JP4140812B2 - グラフィックス・モデルのサーフェスの向きのディテール指向の階層表現を生成する方法 - Google Patents
グラフィックス・モデルのサーフェスの向きのディテール指向の階層表現を生成する方法 Download PDFInfo
- Publication number
- JP4140812B2 JP4140812B2 JP2002110308A JP2002110308A JP4140812B2 JP 4140812 B2 JP4140812 B2 JP 4140812B2 JP 2002110308 A JP2002110308 A JP 2002110308A JP 2002110308 A JP2002110308 A JP 2002110308A JP 4140812 B2 JP4140812 B2 JP 4140812B2
- Authority
- JP
- Japan
- Prior art keywords
- cell
- visibility
- determining
- cells
- leaf
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 claims description 78
- 238000009877 rendering Methods 0.000 claims description 42
- 238000005070 sampling Methods 0.000 claims description 6
- 230000003044 adaptive effect Effects 0.000 claims description 5
- 238000012986 modification Methods 0.000 claims description 4
- 230000004048 modification Effects 0.000 claims description 4
- 238000000638 solvent extraction Methods 0.000 claims 1
- 230000008569 process Effects 0.000 description 16
- 230000000007 visual effect Effects 0.000 description 9
- 230000003068 static effect Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 6
- 230000008859 change Effects 0.000 description 4
- 230000001419 dependent effect Effects 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000004088 simulation Methods 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000000750 progressive effect Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 235000020030 perry Nutrition 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 238000011555 rabbit model Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T15/00—3D [Three Dimensional] image rendering
- G06T15/10—Geometric effects
- G06T15/40—Hidden part removal
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Geometry (AREA)
- Computer Graphics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Image Generation (AREA)
- Processing Or Creating Images (AREA)
Description
【発明の属する技術分野】
本発明は、包括的には、コンピュータ・グラフィックスの分野に関し、より詳細には、モデルのサーフェスの向きを決定することに関する。
【0002】
【従来の技術】
ゲームや物理的シミュレーションなどのリアルタイムのグラフィックス用途では、ポリゴン・メッシュの形式でモデルを自動的に生成する技法が多数知られている。一般的な生成技法には、レーザ・レンジ・スキャニングや陰関数の三角形分割がある。結果的に得られるメッシュには、標準のレンダリング・エンジンが、リアルタイムのフレーム・レートでレンダリングできるポリゴンがさらに多く含まれることが多い。
【0003】
それゆえ、これらのモデル内のポリゴン数を減らすために、多重解像度の三角形メッシュが頻繁に使用される。これらの方法は、一般に、詳細度(LOD)メッシュを生成する2つの手法を利用する。「静的な」手法では、一組の「静的」LODメッシュをあらかじめ計算した後で、適用業務に使用する。ランタイムでは、ビューイングパラメータとフレーム・レートの要件とに基いて、前述の組の一構成要素を選択して、表示する。「動的な」手法では、単一の「動的」メッシュを生成した後で、適用業務に使用し、次に、このメッシュが、ビューイングパラメータやフレーム・レートの要件に応じて、一連の変換を用いて変更される。ガーランド(Garland)氏の「多重解像度モデリング:調査と将来の見込み」(Eurographics’99 State of the Art Reports、1999年、111〜131頁)を参照のこと。
【0004】
映像依存プログレッシブ・メッシュ(view dependent progressive meshes)(VDPM)や階層動的簡略化(hierarchical dynamic simplication)(HDS)などの既知の動的メッシュ法は、メッシュ内のポリゴン数を減らすために、リファイメントとデシメーションを行うことのできる階層データ構造を生成する。VDPMの階層は、エッジ消去処理によって組み合わされたあらゆる頂点対に対して、新たな親頂点を生成することで、形成される。ホップ(Hoppe)氏の「プログレッシブ・メッシュの映像依存リファイメント」(SIGGRAPH1997の会議録(Proceedings of SIGGRAPH 1997)、1997年、189〜198頁)を参照のこと。HDS階層は、シーンをセルに空間的に細分して、各セル内の頂点をまとめて、ただ1つの代表的な頂点にすることで、形成される。リュウプカ(Luebke)氏らの「任意ポリゴン環境の映像依存簡略化」(SIGGRAPH1997の会議録、1997年、299〜208頁)を参照のこと。双方の方法では、メッシュに、いつリファイメントとデシメーションを行うか判定するために、スクリーン空間誤差と垂直円錐とを使用する。
【0005】
【発明が解決しようとする課題】
しかしながら、依然としてこれらの技法は、必要以上に多くのポリゴンを生成する場合がある。さらに、それらの処理時間は、元のモデル内のポリゴン数によって決まり、大きいモデルでは、禁止的に遅い場合もある。最後に、これらの方法は、ポリゴン・カウントが少ないときには、不充分な品質のモデルを生成することもある。
【0006】
それゆえ、ビューイングパラメータおよび所望のフレーム・レートに合うリアルタイムの動的メッシュを自動的に生成する方法とシステムを提供する必要がある。
【0007】
垂直円錐を用いて可視性を決定する方法が、当業界では知られている。上述のように、ホップ氏やリュウプカ氏らの会議録を参照のこと。双方のシステムにおいて、このモデルの初期ジオメトリから垂直円錐を構築して、それを、オクトリーのようなデータ構造の中に入れる。このようなデータ構造内では、オクトリー・セル内の法線の範囲すなわち開きは、このジオメトリが、オクトリー格子に対して、どこにあるのかの関数によって決まる。例えば、このオクトリーの葉セルは、単に、この葉セル内のジオメトリが、大きい弧度(曲度:degree of curvature)を有するという理由だけで、法線の開きが大きい場合もある。このタイプの垂直円錐構造は、必要以上に多くのポリゴンをレンダリング・エンジンに描画させる場合もある。なぜなら、目に見えないもの(例えば、バックフェーシング)として分類されるポリゴンであっても、法線の開きが大きい葉セル内に、これらのポリゴンが集められることから、目に見えるものと誤って示されるために、目に見えないものとしてではなく、目に見えるものとして分類されるからである。
【0008】
それゆえ、可視性に応じて、ポリゴンなどのジオメトリをさらに正確に分類するディテール指向の可視性要素(例えば、ディテール指向の垂直円錐)を自動的に生成し、したがって、上述のポリゴンのレンダリングのような不必要な処理を避ける方法を提供する必要がある。
【0009】
本発明の目的は、ディテール指向の可視性要素を生成して、ポリゴンや点などのレンダリング要素の可視性に関して、さらに正確な決定を可能にすることである。
【0010】
【課題を解決するための手段】
本発明は、グラフィックス・モデルのサーフェスの向きのディテール指向の階層表現を生成する方法を提供する。グラフィックス・モデルのサーフェスは、そのサーフェスの一部をそれぞれが囲む複数のサーフェスセルに区画される。これらのサーフェスセルは、複数のレベルを有する階層データ構造に蓄積され、そこで、このサーフェスの特定部分に対するレベル数を、その特定の部分のサーフェスディテールで決定する。軸と、そのサーフェスの囲まれた部分の法線値の範囲を画定する開きとを指定する、そのサーフェスの囲まれた部分の可視性要素を、サーフェスセルごとに決定する。この可視性要素は、関連するサーフェスセルとともに蓄積される。この特定部分のサーフェスディテールは、その特定部分のサーフェスの弧度とシェーディング・パラメータにより決定できる。
【0011】
【発明の実施の形態】
(序説)
図1は、本発明によるコンピュータ動的モデリング・システムおよび方法100を示している。このモデリング・システムおよび方法100は、基礎として、適応的サンプリング距離フィールド(adaptively sampled distance field)(ADF)120を利用して、娯楽業界や物理的シミュレーション向けに、リアルタイムで動きを与えることのできるデジタル化モデルを表現する。
【0012】
ADFの基本データ構造は、フリスケン氏らにより1999年8月6日に提出された米国特許出願第09/370,091号の「ディテール指向の距離フィールド」に記述される。この米国特許出願は、参照により、その全体が、本明細書中に援用されている。
【0013】
ADF120は、生成パラメータ110に応じて、ADF生成法115を用いて、入力モデル105から生成できる。例えば、これらの生成パラメータは、詳細度(LOD)または許容誤差測度を指定できる。方法115は、モデル105の符号付き距離フィールド内の距離値を適応的にサンプリングして、これらの距離値を、セルの空間階層(例えば、セルの疎オクトリー)に蓄積する。正符号付きの距離値は、このオブジェクトの外にあり、負の距離値は、このオブジェクトの内にあり、ゼロの距離値は、このオブジェクトのサーフェスを表わす。
【0014】
ADFを処理できる方法は、ペリー(Perry)氏らにより2001年3月16日に提出された米国特許出願第09/810,983号の「有界(bounded)距離ツリーを用いて、適応的サンプリング距離フィールドを生成するシステムおよび方法」;フリスケン(Frisken)氏らにより2001年3月16日に提出された米国特許出願第09/810,839号の「三角形への適応的サンプリング距離フィールドの変換」;ペリー氏らにより2001年3月16日に提出された米国特許出願第09/811,010号の「グラフィックス・オブジェクトをモデリングするシステムおよび方法」;フリスケン氏らにより2001年3月16日に提出された米国特許出願第09/809,682号の「レンジ・データを3Dモデルに変換するシステムおよび方法」に記載されている。
【0015】
(システムと方法の概要)
本方法とシステム100は、任意の既知のモデリング技法を用いて構築された入力モデル105から始まる。例えば、モデル105は、レンジ・イメージ、点群データ、三角形メッシュ、または陰関数の形式を取ることもある。モデル105は、多数の形式を取る場合があるために、本方法は、製作や時間の要件、コスト、利用可能な技術に応じて、多数の異なるモデル形式を併用することの多いアニメーションや物理的モデリングに特に適している。
【0016】
本方法は、前処理の静的段階101とリアルタイムの動的段階102という2つの段階から成っている。静的段階101は、モデル105からADF120を生成し(115)、ADF120に対して可視性要素(VE)210(図2参照)を決定して(300)、単一の静的ADFVE140を生成する。この静的段階はまた、アクティブ・セル150と、動的段階102に必要なレンダリング要素の総数NRE180のカウントも初期設定する(130)。
【0017】
動的段階102は、目視パラメータ160やフレーム・レートの要件165を動的に変えるために、当初、映像に依存する可能性があるアクティブ・セル150やNRE180を変更して、最適化する。この動的段階は、必要に応じて、1フレームごとに、または、数フレームごとに実施される。アクティブ・セル150やNRE180の毎回の変更の間、ADFVE140は、アクティブ・セル150の追加または除去を、いつ必要とするのか判定するものと見なされる。
【0018】
(ディテールの処理)
図2(a)〜図2(d)は、可視性要素の例、例えば、可視性の円錐、円板、パッチ、および3D空間内のサーフェス上に位置付けられた円錐を示している。以下でさらに詳しく述べられるように、ディテール指向の可視性要素(VE)210は、ADF120内のサーフェスセルごとに決定されて300、注釈付きADFVE140を生成する。
【0019】
可視性要素210は、最低限、軸213と、この可視性要素に関係するサーフェスの法線の範囲すなわち開きを画定する手段214(例えば、角度)を含む。可視性要素210はまた、可視性要素210に関係するサーフェスの境界ボリュームを表わすために、この可視性要素を座標系内に固定する基準点215と、球体、立方体、ADFセルなどのデータ構造216も含む場合がある。
【0020】
可視性要素210の法線の開き214は、本質的には、そのサーフェスのうち、可視性要素210に関係するサーフェスの部分のディテール(例えば、弧度)に一致する。
【0021】
ADF120内の各サーフェスセルに関係する可視性要素210は、レンダリングされたイメージ内で、関連サーフェスセルが「可能性として」目に見えることがあるかどうかを示す。このサーフェスセルは、可視性要素210の軸213を中心とする法線の開き214の範囲内のどの方向も、無限サイズのイメージ平面(すなわち、目視平面)と交わる場合には、可能性として目に見える。サーフェスセルは、それが目に見えるときには、「フロント・フェーシング」であると言われ、そうでなければ、「バック・フェーシング」である。選択された目視切頭体に対して、サーフェスセルが実際に目に見えるかどうかは、特定の目視パラメータ160に依存する。
【0022】
可視性要素210のデータ構造216を使用すれば、可視性要素210に関係するサーフェスが、選択された目視切頭体の中にあるかどうか判定できる。このサーフェスが、選択された目視切頭体の外にあることが、データ構造216により示される場合には、このサーフェスは、図1の特定の目視パラメータ160のもとでは、目に見えない。
【0023】
可視性要素210は、ADFVE140のあらゆるサーフェスセルに関係するために、可視性要素210を利用すれば、いかなる目視パラメータ160に対しても、可能性としてサーフェスセルが目に見えるかどうか判定できる。それゆえ、ADFVE140は、映像に依存せず、静的であると言われる。
【0024】
プロセス130は、パラメータ135を用いて、最初の一組のアクティブ・セル150を決定する。これらのアクティブ・セルは、映像に依存しないこともある。パラメータ135は、最初の目視切頭体の位置とサイズを含むこともある。この組のアクティブ・セル150はそれぞれ、静的ADFVE140内のサーフェスセルのうち、選択されたものに一致する。プロセス130はまた、この組のアクティブ・セル150それぞれに対して、初期レンダリング要素を決定して、この組のアクティブ・セル150すべてに対して、レンダリング要素NRE180の初期総数も計算する。フリスケン(Frisken)他は、「三角形への適応的サンプリング距離フィールドの変換」(上記参照)において、この組のアクティブ・セル150を、三角形のレンダリング要素に変換する方法を述べている。
【0025】
プロセス400は、この組のアクティブ・セル150を、動的な目視パラメータ160に応じて、動的に変更する。プロセス400はまた、フレーム・レートの要件165を満たすため、生成されるレンダリング要素NRE180の数も最小限に抑える。さらに、プロセス400は、視覚的に重要な区域、例えば、グラフィックス・オブジェクトのシルエット、または、目視者により近いグラフィックス・オブジェクトの部分において、より高い詳細度(LOD)を用いて生成されたイメージの表示品質を最適化する。
【0026】
プロセス155は、アクティブ・セル150から、レンダリング要素170を抽出する。レンダリング要素170は、点、非一様有理Bスプライン(NURBS)、三角形、または、他のグラフィックス・プリミティブの形式を取ることもある。このとき、ハードウェアまたはソフトウェアの標準レンダリング・エンジン175は、これらのレンダリング要素をさらに処理し、ゲーム、物理的シミュレーション、映画製作などの様々な用途に対して、一連の画像のコマを生成できる。
【0027】
動的プロセス400は、この組の特定のアクティブ・セル150により、要素が少なすぎるときには、レンダリング要素NRE180の数を増やし、また、この組の特定アクティブ・セル150により、要素が多すぎるときには、レンダリング要素NRE180の数を減らす。したがって、レンダリング要素NRE180の数は、いつでも、高品質のイメージを保証し、かつ所望のフレーム・レートを満たすような最適な最小数に抑えられる。アクティブ・セル150に関係するレンダリング要素170を追加および削除する特定の方法ステップについては、以下を参照のこと。
【0028】
(ディテール指向の可視性要素)
図3は、可視性要素210をさらに詳しく決定するプロセス300を示している。ステップ320において、各葉サーフェス(すなわち、境界、ADF120のセル)に関係する複数の場所(例えば、各葉サーフェスの内部および付近)での距離値が決定される。すなわち、ルート・セル、中間セル、内部セルと外部セルが、このようなプロセスから除外される。
【0029】
上記の複数の場所での距離値を利用すれば322、このセルに含まれるサーフェスの可視性要素210の軸213と開き214を解析的に決定できる。さらに、上記の複数の場所での距離値を利用すれば321、第2の複数の場所で、サーフェス法線を得ることができる。次に、これらの第2の複数の場所でのサーフェス法線を組み合わせて、このセルに含まれるサーフェスの可視性要素の軸213と開き214を決定する。ステップ320が終了すると、ADF120のあらゆるサーフェス葉セルに、可視性要素210の注釈を付けて、ADFVE_LEAF323を生成する。
【0030】
ステップ325は、下から上に、ルート・セルに達するまで、セルの子323の可視性要素210を組み合わせて、非葉サーフェスセルそれぞれの可視性要素210を決定する。したがって、すべてのサーフェスセルは、関係する可視性要素210を有する。その結果得られる可視性要素210は、ADF120の適応的なディテール指向の性質を反映している。すなわち、結果的に得られた可視性要素210は、ディテール指向のものである。
【0031】
次に、ADF120に、決定された可視性要素210の注釈を付けて325、ADFVE140を生成する。
【0032】
任意入力モデル105に対して、ディテール指向の可視性要素210を生成するために、プロセス300も使用できる。第1に、生成パラメータ110を用いて、入力モデル105から、ADF120を生成する115。第2に、上述のように、ADFVE140を生成する。
【0033】
次に、ステップ330は、レンダリング要素(例えば、三角形)を、これらのレンダリング要素を含むADFVE140のセルと関連付けて、ADFVE_ELEMS331を生成する。ステップ340は、可視性要素210と、それらの関連レンダリング要素から成る可視性要素の空間データ構造入力modelVE341を生成する。入力modelVE341を利用すれば、ADF120やADFVE140へのアクセスを必要とせずに、可視性試験を実施できる。
【0034】
(アクティブ・セルの動的変更)
図4は、アクティブ・セルを動的に変更するプロセス400を示している。このプロセスへの入力には、目視パラメータ160、アクティブ・セル150、フレーム・レートの要件165、ADFVE140、NRE180、重み付け関数401がある。
【0035】
ステップ410は、それぞれのアクティブ・セルに、セルの重み(例えば、0≦セルの重み≦1)を割り当てて、合計重みW411(最初はゼロ)を決定する。セルには、そのセルがオブジェクトのシルエット上にある場合には、大きい重み(例えば、1)を割り当て、またそのセルがバックフェーシングであるか、または目視切頭体の外にある場合には、ゼロの重みを割り当てる。目視方向に対して斜めのセルには、中間の重み(例えば、0.5)を割り当てることができる。
【0036】
重み付け中、セルの投影画面サイズや鏡面ハイライト、模範的なシェーディング・パラメータなどの他のパラメータを考慮に入れることができる。さらに、本方法は、表面の粗さまたは湾曲の指標として、セルの誤差測度を利用することができる。この誤差測度は、重みに盛り込むことができる。
【0037】
ステップ420は、セルに含まれるレンダリング要素(RE)が少なすぎるか、多すぎるかどうか判定する。このような判定は、以下の式を利用する。
【0038】
D=(セルの重み)/W−(セルのRE数)/NRE
【0039】
D<t1の場合には、このセルに含まれるレンダリング要素は多すぎる。ここで、t1は、第1のしきい値である。この場合、このセルを第1のリスト421に追加して、ADFVE140を上る。D>t2の場合には、このセルに含まれるレンダリング要素は少なすぎ、このセルを第2のリスト422に追加して、ADFVE140を下る。
【0040】
ステップ430では、リスト421〜422に応じて、セルを追加または削除する決定を下す。レンダリング要素が多すぎるセルごとに、その親セルを第1のキュー431に追加し、その第1のキューを用いてアクティブ・セルを追加し、また親セルの境界子セルを第2のキュー432に追加し、その第2のキューを用いてアクティブ・セルを削除する。
【0041】
レンダリング要素が少なすぎるセルごとに、そのセルの境界子セルを第1のキュー431に追加し、また、そのセルを第2のキュー432に追加する。
【0042】
(アクティブ・セルを追加および削除するキュー)
フレーム・レートの要件165を確実に満たすことができるように、追加操作を、追加キュー431に蓄積し、また削除操作を、削除キュー432に蓄積する。レンダリング要素の数を最小に抑えるために、毎回の変更の後で、削除操作を処理する。追加キュー431での追加操作は、上に定義された比率Dにより、指示できる。フィードバックシステム166を用いて、フレーム時間が利用可能であるときに、追加操作を処理できる。断続的な動きや「ポッピング」アーチファクトを避けるために、新規のレンダリング要素と既存のレンダリング要素との間で、ジオモーフィングする(すなわち、補間する)ことも可能である。
【0043】
ステップ440は、アクティブ・セル150を追加および削除して、適宜にレンダリング要素NRE180の総数を更新する。新規のアクティブ・セルそれぞれについて、そのレンダリング要素を決定して440、新規のレンダリング要素の数を、レンダリング要素NRE180の総数に加算する。しきい値t1およびt2を適切に設定して、特定のレンダリング・エンジン175で処理されるレンダリング要素NRE180の数を調整すれば、フレーム・レートと品質の要件を満たすことができる。
【0044】
図5(a)と図5(b)に示されるように、本発明による方法およびシステムは、高い表示品質を有するディテール指向のレンダリング要素(例えば、三角形メッシュ)を生成する。図5(a)のウサギのモデルのシルエット品質に注目のこと。さらに、本発明は、このモデルの、目に見えない部分のレンダリング要素の数を最小限に抑えている。図5(b)において、目視切頭体510以外の領域を、どのように選別するかに留意されたい。視点の変更により、このモデルの、目に見える部分が著しく異なるときでも、リアルタイムのフレーム・レート、例えば30フレーム/秒以上を維持することができる。
【0045】
本発明は、特定の用語および例を用いて述べられている。本発明の精神および範囲内で、様々な他の適用や変更を行うことができるものと理解されるべきである。それゆえ、併記の特許請求の範囲の目的は、このようなすべての変形や変更を、本発明の真の精神および範囲内に入るものとして、網羅することである。
【図面の簡単な説明】
【図1】 本発明による映像依存動的レンダリング要素を生成する方法の流れ図である。
【図2】 (a)及び(b)は、可視性要素の例を示す図である。
【図3】 図1の方法で使用される可視性要素を生成するプロセスの流れ図である。
【図4】 モデルを表現する適応的サンプリング距離フィールド(adaptively sampled distance field)のアクティブ・セルを維持するプロセスの流れ図である。
【図5】 (a)は、47フレーム/秒にて、16984個の三角形を有する動的モデルを示す図であり、(b)は、41フレーム/秒にて、23364個の三角形を有する動的モデルを示す図である。
Claims (29)
- グラフィックス・モデルのサーフェスの向きのディテール指向の階層表現を生成する方法であって、
前記グラフィックス・モデルを入力するステップと、
入力された前記グラフィックス・モデルの前記サーフェスを、該サーフェスの一部をそれぞれが囲む複数のサーフェスセルに区画するステップと、
区画された前記サーフェスセルを、複数のレベルを有する階層データ構造に蓄積するステップと、
軸と、前記サーフェスの前記囲まれた部分の法線値の範囲を画定する開きとを指定する、前記サーフェスの前記囲まれた部分の可視性要素を、前記サーフェスの特定部分のサーフェスディテールによって、前記サーフェスセルごとに決定するステップと、
決定された前記可視性要素を、前記関連するサーフェスセルとともに蓄積するステップと
を備えた方法。 - 前記特定部分の前記サーフェスディテールは、前記特定部分の前記サーフェスの弧度により決定される請求項1記載の方法。
- 前記特定部分の前記サーフェスディテールは、前記特定部分の前記サーフェスのシェーディング・パラメータにより決定される請求項1記載の方法。
- 前記サーフェスセルは、ルートセル、中間セル、葉サーフェスセルを含む方法であって、
解析的手段を用いて、葉サーフェスセルごとに、前記可視性要素の前記軸と前記開きを決定することと、
前記葉サーフェスセルの前記可視性要素から、前記中間セルと前記ルートセル用の可視性要素を決定することと
をさらに含む請求項1記載の方法。 - 前記サーフェスセルは、ルートセル、中間セル、葉サーフェスセルを含む方法であって、
前記可視性要素を前記サーフェスセルごとに決定するステップは、
前記セルに関連する複数の場所をサンプリングすることで、葉サーフェスセルごとに、前記可視性要素の前記軸と前記開きとを決定することと、
前記葉サーフェスセルの前記可視性要素から、前記中間セルと前記ルートセル用の可視性要素を決定することと
を含む請求項1記載の方法。 - 前記場所は、前記セル内にある請求項5記載の方法。
- 前記場所は、前記セル付近にある請求項5記載の方法。
- 前記場所は、前記セルの前記サーフェスの前記囲まれた部分にある請求項5記載の方法。
- 前記グラフィックス・モデルは、前記グラフィックス・モデルの前記サーフェスを表現するポリゴン・メッシュであり、各ポリゴンは、1つの法線値を有する請求項1記載の方法。
- 前記グラフィックス・モデルは、一組のベジエ・パッチである請求項1記載の方法。
- 前記グラフィックス・モデルは、陰関数の値を求めることで決定される請求項1記載の方法。
- 前記グラフィックス・モデルは、距離フィールドである請求項1記載の方法。
- それぞれが距離値を蓄積する前記サーフェスセルは、ルートセル、中間セル、葉サーフェスセルを含む方法であって、
複数の場所で、各葉サーフェスセルの距離値を決定することと、
解析的手段を用いて、複数の距離値から、葉サーフェスセルごとに、前記可視性要素の前記軸と前記開きとを決定することと、
前記葉サーフェスセルの前記可視性要素から、前記中間セルと前記ルートセル用の可視性要素を決定することと
をさらに含む請求項12記載の方法。 - それぞれが距離値を蓄積する前記サーフェスセルは、ルートセル、中間セル、葉サーフェスセルを含む方法であって、
第1の複数の場所で、各葉サーフェスセルの距離値を決定することと、
前記第1の複数の場所での前記距離値から、第2の複数の場所でのサーフェス法線を得ることと、
各葉サーフェスセルの前記サーフェス法線を組み合わせて、葉サーフェスセルごとに、前記可視性要素の前記軸と前記開きとを決定することと、
前記葉サーフェスセルの前記可視性要素から、前記中間セルと前記ルートセル用の可視性要素を決定することと
をさらに含む請求項12記載の方法。 - 前記距離フィールドは、適応的にサンプリングされる請求項12記載の方法。
- 前記適応的サンプリングは、前記特定の部分の前記サーフェスの前記法線値範囲に基く請求項15記載の方法。
- 前記セルは、N次元である請求項1記載の方法。
- 前記セルは、立方体である請求項1記載の方法。
- 前記セルは、多面体である請求項1記載の方法。
- 前記セルは、球体である請求項1記載の方法。
- 前記セルは、直方体である請求項1記載の方法。
- 前記階層データ構造は、オクトリーである請求項1記載の方法。
- 前記階層データ構造は、クワッドツリーである請求項1記載の方法。
- 前記サーフェスの前記部分の向きをサンプリングして、法線値の範囲を決定することをさらに含む請求項1記載の方法。
- 前記サーフェスの前記部分の向きを指定する関数の値を求めることをさらに含む請求項1記載の方法。
- 前記グラフィックス・モデルは、前記サーフェスを表現する複数のレンダリング要素を含む方法であって、前記サーフェスのうち、前記セルで囲まれた部分を表現する一組のレンダリング要素を各セルと関連付けることをさらに含む請求項1記載の方法。
- 前記セルのレンダリング要素は、前記セルの前記可視性要素とビューイングパラメータとに応じて、動的に変更される請求項26記載の方法。
- 前記変更は、前記セルにレンダリング要素を追加する請求項27記載の方法。
- 前記変更は、前記セルからレンダリング要素を削除する請求項27記載の方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/833,517 US6873342B2 (en) | 2001-04-12 | 2001-04-12 | Method for generating detail directed visibility elements for a graphics model |
US09/833517 | 2001-04-12 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003016472A JP2003016472A (ja) | 2003-01-17 |
JP4140812B2 true JP4140812B2 (ja) | 2008-08-27 |
Family
ID=25264629
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002110308A Expired - Fee Related JP4140812B2 (ja) | 2001-04-12 | 2002-04-12 | グラフィックス・モデルのサーフェスの向きのディテール指向の階層表現を生成する方法 |
Country Status (2)
Country | Link |
---|---|
US (1) | US6873342B2 (ja) |
JP (1) | JP4140812B2 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107025684A (zh) * | 2017-03-16 | 2017-08-08 | 北京中科辅龙计算机技术股份有限公司 | 基于模型构件特征的大规模场景固定帧率绘制及装置 |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7136786B2 (en) * | 2001-04-12 | 2006-11-14 | Mitsubishi Electric Research Laboratories, Inc. | Method and system for modeling interaction of objects |
EP1728216B1 (en) * | 2004-03-15 | 2019-09-11 | Philips Intellectual Property & Standards GmbH | Image visualization |
US20060052856A1 (en) * | 2004-09-08 | 2006-03-09 | Kim Daniel H | Stimulation components |
US20120277839A1 (en) | 2004-09-08 | 2012-11-01 | Kramer Jeffery M | Selective stimulation to modulate the sympathetic nervous system |
US9205261B2 (en) | 2004-09-08 | 2015-12-08 | The Board Of Trustees Of The Leland Stanford Junior University | Neurostimulation methods and systems |
US8281281B1 (en) * | 2006-06-07 | 2012-10-02 | Pixar | Setting level of detail transition points |
JP5433420B2 (ja) * | 2006-12-06 | 2014-03-05 | スパイナル・モデュレーション・インコーポレイテッド | 脊髄刺激のための集合リード |
JP2010512186A (ja) | 2006-12-06 | 2010-04-22 | スパイナル・モデュレーション・インコーポレイテッド | 硬組織アンカー及び送達装置 |
AU2007329253B2 (en) | 2006-12-06 | 2014-03-27 | Spinal Modulation, Inc. | Delivery devices, systems and methods for stimulating nerve tissue on multiple spinal levels |
US9314618B2 (en) | 2006-12-06 | 2016-04-19 | Spinal Modulation, Inc. | Implantable flexible circuit leads and methods of use |
WO2008070808A2 (en) | 2006-12-06 | 2008-06-12 | Spinal Modulation, Inc. | Expandable stimulation leads and methods of use |
JP5562648B2 (ja) | 2007-01-29 | 2014-07-30 | スパイナル・モデュレーション・インコーポレイテッド | 非縫合の先頭保持機構 |
JP5643764B2 (ja) | 2008-10-27 | 2014-12-17 | スパイナル・モデュレーション・インコーポレイテッドSpinal Modulation Inc. | 選択的刺激システムおよび医学的状態の信号パラメータ |
JP2012521801A (ja) | 2009-03-24 | 2012-09-20 | スパイナル・モデュレーション・インコーポレイテッド | 錯感覚に対する閾値以下の刺激を伴う疼痛の管理 |
WO2010132816A2 (en) | 2009-05-15 | 2010-11-18 | Spinal Modulation, Inc. | Methods, systems and devices for neuromodulating spinal anatomy |
EP2568904B1 (en) | 2010-05-10 | 2019-10-02 | Spinal Modulation Inc. | Device for reducing migration |
CN103561811A (zh) | 2011-02-02 | 2014-02-05 | 脊髓调制公司 | 靶向治疗运动障碍的装置、系统和方法 |
US9965893B2 (en) * | 2013-06-25 | 2018-05-08 | Google Llc. | Curvature-driven normal interpolation for shading applications |
US10521958B2 (en) * | 2018-01-16 | 2019-12-31 | Electronic Arts Inc. | Computer handling of object silhouettes |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6407748B1 (en) * | 1998-04-17 | 2002-06-18 | Sandia Corporation | Method and apparatus for modeling interactions |
US6504535B1 (en) * | 1998-06-30 | 2003-01-07 | Lucent Technologies Inc. | Display techniques for three-dimensional virtual reality |
US6545678B1 (en) * | 1998-11-05 | 2003-04-08 | Duke University | Methods, systems, and computer program products for generating tissue surfaces from volumetric data thereof using boundary traces |
US6373489B1 (en) * | 1999-01-12 | 2002-04-16 | Schlumberger Technology Corporation | Scalable visualization for interactive geometry modeling |
US6396492B1 (en) * | 1999-08-06 | 2002-05-28 | Mitsubishi Electric Research Laboratories, Inc | Detail-directed hierarchical distance fields |
US6466227B1 (en) * | 1999-09-01 | 2002-10-15 | Mitsubishi Electric Research Laboratories, Inc. | Programmable architecture for visualizing sampled and geometry data |
US6639596B1 (en) * | 1999-09-20 | 2003-10-28 | Microsoft Corporation | Stereo reconstruction from multiperspective panoramas |
US6429864B1 (en) * | 1999-11-10 | 2002-08-06 | Create.It Services Ag | Method for traversing a binary space partition or octree and image processor for implementing the method |
US6639597B1 (en) * | 2000-02-28 | 2003-10-28 | Mitsubishi Electric Research Laboratories Inc | Visibility splatting and image reconstruction for surface elements |
US20020191034A1 (en) * | 2000-06-28 | 2002-12-19 | Sowizral Henry A. | Size conditioned visibility search system and method |
US6724393B2 (en) * | 2001-03-16 | 2004-04-20 | Mitsubishi Electric Research Labs, Inc. | System and method for sculpting digital models |
-
2001
- 2001-04-12 US US09/833,517 patent/US6873342B2/en not_active Expired - Lifetime
-
2002
- 2002-04-12 JP JP2002110308A patent/JP4140812B2/ja not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107025684A (zh) * | 2017-03-16 | 2017-08-08 | 北京中科辅龙计算机技术股份有限公司 | 基于模型构件特征的大规模场景固定帧率绘制及装置 |
CN107025684B (zh) * | 2017-03-16 | 2021-03-02 | 北京中科辅龙计算机技术股份有限公司 | 基于模型构件特征的大规模场景固定帧率绘制方法及装置 |
Also Published As
Publication number | Publication date |
---|---|
US20020149580A1 (en) | 2002-10-17 |
US6873342B2 (en) | 2005-03-29 |
JP2003016472A (ja) | 2003-01-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4140812B2 (ja) | グラフィックス・モデルのサーフェスの向きのディテール指向の階層表現を生成する方法 | |
EP3457362B1 (en) | Reduced acceleration structures for ray tracing systems | |
JP4643271B2 (ja) | 区間解析を使用するコンピュータ・グラフィックスの際の可視面決定システムおよび方法 | |
EP1064619B1 (en) | Stochastic level of detail in computer animation | |
US5600763A (en) | Error-bounded antialiased rendering of complex scenes | |
US20200160587A1 (en) | Systems and methods for reducing rendering latency | |
US7940279B2 (en) | System and method for rendering of texel imagery | |
US9754405B1 (en) | System, method and computer-readable medium for organizing and rendering 3D voxel models in a tree structure | |
CN108537869B (zh) | 一种基于级联纹理的圆锥追踪动态全局光照方法 | |
US20070262988A1 (en) | Method and apparatus for using voxel mip maps and brick maps as geometric primitives in image rendering process | |
GB2378337A (en) | 3D computer modelling apparatus | |
JPH05266212A (ja) | データプロセッサによってオブジェクトの作成を実行する方法及びグラフィックスディスプレイ装置 | |
US20080012853A1 (en) | Generating mesh from implicit surface | |
Overbeck et al. | A real-time beam tracer with application to exact soft shadows | |
US20220005261A1 (en) | Method for instant rendering of voxels | |
CN114528730A (zh) | 一种真实珊瑚砂颗粒离散元模型的构建方法 | |
JP4144731B2 (ja) | グラフィックス・モデルのためのレンダリング要素を動的に生成するための方法 | |
Weber et al. | Visualization of adaptive mesh refinement data | |
Lee et al. | Bimodal vertex splitting: Acceleration of quadtree triangulation for terrain rendering | |
Wand | Point-based multi-resolution rendering. | |
Baumann et al. | Integrated multiresolution geometry and texture models for terrain visualization | |
WO2024146938A1 (en) | Encoding point data indicating a plurality of points in a three-dimensional space | |
Morvan et al. | Efficient Image‐Based Proximity Queries with Object‐Space Precision | |
Ji et al. | P-quadtrees: A point and polygon hybrid multi-resolution rendering approach | |
Jiang et al. | A Multiresolution viewpoint based Rendering for Large-scale point models |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050405 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080205 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080502 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080603 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080605 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110620 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120620 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130620 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |