JP4136805B2 - 半導体装置の評価装置及びそれを用いた半導体装置の評価方法 - Google Patents

半導体装置の評価装置及びそれを用いた半導体装置の評価方法 Download PDF

Info

Publication number
JP4136805B2
JP4136805B2 JP2003173966A JP2003173966A JP4136805B2 JP 4136805 B2 JP4136805 B2 JP 4136805B2 JP 2003173966 A JP2003173966 A JP 2003173966A JP 2003173966 A JP2003173966 A JP 2003173966A JP 4136805 B2 JP4136805 B2 JP 4136805B2
Authority
JP
Japan
Prior art keywords
circuit
wiring
semiconductor device
evaluation apparatus
column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003173966A
Other languages
English (en)
Other versions
JP2005011970A (ja
Inventor
清雄 藤永
信行 森脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2003173966A priority Critical patent/JP4136805B2/ja
Priority to US10/869,872 priority patent/US6927594B2/en
Publication of JP2005011970A publication Critical patent/JP2005011970A/ja
Application granted granted Critical
Publication of JP4136805B2 publication Critical patent/JP4136805B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/02Detection or location of defective auxiliary circuits, e.g. defective refresh counters
    • G11C29/025Detection or location of defective auxiliary circuits, e.g. defective refresh counters in signal lines
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/02Detection or location of defective auxiliary circuits, e.g. defective refresh counters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Semiconductor Integrated Circuits (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ウエハ上に形成された半導体装置におけるコンタクト又はビア等からなる接続部の電気的特性を評価する評価装置に関する。
【0002】
【従来の技術】
半導体装置に用いられ、基板面に垂直な方向の電気的な導通を図るコンタクト及びビアは、重要な構成部品の1つであり、半導体プロセスの開発時はもちろん、半導体装置の量産時においてもコンタクト及びビアの特性評価は重要な評価項目の1つである。なお、一般に、活性層(拡散層)とその上方の配線とを電気的に接続する手段をコンタクトと呼び、下層配線とその上の上層配線とを電気的に接続する手段をビアと呼ぶ。
【0003】
コンタクト及びビアの評価すべき項目は2つある。第1の項目は、初期特性としてコンタクト又はビアの抵抗値が設計値と比べて高抵抗化しているか否かの評価であり、第2の項目は信頼性評価であり、例えば、ストレス(温度、電流)加速試験を行なった後に、コンタクト又はビアの抵抗値が初期値と比較して高抵抗化しているか否かの評価である。
【0004】
以下、従来の半導体装置の評価装置について図面を参照しながら説明する(例えば、特許文献1参照。)。
【0005】
(第1の従来例)
図17は第1の従来例に係る半導体装置の評価装置の模式的な平面構成を示している。
【0006】
図17に示すように、半導体ウエハ200上に、例えばTEG(Test Elemnt Group)として、平面方形状のP型ウエル201が形成され、該p型ウエル201には、互いに直列に接続された複数の抵抗素子202が形成されている。
【0007】
複数の抵抗素子202の各端部は、P型ウエル201の周辺に設けられた第1のパッド203及び第2のパッド204とそれぞれ電気的に接続されている。また、P型ウエル201は、ウエル電位を印加する第3のパッド205と電気的に接続されている。
【0008】
各抵抗素子202は、P型ウエル201に形成された複数のN型活性層(拡散層)202aと、互いに隣接するN型活性層202a同士の上方を跨ぐように形成された配線層202bと、各N型活性層202a及び各配線202bを電気的に接続するコンタクト202cとから構成されている。
【0009】
以下、前記のように構成された半導体装置の評価装置の動作について説明する。まず、各抵抗素子202に対してストレス電流を印加する。具体的には、半導体装置の評価装置を高温、例えば125℃に保った状態で、第2のパッド204及び第3のパッド205をグランドに接続し、続いて、第1のパッド203から第2のパッド204に定電流が流れるように第1のパッド203に電圧を印加する。
【0010】
次に、抵抗素子202の抵抗値を測定する。具体的には、第2のパッド204及び第3のパッド205をグランドに接続し、続いて、第1のパッド203から第2のパッド204に定電流が流れるように第1のパッド203に電圧を印加する。この状態で、第1のパッド203と第2のパッド204とに発生する電圧を測定し、印加した定電流の値から第1のパッド203と第2のパッド204との間の抵抗値を算出する。
【0011】
(第2の従来例)
図18は第2の従来例に係る半導体装置の評価装置の模式的な平面構成を示している。
【0012】
図18に示すように、第2の従来例は、各抵抗素子202の接続端子(ノード)ごとに、第1のパッド211、第2のパッド212、第3のパッド213、…、最後部のパッド214が設けられている。また、P型ウエル201は、ウエル電位を印加するパッド215と電気的に接続されている。
【0013】
以下、前記のように構成された半導体装置の評価装置の動作について説明する。まず、各抵抗素子202に対してストレス電流を印加する。すなわち、半導体装置の評価装置を例えば125℃程度の温度に保った状態で、最後部のパッド214及びウエル電位用のパッド215をグランドに接続する。続いて、第1のパッド211から最後部のパッド214に定電流が流れるように第1のパッド211に電圧を印加する。
【0014】
次に、抵抗素子202の抵抗値を測定する。すなわち、最後部のパッド214及びウエル電位用のパッド215をグランドに接続し、続いて、第1のパッド211から第2のパッド212に定電流が流れるように第1のパッド211に電圧を印加する。この状態で、第1のパッド211と第2のパッド212とに発生する電圧を測定し、印加した定電流値から第1のパッド211と第2のパッド212との間の抵抗値を算出する。
【0015】
同様に、第2のパッド212から第3のパッド213の方向に定電流が流れるように第2のパッド212に電圧を印加し、この状態で、第2のパッド212と第3のパッド213とに発生する電圧を測定し、印加した定電流値から第2のパッド212と第3のパッド213との間の抵抗値を算出する。この作業を残りのパッドに対しても順次行なう。
【0016】
【特許文献1】
特許第2630219号公報(第2頁段落0002−0005、第3図及び第4図)
【0017】
【発明が解決しようとする課題】
半導体装置の微細化に伴って、コンタクト及びビアのサイズが微細化されると共に、集積度を上げるために1つのコンタクト又はビアで異なる配線層の電気的な接続を取るレイアウトが増加しており、いわゆる1個取りのコンタクトは、1チップ当たり500万個にも達している。
【0018】
コンタクトの不良による不良チップの発生率を仮に1%とすると、5億個のコンタクトの中から1個の不良コンタクトを抽出してその場所を特定し、さらに評価して解析する必要がある。
【0019】
さらには、材料の面からは、コバルトシリサイド(CoSi)、銅(Cu)等の新材料が採用され、構造の面からも、SAC(Self Align Contact)構造及びデュアルダマシン構造等の新構造が採用されるようになったことにより、コンタクト又はビアの不良発生率が上昇すると共に、評価や解析が困難となってきている。
【0020】
そこで、コンタクト及びビアを大規模且つ短時間で評価でき、1つのコンタクト又はビアの抵抗変化を数十Ω程度まで検出可能で且つ場所の特定が可能な評価方法が不可欠となってきている。
【0021】
ところが、従来の半導体装置の評価装置は、高抵抗化したコンタクト又はビアの検出能力がなく、且つ充分なストレス電流を印加することができないという問題がある。ストレス電流は、コンタクト又はビアにその不良を加速して発生させるために印加し、その電流値はMOSFETの充放電の電流ピーク値である2mA程度までは必要である。
【0022】
以下、第1の従来例及び第2の従来例に係る問題点を具体的に説明する。
【0023】
まず、図17に示した第1の従来例に係る半導体装置の評価装置を用いて、1ウエハで製品1チップ分の1個取りコンタクトを500万個分評価しようとすると、例えば第1のパッド203と第2のパッド204との間に10万個のコンタクト202cを有する評価素子が1ウエハ当たり50個だけ必要となる。コンタクト1個の抵抗値を20Ωとすると、評価素子1個の総抵抗値は2MΩ(=2000kΩ)となる。10万個のコンタクト202cのうちの1個に不具合を生じて、この不良コンタクトの抵抗値が20kΩになったと仮定すると、この不良コンタクトを含む評価素子の総抵抗値は2020kΩであり、全コンタクト202cが正常である場合の2000kΩと比べて高々1.0%しか増えていない。この1.0%程度の差は測定の誤差範囲であり、1個のコンタクト抵抗値が3桁だけ変化、すなわち20Ω〜20kΩだけ変化したとしても検出することが不可能であることを意味している。
【0024】
続いて、ストレス電流に着目する。図17に示すN型活性層202aはN型の半導体層であり、P型ウエル201はP型の半導体層であり、その逆方向の耐圧は、5V程度しかない。従って、第1のパッド203と第2のパッド204との間に印加可能な上限電圧は5Vとなり、総抵抗値30MΩからストレス電流は最大で170nA程度となる。この値は必要な2mAに対して4桁も小さい。
【0025】
次に、図18に示した第2の従来例に係る半導体装置の評価装置を用いて、1ウエハで製品1チップ分の1個取りコンタクトを500万個分評価しようとすると、例えば第1のパッド211と最後部のパッド214との間に10万個のコンタクト202c有する評価素子が1ウエハ当たり50個だけ必要となる。ここで、評価素子の1個に着目する。第1のパッド211と最後部のパッド214との間に複数のパッド212、213、…、を設けて、例えば、各パッド間でコンタクト202cの10個分(全部で200Ω、20Ω/コンタクト)を評価できるようにしたとする。この場合、第1のパッド211と最後部のパッド214との間には1万個のパッドが必要となる。10個のコンタクト202cうちの1個に不具合を生じて、この不良コンタクトの抵抗値が20kΩになったと仮定すると、この不良コンタクトを含む10個のコンタクトの総抵抗値は20180Ωであり、不良を高感度で容易に検出することが可能である。さらに、2mA以上のストレス電流をも容易に流すことができる。
【0026】
しかしながら、1ウエハ当たりの評価対象素子が50万個にもなることと、1素子の測定に30ms(電圧の印加及び電流の測定)を要することから、1ウエハの測定時間は4時間以上にもなる。
【0027】
このように、第2の従来例に係る半導体装置の評価装置は、比較的に小規模の集積回路を評価するのには適しており、大規模な集積回路に対する評価は現実的ではない。
【0028】
本発明は、前記従来の問題を解決し、コンタクト又はビアを大規模且つ短時間で評価可能であり、また、1つのコンタクト又はビアの抵抗変化を数十Ω程度まで検出可能で且つ不良コンタクトの場所の特定が可能であり、さらに充分なストレス電流を印加できるようにすることを目的とする。
【0029】
【課題を解決するための手段】
前記の目的を達成するため、本発明は、半導体装置の評価装置を、評価対象である抵抗素子ごとにスイッチングトランジスタを設けることにより、複数の抵抗素子を選択的に導通可能とする構成とする。
【0030】
具体的に、本発明に係る第1の半導体装置の評価装置は、基板上に形成され、基板面に対して垂直な方向に設けられた電気的接続手段の電気特性を評価する半導体装置の評価装置を対象とし、ゲートが信号線と接続され、ソース及びドレインのうちの一方が第1の配線と接続されたスイッチングトランジスタと、一の端子が前記スイッチングトランジスタのソース及びドレインのうちの他方と接続され、他の端子が第2の配線と接続された第1の抵抗素子とを備え、第1の抵抗素子は、少なくとも1つの電気的接続手段を含む。
【0031】
第1の半導体装置の評価装置によると、基板面に対して垂直な方向に設けられた電気的接続手段を少なくとも1つ含む第1の抵抗素子に、スイッチングトランジスタが設けられているため、第1の抵抗素子を微細化し、且つ大規模に集積化したとしても、スイッチングトランジスタを選択的に導通させることにより、不良が生じた電気的接続手段の場所を短時間で特定することができる。その上、多数の電気的接続手段を直列に接続することがないため、電気的接続手段の抵抗変化を数十Ω程度まで検出可能となり、さらに、充分なストレス電流をも印加できるようになる。
【0032】
第1の半導体装置の評価装置は、スイッチングトランジスタと第1の配線との間に接続された第2の抵抗素子をさらに備えていることが好ましい。
【0033】
第1の半導体装置の評価装置は、電源端子と接地端子との間に直列に接続されると共にその接続ノードが第1の配線と接続され、導電型が互いに異なる1対のトランジスタからなる第1の回路と、電源端子と接地端子との間に直列に接続されると共にその接続ノードが第2の配線と接続され、導電型が互いに異なる1対のトランジスタからなる第2の回路とをさらに備え、第1の配線は、第1の電圧検知器を介して第1の出力端子と接続されていることが好ましい。
【0034】
この場合に、第2の配線は、第2の電圧検知器を介して第2の出力端子と接続されていることが好ましい。
【0035】
また、この場合に、信号線には、電源電圧とスイッチングトランジスタの閾値電圧との和と同等かそれよりも高い電圧が印加されることが好ましい。
【0036】
本発明に係る第2の半導体装置の評価装置は、基板上に形成され、基板面に対して垂直な方向に設けられた電気的接続手段の電気特性を評価する半導体装置の評価装置を対象とし、それぞれがマトリックス状に配置されており、ゲートがNAND回路の出力端子と接続され、ソース及びドレインのうちの一方が第1の配線と接続されたスイッチングトランジスタと、一の端子がスイッチングトランジスタのソース及びドレインのうちの他方と接続され、他の端子が第2の配線と接続された第1の抵抗素子とを含む複数のユニット回路を備え、第1の抵抗素子は、少なくとも1つの電気的接続手段を含み、複数のユニット回路のうち同一の行に属するユニット回路に含まれる第1の抵抗素子と接続された第2の配線は1本の行方向配線であり、同一の行に属するユニット回路に含まれるNAND回路の一の入力端子は行アドレス制御部と接続され、複数のユニット回路のうち同一の列に属するユニット回路に含まれるスイッチングトランジスタと接続された第1の配線は1本の列方向配線であり、同一の列に属するユニット回路に含まれるNAND回路の他の入力端子は列アドレス制御部と接続されている。
【0037】
第2の半導体装置の評価装置は、本発明の第1の半導体装置の評価装置をマトリックス状に配置してなり、微細化され且つ大規模化された、基板面に対して垂直な方向に設けられた電気的接続手段を含む第1の抵抗素子の評価を確実に行なうことができる。
【0038】
本発明に係る第3の半導体装置の評価装置は、基板上に形成され、基板面に対して垂直な方向に設けられた電気的接続手段の電気特性を評価する半導体装置の評価装置を対象とし、それぞれがマトリックス状に配置されており、ゲートがNAND回路の出力端子と接続され、ソース及びドレインのうちの一方が第1の配線と接続された複数のスイッチングトランジスタと、一の端子が各スイッチングトランジスタのソース及びドレインのうちの他方と接続され、他の端子が第2の配線と接続された複数の第1の抵抗素子とを含む複数のユニット回路を備え、各第1の抵抗素子は、少なくとも1つの電気的接続手段を含み、複数のユニット回路のうち同一の行に属するユニット回路に含まれる複数の第1の抵抗素子と接続された第2の配線は1本の行方向配線であり、同一の行に属するユニット回路に含まれるNAND回路の一の入力端子は行アドレス制御部と接続され、複数のユニット回路のうち同一の列に属するユニット回路に含まれる複数のスイッチングトランジスタと接続された各第1の配線は列方向配線であり、同一の列に属するユニット回路に含まれるNAND回路の他の入力端子は列アドレス制御部と接続されている。
【0039】
第3の半導体装置の評価装置によると、本発明の第2の半導体装置の評価装置と同等の効果を得られる上に、1つのユニット回路に、複数の第1の抵抗素子と複数のスイッチングトランジスタと含み、第1の抵抗素子が多重化されているため、ストレス電流の印加時間及び抵抗値の測定時間を多重化した分だけ削減することができる。
【0040】
第2又は第3の半導体装置の評価装置は、それぞれが、電源端子と接地端子との間に直列に接続されると共にその接続ノードが各列方向配線と接続され、導電型が互いに異なる1対のトランジスタからなる複数の第1の回路と、それぞれが、電源端子と接地端子との間に直列に接続されると共にその接続ノードが各行方向配線と接続され、導電型が互いに異なる1対のトランジスタからなる複数の第2の回路と、第1の回路における1対のトランジスタの各ゲートに制御信号を出力する列ドライバ制御部と、第2の回路における1対のトランジスタの各ゲートに制御信号を出力する行ドライバ制御部とをさらに備え、各列方向配線は、それぞれ電圧検知器を介して出力端子と接続されていることが好ましい。
【0041】
第2又は第3の半導体装置の評価装置は、各スイッチングトランジスタと各第1の配線との間に接続された複数の第2の抵抗素子をさらに備えていることが好ましい。
【0042】
この場合に、第1の抵抗素子又は第2の抵抗素子は、互いに隣接するユニット回路同士に跨るように配置されていることが好ましい。
【0043】
第2の抵抗素子を備えている場合に、第2又は第3の半導体装置の評価装置は、行アドレス制御部、列アドレス制御部、行ドライ制御部及び列ドライバ制御部に制御信号をそれぞれ出力する自励発振回路をさらに備えていることが好ましい。
【0044】
第2の半導体装置の評価装置は、複数のユニット回路のうち、特定のユニット回路を選択して駆動可能とする少なくとも1つのヒューズ素子をさらに備えていることが好ましい。
【0045】
第2又は第3の半導体装置の評価装置において、複数のユニット回路のうち、マトリックスの対角線上に位置するユニット回路に含まれるスイッチングトランジスタは、電流が流れないことが好ましい。
【0046】
第1の半導体装置の評価装置において、基板は半導体からなり、第1の抵抗素子は、基板に形成された活性層により形成されていることが好ましい。
【0047】
第1の半導体装置の評価装置において、基板は半導体からなり、第1の抵抗素子は、基板に形成されたMIS型トランジスタにより形成されていることが好ましい。
【0048】
第2の抵抗素子を備えている場合に、第1の半導体装置の評価装置において、基板は半導体からなり、第1の抵抗素子又は第2の抵抗素子は基板に形成された活性層であることが好ましい。
【0049】
また、第2の抵抗素子を備えている場合に、第1の半導体装置の評価装置において、基板は半導体からなり、第1の抵抗素子及び第2の抵抗素子の少なくとも一方は、基板に形成されたMIS型トランジスタであることが好ましい。
【0050】
第1〜第3の半導体装置の評価装置において、電気的接続手段は、コンタクト又はビアであることが好ましい。
【0051】
第1の半導体装置の評価装置において、電圧検知器(第1及び第2の電圧検知器)はインバータ又は差動増幅器であることが好ましい。
【0052】
【発明の実施の形態】
(第1の実施形態)
本発明の第1の実施形態について図面を参照しながら説明する。
【0053】
図1は本発明の第1の実施形態に係る半導体装置の評価装置の回路構成を示している。
【0054】
図1に示すように、第1の実施形態に係る半導体装置の評価装置は、例えばシリコン(Si)からなる半導体ウエハの一部に形成された、いわゆるTEGであって、それぞれ、評価対象である抵抗素子1と、ソースがカラム電源線11と接続され、ドレインが抵抗素子1の一端子と接続されたN型MOSFETからなるスイッチングトランジスタ2とを含む複数のユニット回路10がマトリックス状に配置されて形成されている。
【0055】
各ユニット回路10において、抵抗素子1の他端子はロウ電源線12と接続され、スイッチングトランジスタ2のゲートは、2入力NANDゲート3の出力端子とインバータ4を介して接続されている。2入力NANDゲート3の一方の入力端子はカラムアドレス信号線13と接続され、その他方の入力端子はロウアドレス信号線14と接続されている。
【0056】
各カラム電源線11はカラムパッド151、152、…、15n(但し、nは1以上の整数。)とそれぞれ接続され、各ロウ電源線12はロウパッド161、162、…、16m(但し、mは1以上の整数。)とそれぞれ接続されている。
【0057】
また、各カラムアドレス信号線13はカラムアドレスコントローラ17と接続され、各ロウアドレス信号線14はロウアドレスコントローラ18と接続されている。
【0058】
図1の拡大図に示すように、各抵抗素子1は、例えば、半導体ウエハの主面上に形成された下層配線1aと、互いに隣接する下層配線1a同士の上方を跨ぐように形成された上層配線1bと、各下層配線1a及び各上層配線1bを電気的に接続し、基板面に対して垂直な方向に設けられた電気的接続手段としてのビア1cとから構成されている。このように、第1の実施形態に係る抵抗素子は、下層配線1a、上層配線1b及びビア1cから構成されるビアチェーンである。ここで、ビア1cの個数は、例えば1〜100個程度である。
【0059】
なお、各抵抗素子1は、下層配線1aに代えて、半導体ウエハの上部に設けた活性層(拡散層)としても良く、また、MOSFET等のトランジスタの活性層(ソース又はドレイン)としても良い。
【0060】
以下、前記のように構成された半導体装置の評価装置に組み込まれたビアチェーンの評価方法を図面に基づいて説明する。
【0061】
図2(a)は図1における領域20を拡大して示し、図2(b)は評価装置の動作タイミングを示している。
【0062】
まず、図2(a)に示すように、複数のユニット回路10のうちの1つ、例えば1行1列目に位置するユニット回路10に対してストレス電流の印加方法を説明する。
【0063】
ロウパッド161に1.8Vの電源電圧を印加し、且つカラムパッド151を接地した状態で、スイッチングトランジスタ2のゲートにハイ電位の制御信号SWTを印加する。ここで、制御信号SWTは、カラムアドレスコントローラ17及びロウアドレスコントローラ18からのアドレス信号により生成される。その結果、抵抗素子1の抵抗値を300Ω、スイッチングトランジスタ2のオン抵抗を100Ωとすると、抵抗素子1を流れるストレス電流Iは4.5mAとなるため、充分なストレス電流を印加することができる。
【0064】
制御信号SWTは、その信号レベルの切換えにより、DCストレス及びACストレスのいずれをも印加することができる。
【0065】
次に、抵抗素子1に対する抵抗値の評価方法について説明する。
【0066】
図2(b)に示すように、ロウパッド161に1.8Vの電源電圧を印加し、且つカラムパッド151を接地した状態で、スイッチングトランジスタ2のゲートにハイ電位の制御信号SWTを印加する。この状態で抵抗素子1に流れる電流Ir0 を測定して、その値が4.5mAであるとする。
【0067】
次に、上述の方法でストレス電流Iを印加した後に測定した電流Ir1 の値が4.05mAと10%だけ減ったとする。この場合、抵抗素子1の抵抗値は、300Ωから344Ωへと約15%増加したことになり、抵抗素子1における数十Ωの抵抗変化を確実に検出することができる。
【0068】
さらに、第1の実施形態においては、カラムアドレスコントローラ17とロウアドレスコントローラ18とを設けていることにより、マトリックス状に配置された複数のユニット回路10の1つを任意に選択できるため、高抵抗化した抵抗素子1を特定することができる。
【0069】
以上のように、第1の実施形態によると、1群のビアチェーンからなる抵抗素子1のそれぞれにスイッチングトランジスタ2を設けることにより、マトリックス状に配置されたメモリセルのように、複数のユニット回路10に対して選択的にストレス電流を印加することができ、且つ選択的に抵抗値を測定して評価することができる。これにより、微細化され且つ大規模に集積化されたビアチェーンを現実的な処理時間で評価できるため、同一の半導体ウエハに形成された半導体集積回路装置におけるビア、又はコンタクトの電気特性を確実に評価することができる。
【0070】
(第2の実施形態)
以下、本発明の第2の実施形態について図面を参照しながら説明する。
【0071】
図3は本発明の第2の実施形態に係る半導体装置の評価装置のユニット回路の回路構成を示している。図3において、図1に示す構成要素と同一の構成要素には同一の符号を付すことにより説明を省略する。
【0072】
第2の実施形態に係る半導体装置の評価装置は、第1の実施形態の構成に、抵抗素子の抵抗値を短時間で評価可能とする構成を付加している。
【0073】
図3に示すように、第2の実施形態に係る半導体装置の評価装置は、カラムパッド15n等及びロウパッド16mに代えて、出力端子がカラム電源線11に接続された第1の回路としてのカラムドライバ用回路21と、出力端子がロウ電源線12に続された第2の回路としてのロウドライバ用回路22と、カラム電源線11に接続された電圧検知器としてのインバータ23と、該インバータ23の出力信号OUTCを受ける出力端子24を有している。ここで、制御信号SWTは、ユニット回路10に含まれるインバータ4からの出力信号である。
【0074】
カラムドライバ用回路21は、電源端子と接地端子との間に直列に接続され、ゲートが第1のカラムドライブ信号CDPを受ける第1のPMOSFET21aと、ゲートが第2のカラムドライブ信号CDNを受ける第1のNMOSFET21bとから構成されている。
【0075】
ロウドライバ用回路22は、電源端子と接地端子との間に直列に接続され、ゲートが第1のロウドライブ信号RDPを受ける第2のPMOSFET22aと、ゲートが第2のロウドライブ信号RDNを受ける第2のNMOSFET22bとから構成されている。
【0076】
以下、前記のように構成された半導体装置の評価装置に組み込まれたビアチェーンの評価方法を図面に基づいて説明する。
【0077】
まず、図4(a)に示すように、ストレス電流の印加方法を説明する。
【0078】
第1のカラムドライブ信号CDP及び第2のカラムドライブ信号CDNの信号電位を共にハイレベルとし、第1のロウドライブ信号RDP及び第2のロウドライブ信号RDNの信号電位を共にローレベルとする。この状態で、制御信号SWTの信号電位をハイレベルとすると、図3に示すように、ストレス電流Isが、ロウドライバ用回路22の第2のPMOSFET22a、抵抗素子1、スイッチングトランジスタ2、及びカラムドライバ用回路21の第1のNMOSFET21bの経路で流れる。
【0079】
ここで、電源電圧を1.8Vとし、第2のPMOSFET22aのオン抵抗を50Ωとし、抵抗素子1の抵抗値を300Ωとし、スイッチングトランジスタ2のオン抵抗を100Ωとし、第1のNMOSFET21bのオン抵抗を50Ωとすると、ストレス電流Isの値は3.6mAとなるため、充分なストレス電流印加することができる。
【0080】
第2の実施形態においても、制御信号SWTは、その信号レベルの切換えにより、DCストレス及びACストレスのいずれをも印加することができる。
【0081】
次に、抵抗素子1に対する抵抗値の評価方法について説明する。
【0082】
図4(b)に示すように、制御信号SWTがローレベルの状態で、第1のカラムドライブ信号CDP及び第2のカラムドライブ信号CDNの電位を共にローレベルとし、第1のロウドライブ信号RDP及び第2のロウドライブ信号RDNの電位を共にハイレベルとすると、カラムドライバ用回路21の電源端子から第1のPMOSFET21aを通って、カラムドライバ用回路21の出力端子であるノードNC1と接続されたカラム電源線11に電荷がチャージされ、その結果、ノードNC1の電位はハイレベルとなる。
【0083】
続いて、ノードNC1の電位がハイレベルになった後に、第1のカラムドライブ信号CDPの電位をハイレベルに遷移することにより、ノードNC1をハイインピーダンス状態とする。このハイインピーダンス状態では、出力端子24における出力信号OUTCの電位はロウレベルである。
【0084】
次に、制御信号SWTの電位をハイレベルに遷移することにより、カラム電源線11に蓄えられていた電荷がスイッチングトランジスタ2、抵抗素子1、及びロウドライバ用回路22の第2のNMOSFET22bを通って接地端子に流れる。このときのノードNC1における電位の降下速度は、電荷の流出程度、すなわち抵抗素子1の抵抗値によって変わる。より具体的には、抵抗値が相対的に高い場合には電位の降下速度は小さく、逆に、抵抗値が相対的に低い場合には電位の降下速度は大きい。例えば図3に示すように、抵抗素子1の抵抗値がr0 からr1 (但し、r0 <r1 である。)に変化した場合には、図4(b)に示すように、ノードNC1における電位の降下速度は抵抗値がr0 の場合よりも小さくなる。その後、ノードNC1の電位がハイレベル電位の2分の1にまで降下した時点で、出力信号OUTCの電位はインバータ23の反転動作によりハイレベルとなる。
【0085】
続いて、制御信号SWTの電位をハイレベルに遷移した時点から、出力信号OUTCの電位がハイレベルに変化する時点までの遅延時間を抵抗値に換算する。例えば、電源電位が1.5Vで、抵抗素子1の抵抗値を400Ω〜20kΩとして測定したところ、1nsの遅延時間の差が約130Ωの抵抗差に相当するという知見を得ている。このことから、ストローブ信号の間隔を0.1nsに設定することにより、13Ωの抵抗変化を検出することができる。
【0086】
ここで、インバータ23に代えて、ハイレベル電位の2分の1の電位を基準電位とする差動増幅器を用いても良い。
【0087】
図5は本発明の第2の実施形態に係る半導体装置の評価装置の構成をマトリックス状に配置して大規模に集積化した例を示している。図5において、図1に示す構成要素と同一の構成要素には同一の符号を付すことにより説明を省略する。
【0088】
図5に示すように、各カラムドライバ用回路21の入力端子は、カラムドライバコントローラ25と接続されている。すなわち、第1のPMOSFET21aのゲートは、カラムドライバコントローラ25から第1のカラムドライブ信号CDPを受け、第1のNMOSFET21bのゲートは、カラムドライバコントローラ25から第2のカラムドライブ信号CDNを受ける。
【0089】
また、各ロウドライバ用回路22の入力端子は、ロウドライバコントローラ26と接続されている。すなわち、第2のPMOSFET22aのゲートは、ロウドライバコントローラ26から第1のロウドライブ信号RDPを受け、第2のNMOSFET22bのゲートは、ロウドライバコントローラ26から第2のロウドライブ信号RDNを受ける。
【0090】
各ユニット回路10ごとの動作及び評価方法は前述した通りであり、カラムアドレスコントローラ17、カラムドライバコントローラ25、ロウアドレスコントローラ18及びロウドライバコントローラ26からの各制御信号によって、各カラム電源線11及び各ロウ電源線12を選択的に制御する。これにより、複数のユニット回路10に対して任意にストレス電流Isを印加することができ、その結果、各ユニット回路10における抵抗素子1の抵抗値を遅延時間として測定可能となる。
【0091】
以上のような構成により、従来は52日も要していた測定時間を15msで測定することができる。
【0092】
(第3の実施形態)
以下、本発明の第3の実施形態について図面を参照しながら説明する。
【0093】
図6は本発明の第3の実施形態に係る半導体装置の評価装置のユニット回路の回路構成を示している。図6において、図3に示す構成要素と同一の構成要素には同一の符号を付すことにより説明を省略する。
【0094】
第3の実施形態に係る半導体装置の評価装置は、第2の実施形態の構成に加え、逆方向のストレス電流を印加可能な構成を有している。
【0095】
図6に示すように、第3の実施形態は、スイッチングトランジスタ2のソースとカラム電源線11との間に、第2の抵抗素子27が接続されていることを特徴とする。ここで、第2の抵抗素子27は、第1の抵抗素子1と同等の構成を持つビアチェーンであることが好ましい。
【0096】
以下、前記のように構成された半導体装置の評価装置に組み込まれたビアチェーンに対するストレス電流の印加方法を図面に基づいて説明する。
【0097】
まず、図7に示すように、第1のカラムドライブ信号CDP及び第2のカラムドライブ信号CDNの信号電位を共にハイレベルとし、第1のロウドライブ信号RDP及び第2のロウドライブ信号RDNの信号電位を共にローレベルとする。この状態で、制御信号SWTの信号電位をハイレベルとすると、図6に示すように、ストレス電流Isが、ロウドライバ用回路22の第2のPMOSFET22a、第1の抵抗素子1、スイッチングトランジスタ2、第2の抵抗素子27、及びカラムドライバ用回路21の第1のNMOSFET21bの経路で流れる。
【0098】
次に、第1のカラムドライブ信号CDP及び第2のカラムドライブ信号CDNの信号電位を共にローレベルに遷移し、逆に、第1のロウドライブ信号RDP及び第2のロウドライブ信号RDNの信号電位を共にハイレベルに遷移すると、今度は、ストレス電流Isが、カラムドライバ用回路21の第1のPMOSFET21a、第2の抵抗素子27、スイッチングトランジスタ2、第1の抵抗素子1、及びロウドライバ用回路22の第2のNMOSFET22bの経路で流れる。
【0099】
ここで、電源電圧を1.8Vとし、第1のPMOSFET21a及び第2のPMOSFET22aの各オン抵抗を50Ωとし、第1の抵抗素子1及び第2の抵抗素子27の各抵抗値を300Ωとし、スイッチングトランジスタ2のオン抵抗を100Ωとし、第1のNMOSFET21b及び第2のNMOSFET22bの各オン抵抗を50Ωとすると、ストレス電流Isの値は2.0mAとなる。従って、第1の抵抗素子1及び第2の抵抗素子27に対して、充分なストレス電流を印加することができると共に、カラム及びロウの両方向に同値のストレス電流Isを印加することができる。
【0100】
制御信号SWTは、その信号レベルの切換えにより、DCストレス及びACストレスのいずれをも印加することができる。
【0101】
以上説明したように、第1の抵抗素子1に対するストレス電流Isを両方向から同一の値で印加可能となるため、ストレス電流Isの印加条件の選択幅を広げることができる。
【0102】
(第4の実施形態)
以下、本発明の第4の実施形態について図面を参照しながら説明する。
【0103】
図8は本発明の第4の実施形態に係る半導体装置の評価装置のユニット回路の回路構成を示している。図8において、図6に示す構成要素と同一の構成要素には同一の符号を付すことにより説明を省略する。
【0104】
第4の実施形態に係る半導体装置の評価装置は、第3の実施形態の構成に、抵抗素子の抵抗値をロウ電源線により測定可能とする構成を付加している。すなわち、第4の実施形態は、ロウドライバ用回路22の出力端子であるノードNR1に、第2のインバータ28を介して第2の出力端子29が設けられている。
【0105】
以下、前記のように構成された半導体装置の評価装置に組み込まれたビアチェーンの抵抗値の評価方法を図面に基づいて説明する。
【0106】
まず、カラム電源線11の第1の出力端子24からの放電(カラム放電)による抵抗値の測定方法を説明する。
【0107】
図9(a)に示すように、制御信号SWTの電位をローレベルの状態で、第1のカラムドライブ信号CDP及び第2のカラムドライブ信号CDNの信号電位を共にローレベルとし、第1のロウドライブ信号RDP及び第2のロウドライブ信号RDNの信号電位を共にハイレベルとする。これにより、カラムドライバ用回路21の電源端子から第1のPMOSFET21aを通ってノードNC1と接続されたカラム電源線11に電荷がチャージされ、ノードNC1の電位はハイレベルとなる。
【0108】
続いて、ノードNC1の電位がハイレベルになった後に、第1のカラムドライブ信号CDPの電位をハイレベルに遷移することにより、ノードNC1をハイインピーダンス状態とする。このハイインピーダンス状態では、第1の出力端子24からの出力信号OUTCの電位はロウレベルである。
【0109】
次に、制御信号SWTをハイレベルに遷移することにより、ノードNC1と接続されたカラム電源線11に蓄えられていた電荷が第2の抵抗素子27、スイッチングトランジスタ2、第1の抵抗素子1及び第2のNMOSFET22bを通ってロウドライバ用回路22の接地端子に流れる。このときのノードNC1における電位の降下速度は、電荷の流出の程度、すなわち第1の抵抗素子1及び第2の抵抗素子27の抵抗値により変わる。より具体的には、抵抗値が相対的に高い場合には電位の降下速度は小さく、逆に抵抗値が相対的に低い場合には電位の降下速度は大きい。
【0110】
その後、ノードNC1の電位がハイレベルの電位の2分の1にまで降下した時点で、出力信号OUTCの電位は第1のインバータ23によってハイレベルとなる。そこで、制御信号SWTをハイレベルに遷移した時点から、出力信号OUTCの電位がハイレベルに変化する時点までの遅延時間t0 を抵抗値に換算する。
【0111】
次に、ロウ電源線12の第2の出力端子29からの放電(ロウ放電)による抵抗値の測定方法を説明する。
【0112】
図9(b)に示すように、制御信号SWTの電位をローレベルの状態で、第1のカラムドライブ信号CDP及び第2のカラムドライブ信号CDNの信号電位を共にハイレベルとし、第1のロウドライブ信号RDP及び第2のロウドライブ信号RDNの信号電位を共にローレベルとする。これにより、ロウドライバ用回路22の電源端子から第2のPMOSFET22aを通ってノードNR1と接続されたロウ電源線12に電荷がチャージされ、ノードNR1の電位はハイレベルとなる。
【0113】
続いて、ノードNR1の電位がハイレベルになった後に、第1のロウドライブ信号RDPの電位をハイレベルに遷移することにより、ノードNR1をハイインピーダンス状態とする。このハイインピーダンス状態では、第2の出力端子29からの出力信号OUTRの電位はロウレベルである。
【0114】
次に、制御信号SWTをハイレベルに遷移することにより、ノードNR1と接続されたロウ電源線12に蓄えられていた電荷が第1の抵抗素子1、スイッチングトランジスタ2、第2の抵抗素子27及び第1のNMOSFET21bを通って接地端子に流れる。このときのノードNR1における電位の降下速度は、前述したように、第1の抵抗素子1及び第2の抵抗素子27の抵抗値により変わる。
【0115】
その後、ノードNR1の電位がハイレベル電位の2分の1にまで降下した時点で、出力信号OUTRの電位は第2のインバータ28によってハイレベルとなる。そこで、制御信号SWTをハイレベルに遷移した時点から、出力信号OUTRの電位がハイレベルに変化する時点までの遅延時間t1 を抵抗値に換算する。
【0116】
ここで、第1のPMOSFET21aと第2のPMOSFET22aとの動作特性、第1のNMOSFET21bと第2のNMOSFET22bとの特性動作、及び第1のインバータ23と第2のインバータ28との動作特性をそれぞれ同一とし、さらに、第1の抵抗素子1と第2の抵抗素子27との抵抗値が同一であれば、カラム放電とロウ放電とのそれぞれの遅延時間は同一となる。
【0117】
しかしながら、例えば、第1の抵抗素子1の抵抗値rr が第2の抵抗素子27の抵抗値rc よりも大きい場合には、電流の流れる方向によってスイッチングトランジスタ2のオン状態のなりやすさが異なる。すなわち、抵抗値が第2の抵抗素子27よりも高い第1の抵抗素子1がスイッチングトランジスタ2のソースとなる場合に、ロウ放電を測定した場合の遅延時間t1 の方がカラム放電を測定した遅延時間t0 よりも長くなる。
【0118】
以上説明したように、第4の実施形態によると、第1の抵抗素子1及び第2の抵抗素子27のうちのいずれが高抵抗状態になったかを判定することができ、このような物理的解析を容易に行なうことができる。
【0119】
(第5の実施形態)
以下、本発明の第5の実施形態について図面を参照しながら説明する。
【0120】
図10は本発明の第5の実施形態に係る半導体装置の評価装置のユニット回路の回路構成を示している。図10において、図6に示す構成要素と同一の構成要素には同一の符号を付すことにより説明を省略する。
【0121】
第5の実施形態に係る半導体装置の評価装置は、第3の実施形態の構成のままで、ロウ電源線による抵抗素子の抵抗値を測定可能とする。
【0122】
前記のように構成された半導体装置の評価装置に組み込まれたビアチェーンの抵抗値の評価方法を図面に基づいて説明する。
【0123】
まず、カラム電源線11による出力端子24からの放電(カラム放電)による抵抗値の測定方法を説明する。
【0124】
図11(a)に示すように、制御信号SWTの電位をローレベルの状態で、第1のカラムドライブ信号CDP及び第2のカラムドライブ信号CDNの信号電位を共にローレベルとし、第1のロウドライブ信号RDP及び第2のロウドライブ信号RDNの信号電位を共にハイレベルとする。これにより、カラムドライバ用回路21の電源端子から第1のPMOSFET21aを通ってノードNC1と接続されたカラム電源線11に電荷がチャージされ、ノードNC1の電位はハイレベルとなる。
【0125】
続いて、ノードNC1の電位がハイレベルになった後に、第1のカラムドライブ信号CDPの電位をハイレベルに遷移することにより、ノードNC1をハイインピーダンス状態とする。このハイインピーダンス状態では、出力端子24からの出力信号OUTCの電位はロウレベルである。
【0126】
次に、制御信号SWTの電位を、電源電位(H)にスイッチングトランジスタ2のしきい値電圧分Vthを足した電圧(以下、H+Vthと表わす。)にまで昇圧することにより、ノードNC1と接続されたカラム電源線11に蓄えられていた電荷が第2の抵抗素子27、スイッチングトランジスタ2、第1の抵抗素子1及び第2のNMOSFET22bを通って接地端子に流れる。このときのノードNC1における電位の降下速度は、電荷の流出の程度、すなわち第1の抵抗素子1及び第2の抵抗素子27の抵抗値により変わる。その後、ノードNC1の電位がハイレベル電位の2分の1にまで降下した時点で、出力信号OUTCの電位はインバータ23の反転動作によりハイレベルとなる。そこで、制御信号SWTの電位を、H+Vthとした時点から、出力信号OUTCの電位がハイレベルに変化する時点までの遅延時間を抵抗値に換算する。
【0127】
次に、ロウ電源線12によるロウドライバ用回路22からの放電(カラム充電)による抵抗値の測定方法を説明する。
【0128】
図11(b)に示すように、制御信号SWTの電位をローレベルの状態で、第1のカラムドライブ信号CDP及び第2のカラムドライブ信号CDNの信号電位を共にハイレベルとし、第1のロウドライブ信号RDP及び第2のロウドライブ信号RDNの信号電位を共にローレベルとする。これにより、カラムドライバ用回路21の出力端子であるノードNC1の電位はローレベルとなる。
【0129】
次に、ノードNC1の電位がローレベルとなった後に、第2のカラムドライブ信号CDNの電位をローレベルに遷移することにより、ノードNC1をハイインピーダンス状態とする。このハイインピーダンス状態では、出力端子24からの出力信号OUTCの電位はハイレベルである。
【0130】
次に、制御信号SWTの電位を、H+Vthに遷移することにより、ロウドライバ用回路22の電源端子から、第2のPMOSFET22a、第1の抵抗素子1、スイッチングトランジスタ2及び第2の抵抗素子27を通って、ノードNC1と接続されたカラム電源線11に電荷が蓄えられる。このときの、ノードNC1の電位の上昇速度は、電荷の蓄積の程度、すなわち第1の抵抗素子1及び第2の抵抗素子27の各抵抗値により変わる。具体的には、抵抗値が相対的に高い場合には電位の上昇速度は小さく、逆に、抵抗値が相対的に低い場合には電位の上昇速度は大きい。
【0131】
その後、ノードNC1の電位がハイレベルの電位の2分の1にまで上昇した時点で、出力信号OUTCの電位はインバータ23によってローレベルとなる。そこで、制御信号SWTの電位をH+Vthとした時点から、出力信号OUTCの電位がローレベルに変化する時点までの遅延時間tを抵抗値に換算する。
【0132】
以上説明したように、第5の実施形態によると、カラム放電及びカラム充電によって、評価対象の抵抗素子1、27の抵抗値を測定できるため、図8に示したような第2のインバータ28を設けることなく、第1の抵抗素子1及び第2の抵抗素子27のうちのいずれが高抵抗であるかの判定が可能となる。
【0133】
(第6の実施形態)
以下、本発明の第6の実施形態について図面を参照しながら説明する。
【0134】
図12は本発明の第6の実施形態に係る半導体装置の評価装置の回路構成を示している。図12において、図5に示す構成要素と同一の構成要素には同一の符号を付すことにより説明を省略する。
【0135】
第6の実施形態に係る半導体装置の評価装置は、第2の実施形態の構成に、装置内部で生成した内部信号により、ストレス電流を印加することができる構成を付加する。
【0136】
具体的には、図12に示すように、第6の実施形態に係る半導体装置の評価装置は、カラムアドレスコントローラ17、ロウアドレスコントローラ18、カラムドライバコントローラ25及びロウドライバコントローラ26とそれぞれ接続された自励発振回路30を有している。
【0137】
各コントローラ17、18、25、26は、自励発振回路30から入力される信号に基づいて各種制御信号を生成することにより、複数のユニット回路10に順次ストレス電流を印加することができる。
【0138】
このような構成により、例えばウエハ状態でのバーンイン試験において、外部から制御信号を入力することなく、ストレス電流を印加することが可能となる。
【0139】
(第7の実施形態)
以下、本発明の第7の実施形態について図面を参照しながら説明する。
【0140】
図13は本発明の第7の実施形態に係る半導体装置の評価装置の回路構成を示している。図13において、図5に示す構成要素と同一の構成要素には同一の符号を付すことにより説明を省略する。
【0141】
第7の実施形態に係る半導体装置の評価装置は、第2の実施形態の構成に、ヒューズ素子を設けることにより物理解析を容易にする構成を付加する。
【0142】
具体的には、図13に示すように、第7の実施形態に係る半導体装置の評価装置は、カラムアドレスコントローラ17、ロウアドレスコントローラ18、カラムドライバコントローラ25及びロウドライバコントローラ26と、各ユニット回路10との接続を一意的に決定する複数のヒューズ素子31aを含むヒューズ回路31を有している。ここで、ヒューズ素子31aの個数は、例えばユニット回路10が2m行2n列の場合にはm+n個である。但し、m及びnはm=nの正の整数である。
【0143】
複数のヒューズ素子31aの切断箇所の組み合わせにより、固定された制御信号パターンが各コントローラ17、18、25、26に入力される。これにより、電源端子と接地端子との2端子に電位を与えるだけで、特定のユニット回路10にのみ評価用電流が流れるようになる。その結果、光学ビーム誘起抵抗変化(OBIRCH)法又は液晶解析等の故障解析手法を用いて、高抵抗化したビアを容易に特定することができる。
【0144】
このように、第7の実施形態によると、1ウエハ当たり数億個も設けられたビアのなかから高抵抗化したビアの位置を確実に特定することができる。
【0145】
(第8の実施形態)
以下、本発明の第8の実施形態について図面を参照しながら説明する。
【0146】
図14は本発明の第8の実施形態に係る半導体装置の評価装置の回路構成を示している。図14において、図5に示す構成要素と同一の構成要素には同一の符号を付すことにより説明を省略する。
【0147】
第8の実施形態は、第2の実施形態の複数のユニット回路10に対して不良のユニット回路10Aを故意に作り込むことにより、回路動作を確実に確認できる構成とする。
【0148】
図14に示すように、第8の実施形態に係る半導体装置の評価装置は、スイッチングトランジスタ2のドレインが電気的に開放状態とされたオープンユニット回路10Aが、例えば、アドレスがそれぞれ、(m,1)、((m−1),2)、…、(2,(n−1))、(1,n)のように、マトリックス状の一対角線上に位置するように配置されている。
【0149】
このような構成を持つ半導体装置の評価装置により各抵抗素子1の抵抗値を測定する測定方法を説明する。
【0150】
まず、各オープンユニット回路10Aと対応するアドレスからの測定結果の期待値をそれぞれ偽(Fail)とする。一方、残りの通常のユニット回路10と対応するアドレスからの測定結果の期待値を真(Pass)とする。ユニット回路10のすべてが正常に動作すれば、ユニット回路10のすべての測定結果は期待値と一致してPass判定となるはずである。
【0151】
しかしながら、例えば、評価装置又はその周辺回路において不具合があり、出力端子からの出力値がハイレベル又はローレベルに固定されてしまうような場合には、オープンユニット回路10Aと対応するアドレスにおいて期待値と測定結果とに不一致が生じるため、不具合が発生していると判定することができる。
【0152】
以上の構成により、評価装置全体が正しく機能しているかを確認することができる。
【0153】
なお、オープンユニット回路10Aの配置位置をマトリックスの対角線上としたが、これに限られず、各カラム電源線11及び各ロウ電源線12ごとに少なくとも1つの交点を持つように配置すればよい。
【0154】
(第9の実施形態)
以下、本発明の第9の実施形態について図面を参照しながら説明する。
【0155】
図15は本発明の第9の実施形態に係る半導体装置の評価装置の回路構成を示している。図15において、図5に示す構成要素と同一の構成要素には同一の符号を付すことにより説明を省略する。
【0156】
第9の実施形態は抵抗素子1を多重選択可能な構成とする。
【0157】
図15に示すように、例えば、各ユニット回路10Bは、2本のカラム電源線111、112と1本のロウ電源線12mとに接続されている。
【0158】
カラム電源線111には、2つのスイッチングトランジスタ2のソースがそれぞれ並列に接続され、各ドレインは抵抗素子1(ビアチェーン)を介してロウ電源線12と並列に接続されている。ロウ電源線12mに沿って隣接するスイッチングトランジスタ2同士のゲートは、インバータ4を介して2入力NANDゲート3と接続されている。
【0159】
従って、1つのユニット回路10Bには、4つの抵抗素子1、4つのスイッチングトランジスタ2、2つの2入力NANDゲート3及び2つのインバータ4が含まれる。また、ユニット回路10Bは、(m/2)行(n/2)列に配置される。
【0160】
以下、前記のように構成された半導体装置の評価装置に組み込まれたビアチェーンの評価方法を図面に基づいて説明する。
【0161】
ここでは、1行1列目のユニット回路10Bに対して、ストレス電流を流す場合を説明する。
【0162】
まず、ロウドライバコントローラ26により、1列目に配置されたユニット回路10Bと接続されたロウドライバ用回路22における第1のロウドライブ信号RDPの電位をローレベルとして、第2のPMOSFET22aをオン状態とする。これと同時に、カラムドライバコントローラ25により、1行目に配置されたユニット回路10Bと接続された2つのカラムドライバ用回路21における第2のカラムドライブ信号CDNの電位をそれぞれハイレベルとして、第1のNMOSFET21bを共にオン状態とする。
【0163】
次に、カラムアドレスコントローラ17と接続されたカラムアドレス信号線131と、ロウアドレスコントローラ18と接続されたロウアドレス信号線141との電位をハイレベルとして、カラム電源線111、112及びロウ電源線121と接続されている2つのスイッチングトランジスタ2のみをオン状態とする。これにより、オン状態となったスイッチングトランジスタ2と接続されている各抵抗素子1にそれぞれストレス電流Isが流れる。
【0164】
次に、オン状態となった2つのスイッチングトランジスタ2をオフ状態に戻した後、ロウドライバコントローラ26により、1列目に配置されたユニット回路10Bと接続されたロウドライバ用回路22における第2のロウドライブ信号RDNの電位をハイレベルとして、第2のNMOSFET22bのみをオン状態とする。
【0165】
次に、カラムドライバコントローラ25により、1行目に配置されたユニット回路10Bと接続された2つのカラムドライバ用回路21における第1のカラムドライブ信号CDPの電位をそれぞれローレベルとして、第1のPMOSFET21aを共にオン状態とする。これにより、カラム電源線111、112がハイレベル電位にチャージされる。
【0166】
次に、オン状態にされた第1のPMOSFET21aを共にオフ状態に戻すことにより、カラム電源線111、112は、ハイレベル電位にチャージした状態で電気的にフローティングとなる。
【0167】
次に、再度、カラム電源線111、112及びロウ電源線121と接続されている2つのスイッチングトランジスタ2のみを選択的にオン状態とする。その結果、カラム電源線111、112にチャージされていた電荷は、それぞれスイッチングトランジスタ2、抵抗素子1、ロウ電源線121及び第2のNMOSFET22bを通って接地端子に流れる。その後、カラム電源線111、112の各電位が電源電位の2分の1にまで低下した時点で、カラム電源線111、112とそれぞれ接続されたインバータ23によって、各出力信号OUTCの電位がローレベルからハイレベルに反転し、それぞれ出力端子24から出力される。
【0168】
そこで、スイッチングトランジスタ2がオン状態となってからインバータ23が反転するまでの時間を抵抗値に換算することにより、2つの抵抗素子1の抵抗値を同時に測定することができる。
【0169】
以上説明したように、第9の実施形態によると、1ユニット回路10Bをアクセスすることにより、2つの抵抗素子1に対して同時にストレス電流を印加することができると共に、2つの抵抗素子1の抵抗値をも同時に測定することできるため、評価時間を半分に削減することができる。
【0170】
なお、ここでは、スイッチングトランジスタ2のゲートを制御する制御信号線に2つのスイッチングトランジスタ2を接続したが、3つ以上でも良く、その個数は問われない。
【0171】
(第10の実施形態)
以下、本発明の第10の実施形態について図面を参照しながら説明する。
【0172】
図16は本発明の第10の実施形態に係る半導体装置の評価装置におけるユニット回路の平面構成を示し、第1の抵抗素子1と第2の抵抗素子27とを持つ、例えば第3の実施形態に係るユニット回路のレイアウト構成の一例を示している。図16において、図6に示す構成要素と同一の構成要素には同一の符号を付すことにより説明を省略する。
【0173】
図16に示すように、各ユニット回路10は、スイッチングトランジスタ2のドレインが第1の抵抗素子(ビアチェーン)1を介してロウ電源線12と接続され、そのソースが第2の抵抗素子(ビアチェーン)27を介してカラム電源線11と接続されている。また、第1の抵抗素子1は下層配線1a、上層配線1b及びビア1cとから構成され、第2の抵抗素子27も同等の構成を有する。
【0174】
第10の実施形態の特徴として、カラム電源線11にが延びる方向に互いに隣接するユニット回路10において、第1の抵抗素子1及び第2の抵抗素子27を構成するそれぞれの配線部分が他のユニット回路10にまで跨って配線されている。従って、カラム電源線11にが延びる方向に互いに隣接するユニット回路10同士の間にはロウ電源線12等の配線が配置されない。
【0175】
例えば、ストレス電流Is及び抵抗測定電流Imは、ロウ電源線12、第1の抵抗素子1、スイッチングトランジスタ2、第2の抵抗素子27、及びカラム電源線11の経路で流れる。
【0176】
このように、第10の実施形態によると、各抵抗素子(ビアチェーン)1、27を互いに隣接するユニット回路10に跨るように配置することにより、各ユニット回路10を微細化して高集積化したとしても、比較的に長い配線自体をも評価することが可能となる。
【0177】
なお、第2の抵抗素子27を設けない構成であっても良い。
【0178】
【発明の効果】
本発明に係る半導体装置の評価装置によると、抵抗素子を微細化し、且つ大規模に集積化したとしても、スイッチングトランジスタを選択的に導通させることにより、不良が生じた電気的接続手段の場所を短時間で特定することができる。その上、電気的接続手段の抵抗変化を数十Ω程度まで検出可能となり、さらに、充分なストレス電流をも印加できるようになる。その結果、数億個ものコンタクト又はビアのなかから1つの不良を検出し、その抵抗値及び不良個所を短時間で特定することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態に係る半導体装置の評価装置を示す回路図である。
【図2】(a)は本発明の第1の実施形態に係る半導体装置の評価装置を構成するユニット回路に印加するストレス電流を模式的に示す回路図である。
(b)は本発明の第1の実施形態に係る半導体装置の評価装置を構成するユニット回路を構成する抵抗素子の抵抗値を評価するタイミング図である。
【図3】本発明の第2の実施形態に係る半導体装置の評価装置のユニット回路を示す模式的な回路図である。
【図4】(a)は本発明の第2の実施形態に係る半導体装置の評価装置のユニット回路を構成する抵抗素子にストレス電流を印加する際のタイミング図である。
(b)は本発明の第2の実施形態に係る半導体装置の評価装置のユニット回路を構成する抵抗素子の抵抗値を測定する際のタイミング図である。
【図5】本発明の第2の実施形態に係る半導体装置の評価装置を示す回路図である。
【図6】本発明の第3の実施形態に係る半導体装置の評価装置のユニット回路を示す模式的な回路図である。
【図7】本発明の第3の実施形態に係る半導体装置の評価装置のユニット回路を構成する抵抗素子にストレス電流を印加する際のタイミング図である。
【図8】本発明の第4の実施形態に係る半導体装置の評価装置のユニット回路を示す模式的な回路図である。
【図9】(a)は本発明の第4の実施形態に係る半導体装置の評価装置のユニット回路を構成する抵抗素子の抵抗値を放電により測定する際のタイミング図である。
(b)は本発明の第4の実施形態に係る半導体装置の評価装置のユニット回路を構成する抵抗素子の抵抗値を充電により測定する際のタイミング図である。
【図10】本発明の第5の実施形態に係る半導体装置の評価装置のユニット回路を示す模式的な回路図である。
【図11】(a)は本発明の第5の実施形態に係る半導体装置の評価装置のユニット回路を構成する抵抗素子の抵抗値を放電により測定する際のタイミング図である。
(b)は本発明の第5の実施形態に係る半導体装置の評価装置のユニット回路を構成する抵抗素子の抵抗値を充電により測定する際のタイミング図である。
【図12】本発明の第6の実施形態に係る半導体装置の評価装置を示す回路図である。
【図13】本発明の第7の実施形態に係る半導体装置の評価装置を示す回路図である。
【図14】本発明の第8の実施形態に係る半導体装置の評価装置を示す回路図である。
【図15】本発明の第9の実施形態に係る半導体装置の評価装置を示す回路図である。
【図16】本発明の第10の実施形態に係る半導体装置の評価装置におけるユニット回路を示すレイアウト図である。
【図17】第1の従来例に係る半導体装置の評価装置を示す模式的な平面図である。
【図18】第2の従来例に係る半導体装置の評価装置を示す模式的な平面図である。
【符号の説明】
1 (第1の)抵抗素子(ビアチェーン)
1a 下層配線
1b 上層配線
1c ビア(電気的接続手段)
2 スイッチングトランジスタ
3 2入力NAND回路
4 インバータ
10 ユニット回路
10A オープンユニット回路
10B ユニット回路
11 カラム電源線(列方向配線)
111 カラム電源線
112 カラム電源線
11n カラム電源線
12 ロウ電源線(行方向配線)
121 カラム電源線
12m カラム電源線
13 カラムアドレス信号線
131 カラムアドレス信号線
13n カラムアドレス信号線
14 ロウアドレス信号線
141 ロウアドレス信号線
14m ロウアドレス信号線
151 カラムパッド
152 カラムパッド
15n カラムパッド
161 ロウパッド
162 ロウパッド
16m ロウパッド
17 カラムアドレスコントローラ(列アドレス制御部)
18 ロウアドレスコントローラ(行アドレス制御部)
21 カラムドライバ用回路(第1の回路)
21a 第1のPMOSFET
21b 第1のNMOSFET
22 ロウドライバ用回路(第2の回路)
22a 第2のPMOSFET
22b 第2のNMOSFET
23 (第1の)インバータ(第1の電圧検知器)
24 (第1の)出力端子
25 カラムドライバコントローラ(カラムドライバ制御部)
26 ロウドライバコントローラ(ロウドライバ制御部)
27 第2の抵抗素子
28 第2のインバータ(第2の電圧検知器)
29 第2の出力端子
30 自励発振回路
31 ヒューズ回路
31a ヒューズ素子

Claims (19)

  1. 基板上に形成され、基板面に対して垂直な方向に設けられた電気的接続手段の電気特性を評価する半導体装置の評価装置であって、
    ゲートが信号線と接続され、ソース及びドレインのうちの一方が第1の配線と接続されたスイッチングトランジスタと、
    一の端子が前記スイッチングトランジスタのソース及びドレインのうちの他方と接続され、他の端子が第2の配線と接続された第1の抵抗素子と
    第1の電源端子と第1の接地端子との間に直列に接続されると共にその接続ノードが前記第1の配線と接続され、導電型が互いに異なる1対のトランジスタからなる第1の回路と、
    第2の電源端子と第2の接地端子との間に直列に接続されると共にその接続ノードが前記第2の配線と接続され、導電型が互いに異なる1対のトランジスタからなる第2の回路とを備え、
    前記第1の抵抗素子は、少なくとも1つの前記電気的接続手段を含み、
    前記第1の配線は、第1の電圧検知器を介して第1の出力端子と接続され、
    前記第1の回路を構成する前記1対のトランジスタの各ゲートは、互いに独立して電圧制御可能であることを特徴とする半導体装置の評価装置。
  2. 前記スイッチングトランジスタと前記第1の配線との間に接続された第2の抵抗素子をさらに備えていることを特徴とする請求項1に記載の半導体装置の評価装置。
  3. 前記第2の配線は、第2の電圧検知器を介して第2の出力端子と接続され
    前記第2の回路を構成する前記1対のトランジスタの各ゲートは、互いに独立して電圧制御可能であることを特徴とする請求項1又は2に記載の半導体装置の評価装置。
  4. 前記信号線には、電源電圧と前記スイッチングトランジスタの閾値電圧との和と同等かそれよりも高い電圧が印加されることを特徴とする請求項に記載の半導体装置の評価装置。
  5. 基板上に形成され、基板面に対して垂直な方向に設けられた電気的接続手段の電気特性を評価する半導体装置の評価装置であって、
    それぞれがマトリックス状に配置されており、ゲートがNAND回路の出力端子と接続され、ソース及びドレインのうちの一方が第1の配線と接続されたスイッチングトランジスタと、一の端子が前記スイッチングトランジスタのソース及びドレインのうちの他方と接続され、他の端子が第2の配線と接続された第1の抵抗素子とを含む複数のユニット回路と、
    それぞれが、第1の電源端子と第1の接地端子との間に直列に接続されると共にその接続ノードが前記各列方向配線と接続され、導電型が互いに異なる1対のトランジスタからなる複数の第1の回路と、
    それぞれが、第2の電源端子と第2の接地端子との間に直列に接続されると共にその接続ノードが前記各行方向配線と接続され、導電型が互いに異なる1対のトランジスタからなる複数の第2の回路と、
    前記第1の回路における1対のトランジスタの各ゲートに制御信号を出力する列ドライバ制御部と、
    前記第2の回路における1対のトランジスタの各ゲートに制御信号を出力する行ドライバ制御部とを備え、
    前記第1の抵抗素子は、少なくとも1つの前記電気的接続手段を含み、
    前記複数のユニット回路のうち同一の行に属するユニット回路に含まれる前記第1の抵抗素子と接続された前記第2の配線は1本の行方向配線であり、
    前記同一の行に属するユニット回路に含まれる前記NAND回路の一の入力端子は行アドレス制御部と接続され、
    前記複数のユニット回路のうち同一の列に属するユニット回路に含まれる前記スイッチングトランジスタと接続された前記第1の配線は1本の列方向配線であり、
    前記同一の列に属するユニット回路に含まれる前記NAND回路の他の入力端子は列アドレス制御部と接続され
    前記各列方向配線は、それぞれ第1の電圧検知器を介して第1の出力端子と接続され、
    前記各第1の回路を構成する前記1対のトランジスタの各ゲートは、互いに独立して電圧制御可能であることを特徴とする半導体装置の評価装置。
  6. 基板上に形成され、基板面に対して垂直な方向に設けられた電気的接続手段の電気特性を評価する半導体装置の評価装置であって、
    それぞれがマトリックス状に配置されており、ゲートがNAND回路の出力端子と接続され、ソース及びドレインのうちの一方が第1の配線と接続された複数のスイッチングトランジスタと、一の端子が前記各スイッチングトランジスタのソース及びドレインのうちの他方と接続され、他の端子が第2の配線と接続された複数の第1の抵抗素子とを含む複数のユニット回路と、
    それぞれが、第1の電源端子と第1の接地端子との間に直列に接続されると共にその接続ノードが前記各列方向配線と接続され、導電型が互いに異なる1対のトランジスタからなる複数の第1の回路と、
    それぞれが、第2の電源端子と第2の接地端子との間に直列に接続されると共にその接続ノードが前記各行方向配線と接続され、導電型が互いに異なる1対のトランジスタからなる複数の第2の回路と、
    前記第1の回路における1対のトランジスタの各ゲートに制御信号を出力する列ドライバ制御部と、
    前記第2の回路における1対のトランジスタの各ゲートに制御信号を出力する行ドライバ制御部とを備え、
    前記各第1の抵抗素子は、少なくとも1つの前記電気的接続手段を含み、
    前記複数のユニット回路のうち同一の行に属するユニット回路に含まれる前記複数の第1の抵抗素子と接続された前記第2の配線は1本の行方向配線であり、
    前記同一の行に属するユニット回路に含まれる前記NAND回路の一の入力端子は行アドレス制御部と接続され、
    前記複数のユニット回路のうち同一の列に属するユニット回路に含まれる前記複数のスイッチングトランジスタと接続された前記各第1の配線は列方向配線であり、
    前記同一の列に属するユニット回路に含まれる前記NAND回路の他の入力端子は列アドレス制御部と接続され
    前記各列方向配線は、それぞれ第1の電圧検知器を介して第1の出力端子と接続され、
    前記各第1の回路を構成する前記1対のトランジスタの各ゲートは、互いに独立して電圧制御可能であることを特徴とする半導体装置の評価装置。
  7. 前記各スイッチングトランジスタと前記各第1の配線との間に接続された複数の第2の抵抗素子をさらに備えていることを特徴とする請求項5又は6に記載の半導体装置の評価装置。
  8. 前記各行方向配線は、それぞれ第2の電圧検知器を介して第2の出力端子と接続され、
    前記各第2の回路を構成する前記1対のトランジスタの各ゲートは、互いに独立して電圧制御可能であることを特徴とする請求項5〜7のうちのいずれか1項に記載の半導体装置の評価装置。
  9. 前記第1の抵抗素子又は第2の抵抗素子は、互いに隣接するユニット回路同士に跨るように配置されていることを特徴とする請求項に記載の半導体装置の評価装置。
  10. 前記行アドレス制御部、列アドレス制御部、行ドライバ制御部及び列ドライバ制御部に制御信号をそれぞれ出力する自励発振回路をさらに備えていることを特徴とする請求項5又は6に記載の半導体装置の評価装置。
  11. 前記複数のユニット回路のうち、特定のユニット回路を選択して駆動可能とする少なくとも1つのヒューズ素子をさらに備えていることを特徴とする請求項に記載の半導体装置の評価装置。
  12. 前記複数のユニット回路のうち、マトリックスの対角線上に位置するユニット回路に含まれるスイッチングトランジスタは、電流が流れないことを特徴とする請求項に記載の半導体装置の評価装置。
  13. 前記基板は半導体からなり、
    前記第1の抵抗素子は、前記基板に形成された活性層又はMIS型トランジスタにより形成されていることを特徴とする請求項1〜12のうちのいずれか1項に記載の半導体装置の評価装置。
  14. 前記基板は半導体からなり、
    記第2の抵抗素子は、前記基板に形成された活性層又はMIS型トランジスタにより形成されていることを特徴とする請求項2、7又は9に記載の半導体装置の評価装置。
  15. 前記電気的接続手段は、コンタクト又はビアであることを特徴とする請求項1、5及び6のうちのいずれか1項に記載の半導体装置の評価装置。
  16. 前記第1の電圧検知器は、インバータ又は差動増幅器であることを特徴とする請求項1〜15のうちのいずれか1項に記載の半導体装置の評価装置。
  17. 前記第2の電圧検知器は、インバータ又は差動増幅器であることを特徴とする請求項3又は8に記載の半導体装置の評価装置。
  18. 請求項1に記載の半導体装置の評価装置を用いた半導体装置の評価方法であって、
    前記スイッチングトランジスタをオフ状態として、前記第1の回路を制御して前記第1の配線に電荷を蓄積すると共に、前記第2の回路を制御して前記第2の配線を電気的に前記第2の接地端子と接続する工程(a)と、
    前記工程(a)よりも後に、前記第1の回路を制御して前記第1の配線をハイインピーダンス状態とする工程(b)と、
    前記工程(b)よりも後に、前記スイッチングトランジスタをオン状態として、前記第1の配線に蓄積された電荷を、前記スイッチングトランジスタ、前記第1の抵抗素子及び前記第2の回路を経て前記第2の接地端子に放出する工程(c)とを備え、
    前記工程(c)において、前記スイッチングトランジスタをオン状態とした時点から、前記第1の配線の電位が低下して前記第1の電圧検知回路が基準電圧を検知して前記第1の出力端子に現れる出力信号が反転する時点までの遅延時間を検出し、当該遅延時間を抵抗値に換算することを特徴とする半導体装置の評価方法。
  19. 請求項3に記載の半導体装置の評価装置を用いた半導体装置の評価方法であって、
    前記スイッチングトランジスタをオフ状態として、前記第1の回路を制御して前記第1の配線に電荷を蓄積すると共に、前記第2の回路を制御して前記第2の配線を電気的に前記第2の接地端子と接続する工程(a)と、
    前記工程(a)よりも後に、前記第1の回路を制御して前記第1の配線をハイインピーダンス状態とする工程(b)と、
    前記工程(b)よりも後に、前記スイッチングトランジスタをオン状態として、前記第1の配線に蓄積された電荷を、前記スイッチングトランジスタ、前記第1の抵抗素子及び前記第2の回路を経て前記第2の接地端子に放出する工程(c)と、
    前記スイッチングトランジスタをオフ状態として、前記第2の回路を制御して前記第2の配線に電荷を蓄積すると共に、前記第1の回路を制御して前記第1の配線を電気的に前記第1の接地端子と接続する工程(d)と、
    前記工程(d)よりも後に、前記第2の回路を制御して前記第2の配線をハイインピーダンス状態とする工程(e)と、
    前記工程(e)よりも後に、前記スイッチングトランジスタをオン状態として、前記第2の配線に蓄積された電荷を、前記第1の抵抗素子、前記スイッチングトランジスタ及び前記第1の回路を経て前記第1の接地端子に放出する工程(f)とを備え、
    前記工程(c)において、前記スイッチングトランジスタをオン状態とした時点から、前記第1の配線の電位が低下して前記第1の電圧検知回路が基準電圧を検知して前記第1の出力端子に現れる出力信号が反転する時点までの遅延時間を検出し、当該遅延時間を抵抗値に換算し、
    前記工程(f)において、前記スイッチングトランジスタをオン状態とした時点から、前記第2の配線の電位が低下して前記第2の電圧検知回路が基準電圧を検知して前記第2の出力端子に現れる出力信号が反転する時点までの遅延時間を検出し、当該遅延時間を抵抗値に換算することを特徴とする半導体装置の評価方法。
JP2003173966A 2003-06-18 2003-06-18 半導体装置の評価装置及びそれを用いた半導体装置の評価方法 Expired - Fee Related JP4136805B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003173966A JP4136805B2 (ja) 2003-06-18 2003-06-18 半導体装置の評価装置及びそれを用いた半導体装置の評価方法
US10/869,872 US6927594B2 (en) 2003-06-18 2004-06-18 Evaluation device for evaluating semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003173966A JP4136805B2 (ja) 2003-06-18 2003-06-18 半導体装置の評価装置及びそれを用いた半導体装置の評価方法

Publications (2)

Publication Number Publication Date
JP2005011970A JP2005011970A (ja) 2005-01-13
JP4136805B2 true JP4136805B2 (ja) 2008-08-20

Family

ID=33516190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003173966A Expired - Fee Related JP4136805B2 (ja) 2003-06-18 2003-06-18 半導体装置の評価装置及びそれを用いた半導体装置の評価方法

Country Status (2)

Country Link
US (1) US6927594B2 (ja)
JP (1) JP4136805B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7365556B2 (en) * 2004-09-02 2008-04-29 Texas Instruments Incorporated Semiconductor device testing
US7603598B2 (en) * 2007-04-03 2009-10-13 Faraday Technology Corp. Semiconductor device for testing semiconductor process and method thereof
JP2011014703A (ja) 2009-07-01 2011-01-20 Renesas Electronics Corp 半導体集積回路装置、及び半導体集積回路装置のテスト方法
KR102386907B1 (ko) * 2015-09-10 2022-04-14 삼성전자주식회사 반도체 집적 회로
US20180080992A1 (en) * 2016-09-21 2018-03-22 Apple Inc. Determination of a battery-model parameter

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2630219B2 (ja) 1993-10-06 1997-07-16 日本電気株式会社 半導体装置
EP0863515B1 (en) * 1997-03-05 2004-05-26 STMicroelectronics S.r.l. Connection matrix for a semiconductor integrated microcontroller
DE19959426C1 (de) * 1999-12-09 2001-01-18 Siemens Ag Koppelelement und Koppelanordnung

Also Published As

Publication number Publication date
JP2005011970A (ja) 2005-01-13
US6927594B2 (en) 2005-08-09
US20040257104A1 (en) 2004-12-23

Similar Documents

Publication Publication Date Title
US6503765B1 (en) Testing vias and contacts in integrated circuit fabrication
Chen et al. On-chip testing of blind and open-sleeve TSVs for 3D IC before bonding
US7622942B2 (en) Method and apparatus for measuring device mismatches
US8178876B2 (en) Method and configuration for connecting test structures or line arrays for monitoring integrated circuit manufacturing
US10768222B1 (en) Method and apparatus for direct testing and characterization of a three dimensional semiconductor memory structure
JP4136805B2 (ja) 半導体装置の評価装置及びそれを用いた半導体装置の評価方法
US20080278182A1 (en) Test Structure for Statistical Characterization of Metal and Contact/Via Resistances
US7304485B2 (en) Analysis of the quality of contacts and vias in multi-metal fabrication processes of semiconductor devices, method and test chip architecture
JP2551340B2 (ja) コンタクト抵抗測定用半導体集積回路装置およびその測定方法
JP2997048B2 (ja) 半導体障害分析用テストチップ
US12007431B2 (en) Test circuit and method for operating the same
US9859177B2 (en) Test method and structure for integrated circuits before complete metalization
US6867580B1 (en) Structures and methods for determining the effects of high stress currents on conducting layers and contacts in integrated circuits
US6836106B1 (en) Apparatus and method for testing semiconductors
TWI619186B (zh) 用於監測半導體製造之方法及裝置
Cabrini et al. A test structure for contact and via failure analysis in deep-submicrometer CMOS technologies
US8723528B2 (en) Active 2-dimensional array structure for parallel testing
US10177053B2 (en) Interconnect monitor utilizing both open and short detection
JP2013026406A (ja) 半導体装置及びその評価方法
JP2005203578A (ja) 半導体装置の評価方法
JP2006112942A (ja) 半導体素子およびこれを用いた実装検査方法
JP2006118910A (ja) トランジスタの評価装置及びそれを用いたトランジスタの評価方法
JP2009031179A (ja) 実装試験評価装置および実装試験評価方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080603

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees