JP4137470B2 - Flame retardant polyamide resin composition - Google Patents

Flame retardant polyamide resin composition Download PDF

Info

Publication number
JP4137470B2
JP4137470B2 JP2002055838A JP2002055838A JP4137470B2 JP 4137470 B2 JP4137470 B2 JP 4137470B2 JP 2002055838 A JP2002055838 A JP 2002055838A JP 2002055838 A JP2002055838 A JP 2002055838A JP 4137470 B2 JP4137470 B2 JP 4137470B2
Authority
JP
Japan
Prior art keywords
polyamide resin
resin composition
flame
polyamide
flame retardant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002055838A
Other languages
Japanese (ja)
Other versions
JP2003253118A (en
Inventor
山本  明
行成 祢宜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP2002055838A priority Critical patent/JP4137470B2/en
Publication of JP2003253118A publication Critical patent/JP2003253118A/en
Application granted granted Critical
Publication of JP4137470B2 publication Critical patent/JP4137470B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、高剛性で、難燃性が極めて高く、燃焼時に腐食性の高いハロゲン化水素ガスの発生がなく、成形性に優れ、特に、電気・電子分野のコネクター等の部品、自動車分野の電装部品等の部品材料に好適に用いられる難燃性ポリアミド樹脂組成物に関する。
【0002】
【従来の技術】
従来、ポリアミド樹脂は、機械的強度、耐熱性などに優れることから、自動車部品、機械部品、電気・電子部品などの分野で使用されている。特に近年、電気・電子部品用途において、ますます難燃性に対する要求レベルが高くなり、本来ポリアミド樹脂の有する自己消火性よりもさらに高度な難燃性が要求され、この為、アンダーライターズ・ラボラトリーのUL−94 V−0規格に適合する難燃レベルの高度化検討が数多くなされている。そしてそれらにおいては一般にハロゲン系難燃剤やトリアジン系難燃剤を添加する方法が提案されている。
【0003】
例えば、ポリアミド樹脂への塩素置換多環式化合物の添加(特開昭48‐29846号公報)や臭素系難燃剤、例えば、デカブロモジフェニルエーテルの添加(特開昭47‐7134号公報)、臭素化ポリスチレンの添加(特開昭51-47044号公報、特開平4-175371号公報)、臭素化ポリフェニレンエーテルの添加(特開昭54-116054号公報)、臭素化架橋芳香族重合体の添加(特開昭63-317552号公報)、臭素化スチレンー無水マレイン酸重合体の添加(特開平3-168246号公報)等が知られている。しかしながら、ハロゲン系難燃剤は燃焼時に腐食性のハロゲン化水素及び煙を発生したり、有毒な物質を排出する疑いがもたれ、これら環境問題からハロゲン系難燃剤の配合されたプラスチック製品の使用を規制する動きがある。このことから、ハロゲンフリーのトリアジン系難燃剤が注目され数多く検討がなされている。
【0004】
例えば難燃剤としてメラミンを使用する技術(特公昭47-1714号公報)、シアヌル酸を使用する技術(特開昭50-105744号公報)、シアヌル酸メラミンを使用する技術(特開昭53-31759号公報)が知られている。これらの技術で得られた非強化のポリアミド樹脂組成物は、UL94V−0規格に適合する高度の難燃レベルを有するものの、ガラス繊維等の無機強化材で強化して剛性を高めた組成においては、難燃剤を多量に配合しても燃焼時に綿着火現象があり、UL94V−0規格に適合しないという問題がある。
また、イントメッセント型難燃剤であるリン酸メラミンをガラス繊維強化ポリアミド樹脂に使用する技術(特表平10−505875号公報)が提案されているが、単にリン酸メラミンを配合しただけでは1/16インチ(1.6mm)の薄肉成形品においてUL94V−0規格を満足するものの、ポリアミド樹脂との相溶性が悪いためか、1/32インチ(0.8mm)の薄肉成形品でのUL94V−0規格を満足しなかった。このように薄肉成形品において、非ハロゲンベースの難燃性ポリアミド樹脂の出現が強く渇望されている。
【0005】
【発明が解決しようとする課題】
本発明の目的は、高剛性で、難燃性が極めて高く、かつ薄肉成形性に優れる難燃性ポリアミド樹脂組成物を提供することにある。
【0006】
【課題を解決するための手段】
本発明者等は、鋭意研究を重ねた結果、ポリアミド樹脂、無機質強化材、およびリン系化合物とトリアジン系化合物との反応で得られる難燃剤とを組み合わせた系に、特定の発泡剤を配合した際に、前記本発明目的を達成しうることを見いだし、この知見に基づき本発明を完成させるに至った。
すなわち、本発明の要旨は次の通りである。
(a)ヘキサメチレンアジパミド単位を主たる構成成分とするポリアミド樹脂30〜85質量%、(b)無機質強化材5〜50質量%、(c)リン酸系化合物とトリアジン系化合物との反応により得られる難燃剤5〜40質量%とからなる成分100質量部と、(d)ポリアミド樹脂の加工温度以上の分解温度を有する発泡剤0.03〜1質量部とからなることを特徴とする難燃性ポリアミド樹脂組成物。
【0007】
【発明の実施の形態】
以下、本発明について詳細に説明する。
本発明で用いられるポリアミド樹脂(a)は、ヘキサメチレンアジパミド単位を主たる構成成分とするポリアミドである。ここで、「ヘキサメチレンアジパミドを構成成分とする」とは、混合または共重合によってヘキサメチレンアジパミド単位が、ポリアミド樹脂(a)に導入されていることを意味する。ヘキサメチレンアジパミド単位以外の成分としては、ポリアミド46、ポリアミド6、ポリアミド610、ポリアミド612、ポリアミド11、ポリアミド12等の脂肪族ポリアミドやヘキサメチレンテレフタルアミド、テトラメチレンイソフタルアミド、ヘキサメチレンイソフタルアミド、メタキシリレンアジパミドなどのテレフタル酸、イソフタル酸、キシリレンジアミン等の芳香族成分を含む芳香族ポリアミド等を用いることができる。流動性の点から、ポリアミド66とポリアミド6との混合ポリアミドが好ましく、特に相対粘度2.7〜3.5のポリアミド6660〜100質量%と相対粘度が1.5〜2.3のポリアミド6 40〜0重量%とからなるポリアミドが最も好ましい。
【0008】
本発明は、無機質強化材(b)を(a)〜(c)各成分の総量の5〜40質量%含有する。5質量%未満では強化材としての補強効果に乏しく、40質量%を超えると加工性が悪化する。無機質強化材としては、ガラス繊維、炭素繊維、チタン酸カリウム繊維、石膏繊維、黄銅繊維、ステンレス繊維、スチール繊維、セラミックス繊維、ボロンウィスカ繊維、マイカ、タルク、シリカ、炭酸カルシウム、カオリン、焼成カオリン、ワラストナイト、ガラスビーズ、ガラスフレーク、酸化チタン等の繊維状、粒状、板状、あるいは針状の無機質強化材が挙げられる。これらの強化材は二種以上組み合わせて用いてもよい。特にガラス繊維、ワラストナイト、タルク、焼成カオリン、マイカが好ましく使用される。又、ガラス繊維は長繊維タイプのロービング、短繊維タイプのチョップドストランド、ミルドファイバー等から選択して用いることが出来る。ガラス繊維はポリアミド用に表面処理した物を用いるのが好ましい。
【0009】
本発明においては、難燃剤(c)として、リン酸系化合物とトリアジン系化合物との反応により得られる化合物を、(a)〜(c)成分の総量に対して5〜40質量%用いる。5重量%未満では、得られる組成物の難燃性が不十分となり、一方、40重量%を超えると、得られる組成物の機械物性の低下が著しい。
【0010】
難燃剤を構成するリン酸系化合物としては、リン酸、オルトリン酸、亜リン酸、次亜リン酸、メタリン酸、ピロリン酸、三リン酸、四リン酸、ポリリン酸(いわゆる縮合リン酸)等が挙げられる。これらのうち、リン酸、オルトリン酸、メタリン酸、ポリリン酸が好ましく、なかでもポリリン酸を用いたものが難燃剤としての効果が高く、好ましい。ポリリン酸の縮合度は通常3〜50であるが、本発明では、これら縮合度は特に限定されない。
【0011】
また、難燃剤を構成するトリアジン系化合物としては、メラミン、メレム、メラム等が挙げられる。なかでもメラミンを用いたものが難燃剤としての効果が高く、好ましい。
【0012】
リン酸系化合物とトリアジン系化合物の反応生成物から得られる難燃剤としては、その難燃効果の点から、ポリリン酸メラミンがもっとも好ましい。
【0013】
本発明においては、ポリアミド樹脂の加工温度以上の分解温度を有する発泡剤(d)を配合する必要がある。このような発泡剤を用いると、樹脂組成物の加工時には発泡現象が起こらないため、発泡剤としての成分をポリアミド成分中に混合することができる。そして、燃焼状態のような樹脂加工温度よりもさらに高い温度に曝されたときに樹脂組成物中の発泡剤が発泡を起こし、このことによって、燃焼が抑制されるため、難燃性が高まる。(d)成分の配合割合は、(a)〜(c)成分の総量100質量部に対して、0.03〜1質量部である。発泡剤の配合割合が、0.03質量部未満では、得られる組成物の難燃性が不十分となり、一方、1質量部を超えても、得られる組成物の難燃性が悪化する。
【0014】
本発明で用いられる発泡剤は、ポリアミド樹脂の加工温度以上の分解温度を有することが必要である。本発明では、ヘキサメチレンアジパミド単位を主体とするポリアミドを用いるので、発泡剤の分解温度は、通常280℃以上、好ましくは290℃以上、より好ましくは300℃以上であればよい。発泡剤の分解温度がポリアミドの加工温度より低い場合には、混練や成形において発泡現象が起こってしまい、樹脂組成物自体の製造や、成形加工ができなくなる。
上記のような条件を満たす発泡剤として、テトラゾール系発泡剤が使用できる。テトラゾール系発泡剤とは、窒素4原子及び炭素1原子で構成されている5員環を有する化合物であり、燃焼時に発生するダイオキシンなどの環境汚染がなく、加熱分解させた場合に、窒素、炭酸ガス、水蒸気などのガスしか発生しない。テトラゾール系化合物の中で好ましいのは、高度な難燃性が得られるという点で、該化合物が熱分解した時の該化合物1g当たりのガス発生量が多い化合物である。そのようなテトラゾール系化合物としては、1H−テトラゾールの金属塩、アミン塩などの1H−テトラゾール誘導体、もしくは5,5’−ビス−1H−テトラゾールの金属塩、アミン塩などの5,5’−ビス−1H−テトラゾール誘導体、もしくは5−メチル−1H−テトラゾールの金属塩、アミン塩などの5−メチル−1H−テトラゾール誘導体、もしくは5−フェニル−1H−テトラゾールの金属塩、アミン塩などの5−フェニル−1H−テトラゾール誘導体、もしくは5−アミノ−1H−テトラゾールの金属塩、アミン塩などの5−アミノ−1H−テトラゾール誘導体、もしくは1H−テトラゾール−5−カルボキシレートの金属塩、アミン塩などの1H−テトラゾール−5−カルボキシレート誘導体などが挙げられ、1H−テトラゾール−5−イル−グアニジンが最も好ましい。テトラゾール系化合物には1H−テトラゾール誘導体の互変異性体である2H−テトラゾール誘導体があるが、本発明では2H−テトラゾール誘導体であっても良い。本発明におけるテトラゾール系発泡剤は単独で添加しても良いし、2種類以上を併用しても良い。
【0015】
本発明では、更に無機系の難燃助剤を機械的物性や成形加工性に悪影響を与えない範囲において添加することもできる。好ましい難燃助剤としては、酸化マグネシウム、水酸化マグネシウム、水酸化アルミニウム、酸化亜鉛、硫化亜鉛、酸化鉄、酸化硼素、硼酸亜鉛等が挙げられる。
【0016】
本発明の難燃性ポリアミド樹脂組成物の製造方法は、発泡剤の分解温度がポリアミドの加工温度以上であれば、特に限定はなく、ポリアミド樹脂、難燃剤、発泡剤を常用の単軸または2軸の押出機やニーダー等の混練機を用いて、溶融混練する方法等を用いることができる。溶融混練の際には、難燃剤、発泡剤をサイドフィードする方法が好ましい。
【0017】
本発明の難燃性ポリアミド樹脂組成物には、本発明の目的を損なわない範囲で、他の成分、例えば顔料、染料等の着色剤や、ポリアミド樹脂の一般的な熱安定剤である銅系熱安定剤(例えばヨウ化銅、酢酸銅等とヨウ化カリウム、臭化カルウムとの併用)、ヒンダードフェノール系酸化劣化防止剤に代表される有機系耐熱剤、耐候性改良剤、核剤、可塑剤、滑剤、帯電防止剤等の添加剤、充填材、他の樹脂ポリマー等を添加することが出来る。
【0018】
本発明の組成物は、射出成形、押出成形、ブロー成形など公知の方法によってコネクター、コイルボビン、ブレーカー、電磁開閉器、ホルダー、プラグ、スイッチ等の電気、電子、自動車用途の各種成形品に成形される。
【0019】
【実施例】
以下に実施例および比較例をあげ、本発明を具体的に説明する。
1.原料
1)ポリアミド66樹脂(以下、PA66とする。):デュポン社製101NC010(相対粘度2.7)。
2)ポリアミド6樹脂(以下、PA6とする。):ユニチカ社製A1015(相対粘度2.05)。
3)ポリリン酸メラミン:日産化学社製PMP-100
4)ポリリン酸メラム:日産化学社製PMP-200
5)テトラゾール系発泡剤:
・東洋化成工業社製BHT-GAT(1H−テトラゾール−5−イル−グアニジン)、分解温度312℃(以下、GATとする。)
・東洋化成工業社製BHT(1H−テトラゾール)、分解温度263℃
・東洋化成工業社製P5T(5−フェニル−1H−テトラゾール)、分解温度217℃
6)ガラス繊維:日本電気ガラス社製T-289(以下、GFとする。)
【0020】
2.評価方法
1)相対粘度
JIS K6810に従って98%硫酸での相対粘度を測定した。
2)発泡剤の分解温度
TGAで測定を行い、温度−重量減少の曲線に基づいて決定した。この曲線の変曲点に引いた接線とベースライン(曲線において、重量減少がゼロである実質的に直線の部分)との交点の温度を分解温度と定義した。
3)引張強度および引張伸度
ASTM D638に準じて測定した。
4)曲げ強度および曲げ弾性率
ASTM D790に準じて測定した。
5)アイゾッド衝撃値
ASTM D256に準じて測定した。
6)難燃性
UL94(米国Under Writers Laboratories Inc.で定められた規格)の方法に従って測定した。なお試験片の厚みは1/32インチ(0.8mm)とした。
7)流動性
東芝機械社製IS100E-i3A射出成形機に幅20mm、厚み2mmのバーフロー金型を取り付け、樹脂温度280℃、射出圧50MPa、金型温度100℃の条件での樹脂組成物の流動性をバーフロー流動長(単位:mm)で評価した。値が大きいほど流動性に優れることを示す。
【0021】
実施例1
50質量部のPA66を0.03質量部のCuI及び0.1質量部のKIとともにクボタ社製連続定流供給装置を用いて、サイドフィーダー付同方向2軸押出機(東芝機械社製TEM‐37BS)の主供給口に供給した。また、サイドフィーダーより25質量部のPMP-100、0.1質量部のGATおよび25質量部のGFを供給した。樹脂温度280℃、吐出量14kg/時で溶融混練を行い、ノズルからストランド状に引取った樹脂組成物を水浴にくぐらせて冷却固化し、ペレタイザーでカッティングした後、100℃で12時間熱風乾燥することによって樹脂組成物のペレットを得た。
次いで、得られた樹脂組成物ペレットを、射出成形機(東芝機械社製IS100E- i3A)を用いて樹脂温度280℃で成形し、各種試験片を作製した。これらについて機械的物性、難燃性を評価した。その結果を表1に示す。
【0022】
実施例2〜8、比較例1〜5
PA66、PA6、難燃剤、発泡剤およびGFの配合割合を表1に示す割合にした以外は実施例1と同様にしてペレットを得て、諸特性を調べた。実施例7および8では、2種類のポリアミドをいずれも主供給口に供給した。結果を表1に示す。
【0023】
【表1】

Figure 0004137470
【0024】
実施例1〜8では、いずれも薄肉成形品における難燃性と機械物性とが両立した樹脂組成物が得られ、特に実施例7、8は流動性にも優れていた。
これに対し、比較例1ではPMP-100の量が本発明の範囲を下方に外れたため、難燃性が不十分であった。
比較例2では、発泡剤を添加しなかったため、難燃性が不十分であった。
比較例3〜5では、樹脂の加工温度より分解温度の低い発泡剤を用いたため、樹脂組成物の混練時に発泡が著しく、ペレットが得られず、評価をおこなうことができなかった。
【0025】
【発明の効果】
本発明のポリアミド樹脂は薄肉成形品における難燃性と機械物性とが両立しており、自動車部品、機械部品、電気・電子部品等の用途に良好に使用することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention has high rigidity, extremely high flame retardancy, does not generate highly corrosive hydrogen halide gas, has excellent moldability, and is particularly suitable for parts such as connectors in the electrical and electronic fields, and in the automotive field. The present invention relates to a flame retardant polyamide resin composition suitably used for component materials such as electrical components.
[0002]
[Prior art]
Conventionally, polyamide resins have been used in fields such as automobile parts, machine parts, and electric / electronic parts because they are excellent in mechanical strength, heat resistance, and the like. Particularly in recent years, the level of demand for flame retardancy has increased in applications for electrical and electronic parts, and higher flame retardancy is required than the inherent self-extinguishing properties of polyamide resins. For this reason, Underwriters Laboratory Many studies have been made to improve the flame retardant level conforming to the UL-94 V-0 standard. In these cases, a method of adding a halogen-based flame retardant or a triazine-based flame retardant is generally proposed.
[0003]
For example, addition of a chlorine-substituted polycyclic compound to a polyamide resin (JP-A-48-29846), addition of a brominated flame retardant such as decabromodiphenyl ether (JP-A-47-7134), bromination Addition of polystyrene (JP 51-47044, JP 4-175371), addition of brominated polyphenylene ether (JP 54-116054), addition of brominated crosslinked aromatic polymers (special JP-A 63-317552), addition of brominated styrene-maleic anhydride polymer (Japanese Patent Laid-Open No. 3-168246) and the like are known. However, halogen-based flame retardants generate corrosive hydrogen halides and smoke during combustion, and there is a suspicion that they emit toxic substances. Due to these environmental problems, the use of plastic products containing halogen-based flame retardants is restricted. There is a movement to do. For this reason, halogen-free triazine flame retardants have attracted attention and many studies have been made.
[0004]
For example, a technique using melamine as a flame retardant (Japanese Patent Publication No. 47-1714), a technique using cyanuric acid (Japanese Patent Laid-Open No. 50-105744), a technique using melamine cyanurate (Japanese Patent Laid-Open No. 53-31759) No.) is known. Although the non-reinforced polyamide resin composition obtained by these techniques has a high flame retardant level conforming to the UL94V-0 standard, the composition is reinforced with an inorganic reinforcing material such as glass fiber to increase rigidity. Even if a large amount of a flame retardant is blended, there is a problem of cotton ignition during combustion, which does not conform to the UL94V-0 standard.
In addition, a technique for using melamine phosphate, which is an intumescent flame retardant, in a glass fiber reinforced polyamide resin (Japanese Patent Publication No. 10-505875) has been proposed. The / 16 inch (1.6 mm) thin molded product satisfies the UL94V-0 standard, but the compatibility with the polyamide resin is poor, so the 1/32 inch (0.8 mm) thin molded product is UL94V-0 standard. I was not satisfied. Thus, the appearance of non-halogen-based flame-retardant polyamide resins is strongly desired in thin-walled molded products.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide a flame-retardant polyamide resin composition having high rigidity, extremely high flame retardancy, and excellent thin-wall moldability.
[0006]
[Means for Solving the Problems]
As a result of earnest research, the present inventors have blended a specific foaming agent into a system combining a polyamide resin, an inorganic reinforcing material, and a flame retardant obtained by a reaction between a phosphorus compound and a triazine compound. At the same time, it has been found that the object of the present invention can be achieved, and the present invention has been completed based on this finding.
That is, the gist of the present invention is as follows.
(A) 30 to 85% by mass of a polyamide resin mainly composed of a hexamethylene adipamide unit, (b) 5 to 50% by mass of an inorganic reinforcing material, and (c) by a reaction between a phosphate compound and a triazine compound. The difficulty which consists of 100 mass parts of components which consist of 5-40 mass% of flame retardants obtained, and 0.03-1 mass part of foaming agents which have a decomposition temperature more than the processing temperature of (d) polyamide resin. Flammable polyamide resin composition.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
The polyamide resin (a) used in the present invention is a polyamide mainly composed of hexamethylene adipamide units. Here, “having hexamethylene adipamide as a constituent” means that hexamethylene adipamide units are introduced into the polyamide resin (a) by mixing or copolymerization. Components other than the hexamethylene adipamide unit include aliphatic polyamides such as polyamide 46, polyamide 6, polyamide 610, polyamide 612, polyamide 11 and polyamide 12, hexamethylene terephthalamide, tetramethylene isophthalamide, hexamethylene isophthalamide, Aromatic polyamides containing aromatic components such as terephthalic acid such as metaxylylene adipamide, isophthalic acid, and xylylenediamine can be used. From the viewpoint of fluidity, a mixed polyamide of polyamide 66 and polyamide 6 is preferable. Particularly, polyamide 6660 to 100% by mass with a relative viscosity of 2.7 to 3.5 and polyamide 6 40 with a relative viscosity of 1.5 to 2.3. A polyamide consisting of ˜0% by weight is most preferred.
[0008]
The present invention contains the inorganic reinforcing material (b) in an amount of 5 to 40% by mass based on the total amount of the components (a) to (c). If it is less than 5% by mass, the reinforcing effect as a reinforcing material is poor, and if it exceeds 40% by mass, the workability deteriorates. Examples of inorganic reinforcing materials include glass fiber, carbon fiber, potassium titanate fiber, gypsum fiber, brass fiber, stainless steel fiber, steel fiber, ceramic fiber, boron whisker fiber, mica, talc, silica, calcium carbonate, kaolin, calcined kaolin, Examples thereof include fiber-like, granular, plate-like, or needle-like inorganic reinforcing materials such as wollastonite, glass beads, glass flakes, and titanium oxide. Two or more of these reinforcing materials may be used in combination. In particular, glass fiber, wollastonite, talc, calcined kaolin and mica are preferably used. The glass fiber can be selected from long fiber type roving, short fiber type chopped strand, milled fiber and the like. The glass fiber is preferably a surface-treated product for polyamide.
[0009]
In the present invention, as the flame retardant (c), 5 to 40% by mass of a compound obtained by a reaction between a phosphoric acid compound and a triazine compound is used with respect to the total amount of the components (a) to (c). If the amount is less than 5% by weight, the flame retardancy of the resulting composition becomes insufficient. On the other hand, if the amount exceeds 40% by weight, the mechanical properties of the resulting composition are significantly deteriorated.
[0010]
Examples of phosphoric acid compounds constituting the flame retardant include phosphoric acid, orthophosphoric acid, phosphorous acid, hypophosphorous acid, metaphosphoric acid, pyrophosphoric acid, triphosphoric acid, tetraphosphoric acid, polyphosphoric acid (so-called condensed phosphoric acid), etc. Is mentioned. Among these, phosphoric acid, orthophosphoric acid, metaphosphoric acid, and polyphosphoric acid are preferable, and those using polyphosphoric acid are preferable because of their high effects as flame retardants. The degree of condensation of polyphosphoric acid is usually 3 to 50, but the degree of condensation is not particularly limited in the present invention.
[0011]
Examples of the triazine compound constituting the flame retardant include melamine, melem, melam and the like. Among these, those using melamine are preferable because of their high effects as flame retardants.
[0012]
As a flame retardant obtained from a reaction product of a phosphoric acid compound and a triazine compound, melamine polyphosphate is most preferable from the viewpoint of its flame retardant effect.
[0013]
In this invention, it is necessary to mix | blend the foaming agent (d) which has a decomposition temperature more than the processing temperature of a polyamide resin. When such a foaming agent is used, the foaming phenomenon does not occur during the processing of the resin composition, so that the component as the foaming agent can be mixed into the polyamide component. And when it exposes to temperature higher than resin processing temperature like a combustion state, the foaming agent in a resin composition raise | generates a foam, and this suppresses combustion, Therefore A flame retardance increases. (D) The mixture ratio of a component is 0.03-1 mass part with respect to 100 mass parts of total amounts of (a)-(c) component. When the blending ratio of the foaming agent is less than 0.03 parts by mass, the flame retardance of the resulting composition becomes insufficient, while when it exceeds 1 part by mass, the flame retardancy of the resulting composition is deteriorated.
[0014]
The foaming agent used in the present invention needs to have a decomposition temperature equal to or higher than the processing temperature of the polyamide resin. In the present invention, since a polyamide mainly composed of hexamethylene adipamide units is used, the decomposition temperature of the blowing agent is usually 280 ° C. or higher, preferably 290 ° C. or higher, more preferably 300 ° C. or higher. When the decomposition temperature of the foaming agent is lower than the processing temperature of the polyamide, a foaming phenomenon occurs in kneading and molding, and the resin composition itself cannot be manufactured or molded.
As a foaming agent that satisfies the above conditions, a tetrazole-based foaming agent can be used. A tetrazole-based blowing agent is a compound having a five-membered ring composed of 4 atoms of nitrogen and 1 atom of carbon. There is no environmental pollution such as dioxin generated at the time of combustion. Only gases such as gas and water vapor are generated. Among the tetrazole-based compounds, a compound having a large amount of gas generation per gram of the compound when the compound is thermally decomposed is that high flame retardancy is obtained. Examples of such tetrazole compounds include 1H-tetrazole metal salts, 1H-tetrazole derivatives such as amine salts, or 5,5′-bis such as 5,5′-bis-1H-tetrazole metal salts and amine salts. 1-H-tetrazole derivative, 5-methyl-1H-tetrazole metal salt, 5-methyl-1H-tetrazole derivative such as amine salt, or 5-phenyl-1H-tetrazole metal salt, 5-phenyl such as amine salt 1H-tetrazole derivatives, 5-amino-1H-tetrazole metal salts, 5-amino-1H-tetrazole derivatives such as amine salts, or 1H-tetrazole-5-carboxylate metal salts, 1H- Tetrazole-5-carboxylate derivatives and the like. 1H-tetrazo -5-yl - guanidine are most preferred. The tetrazole compounds include 2H-tetrazole derivatives, which are tautomers of 1H-tetrazole derivatives, but in the present invention, 2H-tetrazole derivatives may be used. The tetrazole-based blowing agent in the present invention may be added alone or in combination of two or more.
[0015]
In the present invention, an inorganic flame retardant aid may be added as long as it does not adversely affect mechanical properties and molding processability. Preferred flame retardant aids include magnesium oxide, magnesium hydroxide, aluminum hydroxide, zinc oxide, zinc sulfide, iron oxide, boron oxide, zinc borate and the like.
[0016]
The method for producing the flame retardant polyamide resin composition of the present invention is not particularly limited as long as the decomposition temperature of the foaming agent is equal to or higher than the processing temperature of the polyamide. A melt kneading method using a kneader such as a shaft extruder or a kneader can be used. In melt kneading, a method of side-feeding a flame retardant and a foaming agent is preferable.
[0017]
In the flame-retardant polyamide resin composition of the present invention, other components, for example, colorants such as pigments and dyes, and copper-based heat stabilizers commonly used for polyamide resins are included within the range not impairing the object of the present invention. Heat stabilizer (for example, combined use of copper iodide, copper acetate, etc. with potassium iodide, carium bromide), organic heat resistance typified by hindered phenol-based oxidative degradation inhibitors, weather resistance improver, nucleating agent, Additives such as plasticizers, lubricants, antistatic agents, fillers, other resin polymers, and the like can be added.
[0018]
The composition of the present invention is molded into various molded products for electrical, electronic and automotive applications such as connectors, coil bobbins, breakers, electromagnetic switches, holders, plugs, switches, etc. by known methods such as injection molding, extrusion molding, blow molding. The
[0019]
【Example】
Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples.
1. Raw material 1) Polyamide 66 resin (hereinafter referred to as PA66): 101NC010 manufactured by DuPont (relative viscosity 2.7).
2) Polyamide 6 resin (hereinafter referred to as PA6): A1015 manufactured by Unitika (relative viscosity 2.05).
3) Melamine polyphosphate: Nissan Chemical PMP-100
4) Melam polyphosphate: PMP-200 manufactured by Nissan Chemical Co., Ltd.
5) Tetrazole foaming agent:
-Toyo Kasei Kogyo BHT-GAT (1H-tetrazol-5-yl-guanidine), decomposition temperature 312 ° C. (hereinafter referred to as GAT)
-Toyo Kasei Kogyo BHT (1H-tetrazole), decomposition temperature 263 ° C
-Toyo Kasei Kogyo P5T (5-phenyl-1H-tetrazole), decomposition temperature 217 ° C
6) Glass fiber: T-289 manufactured by Nippon Electric Glass Co., Ltd. (hereinafter referred to as GF)
[0020]
2. Evaluation Method 1) Relative Viscosity Relative viscosity with 98% sulfuric acid was measured according to JIS K6810.
2) Measurement was carried out at the decomposition temperature TGA of the foaming agent and determined based on the temperature-weight loss curve. The temperature at the intersection of the tangent drawn at the inflection point of this curve and the baseline (substantially straight line portion where the weight loss is zero in the curve) was defined as the decomposition temperature.
3) Tensile strength and tensile elongation
Measured according to ASTM D638.
4) Flexural strength and flexural modulus
Measured according to ASTM D790.
5) Izod impact value
Measured according to ASTM D256.
6) Measured according to the method of flame retardancy UL94 (standard established by Under Writers Laboratories Inc., USA). The thickness of the test piece was 1/32 inch (0.8 mm).
7) Fluidity A bar flow mold with a width of 20 mm and a thickness of 2 mm is attached to an IS100E-i3A injection molding machine manufactured by Toshiba Machine Co., Ltd. The fluidity was evaluated by the bar flow length (unit: mm). It shows that it is excellent in fluidity, so that a value is large.
[0021]
Example 1
Using 50 parts by mass of PA66 with 0.03 parts by mass of CuI and 0.1 parts by mass of KI, using a Kubota continuous constant flow feeder, the same direction twin screw extruder with side feeder (Toshiba Machine Co., Ltd. TEM-37BS) It supplied to the supply port. Further, 25 parts by mass of PMP-100, 0.1 part by mass of GAT, and 25 parts by mass of GF were supplied from the side feeder. Melt-knead at a resin temperature of 280 ° C and a discharge rate of 14kg / hour. The resin composition taken in a strand form from the nozzle is passed through a water bath, cooled and solidified, cut with a pelletizer, and then dried with hot air at 100 ° C for 12 hours As a result, pellets of the resin composition were obtained.
Next, the obtained resin composition pellets were molded at a resin temperature of 280 ° C. by using an injection molding machine (IS100E-i3A manufactured by Toshiba Machine Co., Ltd.) to prepare various test pieces. These were evaluated for mechanical properties and flame retardancy. The results are shown in Table 1.
[0022]
Examples 2-8, Comparative Examples 1-5
Pellets were obtained in the same manner as in Example 1 except that the blending ratios of PA66, PA6, flame retardant, foaming agent and GF were changed to the ratios shown in Table 1, and various characteristics were examined. In Examples 7 and 8, both types of polyamides were supplied to the main supply port. The results are shown in Table 1.
[0023]
[Table 1]
Figure 0004137470
[0024]
In Examples 1 to 8, a resin composition having both flame retardancy and mechanical properties in a thin molded article was obtained. In particular, Examples 7 and 8 were excellent in fluidity.
On the other hand, in Comparative Example 1, the amount of PMP-100 deviated from the range of the present invention, so that the flame retardancy was insufficient.
In Comparative Example 2, since no foaming agent was added, the flame retardancy was insufficient.
In Comparative Examples 3 to 5, since a foaming agent having a decomposition temperature lower than the processing temperature of the resin was used, foaming was remarkable during the kneading of the resin composition, and pellets were not obtained, making it impossible to evaluate.
[0025]
【The invention's effect】
The polyamide resin of the present invention has both flame retardancy and mechanical properties in a thin-walled molded article, and can be used favorably for applications such as automobile parts, machine parts, and electric / electronic parts.

Claims (5)

(a)ヘキサメチレンアジパミド単位を主たる構成成分とするポリアミド樹脂30〜85質量%、(b)無機質強化材5〜50質量%、(c)リン酸系化合物とトリアジン系化合物との反応により得られる難燃剤5〜40質量%とからなる成分100質量部と、(d)ポリアミド樹脂の加工温度280℃以上の分解温度を有する発泡剤0.03〜1質量部とからなる難燃性ポリアミド樹脂組成物であって、前記(d)発泡剤がテトラゾール系発泡剤であることを特徴とする難燃性ポリアミド樹脂組成物。(A) 30 to 85% by mass of a polyamide resin mainly composed of a hexamethylene adipamide unit, (b) 5 to 50% by mass of an inorganic reinforcing material, and (c) by a reaction between a phosphate compound and a triazine compound. 5 to 40 mass% obtained flame retardant and the components 100 parts by mass consisting of, (d) flame-retardant polyamide comprising a blowing agent 0.03 parts by mass with processing temperature 280 ° C. or higher decomposition temperature of the polyamide resin A flame retardant polyamide resin composition, which is a resin composition , wherein the foaming agent (d) is a tetrazole foaming agent . 前記(a)ポリアミド樹脂が、相対粘度2.6〜3.5のポリアミド66樹脂60〜100質量%と相対粘度が1.5〜2.3のポリアミド6樹脂40〜0質量%とからなることを特徴とする請求項1に記載の難燃性ポリアミド樹脂組成物。Wherein (a) the polyamide resin, to claim 1 where the polyamide 66 60 to 100 wt% resin and a relative viscosity of relative viscosity from 2.6 to 3.5 is characterized in that it consists of a 6 resin 40 to 0% by weight polyamide 1.5 to 2.3 The flame-retardant polyamide resin composition as described. 前記(c)難燃剤を構成するリン系化合物が、リン酸、オルトリン酸、ピロリン酸、ポリリン酸から選ばれる少なくとも1種であることを特徴とする請求項1記載の難燃性ポリアミド樹脂組成物。The flame-retardant polyamide resin composition according to claim 1, wherein the phosphorus compound constituting the flame retardant (c) is at least one selected from phosphoric acid, orthophosphoric acid, pyrophosphoric acid, and polyphosphoric acid. . 前記(c)難燃剤を構成するトリアジン系化合物が、メラミン、メレム、メラムから選ばれる少なくとも1種であることを特徴とする請求項1記載の難燃性ポリアミド樹脂組成物。Wherein (c) a triazine-based compound constituting the flame retardant, Mera Min, melem, flame-retardant polyamide resin composition according to claim 1, wherein the at least one selected from melam. 前記(c)難燃剤が、ポリリン酸メラミンであることを特徴とする請求項またはに記載の難燃性ポリアミド樹脂組成物。The flame retardant polyamide resin composition according to claim 3 or 4 , wherein the flame retardant (c) is melamine polyphosphate.
JP2002055838A 2002-03-01 2002-03-01 Flame retardant polyamide resin composition Expired - Fee Related JP4137470B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002055838A JP4137470B2 (en) 2002-03-01 2002-03-01 Flame retardant polyamide resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002055838A JP4137470B2 (en) 2002-03-01 2002-03-01 Flame retardant polyamide resin composition

Publications (2)

Publication Number Publication Date
JP2003253118A JP2003253118A (en) 2003-09-10
JP4137470B2 true JP4137470B2 (en) 2008-08-20

Family

ID=28666580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002055838A Expired - Fee Related JP4137470B2 (en) 2002-03-01 2002-03-01 Flame retardant polyamide resin composition

Country Status (1)

Country Link
JP (1) JP4137470B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4560624B2 (en) * 2004-03-09 2010-10-13 ディーエスエム アイピー アセッツ ビー.ブイ. Flame retardant polyamide resin composition and extruded product
JP5151952B2 (en) * 2008-12-12 2013-02-27 富士ゼロックス株式会社 Resin composition and resin molded body.
KR101685771B1 (en) * 2013-12-10 2016-12-13 주식회사 엘지화학 Halogen based flame retardant glass fiber reinforced polyamide resin composition, and method for preparing the same
CN114874612B (en) * 2022-06-23 2023-09-22 青岛科技大学 Flame-retardant polyamide foam and preparation process thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07216126A (en) * 1994-02-04 1995-08-15 Mitsui Toatsu Chem Inc Low-expandable fiber-reinforced resin composition and its molding
AT405288B (en) * 1994-09-21 1999-06-25 Chemie Linz Gmbh FLAME-RESISTANT, GLASS FIBER-REINFORCED POLYAMIDE RESIN WITH MELAMINE OR MELEM-PHOSPHORIC ACID CONVERSION PRODUCTS AS A FLAME-RETARDANT
JP3535919B2 (en) * 1995-06-13 2004-06-07 ユニチカ株式会社 Expandable polyamide resin composition
JPH09302237A (en) * 1996-05-16 1997-11-25 Chisso Corp Flame-retardant thermoplastic polymer composition
JPH11246778A (en) * 1998-03-04 1999-09-14 Unitika Ltd Flame retardant resin composition
JP2000344960A (en) * 1999-03-31 2000-12-12 Chisso Corp Flame-retardant resin composition, flame-retardant sheet and film form using the same
JP2001002943A (en) * 1999-06-22 2001-01-09 Mitsubishi Engineering Plastics Corp Thermoplastic resin composition
JP2001234058A (en) * 2000-02-21 2001-08-28 Asahi Kasei Corp Polyamide foam molding product
JP4717191B2 (en) * 2000-09-11 2011-07-06 ダイセル化学工業株式会社 Flame retardant resin composition
JP4030301B2 (en) * 2001-12-12 2008-01-09 ユニチカ株式会社 Flame retardant polyamide resin composition

Also Published As

Publication number Publication date
JP2003253118A (en) 2003-09-10

Similar Documents

Publication Publication Date Title
JP5676560B2 (en) Improved halogen-free flame retardant polyamide composition
WO2005105923A1 (en) Flame-retardant resin composition
JP5331291B2 (en) Flame retardant reinforced polyamide resin composition
JP2010254760A (en) Flame-retardancy strengthened polyamide resin composition
US20070173573A1 (en) Flame-retardant resin composition
JP2007507596A (en) Combustion-resistant polyamide resin composition comprising phenolic resin, and article made therefrom
JP2004292755A (en) Flame-retardant polyamide resin composition
JP4307882B2 (en) Flame retardant polyamide resin composition
JP4137470B2 (en) Flame retardant polyamide resin composition
JP2000119512A (en) Flame-retardant reinforced polyamide resin composition
JP2001279092A (en) Flame-retardant reinforced polyamide resin-based composition
JP4307880B2 (en) Flame retardant reinforced polyamide resin composition
JP2004300189A (en) Polyamide flame-retardant resin composition
JP2001279091A (en) Flame-retardant reinforced polyamide composition
JP4278779B2 (en) Flame retardant polyamide resin composition
JP4030301B2 (en) Flame retardant polyamide resin composition
JP2012051953A (en) Flame-retardant reinforced resin composition
JP2004292531A (en) Flame-retardant polyamide resin composition
JP4574043B2 (en) Reinforced flame retardant polyamide resin composition
JP2003292774A (en) Heat-resistant flame-retardant resin composition
JP2000290498A (en) Reinforced flame-retardant polyamide resin composition
JP4798862B2 (en) Flame retardant polyamide composition
JP2002284988A (en) Method for producing flame-retardant reinforced polyamide resin composition
JP2003292775A (en) Heat-resistant flame-retardant polyamide composition
JP4535557B2 (en) Flame retardant reinforced polyamide resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080513

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080604

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees