JP4134993B2 - X-ray detector - Google Patents

X-ray detector Download PDF

Info

Publication number
JP4134993B2
JP4134993B2 JP2005086849A JP2005086849A JP4134993B2 JP 4134993 B2 JP4134993 B2 JP 4134993B2 JP 2005086849 A JP2005086849 A JP 2005086849A JP 2005086849 A JP2005086849 A JP 2005086849A JP 4134993 B2 JP4134993 B2 JP 4134993B2
Authority
JP
Japan
Prior art keywords
light
powder
detection body
detector
filling degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005086849A
Other languages
Japanese (ja)
Other versions
JP2006266936A (en
Inventor
英雄 新田
山口  聡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2005086849A priority Critical patent/JP4134993B2/en
Publication of JP2006266936A publication Critical patent/JP2006266936A/en
Application granted granted Critical
Publication of JP4134993B2 publication Critical patent/JP4134993B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Luminescent Compositions (AREA)
  • Measurement Of Radiation (AREA)

Description

本発明は、X線のエネルギーを吸収して発光するシンチレータ粉末を用いて作製したX
線検出体およびX線検出装置に関する。
The present invention is an X produced using a scintillator powder that absorbs X-ray energy and emits light.
The present invention relates to a line detector and an X-ray detection apparatus.

X線のエネルギーを吸収して発光するシンチレータは、X線検出装置(以降、検出装置
と称す)のX線検出体(以降、検出体と称す)に用いられている。このような検出装置は
、検出体の発光をフォトダイオードなどの光検出器で電流に変換することで、X線の量を
測定している。検出体の発光強度や発光波長はシンチレータ材料に依存するので、用途に
応じた適切な材料を選択することが必要になる。
A scintillator that emits light by absorbing X-ray energy is used in an X-ray detector (hereinafter referred to as a detector) of an X-ray detector (hereinafter referred to as a detector). Such a detector measures the amount of X-rays by converting the light emitted from the detection body into a current using a photodetector such as a photodiode. Since the emission intensity and emission wavelength of the detector depend on the scintillator material, it is necessary to select an appropriate material according to the application.

X線を検出するシンチレータには、GdSやCdWOなどのセラミックスがあ
る。セラミックスシンチレータは、原料粉末をホットプレスやHIPなどの焼結や、チョ
クラルスキー法などの単結晶化でバルクにされる。セラミックスシンチレータの検出体は
X線の照射に対して発光強度が強く、感度良くX線が検出できるので、X線CT装置をは
じめとする多くの医療装置に用いられている。
Examples of scintillators that detect X-rays include ceramics such as Gd 2 O 2 S and CdWO 4 . In ceramic scintillators, raw material powders are made into bulk by sintering such as hot pressing or HIP, or by single crystallization such as Czochralski method. Ceramic scintillator detectors have strong emission intensity with respect to X-ray irradiation and can detect X-rays with high sensitivity, and are therefore used in many medical devices including X-ray CT apparatuses.

セラミックスシンチレータは、粉末の状態でもX線のエネルギーを吸収し発光する。こ
の性質を利用して、セラミックスシンチレータの粉末(以下、シンチレータ粉末と称す)
と樹脂との混合材から検出体を作製することが、特許文献1や特許文献2などに開示され
ている。
Ceramic scintillators absorb X-ray energy and emit light even in a powder state. Utilizing this property, ceramic scintillator powder (hereinafter referred to as scintillator powder)
Patent Document 1 and Patent Document 2 disclose that a detection body is produced from a mixed material of resin and resin.

特開2001−188085JP2001-1888085 特開2004−325178JP 2004-325178 A

特許文献1は、シンチレータ粉末とエポキシ樹脂からなる混合材より作製した検出体を
、X線検出装置に用いた例である。光カプラと検出体の熱膨張差を小さくすることで、光
カプラと検出体との界面に剥離が生じるのが防止されるとしている。
Patent Document 1 is an example in which a detection body made of a mixed material composed of scintillator powder and an epoxy resin is used in an X-ray detection apparatus. By reducing the difference in thermal expansion between the optical coupler and the detection body, it is said that peeling at the interface between the optical coupler and the detection body is prevented.

特許文献2は、マトリックス状に配した複数のフォトダイオード上に、シンチレータ粉
末と樹脂からなる混合材より検出体を形成した例である。混合材に分散材を添加すること
で、シンチレータ粉末の均一充填が可能になり、放射線検出装置の輝度斑が低減されると
している。
Patent Document 2 is an example in which a detection body is formed from a mixture of scintillator powder and resin on a plurality of photodiodes arranged in a matrix. By adding a dispersing material to the mixed material, it is possible to uniformly fill the scintillator powder, and to reduce luminance unevenness of the radiation detecting device.

焼結では大面積かつ一体物の検出体を作製しようとしても、焼結装置の処理室以上に大
きい検出体は作製できない。シンチレータ粉末と樹脂からなる混合材で検出体を作製すれ
ば、大きな型を用意するだけで、容易に大面積で一体物の検出体を作製できる。
Even if an attempt is made to produce a detection object having a large area and a single object by sintering, a detection object larger than the processing chamber of the sintering apparatus cannot be produced. If a detection body is made of a mixed material composed of scintillator powder and resin, a single body detection body can be easily manufactured with a large area by simply preparing a large mold.

シンチレータ粉末にはGdやGa、Biなどの重金属が含まれる。これら重金属は比較
的高価であると同時に、流出による生体や環境への悪影響が懸念される。従って、検出体
に含まれる重金属はできるだけ少ないほうが好ましい。シンチレータ粉末と樹脂の混合材
より作製される検出体は、バルクに比べてシンチレータ粉末の使用量が少なく、重金属量
の少ない検出体にすることができる。
The scintillator powder contains heavy metals such as Gd, Ga, and Bi. These heavy metals are relatively expensive, and at the same time, there are concerns about adverse effects on living bodies and the environment due to outflow. Therefore, it is preferable that the detection object contains as little heavy metal as possible. A detector produced from a mixture of scintillator powder and resin can be a detector that uses less scintillator powder and less heavy metal than a bulk.

しかし、検出体に含まれる重金属量を少なくするため、単純にシンチレータ粉末量を少
なくすると、検出体の発光強度が大きく低下してしまい、発光強度の強い検出体を作製す
るのが困難であった。
However, simply reducing the amount of scintillator powder in order to reduce the amount of heavy metal contained in the detector, the emission intensity of the detector is greatly reduced, making it difficult to produce a detector with a high emission intensity. .

本発明は上記問題を鑑み、検出体の発光強度を大きく低下させることなく、重金属を含
んだシンチレータ粉末の使用量を低減することが可能な、検出体および検出体を用いたX
線検出装置を提供するものである。
In view of the above problems, the present invention is capable of reducing the amount of scintillator powder containing heavy metal without greatly reducing the light emission intensity of the detection body, and the X using the detection body and the detection body.
A line detection apparatus is provided.

本発明における検出装置は、シンチレータ粉末と透光性樹脂を混練し硬化させた検出体
と、光を電気に変換する光検出器を有し、シンチレータ粉末の充填度が検出体厚み方向で
ほぼ連続的に変化し、光検出器側の充填度Aが反対面側の充填度Bより大きく、充填度A
と充填度Bの比率A/Bが1.1以上5.0以下であることが好ましい。
The detection device in the present invention is a detection body in which scintillator powder and a translucent resin are kneaded and cured.
And a detector for converting light into electricity, the filling degree of the scintillator powder changes substantially continuously in the thickness direction of the detector, and the filling degree A on the photodetector side is more than the filling degree B on the opposite side. Large, filling degree A
The ratio A / B of the filling degree B is preferably 1.1 or more and 5.0 or less.

シンチレータ粉末と透光性樹脂を混錬し硬化させた検出体は、型に流し込み固化するこ
とで検出体素材が作製できるので、大面積で一体物の検出体を容易にかつ安価に作製でき
る。本発明に用いる透光性樹脂は溶剤に溶かして、シンチレータ粉末と混練し混合材とす
る。溶剤の量は適宜調整して、扱い易い粘度にすることができる。また、シンチレータ粉
末と透光性樹脂の混合材は予め硬化前に脱泡処理をして、空気の巻き込まれを除去するこ
とが好ましい。検出体に空気が巻き込まれると、検出体に発光強度斑が生じるので好まし
くない。
Since the detection body made by mixing and curing the scintillator powder and the translucent resin is poured into a mold and solidified, the detection body material can be manufactured easily and inexpensively in a large area. The translucent resin used in the present invention is dissolved in a solvent and kneaded with scintillator powder to obtain a mixed material. The amount of the solvent can be adjusted as appropriate to make the viscosity easy to handle. Moreover, it is preferable that the mixed material of the scintillator powder and the translucent resin is previously subjected to defoaming treatment before curing to remove air entrainment. It is not preferable that air is caught in the detection body because emission intensity spots are generated on the detection body.

本発明の検出体は、シンチレータ粉末の充填度が検出体厚み方向でほぼ連続的に変化し
、光を電気に変換する光検出器側の充填度Aが反対面側の充填度Bより大きいので、検出
体の発光強度を大きく下げることがない。光検出器から近い部位に比べ、離れた部位のシ
ンチレータ粉末からの発光は、光検出器の総受光量への寄与分は小さい。シンチレータ粉
末の充填度を光検出器側で大きくすることで、反対面側を小さくしても、検出体の発光強
度は大きく下がらない。また、シンチレータ粉末の充填度を連続的に変化させることで、
硬化した検出体が歪な形状になることを防ぐことができる。
In the detection body of the present invention, the filling degree of the scintillator powder changes substantially continuously in the thickness direction of the detection body, and the filling degree A on the photodetector side that converts light into electricity is larger than the filling degree B on the opposite side. The emission intensity of the detection body is not greatly reduced. Compared with the part close to the photodetector, the light emitted from the scintillator powder at a remote part has a small contribution to the total amount of light received by the photodetector. By increasing the filling degree of the scintillator powder on the photodetector side, even if the opposite surface side is reduced, the emission intensity of the detection body does not decrease greatly. In addition, by continuously changing the degree of filling of the scintillator powder,
It can prevent that the hardening detection body becomes a distorted shape.

本発明におけるシンチレータ粉末の充填度は、顕微鏡などで検出体組織を観察し、観察
面積に占めるシンチレータ粉末面積を百分率で示す。例えば、充填度Aの部分を顕微鏡で
観察し、観察面積に占めるシンチレータ粉末の面積が50%であれば、充填度Aは50%
とする。観察面積に占めるシンチレータ粉末の面積百分率は、検出体の顕微鏡写真に縦横
格子状の線を引き、シンチレータ粉末が含まれる格子をカウントして比率を計算する。縦
横格子間隔が小さいほど、正確な充填度が計算できるのは言うまでない。また、これら一
連の作業は、コンピュータを用いた画像処理などによって算出しても良い。
The degree of filling of the scintillator powder in the present invention indicates the percentage of the scintillator powder area in the observation area by observing the detected body tissue with a microscope or the like. For example, when the portion of the filling degree A is observed with a microscope and the area of the scintillator powder occupying the observation area is 50%, the filling degree A is 50%.
And The area percentage of the scintillator powder in the observation area is calculated by drawing vertical and horizontal grid lines on the micrograph of the detection object and counting the grids containing the scintillator powder. It goes without saying that the smaller the vertical / horizontal lattice spacing is, the more accurate the degree of filling can be calculated. Also, the series of operations may be calculated by image processing using a computer.

シンチレータ粉末の充填度を光検出器側から反対面側にほぼ連続的に変化させる方法と
しては、例えば、シンチレータ粉末を透過性樹脂中で沈降させながら硬化させる方法があ
る。重金属を含むシンチレータ粉末は透光性樹脂より比重が大きいため、透光性樹脂中で
沈降し易いので、充填度がほぼ連続的に変化した状態にできる。沈降は自然放置して重力
で沈降させても良いし、強制的な加速度、例えば遠心力などを用いて沈降させても良い。
充填度の検出体厚み方向の変化は、透光性樹脂の種類、硬化温度などで変えることができ
る。また、透光性樹脂に分散材を添加することでも充填度の検出体厚み方向の変化を変え
ることができる。
As a method of changing the degree of filling of the scintillator powder almost continuously from the photodetector side to the opposite surface side, for example, there is a method of curing the scintillator powder while settling in a permeable resin. Since the scintillator powder containing a heavy metal has a specific gravity larger than that of the light-transmitting resin, it easily settles in the light-transmitting resin, so that the filling degree can be changed almost continuously. Sedimentation may be allowed to stand naturally and settle by gravity, or may be caused to settle using forced acceleration, such as centrifugal force.
The change of the filling degree in the thickness direction of the detection body can be changed by the kind of the translucent resin, the curing temperature, and the like. Moreover, the change of the filling degree in the thickness direction of the detector can also be changed by adding a dispersing agent to the translucent resin.

シンチレータ粉末の充填度比率A/Bは、1.1未満では検出体にシンチレータ粉末が
ほぼ均一に含まれた状態に近くなり、シンチレータ粉末の使用量を少なくできない。また
、充填度比率A/Bが5.0を超えると、検出体の発光強度が大きく低下し、光検出器か
らの出力が小さくなるので好ましくない。本発明の検出体における光検出器側の充填度A
と反対面側の充填度Bの比率A/Bは、1.1以上5.0以下であることが好ましく、よ
り好ましい充填度の比率A/Bは、1.5以上3.0以下である。
When the filling degree ratio A / B of the scintillator powder is less than 1.1, it becomes close to a state in which the scintillator powder is contained almost uniformly in the detection body, and the amount of scintillator powder used cannot be reduced. On the other hand, when the filling degree ratio A / B exceeds 5.0, the emission intensity of the detector is greatly reduced, and the output from the photodetector is reduced, which is not preferable. Degree of filling A on the photodetector side in the detector of the present invention
The ratio A / B of the filling degree B on the opposite surface side is preferably 1.1 or more and 5.0 or less, and the more preferable filling ratio A / B is 1.5 or more and 3.0 or less. .

本発明におけるシンチレータ粉末は、GdS(以降、GOSと称す)もしくは、
GdGaAl12、(以降、GGAOと称す)CdWO(以降、CWOと称す
)、CsI(以降、CIと称す)、BiGe12(以降、BGOと称す)から選ば
れる化合物で、平均粒径が10〜100μmであることが好ましい。
The scintillator powder in the present invention is Gd 2 O 2 S (hereinafter referred to as GOS) or
Gd 3 Ga 2 Al 3 O 12 (hereinafter referred to as GGAO) CdWO 4 (hereinafter referred to as CWO), CsI (hereinafter referred to as CI), Bi 4 Ge 3 O 12 (hereinafter referred to as BGO) The average particle size is preferably 10 to 100 μm.

セラミックシンチレータはX線に対して発光強度が強く、本発明の検出体に用いる粉末
には好ましい材料である。GOSやGGAO、CWO、CI、BGOは、可視光領域の発
光強度が大きい材料である。これらセラミックスシンチレータの粉末は、原料の混合物を
一次焼成後、水洗浄や酸洗浄した材料で良く、焼結や単結晶化でバルクになったものを再
度微粉砕したものでも良い。バルクを再度微粉砕して粉末にする方法は、バルク材を加工
等した際に発生した端材や不要になった材料を使用できるので、資源の再利用およびコス
トの面で大変好ましい方法である。バルクの微粉砕には、ボールミルやスタンプミルを用
いることができる。シンチレータ粉末の粒径分布は分級などでシャープな分布にするのが
好ましい。ブロードな粒度分布では検出体に発光強度斑が生じ易く、均一な発光強度の検
出体を得るのが困難である。
The ceramic scintillator has a strong emission intensity with respect to X-rays and is a preferable material for the powder used in the detector of the present invention. GOS, GGAO, CWO, CI, and BGO are materials having high emission intensity in the visible light region. The ceramic scintillator powder may be a material obtained by subjecting a mixture of raw materials to primary firing and then water-washing or acid-washing, or may be obtained by re-pulverizing a powder that has been bulked by sintering or single crystallization. The method of finely pulverizing the bulk again to make a powder is a very preferable method in terms of resource reuse and cost because it can use the scrap material generated when processing the bulk material and the material that is no longer needed. . A ball mill or a stamp mill can be used for bulk pulverization. The particle size distribution of the scintillator powder is preferably a sharp distribution such as classification. The broad particle size distribution tends to cause uneven emission intensity on the detection body, and it is difficult to obtain a detection body with uniform emission intensity.

本発明におけるシンチレータ粉末の平均粒径は、レーザー式粒度分布測定器で測定した
値とする。平均粒径を大きくすれば検出体の発光強度を強くできるが、平均粒径を大きく
しすぎると検出体に発光強度斑が生じ易くなる。平均粒径を小さくすればシンチレータ粉
末の透光性樹脂への分散が良くなり、検出体の発光強度斑が生じ難くなる。しかし、平均
粒径を小さくするには粉砕や分級に手間が掛かる上、長時間粉砕による不純物が混入する
等の悪影響も生じ、発光強度を低下させる原因になるので好ましくない。安定した発光強
度の検出体を得るには、シンチレータ粉末の平均粒径は10μm以上100μm以下にす
ることが好ましく、より好ましい平均粒径は10μm以上50μm以下である。
The average particle size of the scintillator powder in the present invention is a value measured with a laser particle size distribution analyzer. Increasing the average particle size can increase the emission intensity of the detection body. However, if the average particle diameter is too large, emission intensity spots tend to occur on the detection body. If the average particle size is reduced, the dispersion of the scintillator powder into the light-transmitting resin is improved, and unevenness in the emission intensity of the detection body is less likely to occur. However, reducing the average particle size is not preferable because it takes time and effort for pulverization and classification, and also causes adverse effects such as mixing of impurities due to pulverization for a long time, leading to a decrease in emission intensity. In order to obtain a detector with stable emission intensity, the scintillator powder preferably has an average particle size of 10 μm or more and 100 μm or less, and more preferably an average particle size of 10 μm or more and 50 μm or less.

本発明における透光性樹脂は、波長450〜650nmの範囲で、85%以上の光透過
率である樹脂が好ましい。例えば、エポキシやポリエステル、アクリル、シリコンゴム、
ビニールなどの透光性樹脂を用いることができる。
The translucent resin in the present invention is preferably a resin having a light transmittance of 85% or more in a wavelength range of 450 to 650 nm. For example, epoxy, polyester, acrylic, silicone rubber,
A translucent resin such as vinyl can be used.

本発明では、検出体の発光波長領域を光検出器の分光感度範囲内とすることで、効率良
くX線を検出できる。シンチレータ粉末は可視波長領域で発光強度の大きい材料が好まし
い。シンチレータ粉末からの発光を効率良く透過させる為に、透光性樹脂も可視波長領域
である波長450〜650nmの光を効率良く透過する材料が好ましい。透光性樹脂の光
透過率は85%以上が好ましく、より好ましい光透過率は90%以上である。
In the present invention, X-rays can be detected efficiently by setting the emission wavelength region of the detector within the spectral sensitivity range of the photodetector. The scintillator powder is preferably a material having high emission intensity in the visible wavelength region. In order to efficiently transmit the light emitted from the scintillator powder, the translucent resin is preferably a material that efficiently transmits light having a wavelength of 450 to 650 nm, which is a visible wavelength region. The light transmittance of the translucent resin is preferably 85% or more, and more preferably 90% or more.

本発明における検出体は、検出体厚み方向の平均充填度が35%以上60%以下である
ことが好ましい。
The detector in the present invention preferably has an average filling degree in the thickness direction of the detector of 35% or more and 60% or less.

本発明における検出体厚み方向の平均充填度は、検出体を厚み方向に切断して、充填度
Aから充填度Bの厚み方向で等間隔に充填度を測定し算術的に求めた平均値をいう。測定
間隔が小さいほど、正確に充填度を計算できるのは言うまでもない。平均充填度が35%
未満であると、検出体に含まれるシンチレータ粉末量が少なく、発光強度が小さい検出体
になるので好ましくない。平均充填度が60%を超えると、透光性樹脂の量が少なく機械
的強度の弱い検出体になるので好ましくない。十分な発光強度と機械的強度の検出体にす
るには、平均充填度は35%以上60%以下であることが好ましく、より好ましい平均充
填度は45%以上60%以下である。
The average filling degree in the thickness direction of the detection body in the present invention is an average value obtained by cutting the detection body in the thickness direction and measuring the filling degree at equal intervals in the thickness direction from the filling degree A to the filling degree B. Say. Needless to say, the smaller the measurement interval, the more accurately the degree of filling can be calculated. Average filling degree is 35%
If it is less than the range, it is not preferable because the amount of scintillator powder contained in the detection body is small and the detection body has a low emission intensity. If the average filling degree exceeds 60%, the amount of the translucent resin is small and the detection body has a low mechanical strength, which is not preferable. In order to obtain a detector having sufficient light emission intensity and mechanical strength, the average filling degree is preferably 35% or more and 60% or less, and more preferably 45% or more and 60% or less.

本発明におけるX線検出装置は、検出体のシンチレータ粉末の充填度が大きい面側に光
検出器が、充填度が小さい面側に光反射率80%以上の光反射材が、波長450〜650
nmの範囲で85%以上の光透過率を有する透光性樹脂で固着されていることが好ましい
The X-ray detection apparatus according to the present invention has a wavelength of 450 to 650 with a photodetector on the surface side of the scintillator powder with a large filling degree of the detector and a light reflecting material with a light reflectance of 80% or more on the surface side with a small filling degree.
It is preferably fixed with a translucent resin having a light transmittance of 85% or more in the range of nm.

光検出器には、フォトダイオードやCCD等を用いることができる。特に、フォトダイ
オードは小型で安価なので、本発明のX線検出装置に用いるには好適な光検出器である。
A photodiode, CCD, or the like can be used for the photodetector. In particular, since the photodiode is small and inexpensive, it is a suitable photodetector for use in the X-ray detection apparatus of the present invention.

光反射材には、TiOやAl、ZrOなどの白色の光反射材を用いるのが好
ましい。光反射材はバルクもしくは粉末と樹脂の混合材を用いることができる。特にルチ
ル型TiOからなる光反射材は光反射効率に優れ、より好ましい光反射材である。光反
射材の光反射率は、光検出器の受光効率を高めるために80%以上であることが好ましく
、より好ましい光反射率は90%以上である。
As the light reflecting material, a white light reflecting material such as TiO 2 , Al 2 O 3 , or ZrO 2 is preferably used. The light reflecting material can be a bulk or a mixed material of powder and resin. In particular, a light reflecting material made of rutile TiO 2 is excellent in light reflecting efficiency and is a more preferable light reflecting material. The light reflectance of the light reflecting material is preferably 80% or more in order to increase the light receiving efficiency of the photodetector, and a more preferable light reflectance is 90% or more.

検出体と光検出器、もしくは検出体と光反射材の固着用透光性樹脂には、エポキシやポ
リエステル、アクリル、シリコン、ゴム、ビニールなどが主成分の樹脂を用いることがで
きる。固着用透光性樹脂を、検出体の透光性樹脂と同じ材料にすれば、検出体と固着用透
光性樹脂との熱膨張差が小さくなり、検出体と光検出器、もしくは検出体と光反射材間の
剥がれを防止できるので好ましい。固着用透光性樹脂も、検出体の透光性樹脂と同様、波
長450〜650nmの範囲の光を効率良く透過することが好ましく、85%以上の光透
過率であることが好ましい。
As the light-transmitting resin for fixing the detection body and the photodetector or the detection body and the light reflecting material, a resin whose main component is epoxy, polyester, acrylic, silicon, rubber, vinyl, or the like can be used. If the light-transmitting resin for fixing is made of the same material as the light-transmitting resin for the detecting body, the difference in thermal expansion between the detecting body and the light-transmitting resin for fixing becomes small, and the detecting body and the photodetector or the detecting body. And the light reflecting material can be prevented from peeling off. The fixing translucent resin, like the translucent resin of the detection body, preferably transmits light in the wavelength range of 450 to 650 nm efficiently, and preferably has a light transmittance of 85% or more.

本発明における検出装置は、シンチレータ粉末と透光性樹脂を混練した混合材が、光を
電気に変換する光検出器上に塗布、硬化されている。混合材に含まれる透光性樹脂でシン
チレータ粉末と光検出器が一体化されており、光検出器と反対側面であるシンチレータ粉
末の充填度が小さい面に、光反射率80%以上の光反射材が設けられていることが好まし
い。
In the detection device according to the present invention, a mixed material obtained by kneading scintillator powder and a translucent resin is applied and cured on a photodetector that converts light into electricity. Light scintillator powder and photodetector are integrated with translucent resin contained in the mixed material, and light reflection with a light reflectivity of 80% or more is provided on the side of the scintillator powder that is opposite to the photodetector with a small filling degree. It is preferable that a material is provided.

本発明の検出装置は、シンチレータ粉末と透光性樹脂を混練した混合材を光検出器上に
塗布、硬化して、一括して複数の検出体を作製できる。一作業で複数の検出装置を作製で
きるのでコスト的に有利である。また、マトリックス状に検出体を配した検出装置とする
こともできる。さらに、本発明は検出体を容易に薄くできる構造であり、検出装置の薄型
化に寄与することもできる。
The detection device of the present invention can apply a mixed material obtained by kneading scintillator powder and a light-transmitting resin onto a photodetector and cure it to collectively produce a plurality of detectors. Since a plurality of detection devices can be manufactured in one operation, it is advantageous in terms of cost. Moreover, it can also be set as the detection apparatus which has arrange | positioned the detection body in the matrix form. Furthermore, the present invention has a structure in which the detection body can be easily thinned, and can contribute to a reduction in the thickness of the detection apparatus.

本発明の線検出装置は、シンチレータ粉末と透光性樹脂を混練して硬化させた検出体
光を電気に変換する光検出器を有し、検出体の厚み方向でシンチレータ粉末の充填度を連
続的に変化させ、充填度の大きい面側に光検出器を配したことに特徴がある。検出体の発
光強度を大きく低下させることなく、重金属を含むシンチレータ粉末の使用量が少ない、
検出体および検出体を用いた検出装置を提供することができる。
Line detecting apparatus of the present invention includes a detector cured by kneading scintillator powder and the transparent resin
It is characterized by having a photodetector for converting light into electricity, continuously changing the filling degree of the scintillator powder in the thickness direction of the detection body, and arranging the photodetector on the surface side where the filling degree is large. The amount of scintillator powder containing heavy metal is small without greatly reducing the emission intensity of the detector.
A detection body and a detection device using the detection body can be provided.

以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。実施例1は
、検出体の詳細な製造方法と、充填度比率A/BとCCDセンサ受光強度との関係を示す
。実施例2は、シンチレータ材料および粉末の平均粒径とCCDセンサ受光強度ばらつき
との関係を示す。実施例3に、透光性樹脂の光透過率とCCDセンサ受光強度との関係を
示す。実施例4は、検出体厚み方向の平均充填度とCCDセンサ受光強度との関係を示す
。実施例5には、検出体に光反射材と光検出器が透光性樹脂で固着されたX線検出装置の
例を示す。実施例6には、シンチレータ粉末と透光性樹脂を混練した混合材が光検出器上
に塗布、硬化されたX線検出装置の例を示す。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Example 1 shows a detailed manufacturing method of the detection body and a relationship between the filling degree ratio A / B and the light intensity received by the CCD sensor. Example 2 shows the relationship between the scintillator material and the average particle size of the powder and the variation in the received light intensity of the CCD sensor. Example 3 shows the relationship between the light transmittance of the translucent resin and the light intensity received by the CCD sensor. Example 4 shows the relationship between the average filling degree in the thickness direction of the detection body and the light intensity received by the CCD sensor. Example 5 shows an example of an X-ray detection apparatus in which a light reflecting material and a light detector are fixed to a detection body with a translucent resin. Example 6 shows an example of an X-ray detection apparatus in which a mixed material obtained by kneading scintillator powder and a translucent resin is applied and cured on a photodetector.

本発明の実施例として、異なる充填度比率A/Bの検出体を作製した例を示す。本発明
検出装置の模式図を図1に示す。検出体1はシンチレータ粉末3と透光性樹脂4からな
り、光検出器2側の充填度Aが反対面側の充填度Bより大きいことが特徴である。
As an example of the present invention, an example is shown in which detectors with different filling degree ratios A / B are produced. A schematic diagram of the detection apparatus of the present invention is shown in FIG. The detector 1 is composed of the scintillator powder 3 and the translucent resin 4 and is characterized in that the filling degree A on the photodetector 2 side is larger than the filling degree B on the opposite surface side.

本実施例ではシンチレータ粉末にGOSを用い、GOS粉末は次の手順で作製した。G
とS、Pr11の原料粉末とフラックス成分であるNaとNaC
を所定量秤量して混合した。この混合物を坩堝に充填し、1300〜1400℃の大
気炉中で7〜9時間焼成してGOS粗粉末を生成した。GOS粗粉末中に含まれるフラッ
クスや不純物は塩酸と温水を用いて除去した。GOS粗粉末は、ボールミルを用いて更に
微粉砕した後、分級機でシャープな粒径分布のGOS粉末とした。GOS粉末の平均粒径
はレーザー式粒度分布測定器で測定したところ約50μmであった。GOS粉末は溶剤に
溶かした透光性エポキシ樹脂と混練してペースト状の混合体にした。
In this example, GOS was used as the scintillator powder, and the GOS powder was produced by the following procedure. G
Raw material powder of d 2 O 3 and S, Pr 6 O 11 and Na 4 P 2 O 7 and NaC which are flux components
A predetermined amount of O 3 was weighed and mixed. This mixture was filled in a crucible and fired in an atmospheric furnace at 1300 to 1400 ° C. for 7 to 9 hours to produce a GOS coarse powder. The flux and impurities contained in the GOS coarse powder were removed using hydrochloric acid and warm water. The coarse GOS powder was further finely pulverized using a ball mill and then made into a GOS powder having a sharp particle size distribution by a classifier. The average particle size of the GOS powder was about 50 μm as measured by a laser particle size distribution analyzer. The GOS powder was kneaded with a translucent epoxy resin dissolved in a solvent to form a paste-like mixture.

検出体1の作製手順を図2に示す。図2a)に示す、平均粒径30μmのGOS粉末5
0gと透光性エポキシ樹脂50gからなるペースト状の混合体5を、図2b)に示す枡形
状のアルミニウム型6に流し込んで80℃で硬化させ硬化体1”を得た。硬化時、混合材
中のGOS粉末を自重により一部沈降させ、深さ方向のGOS粉末充填度をほぼ連続的に
変化させた。図2c)に示すように、約1.2mm厚に硬化した硬化体1”をアルミニウ
ム型6から外し、厚さ1mmまで研磨して硬化体1’を得た。研磨した面は、アルミニウ
ム型6の内底と接する面と反対の自由硬化面である。1mm厚に研磨した硬化体1’を、
図2d)に示すように10mm×10mmの細目状に切断して検出体1とした。
A procedure for producing the detector 1 is shown in FIG. GOS powder 5 having an average particle size of 30 μm shown in FIG.
2 g of paste-like mixture 5 consisting of 0 g and translucent epoxy resin was poured into a bowl-shaped aluminum mold 6 shown in FIG. 2 b) and cured at 80 ° C. to obtain a cured body 1 ″. The GOS powder inside was partially settled by its own weight, and the GOS powder filling degree in the depth direction was changed almost continuously. As shown in FIG. 2c), the cured body 1 ″ cured to about 1.2 mm thickness was obtained. It removed from the aluminum type | mold 6 and grind | polished to thickness 1mm, and hardened | cured body 1 'was obtained. The polished surface is a free-curing surface opposite to the surface in contact with the inner bottom of the aluminum mold 6. A cured body 1 ′ polished to a thickness of 1 mm,
As shown in FIG. 2 d), the detection body 1 was cut into a fine shape of 10 mm × 10 mm.

該検出体1の充填度Aと充填度Bの比率A/Bは、シンチレータ粉末量と透光性のエポ
キシ樹脂量の比率、樹脂の硬化温度条件等の要件により変えることができる。これらの要
件を変えて製作した検出体1の充填度の変化を図3に示す。充填度をほぼ連続的に変化さ
せ得る事を説明するのが目的であるため、変化させた要件の詳細説明は省いている。図3
の充填度は、検出体厚み方向に対する垂直断面を観察し、光検出器と反対面側の充填度B
を1とする相対値で表した。本実施例の検出体1は、図3に示すようにシンチレータ粉末
の充填度が厚み方向にほぼ連続的に変化し、光検出器側の充填度Aが反対面側の充填度B
より大きい検出体である。
The ratio A / B between the filling degree A and filling degree B of the detection body 1 can be changed according to requirements such as the ratio of the amount of scintillator powder to the amount of translucent epoxy resin, and the curing temperature condition of the resin. FIG. 3 shows a change in the filling degree of the detection body 1 manufactured by changing these requirements. Since the purpose is to explain that the degree of filling can be changed almost continuously, a detailed description of the changed requirements is omitted. FIG.
The degree of filling is determined by observing a cross section perpendicular to the thickness direction of the detector and filling degree B on the side opposite to the photodetector.
Is expressed as a relative value of 1. As shown in FIG. 3, in the detector 1 of this embodiment, the filling degree of the scintillator powder changes substantially continuously in the thickness direction, and the filling degree A on the photodetector side is the filling degree B on the opposite side.
It is a larger detector.

図4に、充填度比率A/BとCCDセンサ受光強度、粉末使用量との関係を示す。硬化
前のGOS粉末と樹脂の比率、硬化温度、表面研磨量を変え、光検出器側の充填度Aを約
35%で一定となるようにし、充填度比率A/Bが異なる検出体1を作製した。A/B=
1の検出体は、通常の2倍近い約2.1mm厚の硬化体1”を作製し、充填度A側の部分
を主に使用して作製した。充填度Aと充填度Bは、各面のシンチレータ粉末の面積比から
算出し、充填度Aを充填度Bで除することで充填度比率A/Bを算出した。
FIG. 4 shows the relationship between the filling degree ratio A / B, the light intensity received by the CCD sensor, and the amount of powder used. By changing the ratio of the GOS powder and resin before curing, the curing temperature, and the amount of surface polishing, the filling degree A on the photodetector side is made constant at about 35%, and the detector 1 having a different filling degree ratio A / B is obtained. Produced. A / B =
The detection body No. 1 was produced by producing a hardened body 1 ″ having a thickness of about 2.1 mm, which is almost twice as large as a normal one, and mainly using the portion on the filling degree A side. It calculated from the area ratio of the scintillator powder on the surface, and the filling degree ratio A / B was calculated by dividing the filling degree A by the filling degree B.

検出体の発光強度は、エリアイメージングセンサとX線照射装置からなる測定系で評価
した。エリアイメージングセンサは、画素サイズ0.2mm×0.2mmのCCDセンサ
を平面マトリックス状に配したもので、画素毎に発光強度を測定できる。本実施例では、
検出体の充填度Aの面とエリアイメージングセンサ面が相対するように配置し、充填度B
の面側からX線を照射して検出体の発光強度を評価した。検出体の発光強度は、検出体と
相対する各CCDセンサの平均受光強度により代表した。本実施例では、各条件それぞれ
10個づつの試料を測定し、測定値の平均をとった。
The emission intensity of the detection body was evaluated by a measurement system including an area imaging sensor and an X-ray irradiation apparatus. The area imaging sensor is a CCD sensor having a pixel size of 0.2 mm × 0.2 mm arranged in a planar matrix, and can measure the emission intensity for each pixel. In this example,
The surface of the detection body with a filling degree A and the area imaging sensor face are arranged to face each other, and the filling degree B
X-rays were irradiated from the surface side of the light and the emission intensity of the detection body was evaluated. The light emission intensity of the detection body is represented by the average received light intensity of each CCD sensor facing the detection body. In this example, 10 samples were measured for each condition, and the average of the measured values was taken.

検出体におけるシンチレータ粉末の使用量Aは、水中置換法で測定した検出体の比重b
、検出体の重量c、シンチレータ粉末の密度d、エポキシ樹脂の密度eから算出した。シ
ンチレータ粉末の使用量A=(b−e)×c/(d−e)で求めた。
The amount A of scintillator powder used in the detection object is the specific gravity b of the detection object measured by the underwater substitution method.
It was calculated from the weight c of the detection body, the density d of the scintillator powder, and the density e of the epoxy resin. The amount of scintillator powder used was determined by A = (b−e) × c / (d−e).

図4に、CCDセンサの受光強度およびシンチレータ粉末の使用量を、充填度比率A/
B=1の検出体の値を100とする相対値で示す。検出体の充填度比率A/Bが5.0以
下では、検出体の発光強度であるCCDセンサの受光強度は93%以上である。しかし、
充填度比率A/Bが5.0を超え5.6位になると、CCDセンサの受光強度は約80%
まで急激に低下してしまう。また、検出体のシンチレータ粉末使用量は、充填度比率A/
Bを1.1以上にすることで、直線的に減少させることができる。充填度Aと充填度Bの
比率A/Bを1.1以上5.0以下にすることで、発光強度を大きく低下させることなく
、シンチレータ粉末の使用量を少なくした検出体が作製できた。
FIG. 4 shows the received light intensity of the CCD sensor and the amount of scintillator powder used as a filling ratio A /
A relative value with the value of the detection object of B = 1 being 100 is shown. When the filling degree ratio A / B of the detection body is 5.0 or less, the received light intensity of the CCD sensor, which is the emission intensity of the detection body, is 93% or more. But,
When the filling degree ratio A / B exceeds 5.0 and reaches 5.6, the received light intensity of the CCD sensor is about 80%.
It will drop rapidly. Further, the amount of scintillator powder used for the detection object is the filling ratio A /
When B is 1.1 or more, it can be decreased linearly. By setting the ratio A / B of the filling degree A and the filling degree B to 1.1 or more and 5.0 or less, a detection body with a small amount of scintillator powder used could be produced without greatly reducing the emission intensity.

本発明の他の実施例として、図5と図6にシンチレータ材料および粉末の平均粒径とC
CDセンサ受光強度ばらつきとの関係を示す。本実施例に用いたシンチレータ材料はGO
SとGGAO、CWO、CI、BGOである。焼結や単結晶などのシンチレータバルク材
の端材や残材をボールミルで微粉砕した後、分級し平均粒径が6.1μmから122μm
のシンチレータ粉末を得た。シンチレータ粉末の平均粒径を5μm未満にすることも試み
たが、収率が悪く、検出体を作製するには至らなかった。得られたシンチレータ粉末を溶
剤に溶かした透光性エポキシ樹脂と混合し、実施例1と同様の方法で検出体を作製した。
検出体の充填度比率A/Bは、2.5以上3.5以下の範囲に合わせ、検出体は10mm
×10mm×1mmの寸法に加工した。
As another embodiment of the present invention, FIGS. 5 and 6 show the average particle size and C of the scintillator material and powder.
The relationship with CD sensor light reception intensity variation is shown. The scintillator material used in this example is GO.
S, GGAO, CWO, CI, BGO. Sintered and single crystal scintillator bulk materials and residual materials are finely pulverized with a ball mill and classified to have an average particle size of 6.1 μm to 122 μm.
Scintillator powder was obtained. Although an attempt was made to reduce the average particle size of the scintillator powder to less than 5 μm, the yield was poor and a detector could not be produced. The obtained scintillator powder was mixed with a translucent epoxy resin dissolved in a solvent, and a detector was prepared in the same manner as in Example 1.
The filling degree ratio A / B of the detection body is set in the range of 2.5 to 3.5, and the detection body is 10 mm.
It processed into the dimension of * 10mm * 1mm.

検出体の発光強度は、実施例1と同様に、X線用のエリアイメージングセンサとX線照
射装置からなる測定系で評価した。検出体の充填度Aの面とエリアイメージングセンサ面
が相対するように配置し、充填度Bの面側からX線を照射して検出体の発光強度をCCD
センサの受光強度で測定した。シンチレータ粉末の平均粒径の最適値を得るため、受光強
度の絶対値ではなく受光強度のばらつきで評価を行った。受光強度ばらつきは、検出体と
相対するCCDセンサの受光強度値から、最大受光強度値と最低受光強度値の差の半分を
平均受光強度値で除し、百分率で求めた。
As in Example 1, the emission intensity of the detector was evaluated by a measurement system including an X-ray area imaging sensor and an X-ray irradiation apparatus. Arrange the surface of the detection body A so that the surface of the area imaging sensor faces, and irradiate the X-ray from the surface of the surface of the filling B to determine the emission intensity of the detection body.
It was measured by the received light intensity of the sensor. In order to obtain the optimum value of the average particle size of the scintillator powder, the evaluation was performed based on variations in received light intensity rather than absolute values of received light intensity. The variation in received light intensity was obtained as a percentage by dividing the difference between the maximum received light intensity value and the minimum received light intensity value by the average received light intensity value from the received light intensity value of the CCD sensor facing the detector.

図5と図6に評価結果を示す。図5は、シンチレータ材料と平均粒径、検出体の充填度
比率A/B、CCDセンサの受光強度ばらつき(%)の関係を示している。図6は、CC
Dセンサの受光強度ばらつきとシンチレータ粉末の平均粒径の関係を示したものである。
図5と図6から、シンチレータ粉末の平均粒径が6.1μm以上100μm以下の範囲で
は、CCDセンサの受光強度ばらつきは約5%以下であり、検出体の発光強度が安定して
いる。言い換えると、検出体に発光強度斑がない良質な検出体であると言える。シンチレ
ータ粉末の平均粒径が100μmを超えると、CCDセンサの受光強度ばらつきは急激に
大きくなってしまう。平均粒径が100μmを超えると、受光強度ばらつきは10%を超
えた値となり、発光強度斑のため検出体として使用することは難しいことが確認できた。
5 and 6 show the evaluation results. FIG. 5 shows the relationship between the scintillator material, the average particle diameter, the filling degree ratio A / B of the detection body, and the variation in received light intensity (%) of the CCD sensor. Figure 6 shows CC
It shows the relationship between the variation in received light intensity of the D sensor and the average particle size of the scintillator powder.
From FIG. 5 and FIG. 6, when the average particle size of the scintillator powder is in the range of 6.1 μm to 100 μm, the variation in received light intensity of the CCD sensor is about 5% or less, and the emission intensity of the detection body is stable. In other words, it can be said that the detection body is a high-quality detection body having no emission intensity unevenness. When the average particle size of the scintillator powder exceeds 100 μm, the variation in received light intensity of the CCD sensor increases rapidly. When the average particle diameter exceeds 100 μm, the variation in the received light intensity exceeds 10%, and it has been confirmed that it is difficult to use as a detector due to uneven emission intensity.

本発明の他の実施例として、図7に透光性樹脂の光透過率とCCDセンサ受光強度との
関係を示す。本実施例には、GOSのシンチレータ粉末を用いた。GOS材の端材や残材
をボールミルで粉砕した後、分級して平均粒径55μmのシンチレータ粉末とした。シン
チレータ粉末は溶剤に溶かした透光性樹脂と混合し、実施例1と同様の方法で検出体を作
製した。本実施例では、透光性樹脂に光透過率が約75%から約95%のものを用いた。
検出体は、充填度比率を2.8以上3.2以下、平均充填度を約55%となるようにした
。検出体は10mm×10mm×1mmの寸法に加工した。
As another embodiment of the present invention, FIG. 7 shows the relationship between the light transmittance of the translucent resin and the light intensity received by the CCD sensor. In this example, GOS scintillator powder was used. The end material and the remaining material of the GOS material were pulverized with a ball mill and classified to obtain a scintillator powder having an average particle size of 55 μm. The scintillator powder was mixed with a translucent resin dissolved in a solvent, and a detector was prepared in the same manner as in Example 1. In this example, a light-transmitting resin having a light transmittance of about 75% to about 95% was used.
The detector has a filling degree ratio of 2.8 to 3.2 and an average filling degree of about 55%. The detection body was processed into a size of 10 mm × 10 mm × 1 mm.

検出体の発光強度は、実施例1と同様に、エリアイメージングセンサとX線照射装置か
らなる測定系で評価した。本実施例では、検出体の充填度Aの面とエリアイメージングセ
ンサ面が相対するように配置し、充填度Bの面側からX線を照射して検出体の発光強度を
評価した。検出体の発光強度は、検出体と相対する各CCDセンサの受光強度値を平均し
て用いた。検出体の発光強度は、同寸法のバルク材である焼結検出体の発光強度との相対
値で表し、本実施例検出体の受光強度をバルク材検出体の受光強度で除し、百分率表示と
した。
Similarly to Example 1, the emission intensity of the detector was evaluated by a measurement system including an area imaging sensor and an X-ray irradiation device. In the present example, the surface of the detection body having a filling degree A and the area imaging sensor surface are arranged to face each other, and X-rays are irradiated from the surface side of the filling degree B to evaluate the emission intensity of the detection body. The light emission intensity of the detection body was used by averaging the light reception intensity values of the CCD sensors facing the detection body. The luminous intensity of the detector is expressed as a relative value to the luminous intensity of the sintered detector, which is a bulk material of the same size, and the received light intensity of the detector of this example is divided by the received light intensity of the bulk material detector and displayed as a percentage. It was.

図7より、透光性樹脂の光透過率を85%以上とすることで、CCDセンサの受光強度
を65%以上とすることができた。透光性樹脂の光透過率が80%では、CCDセンサの
受光強度は約50%と大きく低下することが判った。低下度合いは大きく、透光性樹脂の
光透過率を85%から5ポイント下がるだけで、CCDセンサの受光強度は約50%と1
5ポイントも下がってしまうことが判る。図7は、透光性樹脂にエポキシ樹脂とポリエス
テル樹脂を用いたが、アクリル、シリコンゴム、ビニールなどを用いた場合でも同様の結
果が得られた。
From FIG. 7, the light intensity of the CCD sensor could be 65% or more by setting the light transmittance of the translucent resin to 85% or more. It was found that when the light transmittance of the translucent resin is 80%, the light receiving intensity of the CCD sensor is greatly reduced to about 50%. The degree of decrease is large, and the light intensity of the CCD sensor is about 50%, which is 1 by simply decreasing the light transmittance of the translucent resin by 5 points from 85%.
It can be seen that it will drop by 5 points. In FIG. 7, an epoxy resin and a polyester resin are used as the translucent resin, but similar results were obtained even when acrylic, silicon rubber, vinyl, or the like was used.

本発明の他の実施例として、図8にX線検出体厚み方向の平均充填度とCCDセンサ受
光強度との関係を示す。本実施例には、実施例3と同じGOSのシンチレータ粉末を用い
、実施例1と同様の方法で検出体を作製した。透光性樹脂に光透過率が約93%のエポキ
シ樹脂およびポリエステル樹脂を用い、充填度比率を2.8以上3.2以下となるように
し、平均充填度を30%から55%まで変化させた。検出体は10mm×10mm×1m
mの寸法に加工した。検出体の発光強度は、エリアイメージングセンサとX線照射装置か
らなる測定系で評価した。評価方法及びデータの比較は、実施例3と同様の方法で行った
As another embodiment of the present invention, FIG. 8 shows the relationship between the average filling degree in the thickness direction of the X-ray detector and the light intensity received by the CCD sensor. In this example, the same GOS scintillator powder as in Example 3 was used, and a detector was prepared in the same manner as in Example 1. An epoxy resin and a polyester resin having a light transmittance of about 93% are used as the translucent resin, the filling degree ratio is 2.8 or more and 3.2 or less, and the average filling degree is changed from 30% to 55%. It was. The detection body is 10mm x 10mm x 1m
Processed to dimensions of m. The emission intensity of the detection body was evaluated by a measurement system including an area imaging sensor and an X-ray irradiation apparatus. Comparison of the evaluation method and data was performed in the same manner as in Example 3.

図8から、GOS粉末の平均充填度が35%以上では、CCDセンサの受光強度は60
%以上と、高い発光強度が得られることが判った。GOS粉末の平均充填度が35%未満
では、CCDセンサの受光強度が急激に低下することが判った。低下度合いは大きく、平
均充填度が35%から5ポイント下がるだけで、CCDセンサの受光強度は約51%と1
0ポイント近く下がってしまうことが判る。図8は、透光性樹脂にエポキシ樹脂とポリエ
ステル樹脂を用いたが、アクリル、シリコンゴム、ビニールなどを用いた場合でも同様の
結果が得られた。GOS粉末の平均充填度が60%を超える試料の作製を行ったが、検出
体が脆くなってしまい、測定準備中に角が欠損したりして安定した測定を行うことができ
なかった。
From FIG. 8, when the average filling degree of GOS powder is 35% or more, the light receiving intensity of the CCD sensor is 60.
It was found that a high emission intensity of at least% was obtained. It has been found that when the average filling degree of GOS powder is less than 35%, the light receiving intensity of the CCD sensor rapidly decreases. The degree of decrease is large, and the average filling degree is only 5 points down from 35%, and the received light intensity of the CCD sensor is about 51%, which is 1
It turns out that it will drop nearly 0 points. In FIG. 8, an epoxy resin and a polyester resin are used as the translucent resin, but similar results were obtained even when acrylic, silicon rubber, vinyl, or the like was used. A sample having an average filling degree of GOS powder exceeding 60% was produced. However, the detection body became brittle, and corners were lost during measurement preparation, so that stable measurement could not be performed.

本発明の他の実施例として、図9にシンチレータ粉末と透光性樹脂とを混合した検出体
に、光反射材7と光検出器2を固着用透光性樹脂8で固着した検出装置9の模式を示す。
本実施例の検出体には、実施例3と同じGOSのシンチレータ粉末を実施例1と同様の方
法で作製した。透光性樹脂には、光透過率が約93%のエポキシ樹脂を用い充填度比率を
3.1とした。検出体の寸法は、11mm×11mm×1mmとした。光検出器2にはフ
ォトダイオードを用いた。
As another embodiment of the present invention, a detection device 9 in which a light reflecting material 7 and a light detector 2 are fixed to a detection body in which scintillator powder and a light transmission resin are mixed in FIG. The model of is shown.
For the detector of this example, the same GOS scintillator powder as in Example 3 was prepared in the same manner as in Example 1. As the translucent resin, an epoxy resin having a light transmittance of about 93% was used, and the filling degree ratio was set to 3.1. The dimensions of the detection body were 11 mm × 11 mm × 1 mm. A photodiode was used for the photodetector 2.

光反射材7には、光反射率が80%以上のTiO、固着用透光性樹脂8には、波長4
50〜650nmの範囲で光透過率が85%以上のエポキシ樹脂を用い、各々の組合せで
検出装置を作製した。作製した検出装置にはX線を照射して、フォトダイオードの出力電
流を測定した。GOSバルク材を用いた比較用の検出装置を作製し、本実施例と比較した
。光反射材7の光反射率が大きく、固着用透光性樹脂8の光透過率が大きいほど、フォト
ダイオードの出力電流が大きくなる。光反射材7の光反射率が90%以上、固着用透光性
樹脂8の波長450〜650nmの範囲での光透過率が95%以上で、GOSバルク材を
用いた比較用検出装置の出力の70%以上の値が得られた。
The light reflecting material 7 includes TiO 2 having a light reflectance of 80% or more, and the fixing translucent resin 8 includes a wavelength 4
An epoxy resin having a light transmittance of 85% or more in the range of 50 to 650 nm was used, and a detection device was produced in each combination. The produced detector was irradiated with X-rays, and the output current of the photodiode was measured. A comparative detection device using a GOS bulk material was produced and compared with the present example. The greater the light reflectance of the light reflecting material 7 and the greater the light transmittance of the fixing translucent resin 8, the greater the output current of the photodiode. The output of the comparative detection device using the GOS bulk material, in which the light reflectance of the light reflecting material 7 is 90% or more, and the light transmittance of the fixing translucent resin 8 in the wavelength range of 450 to 650 nm is 95% or more. A value of 70% or more was obtained.

本発明の他の実施例として、図10にシンチレータ粉末と透光性樹脂を混練した混合材
を光検出器上に塗布、硬化した検出装置の例を示す。実施例5の検出体1と光検出器2を
接着する固着用透光性樹脂8を、省略できる検出装置である。図10に本実施例の検出装
置を示す。検出装置9は、支持体10に開けた穴部に光検出器2と検出体1が設けられ、
同一平面に加工された検出体1と支持体10の面には、透光性樹脂8を介して光反射材7
が設けられている。光検出器2の出力である受光電流は、支持体10に設けられた貫通孔
を通して外部に出力される。検出体1には、実施例3と同じGOSのシンチレータ粉末を
用い、透光性樹脂には光透過率が約93%のエポキシ樹脂を用いた。
As another embodiment of the present invention, FIG. 10 shows an example of a detection device in which a mixed material obtained by kneading scintillator powder and translucent resin is applied and cured on a photodetector. In this example, the fixing translucent resin 8 for bonding the detector 1 and the photodetector 2 of Example 5 can be omitted. FIG. 10 shows the detection apparatus of this embodiment. The detection device 9 is provided with the photodetector 2 and the detection body 1 in a hole formed in the support body 10.
On the surfaces of the detection body 1 and the support body 10 processed in the same plane, a light reflecting material 7 is interposed via a translucent resin 8.
Is provided. The received light current that is the output of the photodetector 2 is output to the outside through a through hole provided in the support 10. The detector 1 was made of the same GOS scintillator powder as in Example 3, and the translucent resin was an epoxy resin having a light transmittance of about 93%.

図11を用いて、本実施例で用いた検出装置の作製手順を説明する。図11a)に示す
、支持体10は厚さ6mmのガラスエポキシ板で、11mm×11mm×深さ3mmの穴
が2mm間隔を持って形成されている。支持体10の穴部に光検出器2としてフォトダイ
オードを樹脂で固着した。図2b)に示すように、GOS粉末と透光性樹脂からなる混合
体5を、穴部に充填するように塗布する。温度や時間を制御しながら硬化させ、GOS粉
末の充填度を光検出器2表面からほぼ連続的に変化させた。図11c)に示すように、検
出体1の表面を研磨して、支持体10の表面と同一平面とした。図11d)に示すように
、支持体10と検出体1の表面にエポキシ樹脂からなる固着用透光性樹脂8を、20μm
厚に塗布した。ルチル型TiOからなる200μm厚の光反射材7を、接着して図11
e)に示す検出装置を得た。
A procedure for manufacturing the detection device used in this example will be described with reference to FIGS. The support 10 shown in FIG. 11 a) is a glass epoxy plate having a thickness of 6 mm, and holes of 11 mm × 11 mm × depth 3 mm are formed with an interval of 2 mm. A photodiode was fixed to the hole of the support 10 with a resin as the photodetector 2. As shown in FIG. 2b), a mixture 5 made of GOS powder and a translucent resin is applied so as to fill the hole. Curing was performed while controlling the temperature and time, and the filling degree of the GOS powder was changed almost continuously from the surface of the photodetector 2. As shown in FIG. 11 c), the surface of the detection body 1 was polished to be flush with the surface of the support 10. As shown in FIG. 11 d), a fixing translucent resin 8 made of an epoxy resin is formed on the surfaces of the support 10 and the detection body 1 by 20 μm.
Thickly applied. A light reflecting material 7 made of rutile type TiO 2 and having a thickness of 200 μm is bonded to FIG.
The detection device shown in e) was obtained.

本発明の検出体及びX線検出装置は、生体内部を検査する医療用途、手荷物検査等の業
務用途、異物混入検査装置等の工業用途等において利用できる。
The detection body and X-ray detection apparatus of the present invention can be used in medical applications for inspecting the inside of a living body, business applications such as baggage inspection, and industrial applications such as a foreign matter contamination inspection apparatus.

本発明の実施例1のX線検出装置の模式図である。It is a schematic diagram of the X-ray detection apparatus of Example 1 of this invention. 本発明の実施例1の検出体の作製手順を示す図である。It is a figure which shows the preparation procedures of the detection body of Example 1 of this invention. 本発明の実施例1の検出体の厚み方向の充填度比率A/Bを示す図である。It is a figure which shows the filling degree ratio A / B of the thickness direction of the detection body of Example 1 of this invention. 本発明の実施例2の検出体の充填度比率A/BとCCDセンサ受光強度、粉末使用量の関係を示す図である。It is a figure which shows the relationship between the filling degree ratio A / B of the detection body of Example 2 of this invention, CCD sensor light reception intensity | strength, and powder usage-amount. 本発明の実施例2のシンチレータ材料と平均粒径、充填度比率A/B、受光強度ばらつきの関係を示す図である。It is a figure which shows the relationship of the scintillator material of Example 2 of this invention, average particle diameter, filling degree ratio A / B, and light reception intensity dispersion | variation. 本発明の実施例2のCCDセンサ受光強度ばらつきとシンチレータ粉末の平均粒径の関係を示す図である。It is a figure which shows the relationship between the CCD sensor light reception intensity variation of Example 2 of this invention, and the average particle diameter of a scintillator powder. 本発明の実施例3のCCDセンサ受光強度と透光性樹脂の光透過率の関係を示す図である。It is a figure which shows the relationship between the CCD sensor light reception intensity | strength of Example 3 of this invention, and the light transmittance of translucent resin. 本発明の実施例4のCCDセンサ受光強度とシンチレータ粉末平均充填度の関係を示す図である。It is a figure which shows the relationship between CCD sensor light reception intensity | strength and scintillator powder average filling degree of Example 4 of this invention. 本発明の実施例5のX線検出装置の模式図である。It is a schematic diagram of the X-ray detection apparatus of Example 5 of this invention. 本発明の実施例6のX線検出装置の模式図である。It is a schematic diagram of the X-ray detection apparatus of Example 6 of this invention. 本発明の実施例6のX線検出装置の作製手順を示す図である。 以 上It is a figure which shows the preparation procedures of the X-ray detection apparatus of Example 6 of this invention. more than

符号の説明Explanation of symbols

1 検出体、1’ 研磨した硬化体、1” 硬化した硬化体、2 光検出器、
3 シンチレータ粉末、4 透光性樹脂、5 混合体、6 アルミニウム型、
7 光反射材、8 固着用透光性樹脂、9 X線検出装置、10 支持体。
1 detector, 1 'polished cured body, 1 "cured body, 2 photodetector,
3 scintillator powder, 4 translucent resin, 5 mixture, 6 aluminum mold,
7 light reflecting material, 8 translucent resin for fixing, 9 X-ray detector, 10 support.

Claims (4)

シンチレータ粉末と透光性樹脂を混練し硬化させたX線検出体と、光を電気に変換する
光検出器を構成要素とするX線検出装置であって、シンチレータ粉末の充填度がX線検出
体厚み方向でほぼ連続的に変化し、光検出器側の充填度Aが反対面側の充填度Bより大き
く、充填度Aと充填度Bの比率A/Bが1.1以上5.0以下であることを特徴とする
線検出装置
X-ray detector obtained by kneading and curing scintillator powder and translucent resin, and converting light into electricity
An X-ray detection apparatus having a photodetector as a constituent element, the filling degree of the scintillator powder changes substantially continuously in the X-ray detector thickness direction, and the filling degree A on the photodetector side is filled on the opposite side. Greater than degree B, and the ratio A / B between the degree of filling A and the degree of filling B is 1.1 or more and 5.0 or less X
Line detector .
シンチレータ粉末はGdSもしくは、GdGaAl12、CdWO
CsI、BiGe12から選ばれる化合物で、平均粒径が10〜100μmである
ことを特徴とする請求項1に記載のX線検出装置
The scintillator powder is Gd 2 O 2 S, Gd 3 Ga 2 Al 3 O 12 , CdWO 4 ,
The X-ray detection apparatus according to claim 1, wherein the compound is selected from CsI and Bi 4 Ge 3 O 12 and has an average particle diameter of 10 to 100 μm.
透光性樹脂は波長450〜650nmの範囲で、85%以上の光透過率であることを
徴とする請求項1に記載のX線検出装置
In the range of the light-transmitting resin wavelength 450 to 650 nm, X-ray detector according to claim 1, JP <br/> symptoms that a light transmittance of 85% or more.
X線検出体厚み方向のシンチレータ粉末の平均充填度が35%以上60%以下であるこ
とを特徴とする請求項1に記載のX線検出装置
X-ray detecting device according to claim 1, wherein the average degree of filling of the scintillator powder X-ray detector the thickness direction is equal to or less than 60% than 35%.
JP2005086849A 2005-03-24 2005-03-24 X-ray detector Expired - Fee Related JP4134993B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005086849A JP4134993B2 (en) 2005-03-24 2005-03-24 X-ray detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005086849A JP4134993B2 (en) 2005-03-24 2005-03-24 X-ray detector

Publications (2)

Publication Number Publication Date
JP2006266936A JP2006266936A (en) 2006-10-05
JP4134993B2 true JP4134993B2 (en) 2008-08-20

Family

ID=37203064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005086849A Expired - Fee Related JP4134993B2 (en) 2005-03-24 2005-03-24 X-ray detector

Country Status (1)

Country Link
JP (1) JP4134993B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104081224A (en) * 2012-03-12 2014-10-01 富士胶片株式会社 Radiation image detecting device and radiation image pickup system
WO2016006484A1 (en) * 2014-07-08 2016-01-14 東レ株式会社 Large-building inspection device

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3637482B1 (en) 2010-11-18 2022-04-20 Nippon Electric Glass Co., Ltd. Wavelength conversion element and light source comprising the same
JP5585421B2 (en) * 2010-11-30 2014-09-10 日本電気硝子株式会社 Wavelength conversion element and light source including the same
JP5055421B2 (en) 2010-12-27 2012-10-24 富士フイルム株式会社 Radiation image conversion panel, radiation image conversion panel manufacturing method, and radiation image detection apparatus
JP5325872B2 (en) * 2010-12-27 2013-10-23 富士フイルム株式会社 Radiation image detection apparatus and manufacturing method thereof
JP5340444B2 (en) * 2012-03-12 2013-11-13 富士フイルム株式会社 Radiographic image detection apparatus and radiographic imaging system
JP5286437B2 (en) * 2012-07-27 2013-09-11 富士フイルム株式会社 Radiation image detection apparatus and method for manufacturing radiation image detection apparatus
JP6077787B2 (en) * 2012-08-22 2017-02-08 キヤノン株式会社 Radiation imaging apparatus and radiation imaging system
RU171358U1 (en) * 2016-12-28 2017-05-29 Общество с ограниченной ответственностью "ИНДИКОМ" (ООО "ИНДИКОМ") A device for recording a scintillation signal in an inspection complex
JP2018157054A (en) 2017-03-17 2018-10-04 株式会社東芝 Light detection element, and photodetector
US10649098B2 (en) 2018-01-29 2020-05-12 Samsung Electronics Co., Ltd. Light converting nanoparticle, method of making the light converting nanoparticle, and composition and optical film comprising the same
US20240150644A1 (en) * 2021-04-02 2024-05-09 Hitach Metals, Ltd. Scintillator structure

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104081224A (en) * 2012-03-12 2014-10-01 富士胶片株式会社 Radiation image detecting device and radiation image pickup system
CN104081224B (en) * 2012-03-12 2016-02-03 富士胶片株式会社 Radiological image detection and radiation image picking-up system
WO2016006484A1 (en) * 2014-07-08 2016-01-14 東レ株式会社 Large-building inspection device
JPWO2016006484A1 (en) * 2014-07-08 2017-04-27 東レ株式会社 Inspection equipment for large structures

Also Published As

Publication number Publication date
JP2006266936A (en) 2006-10-05

Similar Documents

Publication Publication Date Title
JP4134993B2 (en) X-ray detector
JP6113662B2 (en) Scintillator array and X-ray detector and X-ray inspection apparatus using the same
CN106154302B (en) A kind of ray detection flat panel detector scintillator panel and preparation method thereof
US7879284B2 (en) Method for making sintered cubic halide scintillator material
JP5587788B2 (en) Radiation sensitive detector with scintillator in composite resin
JP4705709B2 (en) Transparent solid scintillator material
CN107924731B (en) Ceramic scintillator array, method for manufacturing same, radiation detector, and radiation inspection apparatus
JP6896425B2 (en) Scintillators, scintillator arrays, radiation detectors, and radiation inspection equipment
CN102915785A (en) Phosphor film, imaging assembly and inspection method
US9753161B2 (en) Neutron scintillator and neutron detector
JP2022031767A (en) Scintillator array, manufacturing method thereof, radiation detector and radiation inspection device
JPWO2005028591A1 (en) Ceramic scintillator and radiation detector and radiation inspection apparatus using the same
Park et al. Performance comparison between ceramic Ce: GAGG and single crystal Ce: GAGG with digital-SiPM
JP2009227794A (en) Fluorescent material, its producing method and scintillator
TW201521685A (en) Scintillator material, radiation detector, and radiographic examination device
JP7516640B2 (en) Ceramic scintillator array, and radiation detector and radiation inspection device using the same
JP2011232197A (en) Scintillator panel and radiation image detection device
WO2011111551A1 (en) Scintillator
JP2018002974A (en) Luminescence material, ceramic scintillator and radiation detector, and manufacturing method of luminescence material
JP5218891B2 (en) Method for producing fluorescent material
US20200064257A1 (en) Monitoring method, monitoring system, and structure, construction, or movable body
Wang et al. ${\rm Lu} _ {2}{\rm SiO} _ {5}:{\rm Ce} $ Optical Ceramic Scintillator for PET
JP7501996B2 (en) Scintillator array, radiation detector, and radiation inspection device
JP6750520B2 (en) Ceramic scintillator, scintillator array, radiation detector, and radiation inspection apparatus
WO2021132494A1 (en) Scintillator and radiation detector

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080229

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080314

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080520

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees