JP4535557B2 - Flame retardant reinforced polyamide resin composition - Google Patents

Flame retardant reinforced polyamide resin composition Download PDF

Info

Publication number
JP4535557B2
JP4535557B2 JP2000096102A JP2000096102A JP4535557B2 JP 4535557 B2 JP4535557 B2 JP 4535557B2 JP 2000096102 A JP2000096102 A JP 2000096102A JP 2000096102 A JP2000096102 A JP 2000096102A JP 4535557 B2 JP4535557 B2 JP 4535557B2
Authority
JP
Japan
Prior art keywords
phosphate
flame retardant
polyamide resin
weight
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000096102A
Other languages
Japanese (ja)
Other versions
JP2001279090A (en
Inventor
貞行 矢ケ部
禎次 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2000096102A priority Critical patent/JP4535557B2/en
Publication of JP2001279090A publication Critical patent/JP2001279090A/en
Application granted granted Critical
Publication of JP4535557B2 publication Critical patent/JP4535557B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は難燃性ポリアミド樹脂組成物に関する。特に、電気・電子分野のコネクター等の部品、自動車分野の電装部品等の部品材料に好適に用いられる難燃性ポリアミド樹脂組成物に関する。とりわけ、本発明は難燃性が極めて高く、燃焼時に腐食性の高いハロゲン化水素ガスを発生することがなく、かつモールドデポジット現象が極めて少ない成形性に優れた難燃性ポリアミド樹脂組成物に関する。
【0002】
【従来の技術】
従来、ポリアミド樹脂は、機械的強度、耐熱性などに優れることから、自動車部品、機械部品、電気・電子部品などの分野で数多く使用されている。特に近年、電気・電子部品用途において、ますます難燃性に対する要求レベルが高くなり、本来ポリアミド樹脂の有する自己消火性よりもさらに高度な難燃性が要求され、この為、アンダーライターズ・ラボラトリーのUL94V−0規格に適合する難燃レベルの高度化への検討が数多くなされ、そしてそれらは一般にやハロゲン系難燃剤やトリアジン系難燃剤を添加する方法が取られている。
【0003】
例えば、ポリアミド樹脂への塩素置換多環式化合物の添加(特開昭48−29846号公報)や臭素系難燃剤、例えば、デカブロモジフェニルエーテルの添加(特開昭47−7134号公報)、臭素化ポリスチレンの添加(特開昭51−47044号公報、特開平4−175371号公報)、臭素化ポリフェニレンエーテルの添加(特開昭54−116054号公報)、臭素化架橋芳香族重合体の添加(特開昭63−317552号公報)、臭素化スチレン−無水マレイン酸重合体の添加(特開平3−168246号公報)等が知られている。特にこれらハロゲン系難燃剤をガラス繊維等で強化したポリアミド樹脂に配合した組成物は高度の難燃性と高い剛性から、電気・電子部品用途、特にプリント積層板に搭載されたり接続されたりするコネクター用途に多用されてきた。
【0004】
しかしながら、ハロゲン系難燃剤は燃焼時に腐食性のハロゲン化水素及び煙を発生したり、有毒な物質を排出する疑いがもたれ、これら環境問題からハロゲン系難燃剤の配合されたプラスチック製品の使用を規制する動きがある。このことから、ハロゲンフリーのトリアジン系難燃剤が注目され数多く検討がなされている。例えば、難燃剤としてメラミンを使用する技術(特公昭47−1714号公報)、シアヌル酸を使用する技術(特開昭50−105744号公報)、シアヌル酸メラミンを使用する技術(特開昭53−31759号公報)が良く知られている。これらの技術で得られた非強化のポリアミド樹脂組成物はUL94V−0規格に適合する高度の難燃レベルを有するものの、ガラス繊維等の無機強化材で強化し剛性を高めた組成においては、難燃剤を多量に配合した場合であっても、燃焼時、綿着火現象があり、UL94V−O規格に適合しないという問題がある。
【0005】
又、イントメッセント型難燃剤であるリン酸メラミンをガラス繊維強化ポリアミド樹脂に使用する技術(特表平10−505875号公報)が提案されているが、単にリン酸メラミンを配合しただけでは1/16インチの成形品において難燃規格UL94V−0規格を満足するするものの、ポリアミド樹脂との相溶性が悪いためか、1/32インチの薄肉成形品でUL94V−0規格を満足するものを得難い。又、押出混練時の作業性が困難であるばかりか、成形時に難燃剤が昇華して金型に汚染物質が付着する、いわゆるモールドデポジット現象を生じる問題が有り、成形性に優れ薄肉成形品でUL94V−0規格を満足する非ハロゲンベースの難燃性ポリアミド樹脂の出現が強く渇望されている。
【0006】
【発明が解決しようとする課題】
本発明の目的は、難燃性が極めて高く、燃焼時に腐食性の高いハロゲン化水素ガスの発生がなく、かつモールドデポジット現象が極めて少ない強化された難燃性ポリアミド樹脂組成物を提供することにある。
【0007】
【課題を解決するための手段】
本発明者等は、鋭意研究を重ねた結果、無機質強化材、リン系難燃剤及びポリアミド樹脂を組合わせた系に特定のリン酸系化合物を配合した際に、前記目的を達成し得ることを見い出し、この知見に基づき本発明を完成するに至った。
すなわち、本発明は、(a)ヘキサメチレンアジパミド単位を主たる構成成分とするポリアミド樹脂30〜85重量%、(b)リン酸メラミン、ピロリン酸メラミン、ポリリン酸メラミンの群から選ばれた少なくとも1種のリン系難燃剤5〜40重量%、(c)リン酸エステル系化合物0.01〜5重量%、(d)無機質強化材5〜50重量%の各成分からなる強化された難燃性ポリアミド樹脂組成物である。
【0008】
本発明で用いられるポリアミド樹脂(a)とは、ヘキサメチレンアジパミド単位を主たる構成成分とするポリアミド樹脂であり、ポリアミド66、およびポリアミド46、ポリアミド6、ポリアミド610、ポリアミド612、ポリアミド11、ポリアミド12等の脂肪族ポリアミドやヘキサメチレンテレフタルアミド、テトラメチレンイソフタルアミド、ヘキサメチレンイソフタルアミド、メタキシリレンアジパミドなどのテレフタル酸、イソフタル酸、キシリレンジアミン等の芳香族成分を含む芳香族ポリアミドとポリアミド66とを共重合成分とする共重合ポリアミド、混合ポリアミド等が挙げられる。
【0009】
特に薄肉成形品において高い難燃性と優れた成形品外観が得られる点から、ポリアミド66とポリアミド6I(ポリヘキサメチレンイソフタルアミド)との共重合体及びこれらの混合ポリアミドが好ましく、特にポリアミド66単位60〜98重量%とポリアミド6I単位2〜40重量%との共重合体(ポリアミド66/6I)が耐熱性、成形品外観性及び成形加工性の点で最も好ましい。これら共重合体はランダム共重合体、ブロック共重合体のどちらであっても良い。又、これらポリアミド樹脂の分子量は成形可能な範囲であれば良く、JIS−K6810に示される硫酸相対粘度が1.6〜3.5の範囲にあるポリアミド樹脂が成形流動性が良好でかつ高度な難燃レベルを保持できるので特に好ましい。
【0010】
本発明で用いられるリン系難燃剤(b)は、メラミンとリン酸、ピロリン酸、またはポリリン酸とから得られるメラミン付加物であるリン酸メラミン、ピロリン酸メラミン、ポリリン酸メラミンが挙げられる。これら難燃剤はシアヌル酸メラミンに代表されるトリアジン系難燃剤に比較して、ガラス繊維等の無機質強化材と併用して使用した際に、高度の難燃化効果を発揮すると言う驚くべき作用効果を有している。特にポリアミド66とポリアミド6Iとの共重合体及び/又は混合ポリアミド樹脂に当該リン系難燃剤を配合した際には更に高度な難燃化効果を発現する。
【0011】
本発明で難燃剤として使用するリン酸メラミンを構成するリン酸としては、具体的には、オルトリン酸、亜リン酸、次亜リン酸、メタリン酸、ピロリン酸、三リン酸、四リン酸等が挙げられるが、特にオルトリン酸、ピロリン酸を用いた付加物が難燃剤としての効果が高く、好ましい。又、ポリリン酸メラミンを構成するポリリン酸としては、いわゆる縮合リン酸と呼ばれる鎖状ポリリン酸、環状ポリメタリン酸が挙げられる。これらポリリン酸の縮合度は通常3〜50であるがこれら縮合度には特に制限はない。
【0012】
本発明のリン系難燃剤とは、メラミンと上記リン酸、ピロリン酸又はポリリン酸との実質的に等モルから形成されるメラミン付加物を意味し、酸官能基の一部が遊離の状態にあっても良い。かかるメラミン付加物は、例えば、メラミンと上記のリン酸との混合物を水スラリーとなし、よく混合して両者の付加物を微粒子状に形成させた後、このスラリーを濾過、洗浄、乾燥し、得られた固形物を粉砕して得られる粉末である。本発明組成物を成形して最終的に得られる成形品の機械的強度、成形品外観の点でメラミン付加物の粒径は100μm以下、好ましくは50μm以下に粉砕した粉末を用いるのが良い。0.5〜20μmの粉末を用いると高い難燃性を発現するばかりでなく成形品の強度が著しく高くなるので特に好ましい。又、メラミン付加物は必ずしも完全に純粋である必要はなく、未反応のメラミンあるいはリン酸が多少残存していても良いが、メラミン付加物中にリン原子を10〜18重量%含有するものが、成形加工時に成形金型に汚染性物質が付着する現象が少なく特に好ましい。又、これらリン系難燃剤は単独で用いても良く、2種以上併用しても良い。
【0013】
本発明におけるリン酸エステル系化合物(c)とは、モールドデポジット抑制剤として驚くべき作用効果を発現するものであって、具体的にはトリエチルホスフェート、トリブチルホスフェート、トリ−2−エチルヘキシルホスフェート、トリブトキシエチルホスフェート、トリフェニルホスフェート、トリクレジルホスフェート、トリキシレニルホスフェート、クレジルジフェニルホスフェート、トリス(2,6ジメチルフェニル)ホスフェート、2−エチルヘキシルジフェニルホスフェートなどが挙げられ、特に高沸点リン酸エステル化合物であるトリクレジルホスフェート、トリフェニルホスフェート、トリキシニレルホスフェートが好ましい。
【0014】
本発明に用いる無機質強化材(d)としては、ガラス繊維、炭素繊維、チタン酸カリウム繊維、石膏繊維、黄銅繊維、ステンレス繊維、スチール繊維、セラミックス繊維、ボロンウィスカ繊維、マイカ、タルク、シリカ、炭酸カルシウム、カオリン、焼成カオリン、ウオラストナイト、ガラスビーズ、ガラスフレーク、酸化チタン等の繊維状、粒状、板状、あるいは針状の無機質強化材が挙げられる。これらの強化材は二種以上組み合わせて用いてもよい。特にガラス繊維、ウォラストナイト、タルク、焼成カオリン、マイカが好ましく使用される。又、ガラス繊維は長繊維タイプのロービング、短繊維タイプのチョップドストランド、ミルドファイバー等から選択して用いることが出来る。ガラス繊維はポリアミド用に表面処理したものを用いるのが好ましい。
【0015】
本発明の成分(a)、成分(b)、成分(c)及び成分(d)からなるポリアミド樹脂組成物において、主体となるポリアミド樹脂(a)の割合は30〜85重量%の範囲であることが必要である。30重量%未満では成形加工性、機械的物性が損なわれ、85重量%を超えると難燃性、剛性の低下が生じる恐れがある。
リン系難燃剤(b)の割合は5〜40重量%、好ましくは10〜35重量%の範囲である。成分(b)の量が5重量%未満では難燃効果が充分でなく、40重量%を超えると混練時分解ガスが発生したり、成形加工時に成形金型に汚染性物質が付着するなどの問題が生じる。又、機械的物性の著しい低下や、成形品外観の悪化の原因ともなる。
【0016】
リン酸エステル系化合物(c)の割合は0.01〜5重量%、好ましくは0.5〜3重量%である。成分(c)の量が0.01重量%未満では成形加工時のモールドデポジット現象抑制に効果がなく、又、5重量%を超えるとかえってモールドデポジット現象が著しくなる。
無機質強化材(d)の割合は5〜50重量%、好ましくは10〜40重量%である。5重量%未満では機械的強度・剛性の発現が認められず、50重量%を超えると押出時や射出成形時の成形加工性の著しい低下があるばかりか、量的な物性改良効果も発現しない。
【0017】
本発明では、更に無機系の難燃助剤を機械的物性や成形加工性に悪影響を与えない範囲に於いて添加することもできる。好ましい難燃助剤としては、酸化マグネシウム、水酸化マグネシウム、水酸化アルミニウム、酸化亜鉛、硫化亜鉛、酸化鉄、酸化硼素、硼酸亜鉛等が挙げられる。
本発明の強化された難燃性ポリアミド樹脂組成物の製造方法は特に限定はなく、ポリアミド樹脂、リン系難燃剤、リン酸系化合物、無機充填材を常用の単軸または2軸の押出機やニーダー等の混練機を用いて、200〜350℃の温度で溶融混練する方法等であってよい。
【0018】
本発明の強化された難燃性ポリアミド樹脂組成物には、本発明の目的を損なわない範囲で、他の成分、例えば顔料、染料等の着色剤や、ポリアミド樹脂の一般的な熱安定剤である銅系熱安定剤(例えば、ヨウ化銅、酢酸銅等とヨウ化カリウム、臭化カルウムとの併用)、ヒンダードフェノール系酸化劣化防止剤に代表される有機系耐熱安定剤、耐候性改良剤、核剤、可塑剤、滑剤、帯電防止剤等の添加剤、他の樹脂ポリマー等を添加することが出来る。
本発明の組成物は、射出成形、押出成形、ブロー成形など公知の方法によってコネクター、コイルボビン、ブレーカー、電磁開閉器、ホルダー、プラグ、スイッチ等の電気、電子、自動車用途の各種成形品に成形される。
【0019】
【発明の実施の形態】
以下の実施例などにより本発明をさらに詳しく説明するが、本発明はこれらにより限定されるものではない。なお、実施例及び比較例に用いた測定方法を以下に示す。
[測定方法]
(1)薄肉難燃性;
UL94(米国Under Writers Laboratories Incで定められた規格)の方法に従って測定した。なお、試験片の厚みは1/32インチとし射出成形機(東芝機械社製:IS50EP)を用いて成形して得た。
【0020】
(2)硫酸相対粘度
JIS−K6810に従って98%硫酸での相対粘度を測定した。
(3)機械特性
射出成形機(東芝機械社製:IS50EP)を用いて、ASTM−D790の曲げ試験片(厚さ3mm)を成形し、ASTM−D790に準拠した方法で曲げ試験を実施し、曲げ強度、曲げ弾性率を求めた。
【0021】
(4)モールドデポジット性
射出成形機(東芝機械社製:IS50EP)を用いて、ASTM−D790の曲げ試験片(厚さ3mm)を、樹脂温度280℃、金型温度80℃で連続50ショット成形し、成形後金型の表面の汚染の程度(モルドデポジット)を肉眼で観察し、以下の評価基準で評価した。
◎:金型の汚染がほとんど認められない。
○:金型の汚染がわずかに見られる。
×:金型に著しく白い汚染物が認められる。
【0022】
【実施例1】
メラミンとオルトリン酸の等モル混合物を重量比で10倍量の水に懸濁させて、約100℃で十分に攪拌後、スラリーを濾過して白色のケーキを得た。次にこのケーキを80℃で真空乾燥後、粉砕して粒径10〜50μmのメラミンーリン酸付加物の粉末を得た。こうして得られたメラミン付加物(リン原子含有量14.1重量%)を25重量%、トリフェニルホスフェート(大八化学工業社製:商品名TPP)を0.5重量%、硫酸相対粘度2.3のポリアミド66/6I共重合体(ポリアミド66の共重合比率80重量%,融点241℃)を49.5重量%及びガラス繊維[旭ファイバーグラス(株)製:商品名JAFT756]を25重量%になるように2軸押出機(東芝機械製TEM35)を用いてシリンダー設定温度260℃、スクリュウ回転数200rpmの条件下で、ポリアミド樹脂、メラミン付加物及びトリフェニルホスフェートをトップフィードし、ガラス繊維はサイドフィードして混練し、ストランド状に取り出し、冷却後カッターで造粒しペレットを得た。得られたペレットを前記した測定法によって諸特性を調べた。その結果を表1に示す。
【0023】
【実施例2〜5、比較例1〜2】
ポリアミド樹脂、メラミンーリン酸付加物、トリフェニルホスフェート及びガラス繊維の配合割合を表1に示す割合にした以外は実施例1と同様にしてペレットを得て、諸特性を調べた。その結果を表1に示す。
【実施例6】
(参考例)
ポリアミド樹脂として硫酸相対粘度2.9のポリアミド66(旭化成工業製:レオナ1300)、リン系難燃剤として平均粒径約3μmのポリリン酸メラミン[(株)三和ケミカル製:商品名アピノンMPP−A]及びリン酸エステル系化合物としてトリクレジルホスフェート(大八化学工業製:商品名TCP)を用いた以外は実施例1と同様にしてペレットを得て、諸特性を調べた。その結果を表2に示す。
【0024】
【実施例7】
(参考例)
リン酸エステル系化合物としてトリキシレニルホスフェート(大八化学工業製製:商品名TXP)を用いた以外は実施例6(参考例)と同様にしてペレットを得て、諸特性を調べた。その結果を表2に示す。
【比較例3〜4】
ポリアミド樹脂、ポリリン酸メラミン、トリクレジルホスフェート及びガラス繊維の配合割合を表2に示す割合にした以外は実施例6(参考例)と同様にしてペレットを得て、諸特性を調べた。その結果を表2に示す。
【0025】
【比較例5】
ポリアミド樹脂として硫酸相対粘度2.6のポリアミド6[宇部興産(株)製:商品名SF1013A]を用いた以外は実施例6(参考例)と同様にしてペレットを得て、諸特性を調べた。その結果を表2に示す。
【0026】
【表1】

Figure 0004535557
【0027】
【表2】
Figure 0004535557
【0028】
【発明の効果】
本発明の組成物は薄肉成形品においても難燃性が極めて高く、更には燃焼時に腐食性の高いハロゲン化水素ガスの発生がなく、かつ、成形加工時にモールドデポジット現象がほとんど発現しない優れた成形材料であり、家電部品、電子部品、自動車部品等の用途に用いることが出来る。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a flame retardant polyamide resin composition. In particular, the present invention relates to a flame retardant polyamide resin composition suitably used for parts materials such as electrical and electronic parts such as connectors and automobile parts. In particular, the present invention relates to a flame retardant polyamide resin composition having excellent moldability, which has extremely high flame retardancy, does not generate highly corrosive hydrogen halide gas at the time of combustion, and has very little mold deposit phenomenon.
[0002]
[Prior art]
Conventionally, polyamide resins are excellent in mechanical strength, heat resistance, and the like, and thus are frequently used in fields such as automobile parts, mechanical parts, and electric / electronic parts. Particularly in recent years, the level of demand for flame retardancy has increased in applications for electrical and electronic parts, and higher flame retardancy is required than the inherent self-extinguishing properties of polyamide resins. For this reason, Underwriters Laboratory Many studies have been made on the advancement of the flame retardant level conforming to the UL94V-0 standard, and generally, a method of adding a halogen flame retardant or a triazine flame retardant is taken.
[0003]
For example, addition of a chlorine-substituted polycyclic compound to a polyamide resin (Japanese Patent Laid-Open No. 48-29846), addition of a brominated flame retardant such as decabromodiphenyl ether (Japanese Patent Laid-Open No. 47-7134), bromination Addition of polystyrene (JP 51-47044, JP 4-175371), addition of brominated polyphenylene ether (JP 54-116054), addition of brominated cross-linked aromatic polymer (special JP-A 63-317552), addition of a brominated styrene-maleic anhydride polymer (JP-A-3-168246) and the like are known. In particular, compositions containing these halogen-based flame retardants in polyamide resins reinforced with glass fibers, etc., are highly flame retardant and have high rigidity, so they can be mounted on or connected to printed laminates, especially for printed laminates. Has been used extensively in applications.
[0004]
However, halogen-based flame retardants generate corrosive hydrogen halides and smoke during combustion, and there is a suspicion that they emit toxic substances. Due to these environmental problems, the use of plastic products containing halogen-based flame retardants is restricted. There is a movement to do. For this reason, halogen-free triazine flame retardants have attracted attention and many studies have been made. For example, a technique using melamine as a flame retardant (Japanese Patent Publication No. 47-1714), a technique using cyanuric acid (Japanese Patent Laid-Open No. 50-105744), and a technique using melamine cyanuric acid (Japanese Patent Laid-Open No. Sho 53- No. 31759) is well known. Although the non-reinforced polyamide resin composition obtained by these techniques has a high flame retardant level conforming to the UL94V-0 standard, it is difficult to use a composition reinforced with an inorganic reinforcing material such as glass fiber to increase rigidity. Even when a large amount of a flame retardant is blended, there is a problem that there is a cotton ignition phenomenon at the time of combustion, and it does not conform to the UL94V-O standard.
[0005]
In addition, a technique for using melamine phosphate, which is an intumescent flame retardant, in a glass fiber reinforced polyamide resin (Japanese Patent Publication No. 10-505875) has been proposed. / 16 inch molded products satisfy the flame retardant standard UL94V-0 standard, but because of poor compatibility with polyamide resin, it is difficult to obtain 1/32 inch thin molded product that satisfies the UL94V-0 standard . In addition, not only is the workability during extrusion kneading difficult, but also there is a problem of causing a so-called mold deposit phenomenon in which a flame retardant sublimates during molding and a contaminant adheres to the mold. The emergence of non-halogen based flame retardant polyamide resins that meet the UL94V-0 standard is strongly desired.
[0006]
[Problems to be solved by the invention]
An object of the present invention is to provide a reinforced flame retardant polyamide resin composition having extremely high flame retardancy, no generation of highly corrosive hydrogen halide gas, and extremely low mold deposit phenomenon. is there.
[0007]
[Means for Solving the Problems]
As a result of extensive research, the present inventors have found that the above object can be achieved when a specific phosphoric acid compound is blended in a system combining an inorganic reinforcing material, a phosphorus flame retardant, and a polyamide resin. As a result, the present invention has been completed based on this finding.
That is, the present invention is at least selected from the group consisting of (a) 30 to 85% by weight of a polyamide resin mainly composed of a hexamethylene adipamide unit, (b) melamine phosphate, melamine pyrophosphate, and melamine polyphosphate. Reinforced flame retardant comprising 5 to 40% by weight of one type of phosphorus-based flame retardant, (c) 0.01 to 5% by weight of a phosphoric ester compound, and (d) 5 to 50% by weight of an inorganic reinforcing material It is a conductive polyamide resin composition.
[0008]
The polyamide resin (a) used in the present invention is a polyamide resin having a hexamethylene adipamide unit as a main component, and is polyamide 66, polyamide 46, polyamide 6, polyamide 610, polyamide 612, polyamide 11, polyamide 12 and other aliphatic polyamides and aromatic polyamides containing aromatic components such as terephthalic acid such as hexamethylene terephthalamide, tetramethylene isophthalamide, hexamethylene isophthalamide and metaxylylene adipamide, isophthalic acid and xylylenediamine Examples thereof include copolymer polyamides and mixed polyamides having polyamide 66 as a copolymer component.
[0009]
In particular, a copolymer of polyamide 66 and polyamide 6I (polyhexamethylene isophthalamide) and a mixed polyamide thereof are preferable from the viewpoint that high flame retardancy and excellent appearance of a molded product can be obtained in a thin-walled molded product. A copolymer of 60 to 98% by weight and 2 to 40% by weight of polyamide 6I units (polyamide 66 / 6I) is most preferable in terms of heat resistance, appearance of molded products, and molding processability. These copolymers may be either random copolymers or block copolymers. The molecular weight of these polyamide resins may be in a range that can be molded. Polyamide resins having a relative viscosity of sulfuric acid in the range of 1.6 to 3.5 shown in JIS-K6810 have good molding fluidity and a high level. This is particularly preferable because the flame retardancy level can be maintained.
[0010]
Examples of the phosphorus-based flame retardant (b) used in the present invention include melamine phosphate, melamine pyrophosphate, and melamine polyphosphate which are melamine adducts obtained from melamine and phosphoric acid, pyrophosphoric acid, or polyphosphoric acid. These flame retardants are surprisingly effective when they are used in combination with inorganic reinforcing materials such as glass fiber, compared to triazine flame retardants typified by melamine cyanurate. have. In particular, when the phosphorus-based flame retardant is blended with a copolymer of polyamide 66 and polyamide 6I and / or a mixed polyamide resin, an even higher flame retarding effect is exhibited.
[0011]
Specific examples of phosphoric acid constituting melamine phosphate used as a flame retardant in the present invention include orthophosphoric acid, phosphorous acid, hypophosphorous acid, metaphosphoric acid, pyrophosphoric acid, triphosphoric acid, tetraphosphoric acid, etc. In particular, an adduct using orthophosphoric acid or pyrophosphoric acid is preferable because of its high effect as a flame retardant. Moreover, as polyphosphoric acid which comprises melamine polyphosphate, the chain polyphosphoric acid called so-called condensed phosphoric acid and cyclic polymetaphosphoric acid are mentioned. The degree of condensation of these polyphosphoric acids is usually 3 to 50, but the degree of condensation is not particularly limited.
[0012]
The phosphorus-based flame retardant of the present invention means a melamine adduct formed from substantially equimolar amounts of melamine and the above-mentioned phosphoric acid, pyrophosphoric acid or polyphosphoric acid, and a part of the acid functional group is in a free state. There may be. Such a melamine adduct is, for example, a mixture of melamine and the above phosphoric acid is made into a water slurry, and after mixing well to form both adducts into fine particles, the slurry is filtered, washed and dried, It is a powder obtained by pulverizing the obtained solid. From the viewpoint of the mechanical strength of the molded product finally obtained by molding the composition of the present invention and the appearance of the molded product, the particle size of the melamine adduct is preferably 100 μm or less, preferably 50 μm or less. Use of a powder of 0.5 to 20 μm is particularly preferable because it not only exhibits high flame retardancy but also significantly increases the strength of the molded product. Further, the melamine adduct does not necessarily need to be completely pure, and some unreacted melamine or phosphoric acid may remain, but the melamine adduct contains 10 to 18% by weight of phosphorus atoms. It is particularly preferred that there is little phenomenon of contaminating substances adhering to the mold during the molding process. These phosphorus flame retardants may be used alone or in combination of two or more.
[0013]
The phosphate ester compound (c) in the present invention expresses a surprising effect as a mold deposit inhibitor, and specifically includes triethyl phosphate, tributyl phosphate, tri-2-ethylhexyl phosphate, tributoxy. Ethyl phosphate, triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, cresyl diphenyl phosphate, tris (2,6 dimethylphenyl) phosphate, 2-ethylhexyl diphenyl phosphate, etc. Certain tricresyl phosphates, triphenyl phosphates and trixynyl phosphates are preferred.
[0014]
Examples of the inorganic reinforcing material (d) used in the present invention include glass fiber, carbon fiber, potassium titanate fiber, gypsum fiber, brass fiber, stainless steel fiber, steel fiber, ceramic fiber, boron whisker fiber, mica, talc, silica, carbonic acid. Examples of the inorganic reinforcing material include calcium, kaolin, calcined kaolin, wollastonite, glass beads, glass flakes, and titanium oxide. Two or more of these reinforcing materials may be used in combination. In particular, glass fiber, wollastonite, talc, calcined kaolin and mica are preferably used. The glass fiber can be selected from long fiber type roving, short fiber type chopped strand, milled fiber and the like. It is preferable to use a glass fiber that has been surface-treated for polyamide.
[0015]
In the polyamide resin composition comprising the component (a), the component (b), the component (c) and the component (d) of the present invention, the proportion of the main polyamide resin (a) is in the range of 30 to 85% by weight. It is necessary. If it is less than 30% by weight, moldability and mechanical properties are impaired, and if it exceeds 85% by weight, flame retardancy and rigidity may be lowered.
The proportion of the phosphorus-based flame retardant (b) is in the range of 5 to 40% by weight, preferably 10 to 35% by weight. If the amount of component (b) is less than 5% by weight, the flame retardant effect is not sufficient, and if it exceeds 40% by weight, decomposition gas is generated during kneading, and pollutants adhere to the mold during molding. Problems arise. In addition, the mechanical properties are significantly lowered and the appearance of the molded product is deteriorated.
[0016]
The proportion of the phosphate ester compound (c) is 0.01 to 5% by weight, preferably 0.5 to 3% by weight. When the amount of the component (c) is less than 0.01% by weight, there is no effect in suppressing the mold deposit phenomenon during molding, and when it exceeds 5% by weight, the mold deposit phenomenon becomes remarkable.
The proportion of the inorganic reinforcing material (d) is 5 to 50% by weight, preferably 10 to 40% by weight. If it is less than 5% by weight, no mechanical strength / rigidity is observed, and if it exceeds 50% by weight, the molding processability during extrusion and injection molding is notably reduced, and the effect of improving physical properties is not manifested. .
[0017]
In the present invention, an inorganic flame retardant aid may be added as long as it does not adversely affect mechanical properties and molding processability. Preferred flame retardant aids include magnesium oxide, magnesium hydroxide, aluminum hydroxide, zinc oxide, zinc sulfide, iron oxide, boron oxide, zinc borate and the like.
The method for producing the reinforced flame-retardant polyamide resin composition of the present invention is not particularly limited, and a polyamide resin, a phosphorus-based flame retardant, a phosphoric acid-based compound, and an inorganic filler are used as a conventional single-screw or twin-screw extruder, It may be a method of melt kneading at a temperature of 200 to 350 ° C. using a kneader such as a kneader.
[0018]
The reinforced flame-retardant polyamide resin composition of the present invention includes other components, such as colorants such as pigments and dyes, and general heat stabilizers for polyamide resins, as long as the object of the present invention is not impaired. Certain copper-based heat stabilizers (for example, combined use of copper iodide, copper acetate, etc. with potassium iodide and carium bromide), organic heat-resistant stabilizers typified by hindered phenol-based oxidative degradation inhibitors, weather resistance improvement Additives such as an agent, a nucleating agent, a plasticizer, a lubricant and an antistatic agent, and other resin polymers can be added.
The composition of the present invention is molded into various molded products for electrical, electronic and automotive applications such as connectors, coil bobbins, breakers, electromagnetic switches, holders, plugs, switches, etc. by known methods such as injection molding, extrusion molding, blow molding. The
[0019]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto. In addition, the measuring method used for the Example and the comparative example is shown below.
[Measuring method]
(1) Thin flame retardancy;
The measurement was carried out according to the method of UL94 (standard established by Under Writers Laboratories Inc., USA). In addition, the thickness of the test piece was 1/32 inches, and it was obtained by molding using an injection molding machine (Toshiba Machine Co., Ltd .: IS50EP).
[0020]
(2) Sulfuric acid relative viscosity The relative viscosity in 98% sulfuric acid was measured according to JIS-K6810.
(3) Using an injection molding machine (manufactured by Toshiba Machine Co., Ltd .: IS50EP), a bending test piece (thickness 3 mm) of ASTM-D790 is molded, and a bending test is carried out by a method based on ASTM-D790, Bending strength and flexural modulus were determined.
[0021]
(4) Using a mold depositing injection molding machine (manufactured by Toshiba Machine Co., Ltd .: IS50EP), ASTM-D790 bending test piece (thickness 3 mm) is continuously molded into 50 shots at a resin temperature of 280 ° C. and a mold temperature of 80 ° C. The degree of contamination of the mold surface after molding (mold deposit) was observed with the naked eye and evaluated according to the following evaluation criteria.
A: Almost no contamination of the mold is observed.
○: Slight contamination of the mold is observed.
X: Remarkably white contaminants are observed on the mold.
[0022]
[Example 1]
An equimolar mixture of melamine and orthophosphoric acid was suspended in 10 times the amount of water by weight, and after sufficient stirring at about 100 ° C., the slurry was filtered to obtain a white cake. Next, this cake was vacuum-dried at 80 ° C. and then pulverized to obtain a melamine-phosphoric acid adduct powder having a particle size of 10 to 50 μm. The melamine adduct thus obtained (phosphorus atom content: 14.1% by weight) was 25% by weight, triphenyl phosphate (manufactured by Daihachi Chemical Industry Co., Ltd .: trade name TPP) was 0.5% by weight, and the relative viscosity of sulfuric acid was 2. No. 3 polyamide 66 / 6I copolymer (polyamide 66 copolymerization ratio 80 wt%, melting point 241 ° C.) 49.5 wt% and glass fiber [Asahi Fiber Glass Co., Ltd .: trade name JAFT756] 25 wt% Using a twin screw extruder (TEM35 manufactured by Toshiba Machine), top feed the polyamide resin, melamine adduct and triphenyl phosphate under the conditions of a cylinder set temperature of 260 ° C. and a screw rotation speed of 200 rpm. Side feed and kneading were carried out to take out strands, and after cooling, the mixture was granulated with a cutter to obtain pellets. Various characteristics of the obtained pellets were examined by the measurement method described above. The results are shown in Table 1.
[0023]
Examples 2-5, Comparative Examples 1-2
Pellets were obtained in the same manner as in Example 1 except that the blending ratio of polyamide resin, melamine-phosphate adduct, triphenyl phosphate and glass fiber was changed to the ratio shown in Table 1, and various properties were examined. The results are shown in Table 1.
[Example 6]
(Reference example)
Polyamide 66 having a relative viscosity of sulfuric acid of 2.9 as a polyamide resin (manufactured by Asahi Kasei Kogyo: Leona 1300), melamine polyphosphate having an average particle size of about 3 μm as a phosphorus flame retardant [manufactured by Sanwa Chemical Co., Ltd .: trade name: APINON MPP-A ] And tricresyl phosphate (manufactured by Daihachi Chemical Industry Co., Ltd .: trade name TCP) as a phosphate ester compound, pellets were obtained in the same manner as in Example 1 and various characteristics were examined. The results are shown in Table 2.
[0024]
[Example 7]
(Reference example)
Pellets were obtained in the same manner as in Example 6 (Reference Example) except that trixylenyl phosphate (manufactured by Daihachi Chemical Industry Co., Ltd .: trade name TXP) was used as the phosphate ester compound, and various characteristics were examined. The results are shown in Table 2.
[Comparative Examples 3 to 4]
Pellets were obtained in the same manner as in Example 6 (Reference Example) except that the blending ratio of polyamide resin, melamine polyphosphate, tricresyl phosphate and glass fiber was changed to the ratio shown in Table 2, and various characteristics were examined. The results are shown in Table 2.
[0025]
[Comparative Example 5]
Pellets were obtained in the same manner as in Example 6 (Reference Example) except that polyamide 6 [manufactured by Ube Industries, Ltd .: trade name SF1013A] having a relative viscosity of sulfuric acid of 2.6 was used as the polyamide resin, and various characteristics were examined. . The results are shown in Table 2.
[0026]
[Table 1]
Figure 0004535557
[0027]
[Table 2]
Figure 0004535557
[0028]
【The invention's effect】
The composition of the present invention has extremely high flame retardancy even in a thin-walled molded article, and further, excellent molding with no generation of highly corrosive hydrogen halide gas during combustion and almost no mold deposit phenomenon during molding processing. It is a material and can be used for applications such as home appliance parts, electronic parts, and automobile parts.

Claims (6)

(a)ポリアミド66単位60〜98重量%とポリヘキサメチレンイソフタルアミド単位2〜40重量%との共重合体からなるポリアミド樹脂30〜85重量%、
(b)リン酸メラミン、ピロリン酸メラミン、ポリリン酸メラミンの群から選ばれた少なくとも1種のリン系難燃剤5〜40重量%、
(c)リン酸エステル系化合物0.01〜5重量%、
(d)無機質強化材5〜50重量%の各成分からなる強化された難燃性ポリアミド樹脂組成物。
(A) 30 to 85% by weight of a polyamide resin comprising a copolymer of 60 to 98% by weight of polyamide 66 units and 2 to 40% by weight of polyhexamethylene isophthalamide units;
(B) 5 to 40% by weight of at least one phosphorus-based flame retardant selected from the group of melamine phosphate, melamine pyrophosphate and melamine polyphosphate,
(C) 0.01-5% by weight of a phosphoric ester compound,
(D) A reinforced flame retardant polyamide resin composition comprising 5 to 50% by weight of each component of an inorganic reinforcing material.
前記(a)ポリアミド樹脂が、その硫酸相対粘度(JIS−K6810で測定)が1.5〜3.5であることを特徴とする請求項1に記載の難燃性ポリアミド樹脂組成物。  The flame retardant polyamide resin composition according to claim 1, wherein the polyamide resin (a) has a sulfuric acid relative viscosity (measured according to JIS-K6810) of 1.5 to 3.5. 前記(b)リン系難燃剤が、リン原子を10〜18重量%含有していることを特徴とする請求項1又は2に記載の難燃性ポリアミド樹脂組成物。  The flame retardant polyamide resin composition according to claim 1 or 2, wherein the (b) phosphorus flame retardant contains 10 to 18% by weight of phosphorus atoms. 前記(b)リン系難燃剤が、その平均粒径が0.5〜20μmであることを特徴とする請求項1〜3のいずれかに記載の難燃性ポリアミド樹脂組成物。  The flame retardant polyamide resin composition according to any one of claims 1 to 3, wherein the (b) phosphorus flame retardant has an average particle size of 0.5 to 20 µm. 前記(c)リン酸エステル系化合物が、トリエチルホスフェート、トリブチルホスフェート、トリ−2−エチルヘキシルホスフェート、トリブトキシエチルホスフェート、トリフェニルホスフェート、トリクレジルホスフェート、トリキシレニルホスフェート、クレジルジフェニルホスフェート、トリス(2,6ジメチルフェニル)ホスフェート、2−エチルヘキシルジフェニルホスフェートの群から選ばれた少なくとも1種の化合物であることを特徴とする請求項1〜4のいずれかに記載の難燃性ポリアミド樹脂組成物。  The (c) phosphate ester-based compound is triethyl phosphate, tributyl phosphate, tri-2-ethylhexyl phosphate, tributoxyethyl phosphate, triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, cresyl diphenyl phosphate, tris ( The flame retardant polyamide resin composition according to any one of claims 1 to 4, wherein the flame retardant polyamide resin composition is at least one compound selected from the group of 2,6 dimethylphenyl) phosphate and 2-ethylhexyldiphenyl phosphate. 前記(d)無機質強化材が、ガラス繊維、ウォラストナイト、タルク、焼成カオリン、マイカの群から選ばれた少なくとも1種の強化材であることを特徴とする請求項1〜5のいずれかに記載の難燃性ポリアミド樹脂組成物。  The said (d) inorganic reinforcement material is at least 1 sort (s) of reinforcement material chosen from the group of glass fiber, a wollastonite, a talc, a baking kaolin, and a mica, The claim 1 characterized by the above-mentioned. The flame-retardant polyamide resin composition as described.
JP2000096102A 2000-03-31 2000-03-31 Flame retardant reinforced polyamide resin composition Expired - Lifetime JP4535557B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000096102A JP4535557B2 (en) 2000-03-31 2000-03-31 Flame retardant reinforced polyamide resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000096102A JP4535557B2 (en) 2000-03-31 2000-03-31 Flame retardant reinforced polyamide resin composition

Publications (2)

Publication Number Publication Date
JP2001279090A JP2001279090A (en) 2001-10-10
JP4535557B2 true JP4535557B2 (en) 2010-09-01

Family

ID=18610911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000096102A Expired - Lifetime JP4535557B2 (en) 2000-03-31 2000-03-31 Flame retardant reinforced polyamide resin composition

Country Status (1)

Country Link
JP (1) JP4535557B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005336473A (en) * 2004-04-28 2005-12-08 Ube Ind Ltd Flame-retardant resin composition
US8480815B2 (en) 2011-01-14 2013-07-09 GM Global Technology Operations LLC Method of making Nd-Fe-B sintered magnets with Dy or Tb

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11502554A (en) * 1995-03-31 1999-03-02 シーメンス アクチエンゲゼルシヤフト Flame resistant polyamide
JP2000119514A (en) * 1998-10-14 2000-04-25 Mitsubishi Engineering Plastics Corp Polyamide resin composition
JP2001503075A (en) * 1997-08-26 2001-03-06 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Flame retardant composition

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3243359B2 (en) * 1993-12-28 2002-01-07 鐘淵化学工業株式会社 Additives for surface-treated thermoplastics
JPH11106646A (en) * 1997-10-07 1999-04-20 Mitsubishi Eng Plast Corp Polyamide resin composition
JP3951451B2 (en) * 1998-05-29 2007-08-01 宇部興産株式会社 Flame retardant thermoplastic resin composition with excellent tracking resistance

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11502554A (en) * 1995-03-31 1999-03-02 シーメンス アクチエンゲゼルシヤフト Flame resistant polyamide
JP2001503075A (en) * 1997-08-26 2001-03-06 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Flame retardant composition
JP2000119514A (en) * 1998-10-14 2000-04-25 Mitsubishi Engineering Plastics Corp Polyamide resin composition

Also Published As

Publication number Publication date
JP2001279090A (en) 2001-10-10

Similar Documents

Publication Publication Date Title
CA2539773C (en) Flame resistant aromatic polyamide resin composition and articles therefrom
JP4993425B2 (en) Flame retardant polyamide resin composition
US9475933B2 (en) Antimony trioxide free flame retardant thermoplastic composition
JP5331291B2 (en) Flame retardant reinforced polyamide resin composition
JPWO2002028943A1 (en) Flame retardant reinforced polyamide resin composition
KR101152075B1 (en) Flame retardant polyamide compound
JP4916139B2 (en) Flame retardant polyamide resin composition
JP2001279092A (en) Flame-retardant reinforced polyamide resin-based composition
JP2004292755A (en) Flame-retardant polyamide resin composition
JP2001279091A (en) Flame-retardant reinforced polyamide composition
JP4278779B2 (en) Flame retardant polyamide resin composition
JP4307880B2 (en) Flame retardant reinforced polyamide resin composition
JP2004300189A (en) Polyamide flame-retardant resin composition
JP2000119512A (en) Flame-retardant reinforced polyamide resin composition
JP4535557B2 (en) Flame retardant reinforced polyamide resin composition
JP2004292531A (en) Flame-retardant polyamide resin composition
JP4574043B2 (en) Reinforced flame retardant polyamide resin composition
JP2005350501A (en) Flame-retardant polyamide resin composition excellent in toughness
JP4137470B2 (en) Flame retardant polyamide resin composition
JP2000290498A (en) Reinforced flame-retardant polyamide resin composition
JP4798862B2 (en) Flame retardant polyamide composition
JP2002275370A (en) Flame-retardant polyamide resin composition
JP2005350581A (en) Flame-retardant polyamide resin composition excellent in toughness
JP2002284988A (en) Method for producing flame-retardant reinforced polyamide resin composition
JP2000119514A (en) Polyamide resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100430

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100615

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100615

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4535557

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140625

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term