JP2001181043A - Transparent polycrystalline garnet scintillator, powder for scintillator and method for producing the same - Google Patents

Transparent polycrystalline garnet scintillator, powder for scintillator and method for producing the same

Info

Publication number
JP2001181043A
JP2001181043A JP37437199A JP37437199A JP2001181043A JP 2001181043 A JP2001181043 A JP 2001181043A JP 37437199 A JP37437199 A JP 37437199A JP 37437199 A JP37437199 A JP 37437199A JP 2001181043 A JP2001181043 A JP 2001181043A
Authority
JP
Japan
Prior art keywords
scintillator
powder
sintering
garnet
emission intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP37437199A
Other languages
Japanese (ja)
Inventor
Ryohei Nakamura
良平 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP37437199A priority Critical patent/JP2001181043A/en
Publication of JP2001181043A publication Critical patent/JP2001181043A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an oxide ceramic scintillator having a high emission intensity, a low decay time constant and low afterglow at a relatively low cost in order to improve the resolution of an X ray computed tomography(CT). SOLUTION: This scintillator is characterized in that the scintillator is represented by the general formula Gd3-x-yCexYyAl5O12 (wherein (x) and (y) are each within the range of 0.001<=x<=0.05 and 0.7<=y<=2) and is produced by adding BaF2 as a flux in an amount of 0.05-1.5 mol based on 1 mol of garnet thereto, mixing both, then calcining the resultant mixture at 1,400-1,600 deg.C, producing a garnet scintillator powder, further adding 10-1,000 ppm of SiO2 as a sintering aid during sintering, press forming the obtained mixture and then sintering the press formed compact at a temperature within the range of 1,600-1,800 deg.C in a vacuum or a hydrogen, a nitrogen or an argon atmosphere or carrying out the hot isostatic press sintering at 1,400 to 1,600 deg.C temperature in an argon atmosphere.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はX線を検出する放射
線検出器に用いられるシンチレータに関するものであ
り、特にX線CTに用いられる放射線検出器に適用され
る高価なGaを含まない安価でかつ高性能であるシンチ
レータ、シンチレータ用粉末およびその製造方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a scintillator used for a radiation detector for detecting X-rays, and more particularly to a low-cost scintillator which does not contain expensive Ga applied to a radiation detector used for X-ray CT. The present invention relates to a high-performance scintillator, a scintillator powder, and a method for producing the same.

【0002】[0002]

【従来の技術】X線診断装置の一つにコンピュータ断層
撮影装置(Computed Tomography: 以下CTと称する)が
ある。このCTは扇状のファンビームX線を照射するX線
管と多数のX線検出素子を併設したX線検出器を被検体
の断層面の中央に対向配置して構成され、X線検出器に
向けてX線管からファンビームX線を照射し、1回照射
を行うごとに断層面に対して例えば角度を1度ずつ変え
てゆくことによってX線吸収データを収集した後、この
デ−タをコンピュータで解析することによって断層面個
々の位置のX線吸収率を算出し、その吸収率に応じた画
像を構成するものである。
2. Description of the Related Art As one of X-ray diagnostic apparatuses, there is a computed tomography apparatus (hereinafter referred to as CT). This CT is composed of an X-ray tube that irradiates a fan-shaped fan beam X-ray and an X-ray detector with a number of X-ray detection elements arranged opposite to the center of the tomographic plane of the subject. X-ray absorption data is collected by irradiating a fan beam X-ray from the X-ray tube and changing the angle, for example, by 1 degree with respect to the tomographic plane each time irradiation is performed. Is analyzed by a computer to calculate the X-ray absorptance at each position of the tomographic plane, and constructs an image corresponding to the absorptivity.

【0003】従来からこのCTにはキセノンガス検出器
が用いられてきている。このキセノンガス検出器はガス
チャンバにキセノンガスを封入し、多数配列した電極間
に電圧を印加すると共にX線を照射すると、X線がキセ
ノンガスを電離し、X線の強度に応じた電流信号を取り
出すことができ、それにより画像が構成される。しか
し、このキセノンガス検出器では高圧のキセノンガスを
ガスチャンバに封入するため厚い窓が必要であり、その
ためX線の利用効率が悪く感度が低いという問題があっ
た。また、高解像度のCTを得るためには電極板の厚み
を極力薄くする必要があり、そのように電極板を薄くす
ると外部からの振動によって電極板が振動しノイズが発
生するという問題があった。
Conventionally, a xenon gas detector has been used for this CT. This xenon gas detector encloses xenon gas in a gas chamber, applies voltage between a large number of arranged electrodes, and irradiates x-rays. When x-rays ionize xenon gas, a current signal corresponding to the intensity of x-rays Can be taken out, thereby forming an image. However, this xenon gas detector requires a thick window to enclose high-pressure xenon gas in the gas chamber, and thus has a problem that the use efficiency of X-rays is low and the sensitivity is low. In addition, in order to obtain a high-resolution CT, it is necessary to reduce the thickness of the electrode plate as much as possible. If the electrode plate is thinned in such a manner, there is a problem that the electrode plate vibrates due to external vibration and noise is generated. .

【0004】[0004]

【発明が解決しようとする課題】一方、CdWO単結
晶や(Y,Gd):Eu,Pr及びGd
S:Pr,Ce,F組成のセラミックスシンチレータ
とシリコンフォトダイオードを組み合わせた検出器が開
発され実用化されている。なお、蛍光体の表記の記載方
法として、組成式中、:をはさんで左側に母材を、右側
に発光イオンを記載した。これらの材料を用いた検出器
では、検出素子を小型化し、チャンネル数を増やすこと
が容易であることから、キセノンガス検出器よりも解像
度の高い画像を得ることが可能となる。X線CT用シン
チレータに求められる特性としては、(1)X線に対す
る発光強度が大きいこと。(2)発光の減衰時定数及び
残光が小さいこと。( ここで、発光の減衰時定数と
は、X線照射を停止し、発光強度がX線照射中の発光強
度の1/eになるまでの時間であり、残光とは、X線照
射を停止し一定時間経過後の発光強度の、X線照射中の
発光強度に対する比率を表す。)(3)材料の均一性が
高く、X線特性のばらつきが小さいこと。(4)放射線
劣化が小さいこと。(5)温度など環境の変化に対して
発光特性の変化が少ないこと。(6)加工性が良く、加
工劣化が小さいこと(7)吸湿性・潮解性がなく、化学
的に安定であること。が挙げられる。
On the other hand, CdWO 4 single crystal and (Y, Gd) 2 O 3 : Eu, Pr and Gd 2 O
2 S: Pr, Ce, a detector that combines ceramic scintillator and a silicon photodiode F composition has been developed and put to practical use. In addition, as a description method of the notation of the fluorescent substance, in the composition formula, the base material was described on the left side and the luminescent ion was described on the right side with ":". In a detector using these materials, it is easy to reduce the size of the detection element and increase the number of channels, so that it is possible to obtain an image with higher resolution than a xenon gas detector. The characteristics required of the X-ray CT scintillator include (1) a high emission intensity with respect to X-rays. (2) The decay time constant of light emission and the afterglow are small. (Here, the decay time constant of light emission is a time until X-ray irradiation is stopped and the light emission intensity becomes 1 / e of the light emission intensity during X-ray irradiation. (The ratio indicates the ratio of the emission intensity after a certain period of time to the emission intensity during X-ray irradiation.) (3) The uniformity of the material is high and the variation in X-ray characteristics is small. (4) Radiation degradation is small. (5) The light emission characteristics should not change much with changes in environment such as temperature. (6) Good workability and little processing deterioration. (7) No chemical absorption and no deliquescent. Is mentioned.

【0005】近年、CTには、さらなる解像度の向上が
求められてきており、検出素子の小型化と、体動の影響
を少なくするため走査時間の短縮が必要とされる。この
場合、1素子に入射するX線量は低下することになる。
CdWO単結晶シンチレータは発光強度が小さく、こ
の要求に対応していくには問題が残る。また、へき開性
があるため加工性が悪く、さらに、Cdという毒性の強
いイオンを含むという問題がある。一方、(Y,Gd)
:Eu,Prセラミックシンチレータは減衰時定
数が大きく、やはり走査時間の短縮化に対応していくに
は問題が残る。GdS:Pr,Ce,Fセラミッ
クシンチレータは、酸化物ではないため製造プロセスが
複雑でコストが高いという問題を有している。 X線CTは
普及期に入り、低コスト化が重要な意味を持つ。既存の
シンチレータは、これらの要求を十分満足しているとは
言い難い。本発明は以上の従来の問題に鑑みてなされた
ものであり、発光強度が大きく、減衰時定数及び残光が
小さく、また、コストが比較的安価な酸化物セラミック
シンチレータを提供することを目的とする。
In recent years, there has been a demand for further improvement in the resolution of CT, and it is necessary to reduce the size of the detection element and to shorten the scanning time in order to reduce the influence of body movement. In this case, the X-ray dose incident on one element is reduced.
The CdWO 4 single crystal scintillator has a low light emission intensity, and there remains a problem in meeting this demand. In addition, there is a problem that the workability is poor due to the cleavage property, and that it contains a highly toxic ion called Cd. On the other hand, (Y, Gd)
The 2O 3 : Eu, Pr ceramic scintillator has a large decay time constant, and there is still a problem in reducing the scanning time. The Gd 2 O 2 S: Pr, Ce, F ceramic scintillator has a problem that the manufacturing process is complicated and the cost is high because it is not an oxide. X-ray CT has entered the diffusion period, and cost reduction is important. Existing scintillators do not sufficiently satisfy these requirements. The present invention has been made in view of the above conventional problems, and has an object to provide an oxide ceramic scintillator having a large emission intensity, a small attenuation time constant and afterglow, and a relatively low cost. I do.

【0006】[0006]

【課題を解決するための手段】本発明者は以上の目的を
達成するため、種々の酸化物組成系に関し検討を行っ
た。その結果、(Gd,Y)Al12:Ceガー
ネット組成系に発光強度の大きいものを見出した。 C
e含有のGd酸化物系のシンチレータでは通常AlをG
aで置換し、複合添加しないと十分な発行強度が得られ
なかったが、高価なGaを使用せずともGdの所定量を
Yとすることで発行強度の十分な透明多結晶ガーネット
シンチレータが得られた。この組成系の結晶構造は立方
晶であり、光学的異方性が小さく、原理的に透光性の高
い燒結体を作成可能である。このため、粉末特性として
は六方晶であるGdS:Pr,Ce,Fほど高く
なくとも、透過率が高く光散乱の小さい燒結体とするこ
とで、発光強度の高いセラミックシンチレータを実現で
きる。また、発光元素のCeは、Ce3+の5d→4f
遷移により発光し、減衰時定数は数十〜数百nsと1μ
sよりきわめて小さい。
Means for Solving the Problems In order to achieve the above object, the present inventors have studied various oxide composition systems. As a result, a (Gd, Y) 3 Al 5 O 12 : Ce garnet composition having a high luminous intensity was found. C
In an e-containing Gd oxide scintillator, Al is usually converted to G
a, and sufficient addition intensity was not obtained unless complex addition was performed, but a transparent polycrystalline garnet scintillator with sufficient emission intensity was obtained by setting the predetermined amount of Gd to Y without using expensive Ga. Was done. The crystal structure of this composition system is cubic, the optical anisotropy is small, and a sintered body with high translucency can be produced in principle. Therefore, a ceramic scintillator having high light emission intensity is realized by using a sintered body having high transmittance and low light scattering even if the powder characteristics are not as high as that of Gd 2 O 2 S: Pr, Ce, F which is hexagonal. it can. Also, Ce as a light emitting element is 5d → 4f of Ce 3+.
Light is emitted by the transition, and the decay time constant is several tens to several hundred ns and 1 μm.
Very small than s.

【0007】Gd、Al、Yおよび
セリウム塩としてたとえば蓚酸セリウムを混合後、フタ
付のアルミナルツボ中において、1500℃、2時間仮焼し
た場合について、GdとYの組成比を変えた粉末シンチ
レータの発光強度(Gd S:Pr,Ce,Fシン
チレータ粉末の発光強度に対する比率)を図1に示す。G
2.995−yCe0.005Al12組成
において、yの値が0と0.7〜2で発光強度は相対的
に大きな値を示した。ただし、Yを含まないGdAl
12粉末は準安定相であり、1400℃より高い温度に
加熱するとGdAlOとAlに分解してしまう
(“アモルファスクエン酸錯体法によるカ゛ーネット型Gd3Al5O12粉末の
調整”, Journal of the Ceramic Society of Japan 10
0 [11] 1381-1383 (1992))。密度を向上させて燒結する
ためには燒結温度は1400℃より高い温度に加熱する必要
があり、yの値が0の組成粉末は燒結体として実用化で
きない。図2には発光元素であるCeの発光強度に対す
るシンチレータ粉末の組成依存性を示す。Ceの濃度依
存性はあまり大きくないが、Gd2−xCeYAl
12組成においてxが0.001から0.05が適当である。
Gd2O3, Al2O3, Y2O3and
After mixing, for example, cerium oxalate as a cerium salt, the lid
Calcined at 1500 ℃ for 2 hours in an attached aluminum crucible
Powder scinti with different composition ratio of Gd and Y
Light intensity (Gd2O 2S: Pr, Ce, F thin
FIG. 1 shows the ratio of the luminous intensity of the chiller powder. G
d2.995-yCe0.005YyAl5O12composition
, The value of y is 0 and 0.7 to 2 and the emission intensity is relative
Showed a large value. However, Gd not including Y3Al
5O12The powder is a metastable phase and can reach temperatures above 1400 ° C
GdAlO when heated3And Al2O3Decompose into
(“Carnet-type Gd prepared by amorphous citric acid complex methodThreeAlFiveO12Powdered
Adjustment ”, Journal of the Ceramic Society of Japan 10
0 [11] 1381-1383 (1992)). Sintering with increased density
Requires sintering temperature higher than 1400 ℃
The composition powder with the value y of 0 is practically usable as a sintered body.
I can't. FIG. 2 shows the luminescence intensity of Ce as a luminescence element.
4 shows the composition dependence of the scintillator powder. Depends on Ce concentration
Is not very large, but Gd2-xCexYAl5
O12In the composition, x is suitably 0.001 to 0.05.

【0008】さらにこの組成系の粉末を合成するための
フラックスについて検討を行い、Ba系化合物、特にB
aFが組成の均質性を高めるとともに材料中の結晶欠
陥を減少させ発光強度を向上させるのに有効であること
を見出した。図3にGd1. 99Ce0.01YAl
12の粉末合成時に添加するBaFの添加率を変え
た粉末シンチレータの発光強度を示す。 Gd1.99
Ce0.01YAl12組成1モルに対し、 BaF
を0.05〜1.5モル添加したとき発光強度は増加し、0.5
モル添加したとき、発光強度は最大となった。また、発
光強度の仮焼温度依存性を図4に示す。この図より、仮
焼温度は1400〜1600℃とするのが好ましいことがわか
る。こうして得られた粉末シンチレータの平均粒径は10
μm以上となり、この粉末を直接燒結しても良いが、こ
の粉末を、アルミナホ゛ールを用いたホ゛ールミル粉砕などの方法によ
り平均粒径2μm以下の粉末とするのが好ましい。
Further, a flux for synthesizing a powder of this composition was examined, and a Ba compound, particularly B
It has been found that aF 2 is effective in increasing the compositional homogeneity, reducing crystal defects in the material, and improving the emission intensity. FIG . 99 Ce 0.01 YAl 5
The luminescence intensity of the powder scintillator in which the addition rate of BaF 2 added during the powder synthesis of O 12 was changed is shown. Gd 1.99
To Ce 0.01 YAl 5 O 12 composition 1 mole, BaF
2 was added in an amount of 0.05 to 1.5 mol, the emission intensity increased,
When moles were added, the emission intensity was at a maximum. FIG. 4 shows the calcination temperature dependency of the light emission intensity. From this figure, it is understood that the calcination temperature is preferably set to 1400 to 1600 ° C. The average particle size of the powder scintillator thus obtained was 10
The powder may be directly sintered, but it is preferable that the powder is formed into a powder having an average particle size of 2 μm or less by a method such as ball milling using alumina ball.

【0009】また、成形・燒結前に、燒結助剤として50
〜1000ppmのSiOをはじめとする珪素系化合物等
を添加ことが好ましい。エチルシリケート等の燒結助剤
を用いても良い。 SiOは、燒結時の結晶粒成長を
抑制し、粒内気孔の生成を抑制する働きを持つ。 Si
が50ppm未満では、粒内気孔低減にほとんど効果
がなく、また、これを1000ppmより多く添加すると、発
光強度の低下が顕著となる。粉砕した粉末は一軸プレス
または、一軸プレスと冷間静水圧プレスを行うことによ
り、理論密度の60〜70%の成形対密度を得ることができ
る。この成形体をフタ付のアルミナこう鉢に入れ、真空
中もしくは水素、窒素またはアルゴン雰囲気中1600〜18
00℃で燒結することにより、理論密度の95〜98%まで密
度は向上する。空気中もしくは酸素中で燒結するのは、
発光成分のCeの価数が3価から4価に変化し、発光強度
が低下するためやはり好ましくない。燒結温度について
は、1600℃未満の温度では燒結体密度が向上せず、開気
孔が残ってしまうため、また、1800℃を超える温度では
各種成分の揮発量が大きく、組成制御ができなくなるた
め好ましくない。
Before molding and sintering, 50
It is preferably added to the silicon-based compounds, including SiO 2 of ~1000Ppm. A sintering aid such as ethyl silicate may be used. SiO 2 has the function of suppressing the growth of crystal grains during sintering and the generation of intragranular pores. Si
If O 2 is less than 50 ppm, there is almost no effect on reduction of intragranular porosity, and if it is added in excess of 1000 ppm, the emission intensity will be significantly reduced. The ground powder can be molded to a density of 60 to 70% of the theoretical density by performing a uniaxial press or a uniaxial press and a cold isostatic press. This molded body is placed in an alumina mortar with a lid, and is placed in a vacuum or in an atmosphere of hydrogen, nitrogen or argon in the range of 1600-18.
Sintering at 00 ° C. increases the density to 95-98% of the theoretical density. Sintering in air or oxygen is
The valence of Ce in the light emitting component is changed from trivalent to tetravalent, and the luminous intensity is lowered, which is not preferable. Regarding the sintering temperature, if the temperature is less than 1600 ° C., the sintered body density does not improve, and open pores remain, and if the temperature exceeds 1800 ° C., the volatilization amount of various components is large, and the composition cannot be controlled. Absent.

【0010】この燒結体は、さらに、1400〜1600℃の温
度のアルゴンガス中で500〜2000atmで熱間静水圧プレス
(HIP)を行うことにより、理論密度の99.5%以上の
光学的透明性を有する燒結体を得ることができる。
The sintered body is further subjected to hot isostatic pressing (HIP) at 500 to 2,000 atm in argon gas at a temperature of 1400 to 1600 ° C. to obtain an optical transparency of 99.5% or more of the theoretical density. A sintered body can be obtained.

【0011】[0011]

【発明の実施の形態】(実施例1)次に本発明のシンチレ
ータの実施例につき説明する。Gd2O3を90.17g、Ce2(C2O
4)3・9H2Oを0.883g、Y2O3を28.23g、Al2O3を63.73g及び
BaF2を21.92g(0.5mol/mol)計量した。次に、これらの素
原料を湿式混合後乾燥した。次に、この素原料混合粉を
B5サイズのアルミナルツボに入れ、アルミナの蓋をし
た後、1500℃で2h仮焼した。冷却後、原料をほぐし、撹
拌器を用い、4Nの塩酸で2時間洗浄を行った。純水で洗
浄し乾燥したシンチレータ粉末に、エタノールに分散さ
れたSiO2を100ppm添加した。そして、ポリエチレンポッ
トに直径5mmのアルミナボールを入れ、24時間ボールミ
ル粉砕を行った。こうして、粒径1〜2μmのシンチレ
ータ粉砕粉を得た。この粉砕紛に、純水を5wt%添加し、
500kg/cm2の圧力で一軸プレス成形し、その後、加圧力3
ton/cm2で冷間静水圧プレスを行い、理論密度に対し64%
の成形体が得られた。この成形体を窒化ホウ素のこう鉢
に入れ、フタをして、真空中で1750℃、3時間の一次燒
結を行い、理論密度に対し、98.5%の燒結体が得られ
た。なお、真空中で燒結する場合にアルミナこう鉢を用
いると、アルミナから解離する酸素量が多くCeが価数変
化を起こすため、こう鉢材質として窒化ホウ素を用いた
(水素、窒素またはアルゴン雰囲気中で燒結する場合
は、アルミナこう鉢で良い)。また、密度の高い均一な
燒結体とするため、1350℃以上の昇温速度は50℃/hとし
た。この燒結体を、1550℃、3時間、1000atmの条件で熱
間静水圧プレス燒結を行った。得られた燒結体は、理論
密度と同じ密度を有していた。この燒結体を厚さ3mm
のウェハ形状に機械加工後、特性評価を行った。分光光
度計を用いた550nmの拡散透過率、管電圧120kV、管電流
5mAのX線(Wターゲット)を照射した時の発光強度(CdWO4
シンチレータの発光強度に対する比率)及びX線励起停
止後30ms経過後の残光測定結果、また、241Amから出る
エネルギ60KeVのγ線を照射したときの発光減衰時定数
の測定結果を表2に示す。また、比較のため表1には他
の多結晶シンチレータとして、CdWO4,(Y,Gd)2O3:Eu,P
r,Gd2O2S:Pr,Ce,Fの主発光波長、相対発光強度、減衰
時定数、残光、コストを併記した。なお、相対発行強
度、コストはCdWOの燒結体を基本とした際の比較
である。
(Embodiment 1) Next, an embodiment of the scintillator of the present invention will be described. 90.17 g of Gd 2 O 3 and Ce 2 (C 2 O
4) 3 · 9H 2 O and 0.883 g, 28.23 g of Y 2 O 3, the Al 2 O 3 63.73g and
21.92 g (0.5 mol / mol) of BaF 2 was weighed. Next, these raw materials were wet-mixed and then dried. Next, this raw material mixed powder was placed in a B5 size alumina crucible, covered with alumina, and calcined at 1500 ° C. for 2 hours. After cooling, the raw materials were loosened and washed with 4N hydrochloric acid for 2 hours using a stirrer. 100 ppm of SiO 2 dispersed in ethanol was added to the scintillator powder washed and dried with pure water. Then, alumina balls having a diameter of 5 mm were put into a polyethylene pot, and ball milling was performed for 24 hours. Thus, a scintillator pulverized powder having a particle size of 1 to 2 μm was obtained. To this pulverized powder, add 5 wt% of pure water,
Uniaxial press molding at a pressure of 500 kg / cm 2
perform cold isostatic pressed at ton / cm 2, the theoretical density to 64%
Was obtained. This compact was placed in a boron nitride mortar, covered, and subjected to primary sintering at 1750 ° C. for 3 hours in a vacuum to obtain a sintered body having a theoretical density of 98.5%. In addition, when using an alumina mortar when sintering in a vacuum, the amount of oxygen dissociated from alumina is large and Ce causes a valence change, so boron nitride was used as the material of the mortar.
(When sintering in a hydrogen, nitrogen or argon atmosphere, use an alumina mortar.) Further, in order to obtain a uniform sintered body having a high density, the heating rate at 1350 ° C. or higher was 50 ° C./h. The sintered body was subjected to hot isostatic press sintering at 1550 ° C. for 3 hours at 1000 atm. The resulting sintered body had the same density as the theoretical density. This sintered body is 3mm thick
After machining to the wafer shape, the characteristics were evaluated. Diffuse transmittance of 550nm using spectrophotometer, tube voltage 120kV, tube current
Emission intensity (CdWO 4 ) when irradiated with 5 mA X-ray (W target)
Table 2 shows the ratio of the emission intensity of the scintillator to the emission intensity), the afterglow measurement results after 30 ms from the stop of the X-ray excitation, and the measurement results of the emission decay time constant when irradiated with 60 KeV γ-ray emitted from 241 Am. . For comparison, Table 1 shows other polycrystalline scintillators as CdWO 4 , (Y, Gd) 2 O 3 : Eu, P
The main emission wavelength, relative emission intensity, decay time constant, afterglow, and cost of r, Gd 2 O 2 S: Pr, Ce, F are also shown. The relative issuing strength and cost are comparisons based on a CdWO 4 sintered body.

【0012】[0012]

【表1】 【table 1】

【0013】(実施例2〜8及び比較例1〜4)実施例1と
同様の手順で原料粉及び燒結体を作製した。ただし、Gd
2O3とY2O3の添加量、BaF2の添加率及びSiO2添加率を変
えて組成の異なる原料粉を作製した。また、燒結温度と
雰囲気を変えて多結晶シンチレータである燒結体試料を
作成した。得られた多結晶シンチレータの拡散透過率、
相対発光強度、減衰時定数及び残光の測定結果を表2に
示す。
(Examples 2 to 8 and Comparative Examples 1 to 4) Raw material powders and sintered bodies were produced in the same procedure as in Example 1. However, Gd
Raw material powders having different compositions were prepared by changing the addition amounts of 2 O 3 and Y 2 O 3 , the addition ratio of BaF 2 and the addition ratio of SiO 2 . Further, a sintered body sample as a polycrystalline scintillator was prepared by changing the sintering temperature and atmosphere. Diffuse transmittance of the obtained polycrystalline scintillator,
Table 2 shows the measurement results of the relative luminescence intensity, decay time constant, and afterglow.

【0014】[0014]

【表2】 [Table 2]

【0015】(実施例9)Gd2O3を90.17g、Ce2(C2O4)3
・9H2Oを0.883g、Y2O3を28.23g、Al2O3を63.73g及びBaF
2を21.92g(0.5mol/mol)計量した。次に、これらの素原
料を湿式混合後乾燥した。次に、この素原料混合粉をB
5サイズのアルミナルツボに入れ、アルミナの蓋をした
後、1500℃で2h仮焼した。冷却後、原料をほぐし、撹拌
器を用い、4Nの塩酸で2時間洗浄を行った。純水で洗浄
し乾燥したシンチレータ粉末に、エタノールに分散され
たSiO2を100ppm添加した。そして、ポリエチレンポット
に直径5mmのアルミナボールを入れ、24時間ボールミル
粉砕を行った。こうして、粒径1〜2μmの透明多結晶
ガーネットシンチレータ用粉末を得た。GdS:
Pr,Ce,F粉末との相対的な発光強度を図5に示
す。また、比較としてその他のフラックスを用いた以外
は同様にして製造した透明多結晶ガーネットシンチレー
タ用粉末の特性も併記する。弗化系化合物を用いたもの
が発光強度が高く、特にBaFを用いたものが優れて
いた。
Example 9 90.17 g of Gd 2 O 3 , Ce 2 (C 2 O 4 ) 3
・ 0.883 g of 9H 2 O, 28.23 g of Y 2 O 3 , 63.73 g of Al 2 O 3 and BaF
2 was weighed 21.92 g (0.5 mol / mol). Next, these raw materials were wet-mixed and then dried. Next, this raw material mixed powder is
It was placed in a 5-size alumina crucible, covered with alumina, and calcined at 1500 ° C. for 2 hours. After cooling, the raw materials were loosened and washed with 4N hydrochloric acid for 2 hours using a stirrer. 100 ppm of SiO 2 dispersed in ethanol was added to the scintillator powder washed and dried with pure water. Then, alumina balls having a diameter of 5 mm were put into a polyethylene pot, and ball milling was performed for 24 hours. Thus, a powder for a transparent polycrystalline garnet scintillator having a particle size of 1 to 2 μm was obtained. Gd 2 O 2 S:
FIG. 5 shows the relative luminous intensity with the Pr, Ce, and F powders. For comparison, the characteristics of a transparent polycrystalline garnet scintillator powder produced in the same manner except that other fluxes were used are also described. Those using a fluorinated compound had high emission intensity, and those using BaF 2 were particularly excellent.

【0016】[0016]

【発明の効果】本発明によるシンチレータは、Gd2O2S:P
r,Ce,Fセラミックシンチレータの1/3のコストで製
造できるにもかかわらず同等の特性であり、かつ製造コ
ストはCdWO4や(Y,Gd)2O3:Euと同等ながらも相対発光強
度が高いとともに減衰時定数も非常に小さいという特性
をあわせもつ。以上、本発明の説明から明らかなよう
に、従来技術によるシンチレータに対して、コストパフ
ォーマンスに優れかつ高性能な透明多結晶ガーネットシ
ンチレータ用粉末およびシンチレータを提供できた。
The scintillator according to the present invention has a Gd 2 O 2 S: P
r, Ce, F Ceramics scintillator can be manufactured at 1/3 the cost, but the characteristics are the same, and the manufacturing cost is the same as CdWO 4 or (Y, Gd) 2 O 3 : Eu, but the relative emission intensity And the decay time constant is very small. As described above, as is clear from the description of the present invention, a powder and a scintillator for a transparent polycrystalline garnet scintillator having excellent cost performance and high performance can be provided with respect to the scintillator according to the related art.

【図面の簡単な説明】[Brief description of the drawings]

【図1】GdとYの組成比率を変えた(Gd,Y)3Al5O12:Ceシ
ンチレータ粉末のGd2O2S:Pr,Ce,Fシンチレータ粉末に対
する相対発光強度特性を示す。
FIG. 1 shows the relative emission intensity characteristics of (Gd, Y) 3 Al 5 O 12 : Ce scintillator powder with respect to Gd 2 O 2 S: Pr, Ce, F scintillator powder in which the composition ratio of Gd and Y is changed.

【図2】発光元素であるCeの組成比率を変えたGd2YAl5O
12:Ceシンチレータ粉末のGd2O2S:Pr,Ce,Fシンチレータ
粉末に対する相対発光強度特性を示す。
FIG. 2 Gd 2 YAl 5 O in which the composition ratio of Ce as a light emitting element is changed
12 shows the relative luminescence intensity characteristics of 12 : Ce scintillator powder to Gd 2 O 2 S: Pr, Ce, F scintillator powder.

【図3】Gd2YAl5O12:Ceシンチレータ粉末合成時のフラ
ックスとして用いるBaF2添加量と発光強度との関係を示
す。
FIG. 3 shows the relationship between the amount of BaF 2 added as a flux during the synthesis of Gd 2 YAl 5 O 12 : Ce scintillator powder and the emission intensity.

【図4】Gd2YAl5O12:Ceシンチレータ粉末合成時の仮焼
温度と発光強度との関係を示す。
FIG. 4 shows the relationship between the calcination temperature and the emission intensity during the synthesis of Gd 2 YAl 5 O 12 : Ce scintillator powder.

【図5】Gd2YAl5O12:Ceシンチレータ粉末合成時に用い
たフラックスと発行強度の関係を示す。
FIG. 5 shows the relationship between the flux used at the time of synthesizing the Gd 2 YAl 5 O 12 : Ce scintillator powder and the emission intensity.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 一般式Gd3−x−yCeAl
12(ただし、0.001≦x≦0.05及び0.7≦y≦2)で表
されることを特徴とする透明多結晶ガーネットシンチレ
ータ。
1. A compound of the general formula Gd 3-xy Ce x Y y Al 5
A transparent polycrystalline garnet scintillator characterized by being represented by O 12 (however, 0.001 ≦ x ≦ 0.05 and 0.7 ≦ y ≦ 2).
【請求項2】 Gd3−x−yCeAl12
のガーネット組成になるように、適当量の酸化ガドリニ
ウム、酸化アルミニウム、酸化イットリウム及びセリウ
ム塩と、フラックスとしてガーネット1モルに対し弗化
系化合物を0.05〜1.5モル加え、混合後、140
0〜1600℃で仮焼することを特徴とする透明多結晶
ガーネットシンチレータ用粉末の製造方法。
2. Gd 3-xy Ce x Y y Al 5 O 12
In order to obtain a garnet composition, an appropriate amount of gadolinium oxide, aluminum oxide, yttrium oxide and cerium salt, and 0.05 to 1.5 mol of a fluorinated compound with respect to 1 mol of garnet as a flux, and after mixing,
A method for producing a powder for a transparent polycrystalline garnet scintillator, comprising calcining at 0 to 1600 ° C.
【請求項3】 Gd3−x−yCeAl12
粉末に燒結助剤として、珪素系化合物の燒結助剤を50
〜1000ppm以下の範囲で加え、プレス成形後、真
空中もしくは水素、窒素またはアルゴン雰囲気中のいず
れかにおいて1600〜1800℃の温度範囲で燒結し
て燒結体とすることを特徴とする透明多結晶ガーネット
シンチレータの製造方法。
3. Gd 3-xy Ce x Y y Al 5 O 12
A sintering aid of a silicon compound is added to the powder as a sintering aid.
A transparent polycrystalline garnet which is sintered in a vacuum or in a hydrogen, nitrogen or argon atmosphere in a temperature range of 1600 to 1800 ° C. to obtain a sintered body. Manufacturing method of scintillator.
【請求項4】 前記燒結体をさらにアルゴン雰囲気14
00〜1600℃の温度で熱間静水圧プレス燒結を行う
請求項3に記載の透明多結晶ガーネットシンチレータの
製造方法。
4. The sintered body is further subjected to an argon atmosphere.
The method for producing a transparent polycrystalline garnet scintillator according to claim 3, wherein hot isostatic press sintering is performed at a temperature of 00 to 1600C.
JP37437199A 1999-12-28 1999-12-28 Transparent polycrystalline garnet scintillator, powder for scintillator and method for producing the same Pending JP2001181043A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP37437199A JP2001181043A (en) 1999-12-28 1999-12-28 Transparent polycrystalline garnet scintillator, powder for scintillator and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP37437199A JP2001181043A (en) 1999-12-28 1999-12-28 Transparent polycrystalline garnet scintillator, powder for scintillator and method for producing the same

Publications (1)

Publication Number Publication Date
JP2001181043A true JP2001181043A (en) 2001-07-03

Family

ID=18503739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP37437199A Pending JP2001181043A (en) 1999-12-28 1999-12-28 Transparent polycrystalline garnet scintillator, powder for scintillator and method for producing the same

Country Status (1)

Country Link
JP (1) JP2001181043A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001348273A (en) * 2000-04-06 2001-12-18 Hitachi Metals Ltd Ceramics, method of producing ceramics powder, and method of producing ceramics
CN1311054C (en) * 2001-07-19 2007-04-18 南帝化学工业股份有限公司 Yttrium aluminium garnet (YAG) type fluorescent powder and its preparing process and application
WO2010095737A1 (en) * 2009-02-23 2010-08-26 株式会社東芝 Solid-state scintillator, radiation detector, and x-ray tomographic imaging device
JP2012180399A (en) * 2011-02-28 2012-09-20 Furukawa Co Ltd Garnet-type crystal for scintillator, and radiation detector using the same
JP2013002882A (en) * 2011-06-14 2013-01-07 Furukawa Co Ltd Radiation detector
JP2016027563A (en) * 2014-07-02 2016-02-18 株式会社デンソー Solid electrolyte, lithium battery and lithium air battery
JP2016160160A (en) * 2015-03-04 2016-09-05 国立研究開発法人物質・材料研究機構 Oxide sintered body, production method therefor, solid electrolyte using the same and lithium ion battery using the same
CN110183223A (en) * 2019-07-01 2019-08-30 深圳市丁鼎陶瓷科技有限公司 A kind of preparation method of crystalline ceramics
CN112209714A (en) * 2020-10-16 2021-01-12 长春理工大学 Preparation technology of one-step-formed sintered aluminum-based garnet type luminescent ceramic
CN115073161A (en) * 2022-06-14 2022-09-20 重庆翰博显示科技研发中心有限公司 Preparation method of composite ceramic

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001348273A (en) * 2000-04-06 2001-12-18 Hitachi Metals Ltd Ceramics, method of producing ceramics powder, and method of producing ceramics
CN1311054C (en) * 2001-07-19 2007-04-18 南帝化学工业股份有限公司 Yttrium aluminium garnet (YAG) type fluorescent powder and its preparing process and application
WO2010095737A1 (en) * 2009-02-23 2010-08-26 株式会社東芝 Solid-state scintillator, radiation detector, and x-ray tomographic imaging device
US8377335B2 (en) 2009-02-23 2013-02-19 Kabushiki Kaisha Toshiba Solid scintillator, radiation detector, and tomograph
JP5686724B2 (en) * 2009-02-23 2015-03-18 株式会社東芝 Solid scintillator, radiation detector, and X-ray tomography apparatus
JP2012180399A (en) * 2011-02-28 2012-09-20 Furukawa Co Ltd Garnet-type crystal for scintillator, and radiation detector using the same
JP2013002882A (en) * 2011-06-14 2013-01-07 Furukawa Co Ltd Radiation detector
JP2016027563A (en) * 2014-07-02 2016-02-18 株式会社デンソー Solid electrolyte, lithium battery and lithium air battery
JP2016160160A (en) * 2015-03-04 2016-09-05 国立研究開発法人物質・材料研究機構 Oxide sintered body, production method therefor, solid electrolyte using the same and lithium ion battery using the same
CN110183223A (en) * 2019-07-01 2019-08-30 深圳市丁鼎陶瓷科技有限公司 A kind of preparation method of crystalline ceramics
CN112209714A (en) * 2020-10-16 2021-01-12 长春理工大学 Preparation technology of one-step-formed sintered aluminum-based garnet type luminescent ceramic
CN115073161A (en) * 2022-06-14 2022-09-20 重庆翰博显示科技研发中心有限公司 Preparation method of composite ceramic

Similar Documents

Publication Publication Date Title
JP5212115B2 (en) Fluorescent material, scintillator and radiation detector using the same
EP1043383B2 (en) Phosphors, and radiation detectors and x-ray ct unit made by using the same
JP5729352B2 (en) Fluorescent material and manufacturing method thereof, radiation detector using fluorescent material, and X-ray CT apparatus
US8431042B2 (en) Solid state scintillator material, solid state scintillator, radiation detector, and radiation inspection apparatus
US7008558B2 (en) Terbium or lutetium containing scintillator compositions having increased resistance to radiation damage
US9193903B2 (en) Solid scintillator, radiation detector, and radiation examination device
JP4623403B2 (en) Ceramics, ceramic powder production method and ceramic production method.
JP5633573B2 (en) Polycrystalline scintillator for soft X-ray detection
JP4290282B2 (en) Oxide phosphor, radiation detector using the same, and X-ray CT apparatus
JP2010261005A (en) Fluorescent material and scintillator and radiation detector using the same
JP4683719B2 (en) Oxide phosphor, radiation detector using the same, and X-ray CT apparatus
JP5311241B2 (en) Polycrystalline scintillator, manufacturing method thereof, and radiation detector
JP2007246653A (en) Phosphor material and radiation detector using the same
JPWO2010095737A1 (en) Solid scintillator, radiation detector, and X-ray tomography apparatus
JP2001181043A (en) Transparent polycrystalline garnet scintillator, powder for scintillator and method for producing the same
EP1279717B1 (en) Phosphor, radiation detector containing the same, and x-ray ct apparatus
JP2001294853A (en) Oxide fluorescent substance, radiation detector using the same, and x-ray ct apparatus
JP4429444B2 (en) Scintillator, radiation detector and X-ray CT apparatus using the same
JP4692890B2 (en) Fluorescent material and radiation detector using the same
JP5212841B2 (en) Method for producing fluorescent material
WO2022202500A1 (en) Scintillator and radiation detector
JP2009046610A (en) Scintillator
EP4095215A1 (en) Scintillator and radiation detector
WO2021132494A1 (en) Scintillator and radiation detector
JP2022158438A (en) OXIDE CRYSTAL MATERIAL, PHOSPHOR MATERIAL, DEVICE INCLUDING THE PHOSPHOR MATERIAL, AND Li ION CONDUCTOR INCLUDING THE OXIDE CRYSTAL MATERIAL