melting of the plating layer outside the weld zone 6. There is.
[0011]
In arc welding, as shown in FIG. 3, an inward electromagnetic force 15 is generated by energizing the molten droplet 14 in which the welding wire 13 is melted. The electromagnetic force 15 is called a pinch force and is generated when a current is passed through the molten metal.
Since the re-melted plated layer on the plated steel sheet is also in a molten metal state, when energized by the arc 16, an inward electromagnetic force acts like the droplet. It is considered that the plated metal melted by the electromagnetic force approaches the welded portion 6 and the plated layer 10 is scattered in the vicinity of the weld metal 8 or in the coarse grain region of the heat affected zone 7.
Molten metal exists in the coarse-grained region of the heat-affected zone 7, and in combination with the effects of thermal stress caused by thermal expansion and contraction due to welding, molten Zn penetrates into the coarsened grain boundary very easily. It is estimated that molten metal embrittlement cracking occurred.
[0012]
Therefore, the present inventors have found that in order to prevent the occurrence of molten metal embrittlement cracking, it is necessary to dam the molten plated metal so as not to approach the welded portion 6 during welding. For example, as shown in FIG. 4, on the surface of a Zn—Al—Mg based plated steel sheet before welding, for preventing the movement of the hot- dip plated metal having heat resistance of 900 ° C. or more outside the position where the weld 6 is present. A wall 17 was provided to dam the plated metal that was remelted into a molten material so that the plated metal did not approach the weld 6.
When welding was actually performed in that state, no molten metal embrittlement cracking occurred, and the plating layer 10 was not scattered in the vicinity of the weld metal 8 or in the coarse grain region of the heat affected zone 7. And a good quality welded joint could be obtained by such a method.
[0013]
In addition, since the evaporating temperature of Zn is 930 ° C., the installation position of the hot dipped metal movement prevention wall 17, which is a feature of the present invention, is the position immediately before the temperature of the plating original plate reaches 930 ° C. during welding. It is preferable to provide it at a position before reaching 900 ° C.
The material of the hot dipped metal movement prevention wall is not particularly limited as long as it does not react with the plated metal of the Zn-based plated steel sheet and has heat resistance of 900 ° C. or higher. In consideration of ease of use, it is preferable to use ceramics. The width of the wall may be any size as long as it can be stably installed on the Zn-based plated steel sheet. However, the height of the wall varies depending on the thickness of the plating layer. In other words, when the plating layer is thick, the amount of plating metal that needs to be prevented from moving also increases, so it is necessary to increase the amount accordingly. For example, when the thickness of the plating layer was 20 μm, cracking could be prevented by setting the wall height to 1 mm.
[0014]
【Example】
As a Zn-based plated steel sheet, a plated steel sheet with a thickness of 20 μm, a thickness of 4 mm, a width of 100 mm, and a total length of 100 mm is obtained by immersing in a Zn-6% Al-3% Mg alloy plating bath and plating with Zn—Al—Mg alloy. It was used. A plain steel strip 2 having a plate thickness of 10 mm, a width of 30 mm, and a height of 40 mm as shown in FIG.
The arc welding was CO 2 welding, the welding current was 220 A, the welding voltage was 26 V, the welding speed was 0.3 m / min, the torch angle was 45 degrees, and the flow rate of the CO 2 shielding gas was 20 l / min. As the welding wire 4, YGW 12 having a diameter of 1.2 mm was used.
The area to be the welded portion 6 was confirmed in advance and was within a range of 18 mm from the center of the ordinary steel strip 2, so that the Al having a width of 10 mm and a height of 5 mm was located 18 mm away from the center of the ordinary steel strip 2. A 2 O 3 ceramic wall was provided.
As a result of arc welding in that state, no molten metal embrittlement cracking occurred, and a good weld joint could be obtained.
[0015]
[Comparative example]
Arc welding was performed under the same conditions as in the above example except that no wall was provided.
As a result, cracks occurred in the coarse grain region of the heat-affected zone, and Zn adhered to the side walls of the cracks. From this, it was found that when a wall was not provided, molten metal embrittlement cracking due to Zn occurred. In addition, plating layers containing Zn, Al, and Mg are scattered in the vicinity of the weld metal and in the coarse grain region of the heat-affected zone.
[0016]
【The invention's effect】
As described above, according to the method of the present invention, when a Zn-based plated steel sheet obtained by plating a Zn-based alloy on the steel sheet surface is melt welded , the heat resistance of 900 ° C. or more is provided on the outer side of the welded portion of the Zn-based plated steel sheet . by providing the molten plating metal movement preventing wall having, during welding, dammed is molten plating metal, does not approach the weld 6, melting in the grain boundary of the coarse crystal grains of the weld heat affected zone Zn It was possible to suppress the occurrence of molten metal embrittlement cracks.
For this reason, even if a Zn-based plated steel sheet, especially a Zn-Al-Mg-based steel sheet with excellent corrosion resistance, is melt welded, a welded product having a sound welded portion is generated without causing cracks due to molten metal embrittlement. Manufactured. The obtained welded product is used as a structural member or the like in various fields by utilizing the original high corrosion resistance of a Zn-based plated steel sheet, particularly a Zn-Al-Mg-plated steel sheet.
[Brief description of the drawings]
[Fig. 1] A diagram for explaining the aspect of fillet welding of strip material on a plated steel plate by arc welding. [Fig. 2] Melt generated in the heat-affected zone when fillet welding of the strip material on a plated steel plate is performed. Diagram explaining metal embrittlement crack [Fig. 3] Diagram explaining electromagnetic force during arc welding [Fig. 4] Provided around the heat-affected zone when fillet-welding strip material on plated steel sheet Diagram explaining the action of the hot- dip plated metal movement prevention wall [Explanation of symbols]
1: Zn-based plated steel sheet 2: Strip material to be welded to fillet 3: Fillet welded portion 4: Welding wire 5: Torch 6: Welded portion 7: Weld heat affected zone 8: Weld metal 9: Molten metal embrittlement crack 10: plated layer 11: plating layer 12: plating layer 13: welding wire 14: droplet 15: electromagnetic force 16: arc 17: molten plating metal movement blocking wall

Claims (1)

Zn系合金を鋼板表面にめっきしたZn系めっき鋼板を溶融溶接する際に、前記Zn系めっき鋼板の溶接部外側に900℃以上の耐熱性を有する溶融めっき金属移動阻止用壁を設けたことを特徴とするZn系めっき鋼板の溶融溶接方法。When a Zn-based plated steel sheet obtained by plating a Zn-based alloy on the steel sheet surface is melt welded , a hot- dip plated metal movement prevention wall having heat resistance of 900 ° C. or more is provided outside the welded portion of the Zn-based plated steel sheet. A method for fusion welding of a Zn-based plated steel sheet.
JP2003142891A 2003-05-21 2003-05-21 Method for fusion welding of Zn-based plated steel sheet Expired - Fee Related JP4140959B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003142891A JP4140959B2 (en) 2003-05-21 2003-05-21 Method for fusion welding of Zn-based plated steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003142891A JP4140959B2 (en) 2003-05-21 2003-05-21 Method for fusion welding of Zn-based plated steel sheet

Publications (2)

Publication Number Publication Date
JP2004344905A JP2004344905A (en) 2004-12-09
JP4140959B2 true JP4140959B2 (en) 2008-08-27

Family

ID=33530822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003142891A Expired - Fee Related JP4140959B2 (en) 2003-05-21 2003-05-21 Method for fusion welding of Zn-based plated steel sheet

Country Status (1)

Country Link
JP (1) JP4140959B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5269341B2 (en) * 2006-04-24 2013-08-21 新日鐵住金株式会社 Lubricant composition for hot extrusion
JP5088920B2 (en) * 2006-05-19 2012-12-05 日新製鋼株式会社 Manufacturing method for building components
JP5372217B2 (en) * 2012-02-24 2013-12-18 日新製鋼株式会社 Manufacturing method of arc-welded structural members

Also Published As

Publication number Publication date
JP2004344905A (en) 2004-12-09

Similar Documents

Publication Publication Date Title
KR101012199B1 (en) Weld joint formed with stainless steel-based weld metal for welding a zinc-based alloy coated steel sheet
JP5372217B2 (en) Manufacturing method of arc-welded structural members
JP5980128B2 (en) Manufacturing method of arc-welded structural members
JP6080391B2 (en) Method for producing Zn-Al-Mg plated steel sheet arc welded structural member
JP6385411B2 (en) Welded member and manufacturing method thereof
CA2968932C (en) Arc welding method for zn plated steel sheet and arc welded joint
KR102514674B1 (en) spot welding parts
JP7124990B1 (en) Welded joints and auto parts
JP7261167B2 (en) Resistance welding of non-weldable metals with thermally sprayed interlayers
JP2014133259A (en) Manufacturing method of arc welding structural member
CN110711932A (en) Weld flange pretreatment to mitigate liquid metal embrittlement cracking in galvanized steel resistance welding
KR102196078B1 (en) Method for improving the weldability of high-manganese-containing steel strips and coated steel strip
JP4140959B2 (en) Method for fusion welding of Zn-based plated steel sheet
JP4320238B2 (en) Method for welding Zn-Al-Mg alloy-plated steel sheet
US11548091B2 (en) Pretreatment of weld flanges to mitigate liquid metal embrittlement cracking in resistance welding of galvanized steels
Schubert et al. Laser beam joining of material combinations for automotive applications
JP4140958B2 (en) Method for fusion welding of Zn-based plated steel sheet
JP4205514B2 (en) Method for fusion welding of Zn-based plated steel sheet
US20240042541A1 (en) Welded structural member having excellent crack resistance and manfuacturing method thereof
KR102190331B1 (en) Arc welding method of hot-dip Zn-based plated steel sheet with excellent weld appearance and welding strength, and method of manufacturing welded members
JP4766958B2 (en) Welding wire for Zn-based plated steel sheet and welding method for Zn-based plated steel sheet
JP2012125821A (en) Different material joint structure
JP2009113115A (en) METHOD FOR WELDING Zn-Al-Mg-BASED ALLOY PLATED STEEL SHEET
CA3152503C (en) Wire for gas-shielded arc welding
KR102305743B1 (en) Welded structural member having excellent crack resistance and manufacturing method of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060519

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070411

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070417

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080527

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080609

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4140959

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140620

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees