JP5218891B2 - Method for producing fluorescent material - Google Patents
Method for producing fluorescent material Download PDFInfo
- Publication number
- JP5218891B2 JP5218891B2 JP2008080910A JP2008080910A JP5218891B2 JP 5218891 B2 JP5218891 B2 JP 5218891B2 JP 2008080910 A JP2008080910 A JP 2008080910A JP 2008080910 A JP2008080910 A JP 2008080910A JP 5218891 B2 JP5218891 B2 JP 5218891B2
- Authority
- JP
- Japan
- Prior art keywords
- afterglow
- scintillator
- ray
- powder
- emission intensity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000463 material Substances 0.000 title claims description 20
- 238000004519 manufacturing process Methods 0.000 title claims description 12
- 239000000843 powder Substances 0.000 claims description 30
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 27
- 239000002994 raw material Substances 0.000 claims description 13
- 238000000498 ball milling Methods 0.000 claims description 8
- 229910052688 Gadolinium Inorganic materials 0.000 claims description 4
- 229910052782 aluminium Inorganic materials 0.000 claims description 2
- 229910052733 gallium Inorganic materials 0.000 claims description 2
- 239000002223 garnet Substances 0.000 claims description 2
- 229910052760 oxygen Inorganic materials 0.000 claims description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 11
- 238000010298 pulverizing process Methods 0.000 description 9
- 230000005855 radiation Effects 0.000 description 9
- 238000002591 computed tomography Methods 0.000 description 8
- 239000007789 gas Substances 0.000 description 8
- 238000000034 method Methods 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 6
- 229910052724 xenon Inorganic materials 0.000 description 6
- 238000001514 detection method Methods 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 4
- 229910005191 Ga 2 O 3 Inorganic materials 0.000 description 3
- 238000009694 cold isostatic pressing Methods 0.000 description 3
- 230000010354 integration Effects 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- 229910052684 Cerium Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000001036 glow-discharge mass spectrometry Methods 0.000 description 2
- 238000001513 hot isostatic pressing Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- 150000003736 xenon Chemical class 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004993 emission spectroscopy Methods 0.000 description 1
- 238000000295 emission spectrum Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000002189 fluorescence spectrum Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000009616 inductively coupled plasma Methods 0.000 description 1
- 238000002354 inductively-coupled plasma atomic emission spectroscopy Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 235000013619 trace mineral Nutrition 0.000 description 1
- 239000011573 trace mineral Substances 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Measurement Of Radiation (AREA)
- Nuclear Medicine (AREA)
- Luminescent Compositions (AREA)
Description
本発明は、X線等の放射線を吸収し発光するシンチレータ用の蛍光材料の製造方法に関するものである。 The present invention relates to a method for producing a fluorescent material for a scintillator that absorbs radiation such as X-rays and emits light.
X線診断装置の一つにX線CT(Computed Tomography)がある。このCTは扇状のファンビームX線を照射するX線管と、多数のX線検出素子を併設したX線検出器とで構成される。該装置は、人体にX線を照射し、透過したX線を検出器であるシンチレータの発光によって検知し、光電子増倍管の出力を画像処理する装置である。 One of X-ray diagnostic apparatuses is X-ray CT (Computed Tomography). This CT is composed of an X-ray tube that radiates a fan-shaped fan beam X-ray and an X-ray detector provided with a large number of X-ray detection elements. This apparatus is an apparatus that irradiates a human body with X-rays, detects transmitted X-rays by light emitted from a scintillator as a detector, and performs image processing on the output of the photomultiplier tube.
従来からこのX線検出器としてはキセノン(Xe)ガス検出器が用いられてきている。このキセノンガス検出器はガスチャンバにキセノンガスを封入し、多数配列した電極間に電圧を印加すると共にX線を照射すると、X線がキセノンガスを電離し、X線の強度に応じた電流信号を取り出すことができ、それにより画像が構成される。しかし、このキセノンガス検出器では高圧のキセノンガスをガスチャンバに封入するため厚い窓が必要であり、そのためX線の利用効率が悪く感度が低いという問題があった。また、高解像度のCTを得るためには電極板の厚みを極力薄くする必要があり、そのように電極板を薄くすると外部からの振動によって電極板が振動しノイズが発生するという問題があった。 Conventionally, a xenon (Xe) gas detector has been used as the X-ray detector. This xenon gas detector encloses a xenon gas in a gas chamber, applies a voltage between a large number of arranged electrodes, and irradiates X-rays. The X-rays ionize the xenon gas and a current signal corresponding to the intensity of the X-rays. Can be retrieved, thereby constructing an image. However, this xenon gas detector requires a thick window to enclose high-pressure xenon gas in the gas chamber, so that there is a problem that the utilization efficiency of X-rays is poor and the sensitivity is low. In addition, in order to obtain a high-resolution CT, it is necessary to reduce the thickness of the electrode plate as much as possible. If the electrode plate is thinned as such, there is a problem that the electrode plate vibrates due to external vibration and noise is generated. .
一方、シンチレータとしてはCdWO4単結晶、Gd2O2S:Pr,Ce,F、(Y,Gd)2O3:Eu,Pr、Gd3Ga5O12:Cr,Ce等の多結晶蛍光体が用いられている。この様な蛍光体に要求される点としては、材料の均一性が高く、X線特性のバラツキが小さいこと、放射線劣化が小さいこと、環境変化に対して特性の変化が少ないこと、吸湿性・潮解性がなく、化学的に安定であることが求められている。 On the other hand, as the scintillator, CdWO 4 single crystal, Gd 2 O 2 S: Pr, Ce, F, (Y, Gd) 2 O 3 : Eu, Pr, Gd 3 Ga 5 O 12 : Cr, Ce, etc. The body is used. Such phosphors are required to have high uniformity of materials, small variation in X-ray characteristics, small radiation degradation, little change in characteristics with respect to environmental changes, There is a demand for chemical stability without deliquescence.
こうしたX線検出器においては、X線の吸収に応じてシンチレータが発する光の強度(発光強度)が高いほど高感度となる。発光強度を大きくするためにはX線を充分に吸収する必要がある。また、この吸収が小さいと、シンチレータを透過するX線量が増加し、シリコンフォトダイオードのノイズ源となり、感度の低下の一因となる。シンチレータを透過するX線量を減らすためにはシンチレータを厚くする必要があるが、そうすると、検出素子の小型化ができないとともにコストが増加する。従って、薄い蛍光材料で充分なX線吸収をするためには、X線吸収係数が大きいことが必要である。また、蛍光材料中におけるこの光の透過率が低いと、発生した光のうちフォトダイオードまで届かなくなるものが増えるため、実質的に発光強度は低下する。従って、発光強度を高くするためには、シンチレータ材料となる蛍光材料には、(a)X線の吸収係数が大きいこと、(b)発光する光の透過率が高いことが要求される。 In such an X-ray detector, the higher the intensity (light emission intensity) of light emitted by the scintillator in accordance with X-ray absorption, the higher the sensitivity. In order to increase the emission intensity, it is necessary to sufficiently absorb X-rays. In addition, if this absorption is small, the X-ray dose that passes through the scintillator increases, which becomes a noise source of the silicon photodiode, which causes a decrease in sensitivity. In order to reduce the X-ray dose transmitted through the scintillator, it is necessary to increase the thickness of the scintillator. However, if this is done, the detection element cannot be reduced in size and the cost increases. Therefore, in order to sufficiently absorb X-rays with a thin fluorescent material, it is necessary that the X-ray absorption coefficient is large. Further, if the transmittance of this light in the fluorescent material is low, the amount of generated light that does not reach the photodiode increases, so that the emission intensity substantially decreases. Therefore, in order to increase the emission intensity, the fluorescent material used as the scintillator material is required to have (a) a large X-ray absorption coefficient and (b) a high transmittance of emitted light.
また、X線CTには、解像度の向上、すなわち検出素子の小型化と、体動の影響を少なくするため走査時間の短縮が必要とされている。この場合、一つの検出素子における積分時間は短くなり、積分時間中に吸収するX線総量は低下することになるため、特に発光効率が高い(発光強度が大きい)ことが必要である。さらに、検出素子の時間分解能を上げるためには、X線照射停止後の発光(残光)が瞬時に小さくなることが必要となる。このためには、発光の減衰時定数及び残光強度が小さいことが必要である。ここで、発光の減衰時定数とは、X線照射を停止し、発光強度がX線照射中の発光強度の1/eになるまでの時間であり、残光強度とは、X線照射を停止し一定時間経過後の発光強度の、X線照射中の発光強度に対する比率を表す。減衰が完全に指数関数的であれば、減衰時定数が小さければ必然的に残光強度も低くなるが、実際には残光の減衰は指数関数的ではない。そのため、残光を小さくして高性能のX線CT装置を得るためには、減衰時定数および残光強度が共に小さい蛍光材料を用いることが必要となる。従来使用されている各種蛍光材料における、発光強度と減衰時定数及び30ms後の残光強度について表1に示す。 Further, X-ray CT is required to improve the resolution, that is, to reduce the size of the detection element and to shorten the scanning time in order to reduce the influence of body movement. In this case, the integration time in one detection element is shortened, and the total amount of X-rays absorbed during the integration time is reduced, so that particularly high light emission efficiency (high light emission intensity) is required. Furthermore, in order to increase the time resolution of the detection element, it is necessary to instantaneously reduce the light emission (afterglow) after the X-ray irradiation is stopped. For this purpose, it is necessary that the decay time constant of light emission and the afterglow intensity are small. Here, the decay time constant of light emission is the time until X-ray irradiation is stopped and the light emission intensity becomes 1 / e of the light emission intensity during X-ray irradiation, and the afterglow intensity is the X-ray irradiation. The ratio of the emission intensity after stopping for a certain period of time to the emission intensity during X-ray irradiation is expressed. If the attenuation is completely exponential, the afterglow intensity will inevitably be low if the attenuation time constant is small, but actually the decay of the afterglow is not exponential. Therefore, in order to obtain a high-performance X-ray CT apparatus with reduced afterglow, it is necessary to use a fluorescent material having both a small decay time constant and afterglow intensity. Table 1 shows the emission intensity, decay time constant and afterglow intensity after 30 ms in various conventionally used fluorescent materials.
また、多結晶シンチレータのプロセスとしては、各素原料を秤量した後、セラミックスボール等のメディアを充填した容器内に投入する。そして所定時間回転混合し、スラリーを乾燥した後、乾燥粉を任意形状に加圧成形し焼結する。焼結体を機械加工することでシンチレータ素子となる(例えば特許文献1、2及び3)。
As a process of the polycrystalline scintillator, each raw material is weighed and then put into a container filled with media such as ceramic balls. Then, after rotating and mixing for a predetermined time and drying the slurry, the dried powder is pressed into an arbitrary shape and sintered. A scintillator element is formed by machining the sintered body (for example,
高性能X線CTにおいては、鮮明な画像を得るため体動の影響を少なくすることと、人体への被曝線量を極力抑えるため、走査時間はさらに短縮されつつある。この2点を実現するためには短い積分時間中にできるだけ発光効率を上げる(発光効率が大きい)ことと、それに伴い時間分解能の向上が必要であり、時間分解能を上げるためにはX線照射停止後の発光が小さい(残光が小さい)ことが求められる。 In high-performance X-ray CT, the scanning time is being further shortened in order to reduce the influence of body movement in order to obtain a clear image and to minimize the exposure dose to the human body. In order to realize these two points, it is necessary to increase the light emission efficiency as much as possible during the short integration time (the light emission efficiency is large) and to improve the time resolution accordingly. To increase the time resolution, X-ray irradiation is stopped. Subsequent light emission is required to be small (afterglow is small).
現在、残光についてはX線照射停止後30〜300msの比較的長時間経過後の残光(長残光)と、X線照射停止後1〜10msの短時間経過後の残光(短残光)の2つが残光評価のパラメータとなっているが、走査時間短縮に伴い短残光に対する要求が厳しくなってきている。特許文献1、2及3には、更に残光を低減する方法は示唆されていない。そこで本発明の目的は、残光を低減したシンチレータを得るための蛍光材料の製造方法を提供することである。
At present, the afterglow after a relatively long time of 30 to 300 ms after stopping X-ray irradiation (long afterglow) and the afterglow after a short time of 1 to 10 ms after stopping X-ray irradiation (short afterglow) 2) are parameters for evaluation of afterglow, but the demand for short afterglow has become stricter as the scanning time is shortened.
本発明者は、上記した課題を解決するため、原料に用いるAl2O3を真空中で熱処理することで残光増加に起因する微量元素成分を除去できることを見出し、本発明を完成させた。 In order to solve the above-mentioned problems, the present inventor has found that trace element components resulting from an increase in afterglow can be removed by heat-treating Al 2 O 3 used as a raw material in a vacuum, and the present invention has been completed.
本発明の要旨は、Ceを発光元素とし、Gd、Ga、Al、Oを含有するガーネット構造のシンチレータ用の多結晶蛍光材料の製造方法であって、Al素原料として、真空中、1300℃以上1600℃以下で熱処理したアルミナ粉末をアルミナボールでボールミル粉砕した粉を用いることを特徴とする多結晶蛍光材料の製造方法である。更に、ボールミル粉砕に使用するアルミナボールを予め真空中で熱処理してもよい。 Gist of the present invention, the Ce and emitting elements, Gd, Ga, Al, a method for producing polycrystalline fluorescent material for a scintillator of garnet structure containing O, the Al Motogenryo in a vacuum, 1300 ° C. or higher A method for producing a polycrystalline fluorescent material, characterized in that a powder obtained by ball milling alumina powder heat-treated at 1600 ° C. or less with an alumina ball is used . Furthermore, the alumina balls used for ball milling may be heat treated in advance in a vacuum.
発明者らは、GGAG:Ce中のFeイオンが残光に大きく寄与していることを見出している。各Fe添加量における蛍光スペクトルと3ms残光プロファイルを図7、図8に示す。合成されたGGAG:Ceは必ずFeを含有し、そのFeの含有率は0.05から1massppmを超えると3ms残光は800ppmを超え、許容レベルよりも大きくなるため、Fe含有率の上限は1massppmとなる(好ましくは上限1.0massppm)。ただし、蛍光材料の合成に用いる素原料には既に数massppm〜数10massppmのFeが含まれている。そのため、これらの素原料を用いて合成した蛍光材料中にはFeが数massppm〜数10massppm含まれてしまう。そのため素原料中のFe元素を出来るだけ排除するため、高純度のGd2O3、Al2O3、Ga2O3が必要になる。中でもAl2O3に含まれるFe含有量が比較的多く、材料合成後もそれが影響を及ぼしている。 The inventors have found that Fe ions in GGAG: Ce greatly contribute to afterglow. The fluorescence spectrum and 3 ms afterglow profile at each Fe addition amount are shown in FIGS. The synthesized GGAG: Ce always contains Fe, and if the Fe content exceeds 0.05 to 1 massppm, the 3 ms afterglow exceeds 800 ppm, which is higher than the allowable level, so the upper limit of the Fe content is 1 massppm. (Preferably the upper limit is 1.0 mass ppm). However, the raw material used for the synthesis of the fluorescent material already contains several mass ppm to several tens mass ppm of Fe. Therefore, the fluorescent material synthesized using these raw materials contains Fe of several mass ppm to several tens of mass ppm. Therefore, high-purity Gd 2 O 3 , Al 2 O 3 , and Ga 2 O 3 are required to eliminate the Fe element in the raw material as much as possible. Among them, the Fe content contained in Al 2 O 3 is relatively large, and it has an influence even after material synthesis.
一方、蛍光体を合成する際、メディアを充填させた容器内に原料粉末を投入し所定時間混合する。また、ある素原料粉末の粒径が他の粉末粒径に比べ比較的大きい場合、混合と同様な方法もしくはジェットミルのようなメディアを使わず目的の粉末同士を接触させるような方法で、その粉末のみ予め粉砕し粒径を調節することもできる。 On the other hand, when the phosphor is synthesized, the raw material powder is put into a container filled with media and mixed for a predetermined time. In addition, when the particle size of a certain raw material powder is relatively large compared to the particle size of other powders, the same method as mixing or a method of contacting the target powders without using a medium such as a jet mill, Only the powder can be pulverized in advance to adjust the particle size.
メディアとしてセラミックスボールを用い混合・粉砕を行う際、ボールと硬い粒子との衝突あるいはボール同士の衝突により、ボール表面が磨耗し、その磨耗粉がスラリー中に混入してしまうことがある。使用しているアルミナボール中にはFe元素が約16massppm含まれており、ボール磨耗率が増加するとFe混入率も増加する。 When mixing and pulverizing using a ceramic ball as a medium, the ball surface may be worn due to collision between the ball and hard particles, or collision between balls, and the wear powder may be mixed into the slurry. The alumina balls used contain about 16 mass ppm of Fe element, and the Fe contamination rate increases as the ball wear rate increases.
本発明の蛍光材料の製造方法によって残光の小さなシンチレータを提供することができる。 A scintillator with little afterglow can be provided by the method for producing a fluorescent material of the present invention.
本発明の1実施形態の製造方法は、下記工程のうち、S1、S2、S3、S4、S5、S6、S7及びS8を備え、図1に示す矢印の順序で行う。
(S1):素原料(Gd2O3、Ga2O3、Lu2O3、Sc2O3、Ce(NO3)・9H2O)を秤量する。
(S2):素原料に用いるAl2O3を真空中で熱処理する。
(S3):S2で熱処理したAl2O3をアルミナボールで湿式粉砕する。
(S4):S1で秤量した原料中にS3で粉砕したAl2O3を投入し、アルミナボールで湿式混合する。
(S5):混合が終了したスラリーを乾燥し、造粒する。
(S6):造粒粉を一軸プレスし、CIP成形する。
(S7):成形体を酸素中で焼結する。
(S8):焼結体を機械加工しシンチレータ素子とする。
(S21):S3またはS4で用いるアルミナボールを真空中で熱処理する。
The manufacturing method of one embodiment of the present invention includes S1, S2, S3, S4, S5, S6, S7 and S8 among the following steps, and is performed in the order of the arrows shown in FIG.
(S1): The raw materials (Gd 2 O 3 , Ga 2 O 3 , Lu 2 O 3 , Sc 2 O 3 , Ce (NO 3 ) · 9H 2 O) are weighed.
(S2): Al 2 O 3 used as a raw material is heat-treated in a vacuum.
(S3): Al 2 O 3 heat-treated in S2 is wet-ground with alumina balls.
(S4): Al 2 O 3 pulverized in S3 is put into the raw material weighed in S1, and wet mixed with alumina balls.
(S5): The slurry after mixing is dried and granulated.
(S6): The granulated powder is uniaxially pressed and CIP molded.
(S7): The molded body is sintered in oxygen.
(S8): The sintered body is machined to form a scintillator element.
(S21): The alumina balls used in S3 or S4 are heat-treated in a vacuum.
本発明の他の実施形態の製造方法は、上記工程のうち、S1、S2、S21、S3、S4、S5、S6、S7及びS8を備え、図1に示す順序で行う。S3の工程ではS21のアルミナボールを用いる。さらに、S4の工程でS21のアルミナボールを用いることもできる。 The manufacturing method of other embodiment of this invention is equipped with S1, S2, S21, S3, S4, S5, S6, S7, and S8 among the said processes, and is performed in the order shown in FIG. In the step S3, the alumina ball of S21 is used. Furthermore, the alumina ball of S21 can be used in the step of S4.
以下、実施例を説明する。ただし、これらに実施例に必ずしも本発明を限定するものではない。
(実施例1)
Fe含有量が2.1ppm以下で、比表面積が4.0m2/gのAl2O3素原料を真空中(〜10Pa)1300、1400、1500、1600℃で各々3h熱処理した。そして1300℃処理粉は20h、1400℃処理粉は30h、1500℃処理粉は40h、直径5mmのアルミナボールでボールミル粉砕を行った。得られたAl2O3粉砕粉を用い、Gd2O3を117.63g、Lu2O3を4.45g、Ce(NO3)・9H2Oを0.777g、Sc2O3を0.925g、Al2O3を32.35g、Ga2O3を43.87g計量した。これらの素原料を直径5mmアルミナボールを充填した容器内に投入し、12h混合後乾燥した。乾燥粉に1wt%の純水を添加し500kg/cm2で1軸加圧成形した後、3000kg/cm2で冷間静水圧加圧(CIP)を行った。その成形体をO2中1675℃で12h焼結し、得られた焼結体をAr中1500℃、1000atm(1.01×105Pa)で3h熱間静水圧焼結(HIP)を行った。HIP焼結体を□10mm(10mm×10mm)、厚さt2mmに機械加工後、鏡面研磨を施し、O2中1500℃で2h熱処理して多結晶シンチレータを作製した。
Examples will be described below. However, the present invention is not necessarily limited to these examples.
Example 1
The Al 2 O 3 raw material having an Fe content of 2.1 ppm or less and a specific surface area of 4.0 m 2 / g was heat-treated at 1300, 1400, 1500, and 1600 ° C. for 3 hours in vacuum (−10 Pa). The 1300 ° C. treated powder was 20 h, the 1400 ° C. treated powder was 30 h, the 1500 ° C. treated powder was 40 h, and ball milling was performed with an alumina ball having a diameter of 5 mm. Using the resulting Al 2 O 3 pulverized powder, 117.63G the Gd 2 O 3, 4.45g of Lu 2 O 3, Ce (NO 3) · 9H 2 O to 0.777G, the Sc 2 O 3 0 925 g, Al 2 O 3 32.35 g, and Ga 2 O 3 43.87 g. These raw materials were put into a container filled with 5 mm diameter alumina balls, mixed for 12 hours and dried. After uniaxial pressure molding by adding 1 wt% of pure water at 500 kg / cm 2 in the dry powder was subjected to cold isostatic pressing at 3000kg / cm 2 (CIP). The molded body was sintered in O 2 at 1675 ° C. for 12 hours, and the obtained sintered body was subjected to hot isostatic pressing (HIP) in Ar at 1500 ° C. and 1000 atm (1.01 × 10 5 Pa) for 3 hours. It was. The HIP sintered body was machined to □ 10 mm (10 mm × 10 mm) and thickness t2 mm, mirror-polished, and heat-treated at 1500 ° C. for 2 h in O 2 to prepare a polycrystalline scintillator.
得られたシンチレータを図2、3の放射線検出器を用いて評価した。放射線検出器は、1.2mmピッチで24個配列した上記スライスしたシンチレータ2と、配列した上記スライスしたシンチレータ2の上面と側面にTiO2とエポキシ樹脂の混合材を塗布し硬化させてなる光反射膜3と、シンチレータ2の配列に対応し大きさが1mm×30mmでピッチが1.2mmで配列されるとともにシンチレータ2と受光面が正確に一致するよう位置決めした受光部を有しシンチレータ2とエポキシ樹脂で固定した24チャンネルシリコンフォトダイオード5と、24チャンネルシリコンフォトダイオード5が電気的に接続される配線基板4で構成される。かかる放射線検出器によれば、X線源1からのX線照射によりシンチレータ2が励起され発光し、その光をフォトダイオード5で検出することにより、シンチレータの特性を確認することができる。
The obtained scintillator was evaluated using the radiation detectors of FIGS. The radiation detector is composed of 24 sliced
アルミナ粉末の各熱処理条件におけるFe含有率と比表面積を図4に示す。Fe含有率の単位はmassppm(質量百万分率)であり、図では省略してppmと標記する。
なお、主成分の組成分析はICP―AES(高周波誘導結合プラズマ発光分光分析法、パーキンエルマー製OPTIMA−3300XL)により行い、Feの分析はGDMS法(グロー放電質量分析法、VG Elemental社製:VG9000)により行った。
X線照射による発光強度と3ms経過後の残光を測定した。この測定は、実施例1に示す放射線検出器を作製し、X線源としてタングステンターゲットのX線管を用い、管電圧120kV、管電流5mAの条件でX線を前記放射線検出器のシンチレータに照射して評価した。3ms残光強度は、X線照射停止から3ms経過したときの発光強度を、Gd2O2S:Prとの相対発光強度で除したものである。単位はppm(百万分率)である。相対発光強度は、GOS:Prシンチレータの発光強度を100%としたときの発光強度である。
FIG. 4 shows the Fe content and specific surface area of the alumina powder under each heat treatment condition. The unit of Fe content is mass ppm (parts per million by mass), and is omitted from the figure and labeled as ppm.
The composition analysis of the main component was performed by ICP-AES (High Frequency Inductively Coupled Plasma Emission Spectroscopy, OPTIMA-3300XL manufactured by PerkinElmer), and Fe was analyzed by GDMS (Glow Discharge Mass Spectrometry, VG Elemental: VG9000). ).
The emission intensity by X-ray irradiation and the afterglow after 3 ms were measured. In this measurement, the radiation detector shown in Example 1 was manufactured, a tungsten target X-ray tube was used as the X-ray source, and the scintillator of the radiation detector was irradiated with X-rays under the conditions of a tube voltage of 120 kV and a tube current of 5 mA. And evaluated. The 3 ms afterglow intensity is obtained by dividing the emission intensity when 3 ms has elapsed from the stop of X-ray irradiation by the relative emission intensity with Gd 2 O 2 S: Pr. The unit is ppm (parts per million). The relative light emission intensity is the light emission intensity when the light emission intensity of the GOS: Pr scintillator is 100%.
各熱処理条件におけるアルミナ粉末をアルミナボールでボールミル粉砕した粉砕粉の粉砕時間、粉砕後Fe含有率、比表面積および残光強度を図5に示す。真空熱処理することにより、シンチレータ中のFe含有率が1ppm以下まで低減されることが分かる。また、真空熱処理前の粉砕を必要としないアルミナを用いた試料の残光強度は521ppmであるため、熱処理によって残光は低下していることが分かる。 FIG. 5 shows the pulverization time, the Fe content after pulverization, the specific surface area, and the afterglow intensity of the pulverized powder obtained by ball milling the alumina powder with alumina balls under each heat treatment condition. It can be seen that the Fe content in the scintillator is reduced to 1 ppm or less by performing the vacuum heat treatment. Moreover, since the afterglow intensity | strength of the sample using the alumina which does not require the grinding | pulverization before vacuum heat processing is 521 ppm, it turns out that the afterglow is falling by heat processing.
(実施例2)
また、Fe含有率が16ppm以下で直径5mmのアルミナボールを真空中(〜10Pa)1500℃で3h熱処理した。その熱処理したボールを用い、実施例1の1400℃熱処理のAl2O3粉を直径90mm、1l(1リットル)のポットを用い、回転数100rpmで、30h粉砕した。また、熱処理温度を1500℃に変えたAl2O3粉を同ポットを用い、回転数100rpmで40h粉砕した。各々の粉砕粉を用い、実施例1と同様な方法で多結晶シンチレータを作製した。
(Example 2)
Further, an alumina ball having a Fe content of 16 ppm or less and a diameter of 5 mm was heat-treated at 1500 ° C. for 3 hours in a vacuum (−10 Pa). Using the heat-treated balls, the Al 2 O 3 powder heat treated at 1400 ° C. of Example 1 was pulverized for 30 hours at a rotation speed of 100 rpm using a pot of 90 mm in diameter and 1 liter (1 liter). Further, Al 2 O 3 powder whose heat treatment temperature was changed to 1500 ° C. was pulverized for 40 hours at a rotation speed of 100 rpm using the same pot. Using each pulverized powder, a polycrystalline scintillator was produced in the same manner as in Example 1.
アルミナ粉末の各熱処理条件において、1500℃で真空熱処理したアルミナボールでボールミル粉砕した粉砕粉の粉砕時間、粉砕後Fe含有率、比表面積および残光強度を図6に示す。アルミナ粉末の熱処理に加え、アルミナボールも熱処理した方が残光が低下していることが分かる。 FIG. 6 shows the pulverization time, crushed Fe content, specific surface area, and afterglow intensity of the pulverized powder ball milled with alumina balls vacuum-heated at 1500 ° C. under each heat treatment condition of the alumina powder. It can be seen that the afterglow is reduced when the alumina balls are heat-treated in addition to the heat treatment of the alumina powder.
図8はFe含有率の異なる蛍光材料の波長800nmにおける残光プロファイルを示す図である。Fe含有率1.0massppm以下の試料は本発明の方法で作製したものである。図8には、Fe含有率1.3massppmの試料と0.7massppmの試料について波長800nmの残光プロファイルを測定した結果である。Feの発光成分は20msでほぼ消失するが、3ms後における残光に対しては、非常に大きな影響を及ぼすことがわかる。また、Fe含有率1.3massppmの試料に比べて、1.0massppmの試料は残光の発光強度が約半分に改善されている。さらに、Fe含有率0.85massppmの試料に比べて、0.05massppm〜0.7massppmの試料は、1ms後の発光強度と5ms後の発光強度でその発光強度変化が小さくなっている。発光強度変化率が小さいと、残光が信号に及ぼす影響もより小さくなり、放射線検出器の走査時間を更に短縮し、CTの画像解像度を更に向上することができる。Fe含有率0.05massppm〜0.4(より詳細には0.35)massppmの範囲にすると残光強度も十分に抑えられるので更に好ましい。
ここで、発光強度変化率=(1ms後の発光強度−5ms後の発光強度)/1ms後の発光強度×100(%)の絶対値である。具体的には、次のように大きな違いが生じる。
1.0massppm:発光強度変化率=44.4%
0.7massppm:発光強度変化率=4.6%
0.05massppm:発光強度変化率=7.0%
FIG. 8 is a diagram showing afterglow profiles at a wavelength of 800 nm of fluorescent materials having different Fe contents. A sample having an Fe content of 1.0 mass ppm or less was prepared by the method of the present invention. FIG. 8 shows the results of measuring afterglow profiles at a wavelength of 800 nm for samples with an Fe content of 1.3 massppm and samples with 0.7 massppm. It can be seen that the light-emitting component of Fe almost disappears in 20 ms, but has a very large effect on the afterglow after 3 ms. In addition, the 1.0 massppm sample has improved afterglow emission intensity by about half compared to the Femass content 1.3 massppm sample. Furthermore, compared with a sample with an Fe content of 0.85 massppm, the sample with 0.05 massppm to 0.7 massppm has a smaller change in emission intensity between the emission intensity after 1 ms and the emission intensity after 5 ms. When the rate of change in emission intensity is small, the influence of afterglow on the signal is also reduced, and the scanning time of the radiation detector can be further shortened, and the CT image resolution can be further improved. If the Fe content is in the range of 0.05 massppm to 0.4 (more specifically 0.35) massppm, the afterglow intensity can be sufficiently suppressed, which is more preferable.
Here, the rate of change in emission intensity = (emission intensity after 1 ms−emission intensity after 5 ms) / emission intensity after 1 ms × 100 (%). Specifically, the following major differences occur.
1.0 massppm: emission intensity change rate = 44.4%
0.7 mass ppm: rate of change in emission intensity = 4.6%
0.05 massppm: rate of change in emission intensity = 7.0%
1 X線源
2 シンチレータ
3 光反射膜
4 配線基板
5 シリコンフォトダイオード
1 X-ray
Claims (2)
A method for producing a polycrystalline fluorescent material, wherein the alumina balls used for ball milling according to claim 1 are heat-treated in advance in a vacuum.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008080910A JP5218891B2 (en) | 2008-03-26 | 2008-03-26 | Method for producing fluorescent material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008080910A JP5218891B2 (en) | 2008-03-26 | 2008-03-26 | Method for producing fluorescent material |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009235181A JP2009235181A (en) | 2009-10-15 |
JP5218891B2 true JP5218891B2 (en) | 2013-06-26 |
Family
ID=41249546
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008080910A Active JP5218891B2 (en) | 2008-03-26 | 2008-03-26 | Method for producing fluorescent material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5218891B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2634233B1 (en) * | 2010-10-29 | 2019-10-23 | Hitachi Metals, Ltd. | Polycrystalline scintillator for detecting soft x-rays |
JP5311241B2 (en) * | 2011-02-16 | 2013-10-09 | 日立金属株式会社 | Polycrystalline scintillator, manufacturing method thereof, and radiation detector |
CN115932932A (en) * | 2022-11-03 | 2023-04-07 | 宁波虔东科浩光电科技有限公司 | Signal processing method of scintillator detection array and imaging device |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01126276A (en) * | 1987-11-11 | 1989-05-18 | Inax Corp | Production of ceramic sintered body |
JPH0637293B2 (en) * | 1988-05-25 | 1994-05-18 | 日本軽金属株式会社 | Method for producing high-purity alumina |
JPH0442861A (en) * | 1990-06-07 | 1992-02-13 | Showa Denko Kk | Preparation of highly strong aluminum nitride sintered product |
JP4228611B2 (en) * | 2002-07-30 | 2009-02-25 | 日立化成工業株式会社 | Cerium-activated gadolinium silicate single crystal |
JP5100050B2 (en) * | 2006-07-18 | 2012-12-19 | 株式会社日立メディコ | Oxide phosphor, radiation detector and X-ray CT apparatus |
CN101617023B (en) * | 2007-02-02 | 2013-09-25 | 日立金属株式会社 | Fluorescent material, scintillator using the fluorescent material, and radiation detector |
-
2008
- 2008-03-26 JP JP2008080910A patent/JP5218891B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2009235181A (en) | 2009-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5521412B2 (en) | Fluorescent material, scintillator and radiation detector using the same | |
JP5212115B2 (en) | Fluorescent material, scintillator and radiation detector using the same | |
JP5633573B2 (en) | Polycrystalline scintillator for soft X-ray detection | |
JP6158167B2 (en) | Solid scintillator, radiation detector, and radiation inspection apparatus | |
JP5505782B2 (en) | Fluorescent material, scintillator and radiation detector using the same | |
JP5311241B2 (en) | Polycrystalline scintillator, manufacturing method thereof, and radiation detector | |
JP7204862B2 (en) | Scintillator array, method for manufacturing scintillator array, radiation detector, and radiographic inspection apparatus | |
WO2009113379A1 (en) | Solid scintillator, radiation detector and computed tomography scanner | |
JP5218891B2 (en) | Method for producing fluorescent material | |
JP6948829B2 (en) | A scintillator array, a radiation detector using the scintillator array, a radiation inspection device, and a method for manufacturing the scintillator array. | |
JP5212841B2 (en) | Method for producing fluorescent material | |
JP2001181043A (en) | Transparent polycrystalline garnet scintillator, powder for scintillator and method for producing the same | |
JP5572049B2 (en) | Solid scintillator material, solid scintillator, radiation detector and radiation inspection apparatus using the same | |
WO2021132494A1 (en) | Scintillator and radiation detector | |
JP2022103225A (en) | Ceramic scintillator and radiation detector | |
JP2024075629A (en) | Scintillator element, scintillator array, radiation detector, and radiation computed tomography apparatus | |
JP2021102716A (en) | Scintillator and radiation detector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110221 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111024 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20121115 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121122 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130115 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130208 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130221 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160315 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5218891 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |