WO2016006484A1 - Large-building inspection device - Google Patents

Large-building inspection device Download PDF

Info

Publication number
WO2016006484A1
WO2016006484A1 PCT/JP2015/068599 JP2015068599W WO2016006484A1 WO 2016006484 A1 WO2016006484 A1 WO 2016006484A1 JP 2015068599 W JP2015068599 W JP 2015068599W WO 2016006484 A1 WO2016006484 A1 WO 2016006484A1
Authority
WO
WIPO (PCT)
Prior art keywords
reflective layer
phosphor
substrate
layer
paste
Prior art date
Application number
PCT/JP2015/068599
Other languages
French (fr)
Japanese (ja)
Inventor
谷野貴広
重田和樹
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2016532883A priority Critical patent/JP6662291B2/en
Publication of WO2016006484A1 publication Critical patent/WO2016006484A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K4/00Conversion screens for the conversion of the spatial distribution of X-rays or particle radiation into visible images, e.g. fluoroscopic screens

Definitions

  • the present invention relates to an inspection apparatus for large structures.
  • an object of the present invention is to provide an inspection apparatus for a large structure having a configuration optimized for detecting high energy transmitted X-rays.
  • the radiation detector comprises a substrate, a partition wall placed on the substrate, and a phosphor layer filled in a cell partitioned by the partition wall.
  • An inspection device for large structures provided with a scintillator panel.
  • the scintillator panel has a shielding layer between the partition wall and the phosphor layer, and the shielding layer is made of a metal, and is a large-size device according to any one of (1) to (7). Structure inspection equipment. (9) The inspection apparatus for a large structure according to any one of (1) to (8), wherein a height of the partition wall is 0.4 mm or more.
  • the output substrate 3 has a photoelectric conversion layer 8 and an output layer 9 on a substrate 10 in which pixels composed of photoelectric conversion elements and TFTs are two-dimensionally formed.
  • the radiation detector 1 is obtained by bonding or adhering the light-emitting surface of the scintillator panel 2 and the photoelectric conversion layer 8 of the output substrate 3 via the diaphragm layer 7 made of polyimide resin or the like.
  • the photoelectric conversion layer 8 When the light emitted from the phosphor layer 6 reaches the photoelectric conversion layer 8, photoelectric conversion is performed in the photoelectric conversion layer 8, and an electric signal is output through the output layer 9.
  • each cell is partitioned by a partition wall.
  • each pixel of the photoelectric conversion element can be associated with each cell of the scintillator panel.
  • the scintillator panel provided in the inspection apparatus for a large structure comprises a substrate, a partition placed on the substrate, and a phosphor layer filled in a cell partitioned by the partition. It is characterized by.
  • “Substrate” refers to a plate-like support on which a partition wall is placed.
  • the material of the substrate include polymers, semiconductors, metals, ceramics, and glass.
  • the polymer compound include polyester, cellulose acetate, polyamide, polyimide, polycarbonate, or carbon fiber reinforced resin.
  • the semiconductor include silicon, germanium, gallium arsenide, gallium phosphide, and gallium nitrogen.
  • the metal include aluminum, iron, copper, lead, tungsten, and molybdenum.
  • the ceramic include aluminum oxide, aluminum nitride, mullite, and steatite.
  • the glass include quartz, borosilicate glass, and chemically tempered glass.
  • the substrate selectively absorbs scattered low-energy X-rays (hereinafter referred to as “scattered X-rays”) and selectively does not scatter high-energy X-rays (hereinafter referred to as “straight-forward X-rays”). Those that permeate through are preferred. More specifically, a substrate having an X-ray absorption characteristic equivalent to that of lead having a thickness of 5 to 20 mm is preferable.
  • the scintillator panel provided in the inspection apparatus for large structures of the present invention has a partition wall. Scattering of scintillation light is suppressed by the partition walls, and scattered X-rays can be absorbed, so that the sharpness of the obtained image is improved.
  • FIG. 2 is a cross-sectional view schematically showing the configuration of the scintillator panel provided in the inspection apparatus for large structures according to the present invention.
  • the height L1 of the partition wall 5 is preferably 0.4 to 50 mm, more preferably 1 to 20 mm.
  • L1 exceeds 50 mm, straight X-rays are scattered in the phosphor layer, and the sharpness of the obtained image may be reduced.
  • L1 is less than 0.4 mm, high-energy straight X-rays cannot be sufficiently converted to scintillation light, and the brightness of the scintillator panel may decrease.
  • the interval L2 between adjacent partition walls is preferably 0.1 to 5 mm, more preferably 0.2 to 1 mm. If L2 is less than 0.1 mm, it is difficult to form a phosphor layer in the cell. On the other hand, if L2 exceeds 5 mm, the sharpness of the obtained image may be reduced.
  • the bottom width L3 of the partition wall is preferably 0.01 to 0.3 mm, more preferably 0.03 to 0.15 mm. If L3 is less than 0.01 mm, pattern defects are likely to occur. On the other hand, when L3 exceeds 0.3 mm, the volume of the phosphor layer becomes insufficient, and the brightness of the scintillator panel may decrease.
  • the top width L4 of the partition walls is preferably 0.005 to 0.2 mm, and more preferably 0.02 to 0.1 mm.
  • L4 is less than 0.005 mm, the strength of the partition walls is reduced, and pattern defects are likely to occur.
  • L4 exceeds 0.2 mm, the area from which the scintillation light can be extracted from the phosphor layer becomes narrow, and the brightness of the scintillator panel may decrease.
  • the cross section of the scintillator panel perpendicular to the substrate is exposed by a polishing device such as a cross section polisher, and the cross section is observed with a scanning electron microscope (for example, S2400; manufactured by Hitachi, Ltd.) and measured. Can do.
  • a scanning electron microscope for example, S2400; manufactured by Hitachi, Ltd.
  • the width of the partition wall at the contact portion between the partition wall and the substrate is L3.
  • the width of the topmost part of the partition is L4.
  • the partition walls are preferably made of an inorganic material in order to increase the X-ray absorption rate and the light reflection rate.
  • the inorganic substance means a simple part of a carbon compound (a carbon allotrope such as graphite or diamond) and a compound composed of an element other than carbon.
  • the term “consisting of inorganic substances” does not exclude the existence of components other than inorganic substances in a strict sense, but is not limited to impurities contained in the raw material inorganic substances themselves or impurities mixed in the process of manufacturing the partition walls. The presence of components other than is permissible.
  • the porosity of the partition walls is preferably 25% or less. If the porosity exceeds 25%, the strength of the partition wall may be insufficient.
  • the porosity of the partition wall is obtained by taking a cross-sectional image of the partition wall perpendicular to the substrate with a scanning electron microscope, distinguishing the solid part and the cavity part of the partition wall by binarization, and analyzing the ratio of the cavity part by image analysis. Can be measured.
  • the reflectance refers to the SCI reflectance at a wavelength of 530 nm measured using a spectrocolorimeter (for example, CM-2600d; manufactured by Konica Minolta Co., Ltd.).
  • the reflectance of the substrate and the partition placed on the substrate is The reflectance refers to the reflectance when light is applied to the substrate and the partition from the side on which the partition is placed. If the reflectance is less than 25%, the brightness of the scintillator panel may be lowered. On the other hand, if the reflectance exceeds 85%, the sharpness of the image may be lowered.
  • the scintillator panel provided in the inspection apparatus for a large structure of the present invention has a reflective layer containing a metal oxide between the partition wall and the phosphor layer.
  • having a reflective layer between the barrier rib and the phosphor layer refers to, for example, a state in which the reflective layer is formed on the surface of the substrate and the barrier rib in contact with the phosphor layer.
  • the reflective layer preferably contains a metal oxide as a main component.
  • a metal oxide is a main component means that the ratio of the metal oxide in the reflective layer is 50% by volume or more.
  • the average thickness of the reflective layer is preferably 5 to 50 ⁇ m.
  • the average thickness of the reflective layer is a value obtained by dividing the area of the reflective layer of 10 cells randomly selected in the cross section of the scintillator panel perpendicular to the substrate by the formation length of the reflective layer.
  • the formation length of the reflection layer refers to the total extension of the length of the portion where the reflection layer and the lower layer (such as a partition wall or a shielding layer) are in contact with each other in the cross section of the 10 cells.
  • the average thickness of the reflective layer is calculated by exposing the cross section of the scintillator panel perpendicular to the substrate with a polishing apparatus, observing the cross section with a scanning electron microscope, and performing image processing. Can do.
  • the reflectivity may be insufficient.
  • the thickness exceeds 50 ⁇ m, the reflectance becomes too high, and the sharpness of the obtained image may be lowered.
  • the volume of the phosphor layer becomes insufficient, the brightness of the scintillator panel may be lowered.
  • the metal oxide contained in the reflective layer is preferably a compound selected from the group consisting of titanium oxide, zirconium oxide, aluminum oxide, barium oxide, bismuth oxide and gadolinium oxide in order to achieve a more suitable reflectance.
  • a reflective layer composed of these oxides is preferable because it has an appropriate reflectance.
  • the heavy elements barium oxide, bismuth oxide and gadolinium oxide are more preferable.
  • the average thickness of the reflective layer in the upper half of the cell is larger than the average thickness of the reflective layer in the lower half of the cell.
  • the average thickness of the reflective layer in the upper half of the cell means the area of the upper half of the cell, that is, the height of the partition, for 10 cells randomly selected in the cross section of the scintillator panel perpendicular to the substrate. This is a value obtained by dividing the area of the reflective layer formed in the region above the median value of the length L1 (the bisection point of the partition wall height L1) by the formation length of the reflective layer.
  • the average thickness of the reflective layer in the lower half of the cell is the area of the lower half of the cell, i.e. the partition wall, for 10 randomly selected cells in the cross section of the scintillator panel perpendicular to the substrate.
  • the shielding layer forming method examples include a vacuum film-forming method such as a vacuum deposition method, a sputtering method, or a CVD method, a plating method, a paste coating method, or a spraying method by spraying.
  • the metal contained in the shielding layer include aluminum, chromium, silver, tungsten, molybdenum, and lead. Silver, tungsten, molybdenum, and lead having high X-ray absorption are preferable.
  • the average thickness of the shielding layer is preferably 0.0001 to 0.5 mm. When the average thickness of the shielding layer is less than 0.0001 mm, the effect of suppressing scintillation light leakage and the X-ray absorption effect tend to be insufficient.
  • the average thickness of the shielding layer can be calculated by the same method as the average thickness of the reflective layer.
  • the reflecting layer is formed on the shielding layer in order to avoid insufficient reflectance due to absorption by the shielding layer. It is preferable.
  • Examples of the activator added to the phosphor include indium (In), thallium (Tl), lithium (Li), potassium (K), rubidium (Rb), sodium (Na), terbium (Tb), and europium (Eu). ) Or praseodymium (Pr).
  • the phosphor layer contains a granular phosphor, and the average primary particle diameter of the phosphor is 1 to 50 ⁇ m.
  • the phosphor layer contains a granular phosphor, it is possible to control the scintillation light scattering in the phosphor layer to a suitable one, and the barrier ribs are obtained by appropriately absorbing scintillation light due to scattered X-rays. The sharpness of the image is improved.
  • the phosphor layer contains a granular phosphor.
  • all the phosphors filled in 10 cells randomly selected have a major axis and a short axis.
  • the average value of the values obtained by measuring the diameter and dividing the major axis by the minor axis is 10 or less.
  • the average primary particle diameter of the phosphor is the circular equivalent particle of the cross-sectional area of all the granular phosphors filled in 10 cells selected at random in the cross section of the scintillator panel perpendicular to the substrate. It is a weighted average value obtained by calculating diameters and weighting them by area ratio.
  • the space between the phosphor particles is preferable to fill the space between the phosphor particles with a high refractive index resin.
  • the granular phosphor include GOS (Gd 2 O 2 S) doped with thallium (Tl).
  • the phosphor layers filled in the cells partitioned by the partition walls have a plurality of modes having different compositions and / or thicknesses.
  • the scintillator panel which a fluorescent substance layer consists of a fluorescent substance layer of the several aspect from which X-ray absorptivity differs is obtained.
  • the X-ray absorption rate refers to the absorption rate of each phosphor layer for 1 MeV X-ray, and is calculated using EGS5, which is a radiation simulation program, based on the composition and thickness of each phosphor layer. Can do.
  • fluorescence is emitted only to a specific cell through a patterned metal mask in a cell partitioned by a partition wall.
  • the method of repeating the method of vacuum-printing a body paste using several types of fluorescent substance paste is mentioned.
  • the scintillator panel provided in the inspection apparatus for large structures of the present invention is used for inspection of large structures and exhibits high sensitivity and sharpness of images with respect to high energy X-rays.
  • the internal structure of an object can be inspected with high accuracy while being non-destructive.
  • the large structure is ordinary 18-8-20-N which is a ready-mixed concrete whose minimum width is 20 cm or more and whose X-ray transmittance with energy of 500 keV is defined by JIS A5308. Of the cured product is smaller than the transmittance at a site of 20 cm in thickness.
  • the inspection apparatus for a large structure of the present invention is a radiation detector that irradiates a large structure with X-rays from an X-ray source having an acceleration voltage of 500 kV to 30 MV, and an X-ray transmitted through the large structure.
  • a detection function In other words, the inspection apparatus for a large structure according to the present invention irradiates the large structure with an X-ray from an X-ray source having an acceleration voltage of 500 kV to 30 MV, and an X-ray transmitted through the large structure. It is for implement
  • the acceleration voltage of the X-ray source is preferably 1 MV or more, and more preferably 2 MV or more, in order to increase the generation efficiency of high energy X-rays. Moreover, in order to raise the detection efficiency in a detector, 20 MV or less is preferable and 10 MV or less is more preferable.
  • the irradiation process and the detection process included in the inspection method may be started / finished at the same time, or their timing may be mixed. More specifically, for example, the detection process is started by irradiating a weak structure with weak X-rays in advance, and the irradiation process is started after the acceleration voltage of the X-ray source is set to 500 kV to 30 MV after a certain time. Alternatively, a large structure may be irradiated with X-rays from an X-ray source having an acceleration voltage of 500 kV to 30 MV in advance, and the detection process may be started after a certain time.
  • Examples of the method for forming the partition include machining, photolithography, or formation by a 3D printer. Since a high-strength partition can be formed with high definition, the partition is formed by photolithography or 3D printer using a photosensitive paste. Is preferably formed. Among them, it is preferable to form a partition mainly composed of glass by photolithography using a photosensitive glass paste because processing of a large area is easy, tact time is short, and manufacturing cost is low.
  • the partition wall mainly composed of glass is obtained by, for example, applying a photosensitive paste containing glass powder to the surface of a base material to obtain a coating film, exposing and developing the coating film, and baking the partition wall. It can be formed by a pattern forming step of obtaining a previous pattern and a firing step of firing the pattern to obtain a partition pattern.
  • a partition mainly composed of glass 50 to 100% by mass of the inorganic component contained in the glass powder-containing paste used in the coating step needs to be glass powder.
  • the glass powder contained in the glass powder-containing paste is preferably glass that softens at the firing temperature, and more preferably low-softening point glass having a softening temperature of 700 ° C. or lower.
  • the softening temperature is determined by calculating the endothermic end temperature at the endothermic peak from the DTA curve obtained by measuring the sample using a differential thermal analyzer (eg, differential type differential thermal balance TG8120; manufactured by Rigaku Corporation) by the tangent method. It can be obtained by inserting. More specifically, first, using a differential thermal analyzer, using alumina powder as a standard sample, the temperature is raised from room temperature at 20 ° C./min to measure the inorganic powder serving as a measurement sample to obtain a DTA curve. Then, from the obtained DTA curve, the softening point Ts obtained by extrapolating the endothermic end temperature at the endothermic peak by the tangent method can be used as the softening temperature.
  • a differential thermal analyzer eg, differential type differential thermal balance TG8120; manufactured by Rigaku Corporation
  • a metal oxide selected from the group consisting of lead oxide, bismuth oxide, zinc oxide and alkali metal oxides, which is an effective compound for lowering the softening point of glass is used.
  • the softening temperature of the glass is adjusted using an alkali metal oxide.
  • the alkali metal refers to a metal selected from the group consisting of lithium, sodium and potassium.
  • the 50% volume average particle diameter (hereinafter referred to as “D50”) of the low softening point glass powder is preferably 1.0 to 4.0 ⁇ m.
  • D50 volume average particle diameter
  • the glass powder is aggregated, and uniform dispersibility cannot be obtained, and the flow stability of the paste is lowered.
  • D50 exceeds 4.0 ⁇ m, the surface unevenness of the post-baking pattern obtained in the baking process becomes large, and this tends to cause the partition wall to be destroyed later.
  • the coating step is a step of applying a glass powder-containing paste to the entire surface or a part of the surface of the substrate to obtain a coating film.
  • a highly heat-resistant support such as a glass plate or a ceramic plate can be used.
  • the method for applying the glass powder-containing paste include a screen printing method, a bar coater, a roll coater, a die coater, and a blade coater.
  • the thickness of the resulting coating film can be adjusted by the number of coatings, the screen mesh size, the viscosity of the paste, or the like.
  • Phosphor 1 terbium-doped gadolinium oxysulfide phosphor with an average particle diameter of 10 ⁇ m 2: terbium-doped gadolinium oxysulfide phosphor with an average particle diameter of 2 ⁇ m 3: terbium-doped oxysulfide with an average particle diameter of 5 ⁇ m
  • Gadolinium phosphor 4 Terbium-doped gadolinium oxysulfide binder having an average particle diameter of 30 ⁇ m: 7 cp etosel (registered trademark) (generic name: ethyl cellulose; manufactured by Nissei Seisaku)
  • Solvent Terpineol (Preparation of phosphor paste) 85 parts by mass of phosphor 1, 3 parts by mass of binder and 12 parts by mass of solvent were stirred to obtain phosphor paste 1.
  • Metal oxide 1 Titanium oxide metal oxide having an average particle diameter of 0.25 ⁇ m 2: Zirconium oxide metal oxide having an average particle diameter of 0.3 ⁇ m 3: Aluminum oxide metal oxide having an average particle diameter of 0.2 ⁇ m 4: Average particle diameter 0.5 ⁇ m barium oxide metal oxide 5: Gadolinium oxide metal oxide having an average particle size of 0.5 ⁇ m 6: Bismuth oxide metal oxide having an average particle size of 0.3 ⁇ m 7: Lead oxide metal oxide having an average particle size of 0.25 ⁇ m
  • Product 8 Cobalt oxide binder having an average particle size of 0.2 ⁇ m: 100 cp etosel (registered trademark) (generic name: ethyl cellulose; manufactured by Nisshinsei) Solvent: Terpineol (Preparation of reflective layer paste)
  • a reflective layer paste 1 was obtained by adding 9 parts by mass of the metal oxide 1 to an organic solution obtained by heating and dissolving 1 part by mass of a binder in
  • metal oxide 1 18 parts by mass was added and kneaded in an organic solution obtained by heating and dissolving 2 parts by mass of a binder in 80 parts by mass of an organic solvent at 80 ° C. to obtain a reflective layer paste 11.
  • metal oxide 1 45 parts by mass was added to and kneaded in an organic solution obtained by dissolving 5 parts by mass of a binder in 50 parts by mass of an organic solvent at 80 ° C. to obtain a reflective layer paste 13.
  • the base material on which the grid-like partition walls were formed was set in a vacuum printer, and the phosphor paste 1 was printed to fully fill the cells with the phosphor paste. Then, it dried at 150 degreeC for 60 minutes, and the scintillator panel 1 was obtained.
  • the average primary particle diameter of the phosphor calculated by exposing the cross section of the scintillator panel perpendicular to the substrate with a polishing apparatus, observing the cross section with a scanning electron microscope, and performing image processing was 10 ⁇ m.
  • the obtained scintillator panel 1 was bonded to an output substrate having a resolution of 0.5 mm pitch so that the cells and the pixels correspond to each other on a one-to-one basis, whereby the radiation detector 1 was obtained.
  • the brightness and sharpness of the radiation detector 1 were evaluated using an X-ray source having an acceleration voltage of 1 MV, the brightness was C and the sharpness was C, both of which were good.
  • Example 2 A base material on which partition walls were formed in the same manner as in Example 1 was produced.
  • the base material was set in a vacuum printing machine, the reflective layer paste 9 was printed, and the cell was fully filled with the reflective layer paste. Thereafter, it was dried at 90 ° C. for 60 minutes to form a reflective layer on the surfaces of the substrate and the partition walls.
  • the average thickness of the reflective layer was 2 ⁇ m, and the reflectance of the substrate after forming the reflective layer was 20%.
  • the phosphor paste was filled in the same manner as in Example 1 to obtain the scintillator panel 2, and after alignment with the output substrate, bonding was performed to obtain the radiation detector 2.
  • the brightness of the radiation detector 2 was C, and the sharpness was C, both of which were good.
  • Example 4 A radiation detector 4 was obtained in the same manner as in Example 2 except that the reflective layer paste 1 was used as the reflective layer paste.
  • the average thickness of the reflective layer was 20 ⁇ m
  • the reflectivity of the substrate after forming the reflective layer was 60%
  • the luminance of the radiation detector 4 was B
  • the sharpness was B, both of which were good.
  • Example 7 A scintillator panel 7 was obtained in the same manner as in Example 4 except that in the formation of the partition walls, a chrome mask having a grid-like opening with a pitch of 0.2 mm and an opening width of 0.02 mm was used for exposure.
  • the porosity of the obtained partition wall was 2%, the partition wall height L1 was 1 mm, the partition wall distance L2 was 0.2 mm, the partition wall bottom width L3 was 0.04 mm, and the partition wall top width L4 was 0.02 mm.
  • the average thickness of the reflective layer was 20 ⁇ m, and the reflectance of the substrate after forming the reflective layer was 40%.
  • the obtained scintillator panel 7 was bonded to an output substrate having a resolution of 0.2 mm pitch so that the cells and the pixels correspond to each other on a one-to-one basis, whereby the radiation detector 7 was obtained.
  • the brightness of the radiation detector 7 was C and the sharpness was A, both of which were good.
  • Example 8 A scintillator panel 8 was obtained in the same manner as in Example 4 except that in the formation of the partition walls, a chrome mask having a grid-like opening having a pitch of 1 mm and an opening width of 0.04 mm was used for exposure.
  • the partition wall obtained had a porosity of 3%, partition wall height L1 of 1 mm, partition wall spacing L2 of 1 mm, partition wall bottom width L3 of 0.08 mm, and partition wall top width L4 of 0.04 mm.
  • the average thickness of the reflective layer was 20 ⁇ m, and the reflectance of the substrate after forming the reflective layer was 70%.
  • the obtained scintillator panel 8 was bonded to an output substrate having a resolution of 1 mm pitch so that the cells and the pixels correspond to each other on a one-to-one basis, whereby the radiation detector 8 was obtained.
  • the brightness of the radiation detector 8 was A and the sharpness was C, both of which were good.
  • Example 9 In the same manner as in Example 4, a shielding layer was formed by sputtering aluminum on a substrate on which lattice-like partition walls were formed. The average thickness of the shielding layer was 1 ⁇ m. Thereafter, in the same manner as in Example 4, a reflection layer was formed, filled with a phosphor paste, and bonded to an output substrate to obtain a radiation detector 9. The average thickness of the reflective layer was 20 ⁇ m, the reflectance of the substrate on which the barrier ribs were formed was 45%, the luminance of the radiation detector 9 was C, and the sharpness was A, both of which were good.
  • Example 11 A radiation detector 11 was obtained in the same manner as in Example 9 except that the reflective layer paste 12 was used as the reflective layer paste.
  • the average thickness of the reflective layer was 50 ⁇ m
  • the reflectivity of the substrate after forming the reflective layer was 65%
  • the luminance of the radiation detector 11 was C
  • the sharpness was B, both of which were good.
  • Example 12 A radiation detector 12 was obtained in the same manner as in Example 9 except that the reflective layer paste 13 was used as the reflective layer paste.
  • the average thickness of the reflective layer was 80 ⁇ m
  • the reflectivity of the substrate after forming the reflective layer was 65%
  • the luminance of the radiation detector 12 was C
  • the sharpness was C, both of which were good.
  • the average thickness of the X-ray absorption layer was 10 ⁇ m. Thereafter, as in Example 4, a reflective layer was formed, filled with a phosphor paste, and bonded to an output substrate to obtain a radiation detector 12.
  • the average thickness of the reflective layer was 20 ⁇ m, the reflectance of the substrate after the reflective layer was formed was 40%, the luminance of the radiation detector 13 was C, and the sharpness was A, both of which were good.
  • Example 14 A radiation detector 14 was obtained in the same manner as in Example 2 except that the reflective layer paste 2 was used as the reflective layer paste.
  • the average thickness of the reflective layer was 20 ⁇ m
  • the reflectance of the substrate after forming the reflective layer was 55%
  • the brightness of the radiation detector 14 was B
  • the sharpness was B, both of which were good.
  • Example 15 A radiation detector 15 was obtained in the same manner as in Example 2 except that the reflective layer paste 3 was used as the reflective layer paste.
  • the average thickness of the reflective layer was 25 ⁇ m
  • the reflectivity of the substrate after the reflective layer was formed was 40%
  • the luminance of the radiation detector 15 was C
  • the sharpness was B, both of which were good.
  • Example 16 A radiation detector 16 was obtained in the same manner as in Example 2 except that the reflective layer paste 4 was used as the reflective layer paste.
  • the average thickness of the reflective layer was 20 ⁇ m
  • the reflectivity of the substrate after forming the reflective layer was 45%
  • the luminance of the radiation detector 16 was B
  • the sharpness was B, both of which were good.
  • Example 17 A radiation detector 17 was obtained in the same manner as in Example 2 except that the reflective layer paste 5 was used as the reflective layer paste.
  • the average thickness of the reflective layer was 15 ⁇ m
  • the reflectance of the substrate after forming the reflective layer was 55%
  • the luminance of the radiation detector 17 was B
  • the sharpness was A, both of which were good.
  • Example 18 A radiation detector 18 was obtained in the same manner as in Example 2 except that the reflective layer paste 6 was used as the reflective layer paste.
  • the average thickness of the reflective layer was 15 ⁇ m
  • the reflectance of the substrate after the reflective layer was formed was 30%
  • the luminance of the radiation detector 18 was C
  • the sharpness was B. Both were good.
  • Example 19 A radiation detector 19 was obtained in the same manner as in Example 2 except that the reflective layer paste 7 was used as the reflective layer paste.
  • the average thickness of the reflective layer was 15 ⁇ m
  • the reflectance of the substrate after forming the reflective layer was 20%
  • the luminance of the radiation detector 19 was D, which was relatively good.
  • the sharpness was B, which was good.
  • Example 20 A radiation detector 20 was obtained in the same manner as in Example 2 except that the reflective layer paste 8 was used as the reflective layer paste.
  • the average thickness of the reflective layer was 20 ⁇ m
  • the reflectance of the substrate after forming the reflective layer was 5%
  • the brightness of the radiation detector 20 was E, but the sharpness was B, which was good.
  • Example 21 A radiation detector 21 was obtained in the same manner as in Example 9 except that the phosphor paste 2 was used as the phosphor paste.
  • the average primary particle diameter of the phosphor was 2 ⁇ m.
  • the average thickness of the reflective layer was 20 ⁇ m, the reflectance of the substrate after forming the reflective layer was 45%, and the luminance of the radiation detector 21 was D, which was relatively good.
  • the sharpness was A, which was good.
  • Example 22 A radiation detector 22 was obtained in the same manner as in Example 9 except that the phosphor paste 3 was used as the phosphor paste.
  • the average primary particle diameter of the phosphor was 5 ⁇ m.
  • the average thickness of the reflective layer was 20 ⁇ m, the reflectance of the substrate after the reflective layer was formed was 45%, the luminance of the radiation detector 22 was C, and the sharpness was A, both of which were good.
  • Example 24 As a phosphor, a sintered body ingot of terbium-doped gadolinium oxysulfide is machined into a columnar rectangular parallelepiped of 0.9 ⁇ 0.3 ⁇ 0.3 mm, and inserted into each cell one by one to form a phosphor layer. Except for the formation, a radiation detector 24 was obtained in the same manner as in Example 9. The average thickness of the reflective layer was 20 ⁇ m, the reflectance of the substrate after forming the reflective layer was 45%, the luminance of the radiation detector 24 was C, and the sharpness was C, both of which were good.
  • Example 25 In the formation of the partition walls, a radiation detector 25 was obtained in the same manner as in Example 4 except that the glass powder-containing paste was applied so that the thickness after drying was 3 mm.
  • the partition wall porosity was 2.5%
  • the partition wall height L1 was 2 mm
  • the partition wall spacing L2 was 0.5 mm
  • the partition wall bottom width L3 was 0.07 mm
  • the partition wall top width L4 was 0.03 mm. there were.
  • the average thickness of the reflective layer was 20 ⁇ m
  • the reflectance of the substrate after the reflective layer was formed was 45%
  • the luminance of the radiation detector 25 was A
  • the sharpness was B, both of which were good.
  • Example 26 A radiation detector 26 was obtained in the same manner as in Example 4 except that the partition wall was formed by applying the glass powder-containing paste so that the thickness after drying was 1 mm.
  • the porosity of the obtained partition wall is 2%
  • the partition wall height L1 is 0.5 mm
  • the partition wall distance L2 is 0.5 mm
  • the partition wall bottom width L3 is 0.04 mm
  • the partition wall top width L4 is 0.03 mm. there were.
  • the average thickness of the reflective layer was 20 ⁇ m
  • the reflectivity of the substrate after forming the reflective layer was 70%
  • the luminance of the radiation detector 26 was C
  • the sharpness was B, both of which were good.
  • Example 27 A radiation detector 27 was obtained in the same manner as in Example 4 except that the partition wall was formed by applying the glass powder-containing paste so that the thickness after drying was 0.4 mm.
  • the obtained partition wall has a porosity of 1.5%, the partition wall height L1 is 0.2 mm, the partition wall interval L2 is 0.5 mm, the partition wall bottom width L3 is 0.03 mm, and the partition wall top width L4 is 0.00 mm. It was 03 mm.
  • the average thickness of the reflective layer is 25 ⁇ m
  • the reflectance of the substrate after the reflective layer is formed is 75%
  • the luminance of the radiation detector 27 is D
  • the sharpness is D. Since the partition is low, both the luminance and the sharpness are high. Although slightly lower, both were relatively good.
  • the ratio, P / Q, of the X-ray absorption rate P of the cell filled with the phosphor paste 1 to the X-ray absorption rate Q of the cell filled with the phosphor paste 5 was 10.
  • Example 30 In Example 29, a metal mask in which 0.2 mm square openings were arranged in a grid pattern with a pitch of 2 mm was used as a metal mask used for printing the phosphor paste 5 in forming the phosphor layer.
  • the phosphor paste 1 was aligned and filled using a metal mask designed to be printed only on cells other than the cells filled with the phosphor paste 5. Then, it dried at 150 degreeC for 60 minutes, and obtained the scintillator panel 30 of the aspect similar to the schematic diagram of FIG. 5 from which the aspect of a fluorescent substance layer differs between the mutually adjacent cells.
  • the ratio, P / Q, of the X-ray absorption rate P of the cell filled with the phosphor paste 1 to the X-ray absorption rate Q of the cell filled with the phosphor paste 5 was 10.
  • Example 31 In Example 30, evaluation was performed in the same manner except that the phosphor paste 6 was used instead of the phosphor paste 5.
  • the ratio of the X-ray absorption rate P of the cell filled with the phosphor paste 1 to the X-ray absorption rate Q of the cell filled with the phosphor paste 6, P / Q was 2.
  • the brightness was C and the sharpness was B, both of which were good.
  • Example 32 A radiation detector 32 was obtained in the same manner as in Example 5 except that the drying temperature after printing of the reflective layer paste 12 was set to 160 ° C.
  • the average thickness of the reflective layer is 50 ⁇ m
  • the reflectivity of the substrate after forming the reflective layer is 85%
  • the brightness of the radiation detector 32 is B
  • the sharpness is B. The sharpness is improved compared to the radiation detector 5. .
  • Example 33 A radiation detector 33 was obtained in the same manner as in Example 12 except that the drying temperature after printing of the reflective layer paste 13 was set to 160 ° C.
  • the average thickness of the reflective layer is 80 ⁇ m
  • the reflectance of the substrate after the reflective layer is formed is 75%
  • the brightness of the radiation detector 33 is C
  • the sharpness is B. The sharpness is improved compared to the radiation detector 12. .
  • Comparative Example 2 In Comparative Example 1, evaluation was performed in the same manner as in Comparative Example 1 except that the phosphor layer was applied and dried so that the thickness after drying was 1 mm. The brightness of the obtained image was A, the sharpness was E, and the sharpness was very low.
  • Comparative Example 3 In Comparative Example 1, the evaluation was performed in the same manner as in Comparative Example 1 except that the phosphor layer was applied and dried so that the thickness after drying was 0.2 mm. The brightness of the obtained image was D, the sharpness was E, and the sharpness was very low.
  • the radiation detector 31 was evaluated using an X-ray source having an acceleration voltage of 0.5 MV in the evaluation of luminance and sharpness.
  • the luminance of the obtained image was C
  • the sharpness was E
  • the sharpness was very low.
  • the inspection apparatus for large structures of the present invention contributes to a marked improvement in image sharpness in nondestructive inspection.
  • the present invention is useful for nondestructive inspection of large structures.

Abstract

The purpose of the present invention is to provide a large-building inspection device having a configuration optimized for detecting high-energy transmission X-ray. The present invention provides a large-building inspection device comprising an irradiation function of irradiating a large building with an X-ray from an X-ray source with an acceleration voltage of 500 kV to 30 MV and a detection function of detecting the X-ray transmitted through said large building using a radiation detector, wherein said radiation detector is provided with: a substrate; and a scintillator panel comprising barrier ribs placed on the substrate and a phosphor layer filled in cells partitioned by the barrier ribs.

Description

大型構造物の検査装置Inspection equipment for large structures
 本発明は、大型構造物の検査装置に関する。 The present invention relates to an inspection apparatus for large structures.
 近年、建造から長期間が経過した高速道路等の建造物すなわち大型構造物において、その老朽化による信頼性低下が問題化している。その補修は急務といえるが、予めその内部構造等を把握しておく必要があることから、使用されたコンクリート等の破壊を伴うことのない、非破壊検査方法の重要性が増しつつある。 In recent years, in high-speed structures such as highways that have been built for a long time, that is, large structures, deterioration of reliability due to aging has become a problem. Although the repair is an urgent task, it is necessary to grasp the internal structure and the like in advance. Therefore, the importance of a non-destructive inspection method that does not cause destruction of used concrete or the like is increasing.
 非破壊検査方法としては超音波探傷法又はX線透過試験が挙げられるが、中でもX線透過試験は、コンクリート等からなる大型構造物に高エネルギーのX線を照射し、大型構造物を透過したX線をフラットパネルディテクターで検出して、透過X線の強度に応じた透過像を得る方法である(特許文献1)。 Examples of non-destructive inspection methods include ultrasonic flaw detection and X-ray transmission tests. Among them, the X-ray transmission test irradiates a large structure made of concrete or the like with high-energy X-rays and transmits the large structure. This is a method of detecting a X-ray with a flat panel detector and obtaining a transmission image corresponding to the intensity of the transmission X-ray (Patent Document 1).
特開平10-197456号公報JP-A-10-197456
 しかしながら、医療又は工業検査用の従来の間接変換方式フラットパネルディテクターでは、透過X線をシンチレーション光に変換する蛍光体層の厚さが薄すぎるため、高エネルギーの透過X線の吸収が少なく、感度が不十分であった。一方で、蛍光体層の厚さを増して感度向上を図った場合には、蛍光体層内でのシンチレーション光の散乱が顕著になり、却って得られる透過像が不鮮鋭となることが問題視されていた。 However, in the conventional indirect conversion type flat panel detector for medical or industrial inspection, the thickness of the phosphor layer for converting the transmitted X-rays into scintillation light is too thin, so that the absorption of high-energy transmitted X-rays is small and the sensitivity Was insufficient. On the other hand, when the sensitivity is improved by increasing the thickness of the phosphor layer, the scintillation light scattering in the phosphor layer becomes significant, and the transmitted image obtained on the contrary becomes unclear. It had been.
 そこで本発明は、高エネルギーの透過X線の検出のために最適化された構成を有する、大型構造物の検査装置を提供することを目的とする。 Therefore, an object of the present invention is to provide an inspection apparatus for a large structure having a configuration optimized for detecting high energy transmitted X-rays.
 この課題は次の技術手段の何れかによって達成される。
(1) 加速電圧500kV~30MVのX線源から、大型構造物にX線を照射する、照射機能と、上記大型構造物を透過したX線を、放射線検出器で検出する、検出機能と、を備える、大型構造物の検査装置であって、上記放射線検出器が、基板、該基板上に載置された隔壁、及び、該隔壁により区画されたセル内に充填された蛍光体層からなるシンチレータパネルを具備する、大型構造物の検査装置。
(2) 上記基板及び該基板上に載置された隔壁の反射率が、25~85%である、上記(1)に記載の大型構造物の検査装置。
(3) 上記シンチレータパネルが、上記隔壁と上記蛍光体層との間に、反射層を有し、該反射層は、金属酸化物を含有する、上記(1)又は(2)に記載の大型構造物の検査装置。
(4) 上記反射層の平均厚さが、5~50μmである、上記(3)に記載の大型構造物の検査装置。
(5) 上記金属酸化物が、酸化チタン、酸化ジルコニウム、酸化アルミニウム、酸化バリウム、酸化ビスマス及び酸化ガドリニウムからなる群から選ばれる化合物である、上記(3)又は(4)に記載の大型構造物の検査装置。
(6) 上記セルの上半部における上記反射層の平均厚さが、上記セルの下半部における上記反射層の平均厚さよりも大きい、上記(3)~(5)のいずれかに記載の大型構造物の検査装置。
(7) 上記蛍光体層が、粒状の蛍光体を含有し、該蛍光体の平均一次粒子径が、1~50μmである、上記(1)~(6)のいずれかに記載の大型構造物の検査装置。
(8) 上記シンチレータパネルが、上記隔壁と上記蛍光体層との間に、遮蔽層を有し、該遮蔽層は、金属からなる、上記(1)~(7)のいずれかに記載の大型構造物の検査装置。
(9) 上記隔壁の高さが、0.4mm以上である、上記(1)~(8)のいずれかに記載の大型構造物の検査装置。
(10) 上記蛍光体層が、組成及び/又は厚さが異なる複数の態様からなる、上記(1)~(9)のいずれかに記載の大型構造物の検査装置。
(11) X線吸収率が最大の上記蛍光体層におけるX線吸収率をP、X線吸収率が最小の上記蛍光体層におけるX線吸収率をQ、としたときに、P/Q≧1.5の関係を満たす、上記(1)~(10)のいずれかに記載の大型構造物の検査装置。
This object is achieved by any of the following technical means.
(1) An irradiation function for irradiating a large structure with an X-ray from an X-ray source having an acceleration voltage of 500 kV to 30 MV, and a detection function for detecting an X-ray transmitted through the large structure with a radiation detector; The radiation detector comprises a substrate, a partition wall placed on the substrate, and a phosphor layer filled in a cell partitioned by the partition wall. An inspection device for large structures provided with a scintillator panel.
(2) The inspection apparatus for large structures according to (1), wherein the reflectance of the substrate and the partition placed on the substrate is 25 to 85%.
(3) The scintillator panel has a reflective layer between the partition wall and the phosphor layer, and the reflective layer contains a metal oxide, and is a large size as described in (1) or (2) above. Structure inspection equipment.
(4) The inspection apparatus for large structures according to (3), wherein the average thickness of the reflective layer is 5 to 50 μm.
(5) The large structure according to (3) or (4), wherein the metal oxide is a compound selected from the group consisting of titanium oxide, zirconium oxide, aluminum oxide, barium oxide, bismuth oxide and gadolinium oxide. Inspection equipment.
(6) The average thickness of the reflective layer in the upper half of the cell is greater than the average thickness of the reflective layer in the lower half of the cell, according to any one of (3) to (5) above Inspection equipment for large structures.
(7) The large structure according to any one of (1) to (6), wherein the phosphor layer contains a granular phosphor, and the phosphor has an average primary particle diameter of 1 to 50 μm. Inspection equipment.
(8) The scintillator panel has a shielding layer between the partition wall and the phosphor layer, and the shielding layer is made of a metal, and is a large-size device according to any one of (1) to (7). Structure inspection equipment.
(9) The inspection apparatus for a large structure according to any one of (1) to (8), wherein a height of the partition wall is 0.4 mm or more.
(10) The inspection apparatus for a large structure according to any one of (1) to (9), wherein the phosphor layer has a plurality of modes having different compositions and / or thicknesses.
(11) When the X-ray absorption rate in the phosphor layer having the maximum X-ray absorption rate is P and the X-ray absorption rate in the phosphor layer having the minimum X-ray absorption rate is Q, P / Q ≧ The inspection apparatus for a large structure according to any one of (1) to (10), which satisfies a relationship of 1.5.
 本発明によれば、大型構造物の内部構造等を、非破壊ながら高い精度で検査することができる。 According to the present invention, it is possible to inspect the internal structure or the like of a large structure with high accuracy while being non-destructive.
本発明の大型構造物の検査装置が具備する放射線検出器の構成を、模式的に表した断面図である。It is sectional drawing which represented typically the structure of the radiation detector which the inspection apparatus of the large sized structure of this invention comprises. 本発明の大型構造物の検査装置が具備するシンチレータパネルの構成を、模式的に表した断面図である。It is sectional drawing which represented typically the structure of the scintillator panel which the inspection apparatus of the large sized structure of this invention comprises. 本発明の大型構造物の検査装置が具備する放射線検出器の構成を、模式的に表した断面図である。It is sectional drawing which represented typically the structure of the radiation detector which the inspection apparatus of the large sized structure of this invention comprises. 本発明の大型構造物の検査装置が具備するシンチレータパネルの構成を、模式的に表した斜視図である。It is the perspective view which represented typically the structure of the scintillator panel which the inspection apparatus of the large sized structure of this invention comprises. 本発明の大型構造物の検査装置が具備するシンチレータパネルの構成を、模式的に表した斜視図である。It is the perspective view which represented typically the structure of the scintillator panel which the inspection apparatus of the large sized structure of this invention comprises.
 以下、図を用いて本発明の大型構造物の検査装置の具体的な構成について説明するが、本発明はこれらに限定されない。 Hereinafter, a specific configuration of the inspection apparatus for a large structure according to the present invention will be described with reference to the drawings, but the present invention is not limited thereto.
 図1は、本発明の大型構造物の検査装置が具備する放射線検出器の構成を、模式的に表した断面図である。放射線検出器1は、シンチレータパネル2、出力基板3及び電源部11からなる。シンチレータパネル2は、蛍光体層6を有し、蛍光体層6は入射したX線のエネルギーを吸収して、波長が300~800nmの範囲の電磁波、すなわち、可視光線を中心に、紫外光から赤外光にわたる範囲の電磁波(光)であるシンチレーション光を放射する。 FIG. 1 is a cross-sectional view schematically showing the configuration of a radiation detector provided in the inspection apparatus for a large structure according to the present invention. The radiation detector 1 includes a scintillator panel 2, an output substrate 3, and a power supply unit 11. The scintillator panel 2 has a phosphor layer 6. The phosphor layer 6 absorbs the energy of incident X-rays and absorbs electromagnetic waves having a wavelength in the range of 300 to 800 nm, that is, from ultraviolet light centering on visible light. It emits scintillation light that is electromagnetic waves (light) in the range of infrared light.
 シンチレータパネル2は、基板4と、その上に区画された空間すなわちセルを形成するための隔壁5と、隔壁5で区画された空間内に充填された蛍光体層6と、隔壁5の表面と蛍光体層6との間に形成された遮蔽層12と、反射層13と、から構成される。 The scintillator panel 2 includes a substrate 4, a partition wall 5 formed thereon, that is, a partition wall 5 for forming a cell, a phosphor layer 6 filled in a space partitioned by the partition wall 5, and a surface of the partition wall 5. It is composed of a shielding layer 12 formed between the phosphor layer 6 and a reflection layer 13.
 出力基板3は、基板10上に、光電変換素子とTFTとからなる画素が2次元状に形成された、光電変換層8及び出力層9を有する。シンチレータパネル2の出光面と、出力基板3の光電変換層8とを、ポリイミド樹脂等からなる隔膜層7を介して、接着又は密着させることで、放射線検出器1が得られる。蛍光体層6で発光した光が光電変換層8に到達すると、光電変換層8で光電変換が行われ、出力層9を通じて電気信号が出力される。本発明の大型構造物の検査装置が具備するシンチレータパネルは各セルを隔壁が区画しているので、格子状に配置された光電変換素子の画素の大きさ及びピッチと、シンチレータパネルのセルの大きさ及びピッチとを一致させることにより、光電変換素子の各画素と、シンチレータパネルの各セルとを対応づけることができる。 The output substrate 3 has a photoelectric conversion layer 8 and an output layer 9 on a substrate 10 in which pixels composed of photoelectric conversion elements and TFTs are two-dimensionally formed. The radiation detector 1 is obtained by bonding or adhering the light-emitting surface of the scintillator panel 2 and the photoelectric conversion layer 8 of the output substrate 3 via the diaphragm layer 7 made of polyimide resin or the like. When the light emitted from the phosphor layer 6 reaches the photoelectric conversion layer 8, photoelectric conversion is performed in the photoelectric conversion layer 8, and an electric signal is output through the output layer 9. In the scintillator panel provided in the inspection apparatus for a large structure according to the present invention, each cell is partitioned by a partition wall. Therefore, the pixel size and pitch of the photoelectric conversion elements arranged in a grid pattern, and the cell size of the scintillator panel By matching the length and the pitch, each pixel of the photoelectric conversion element can be associated with each cell of the scintillator panel.
 本発明の大型構造物の検査装置が具備するシンチレータパネルは、基板、及び、該基板上に載置された隔壁、及び、該隔壁により区画されたセル内に充填された蛍光体層からなることを特徴とする。 The scintillator panel provided in the inspection apparatus for a large structure according to the present invention comprises a substrate, a partition placed on the substrate, and a phosphor layer filled in a cell partitioned by the partition. It is characterized by.
 基板とは、隔壁を載置する対象となる、平板状の支持体をいう。基板の材質としては、例えば、高分子、半導体、金属、セラミック又はガラスが挙げられる。高分子化合物としては、例えば、ポリエステル、セルロースアセテート、ポリアミド、ポリイミド、ポリカーボネート又は炭素繊維強化樹脂が挙げられる。半導体としては、例えば、シリコン、ゲルマニウム、ガリウム砒素、ガリウム燐又はガリウム窒素が挙げられる。金属としては、例えば、アルミニウム、鉄、銅、鉛、タングステン又はモリブデンが挙げられる。セラミックとしては、例えば、酸化アルミニウム、窒化アルミニウム、ムライト又はステアタイトが挙げられる。ガラスとしては、例えば、石英、ホウ珪酸ガラス又は化学的強化ガラスが挙げられる。 “Substrate” refers to a plate-like support on which a partition wall is placed. Examples of the material of the substrate include polymers, semiconductors, metals, ceramics, and glass. Examples of the polymer compound include polyester, cellulose acetate, polyamide, polyimide, polycarbonate, or carbon fiber reinforced resin. Examples of the semiconductor include silicon, germanium, gallium arsenide, gallium phosphide, and gallium nitrogen. Examples of the metal include aluminum, iron, copper, lead, tungsten, and molybdenum. Examples of the ceramic include aluminum oxide, aluminum nitride, mullite, and steatite. Examples of the glass include quartz, borosilicate glass, and chemically tempered glass.
 高エネルギーのX線を照射すると、大型構造物内で大部分のX線が散乱し、これがそのままシンチレータパネルに照射されると、得られる透過像すなわち画像の鮮鋭性が低下する。このため、基板としては散乱した低エネルギーのX線(以下、「散乱X線」)を選択的に吸収し、散乱しなかった高エネルギーのX線(以下、「直進X線」)を選択的に透過するものが好ましい。より具体的には、厚さ5~20mmの鉛と同等のX線吸収特性を示す基板が好ましい。 When high-energy X-rays are irradiated, most of the X-rays are scattered in the large structure, and when this is directly applied to the scintillator panel, the obtained transmission image, that is, the sharpness of the image is deteriorated. For this reason, the substrate selectively absorbs scattered low-energy X-rays (hereinafter referred to as “scattered X-rays”) and selectively does not scatter high-energy X-rays (hereinafter referred to as “straight-forward X-rays”). Those that permeate through are preferred. More specifically, a substrate having an X-ray absorption characteristic equivalent to that of lead having a thickness of 5 to 20 mm is preferable.
 本発明の大型構造物の検査装置が具備するシンチレータパネルは、隔壁を有する。隔壁によってシンチレーション光の散乱が抑制され、かつ、散乱X線を吸収できることから、得られる画像の鮮鋭性が向上する。 The scintillator panel provided in the inspection apparatus for large structures of the present invention has a partition wall. Scattering of scintillation light is suppressed by the partition walls, and scattered X-rays can be absorbed, so that the sharpness of the obtained image is improved.
 図2は、本発明の大型構造物の検査装置が具備するシンチレータパネルの構成を、模式的に表した断面図である。 FIG. 2 is a cross-sectional view schematically showing the configuration of the scintillator panel provided in the inspection apparatus for large structures according to the present invention.
 隔壁5の高さL1は、0.4~50mmが好ましく、1~20mmがより好ましい。L1が50mmを超えると、直進X線が蛍光体層内で散乱し、得られる画像の鮮鋭性が低下する場合がある。一方で、L1が0.4mm未満であると、高エネルギーの直進X線を十分にシンチレーション光に変換できず、シンチレータパネルの輝度が低下する場合がある。 The height L1 of the partition wall 5 is preferably 0.4 to 50 mm, more preferably 1 to 20 mm. When L1 exceeds 50 mm, straight X-rays are scattered in the phosphor layer, and the sharpness of the obtained image may be reduced. On the other hand, if L1 is less than 0.4 mm, high-energy straight X-rays cannot be sufficiently converted to scintillation light, and the brightness of the scintillator panel may decrease.
 隣接する隔壁の間隔L2は、0.1~5mmが好ましく、0.2~1mmがより好ましい。L2が0.1mm未満であると、セル内への蛍光体層の形成が困難になり易い。一方で、L2が5mmを超えると、得られる画像の鮮鋭性が低下する場合がある。 The interval L2 between adjacent partition walls is preferably 0.1 to 5 mm, more preferably 0.2 to 1 mm. If L2 is less than 0.1 mm, it is difficult to form a phosphor layer in the cell. On the other hand, if L2 exceeds 5 mm, the sharpness of the obtained image may be reduced.
 隔壁の底部幅L3は、0.01~0.3mmが好ましく、0.03~0.15mmがより好ましい。L3が0.01mm未満であると、パターンの欠陥が生じ易くなる。一方で、L3が0.3mmを超えると、蛍光体層の体積が不十分となるため、シンチレータパネルの輝度が低下する場合がある。 The bottom width L3 of the partition wall is preferably 0.01 to 0.3 mm, more preferably 0.03 to 0.15 mm. If L3 is less than 0.01 mm, pattern defects are likely to occur. On the other hand, when L3 exceeds 0.3 mm, the volume of the phosphor layer becomes insufficient, and the brightness of the scintillator panel may decrease.
 隔壁の頂部幅L4は、0.005~0.2mmが好ましく、0.02~0.1mmがより好ましい。L4が0.005mm未満であると、隔壁の強度が低下し、パターンの欠陥が生じ易くなる。一方で、L4が0.2mmを超えると、蛍光体層からシンチレーション光を取り出せる面積が狭くなり、シンチレータパネルの輝度が低下する場合がある。 The top width L4 of the partition walls is preferably 0.005 to 0.2 mm, and more preferably 0.02 to 0.1 mm. When L4 is less than 0.005 mm, the strength of the partition walls is reduced, and pattern defects are likely to occur. On the other hand, if L4 exceeds 0.2 mm, the area from which the scintillation light can be extracted from the phosphor layer becomes narrow, and the brightness of the scintillator panel may decrease.
 L1~L4は、基板に対して垂直な、シンチレータパネルの断面をクロスセクションポリッシャー等の研磨装置により露出させ、走査型電子顕微鏡(例えば、S2400;日立製作所製)で断面を観察し、測定することができる。ここで、隔壁と基板との接触部における隔壁の幅を、L3とする。また、隔壁の最頂部の幅を、L4とする。 For L1 to L4, the cross section of the scintillator panel perpendicular to the substrate is exposed by a polishing device such as a cross section polisher, and the cross section is observed with a scanning electron microscope (for example, S2400; manufactured by Hitachi, Ltd.) and measured. Can do. Here, the width of the partition wall at the contact portion between the partition wall and the substrate is L3. The width of the topmost part of the partition is L4.
 隔壁は、その強度に加えて、X線の吸収率、光の反射率を高めるため、無機物からなることが好ましい。ここで無機物とは、単純な一部の炭素化合物(グラファイト若しくはダイヤモンド等炭素の同素体等)及び炭素以外の元素で構成される化合物をいう。なお、「無機物からなり」とは、厳密な意味で無機物以外の成分の存在を排除するものではなく、原料となる無機物自体が含有する不純物や、隔壁の製造の過程において混入する不純物程度の無機物以外の成分の存在は、許容される。隔壁の原料となる無機物としては、例えば、アルミニウム、鉄、銅、鉛、タングステン若しくはモリブデン等の金属、酸化チタン若しくは酸化アルミニウム等の金属酸化物又はホウケイ酸ガラス等のガラスが挙げられる。 In addition to its strength, the partition walls are preferably made of an inorganic material in order to increase the X-ray absorption rate and the light reflection rate. Here, the inorganic substance means a simple part of a carbon compound (a carbon allotrope such as graphite or diamond) and a compound composed of an element other than carbon. The term “consisting of inorganic substances” does not exclude the existence of components other than inorganic substances in a strict sense, but is not limited to impurities contained in the raw material inorganic substances themselves or impurities mixed in the process of manufacturing the partition walls. The presence of components other than is permissible. As an inorganic substance used as the raw material for the partition wall, for example, a metal such as aluminum, iron, copper, lead, tungsten, or molybdenum, a metal oxide such as titanium oxide or aluminum oxide, or a glass such as borosilicate glass can be given.
 隔壁の空隙率は、25%以下であることが好ましい。空隙率が25%を超えると、隔壁の強度が不十分となる場合がある。隔壁の空隙率は、基板に対して垂直な隔壁の断面の画像を走査型電子顕微鏡で撮影し、隔壁の固体部分と空隙部分とを2値化により区別し、空隙部分の比率を画像解析で求めて測定することができる。 The porosity of the partition walls is preferably 25% or less. If the porosity exceeds 25%, the strength of the partition wall may be insufficient. The porosity of the partition wall is obtained by taking a cross-sectional image of the partition wall perpendicular to the substrate with a scanning electron microscope, distinguishing the solid part and the cavity part of the partition wall by binarization, and analyzing the ratio of the cavity part by image analysis. Can be measured.
 本発明の大型構造物の検査装置が具備するシンチレータパネルは、シンチレータパネルを構成する基板及び該基板上に載置された隔壁の反射率が、25~85%であることが好ましい。ここで基板及び該基板上に載置された隔壁とは、基板上に隔壁のみが載置されたものをいい、隔壁により区画されたセル内に、蛍光体層が充填されていない状態のものをいう。なお、蛍光体層が充填される前に、基板及び隔壁の表面に後述する反射層又は遮蔽層等が形成される場合には、それらを含めての状態をいう。また反射率とは、分光測色計(例えば、CM-2600d;コニカミノルタ社製)を用いて測定された、波長530nmのSCI反射率をいい、基板及び該基板上に載置された隔壁の反射率とは、隔壁が載置された側から基板及び隔壁に光を照射した場合の反射率をいう。該反射率が25%未満であると、シンチレータパネルの輝度が低下する場合がある。一方で、該反射率が85%を超えると、画像の鮮鋭性が低下する場合がある。この画像の鮮鋭性の低下は、基板及び隔壁によるシンチレーション光の吸収が低減し、光電変換層に散乱X線によるシンチレーション光が到達してしまう割合が高まることに起因すると考えられる。すなわち、散乱X線は低エネルギーのため、蛍光体層の中でも基板に近い側のみでシンチレーション光を放射しやすい。ここで、上記基板及び該基板上に載置された隔壁の反射率が85%を超える場合、基板付近における散乱X線による発光が光電変換層側に効率的に取り出されてしまうため、画像の鮮鋭性が低下することがある。これに対し、該反射率が85%以下の場合、散乱X線による発光は基板側から光電変換層側に向かって長い距離を進行する過程において適度に隔壁に吸収されるのに対し、高エネルギーの直進X線は蛍光体層の基板側から光電変換層側までのどの部分においても概ね均等にシンチレーション光を放射するため、隔壁による吸収の影響が散乱X線に比べて小さい。このため、散乱X線の影響が相対的に低減し、画像の鮮鋭性が向上すると考えられる。 In the scintillator panel provided in the inspection apparatus for large structures according to the present invention, the reflectance of the substrate constituting the scintillator panel and the partition wall placed on the substrate is preferably 25 to 85%. Here, the substrate and the partition placed on the substrate are those in which only the partition is placed on the substrate, and the cells partitioned by the partition are not filled with the phosphor layer. Say. In addition, when a reflective layer or a shielding layer, which will be described later, is formed on the surface of the substrate and the partition wall before being filled with the phosphor layer, it means a state including them. The reflectance refers to the SCI reflectance at a wavelength of 530 nm measured using a spectrocolorimeter (for example, CM-2600d; manufactured by Konica Minolta Co., Ltd.). The reflectance of the substrate and the partition placed on the substrate is The reflectance refers to the reflectance when light is applied to the substrate and the partition from the side on which the partition is placed. If the reflectance is less than 25%, the brightness of the scintillator panel may be lowered. On the other hand, if the reflectance exceeds 85%, the sharpness of the image may be lowered. This reduction in the sharpness of the image is considered to be caused by a decrease in the absorption of scintillation light by the substrate and the partition walls and an increase in the rate at which scintillation light by scattered X-rays reaches the photoelectric conversion layer. That is, since scattered X-rays have low energy, scintillation light is likely to be emitted only on the side close to the substrate in the phosphor layer. Here, when the reflectance of the substrate and the partition wall placed on the substrate exceeds 85%, light emitted by scattered X-rays in the vicinity of the substrate is efficiently extracted to the photoelectric conversion layer side. Sharpness may be reduced. On the other hand, when the reflectance is 85% or less, light emitted by scattered X-rays is moderately absorbed by the partition in the process of traveling a long distance from the substrate side to the photoelectric conversion layer side, whereas high energy Since the straight X-rays radiate scintillation light almost uniformly in any part from the substrate side to the photoelectric conversion layer side of the phosphor layer, the influence of absorption by the barrier ribs is smaller than that of the scattered X-rays. For this reason, it is considered that the influence of scattered X-rays is relatively reduced and the sharpness of the image is improved.
 本発明の大型構造物の検査装置が具備するシンチレータパネルは、隔壁と蛍光体層との間に、金属酸化物を含有する反射層を有することが好ましい。ここで、隔壁と蛍光体層との間に反射層を有するとは、例えば、蛍光体層と接する基板及び隔壁の表面に、反射層が形成されている状態をいう。反射層は、金属酸化物を主成分とすることが好ましい。なお、金属酸化物を主成分とするとは、反射層に占める金属酸化物の割合が、50体積%以上であることをいう。シンチレータパネルが、隔壁と蛍光体層との間に金属酸化物を含有する反射層を有することにより、基板及び該基板上に載置された隔壁の反射率を好適なものに制御することができる。 It is preferable that the scintillator panel provided in the inspection apparatus for a large structure of the present invention has a reflective layer containing a metal oxide between the partition wall and the phosphor layer. Here, having a reflective layer between the barrier rib and the phosphor layer refers to, for example, a state in which the reflective layer is formed on the surface of the substrate and the barrier rib in contact with the phosphor layer. The reflective layer preferably contains a metal oxide as a main component. In addition, that a metal oxide is a main component means that the ratio of the metal oxide in the reflective layer is 50% by volume or more. When the scintillator panel has a reflective layer containing a metal oxide between the barrier ribs and the phosphor layer, the reflectance of the substrate and the barrier ribs placed on the substrate can be controlled appropriately. .
 反射層の平均厚さは、5~50μmであることが好ましい。ここで反射層の平均厚さとは、基板に対して垂直な、シンチレータパネルの断面において、無作為に選択した10のセルの反射層の面積を、反射層の形成長さで除した値をいい、反射層の形成長さとは、該10のセルの断面において反射層とその下層(隔壁又は遮蔽層等)が接触している部位の長さの総延長をいう。より具体的には、反射層の平均厚さは、基板に対して垂直な、シンチレータパネルの断面を研磨装置により露出させ、走査型電子顕微鏡で断面を観察し、画像処理をして算出することができる。 The average thickness of the reflective layer is preferably 5 to 50 μm. Here, the average thickness of the reflective layer is a value obtained by dividing the area of the reflective layer of 10 cells randomly selected in the cross section of the scintillator panel perpendicular to the substrate by the formation length of the reflective layer. The formation length of the reflection layer refers to the total extension of the length of the portion where the reflection layer and the lower layer (such as a partition wall or a shielding layer) are in contact with each other in the cross section of the 10 cells. More specifically, the average thickness of the reflective layer is calculated by exposing the cross section of the scintillator panel perpendicular to the substrate with a polishing apparatus, observing the cross section with a scanning electron microscope, and performing image processing. Can do.
 反射層の平均厚さが5μm未満であると、反射率が不十分となる場合がある。一方で、該厚さが50μmを超えると、反射率が高くなりすぎて、得られる画像の鮮鋭性が低下する場合がある。また、蛍光体層の体積が不十分となるため、シンチレータパネルの輝度が低下する場合がある。 If the average thickness of the reflective layer is less than 5 μm, the reflectivity may be insufficient. On the other hand, when the thickness exceeds 50 μm, the reflectance becomes too high, and the sharpness of the obtained image may be lowered. Moreover, since the volume of the phosphor layer becomes insufficient, the brightness of the scintillator panel may be lowered.
 反射層が含有する金属酸化物は、より好適な反射率を達成するため、酸化チタン、酸化ジルコニウム、酸化アルミニウム、酸化バリウム、酸化ビスマス及び酸化ガドリニウムからなる群から選ばれる化合物であることが好ましい。これらの酸化物により構成される反射層は、適切な反射率を有することから好ましい。なお、蛍光体層中で発生した散乱X線を吸収して画像の鮮鋭性をさらに向上させるため、重元素である酸化バリウム、酸化ビスマス及び酸化ガドリニウムがより好ましい。 The metal oxide contained in the reflective layer is preferably a compound selected from the group consisting of titanium oxide, zirconium oxide, aluminum oxide, barium oxide, bismuth oxide and gadolinium oxide in order to achieve a more suitable reflectance. A reflective layer composed of these oxides is preferable because it has an appropriate reflectance. In order to further improve the sharpness of the image by absorbing scattered X-rays generated in the phosphor layer, the heavy elements barium oxide, bismuth oxide and gadolinium oxide are more preferable.
 本発明の大型構造物の検査装置が具備するシンチレータパネルが反射層を有する場合、セルの上半部における反射層の平均厚さが、セルの下半部における反射層の平均厚さよりも大きいことが好ましい。ここでセルの上半部における反射層の平均厚さとは、基板に対して垂直な、シンチレータパネルの断面において、無作為に選択した10のセルについて、セルの上半分の領域、すなわち隔壁の高さL1の中央値(隔壁の高さL1の二等分点)よりも上方の領域に形成された反射層の面積を、反射層の形成長さで除した値をいう。同様に、セルの下半部における反射層の平均厚さとは、基板に対して垂直な、シンチレータパネルの断面において、無作為に選択した10のセルについて、セルの下半分の領域、すなわち隔壁の高さL1の中央値(隔壁の高さL1の二等分点)よりも下方の領域に形成された反射層の面積を、反射層の形成長さで除した値をいう。このような構成とすることにより、セル底部において発生した散乱X線によるシンチレーション光が隔壁により吸収され易くなり、画像の鮮鋭性が向上し易くなる。 When the scintillator panel provided in the inspection apparatus for a large structure according to the present invention has a reflective layer, the average thickness of the reflective layer in the upper half of the cell is larger than the average thickness of the reflective layer in the lower half of the cell. Is preferred. Here, the average thickness of the reflective layer in the upper half of the cell means the area of the upper half of the cell, that is, the height of the partition, for 10 cells randomly selected in the cross section of the scintillator panel perpendicular to the substrate. This is a value obtained by dividing the area of the reflective layer formed in the region above the median value of the length L1 (the bisection point of the partition wall height L1) by the formation length of the reflective layer. Similarly, the average thickness of the reflective layer in the lower half of the cell is the area of the lower half of the cell, i.e. the partition wall, for 10 randomly selected cells in the cross section of the scintillator panel perpendicular to the substrate. A value obtained by dividing the area of the reflective layer formed in the region below the median value of the height L1 (the bisector of the partition wall height L1) by the formation length of the reflective layer. By adopting such a configuration, scintillation light due to scattered X-rays generated at the cell bottom is easily absorbed by the partition walls, and the sharpness of the image is easily improved.
 本発明の大型構造物の検査装置が具備するシンチレータパネルは、隔壁と蛍光体層との間に、金属を含有する遮蔽層を有することが好ましい。シンチレータパネルが、隔壁と蛍光体層との間に金属を含有する遮蔽層を有することにより、隣接するセルへのシンチレーション光の漏れを抑止することができる。また、遮蔽層が適度なX線吸収性を有するX線吸収層である場合には、高エネルギーの直進X線がセル内で蛍光体層と相互作用した際に発生する散乱X線が吸収されて、隣接するセルへの漏れを抑止できることから、得られる画像の鮮鋭性の低下を抑制できる。遮蔽層は、金属を主成分とすることが好ましい。なお、金属を主成分とするとは、遮蔽層に占める金属の割合が、50体積%以上であることをいう。 It is preferable that the scintillator panel provided in the inspection apparatus for a large structure of the present invention has a shielding layer containing metal between the partition wall and the phosphor layer. Since the scintillator panel has a shielding layer containing metal between the partition walls and the phosphor layer, leakage of scintillation light to adjacent cells can be suppressed. Further, when the shielding layer is an X-ray absorption layer having an appropriate X-ray absorption, scattered X-rays generated when high energy straight X-rays interact with the phosphor layer in the cell are absorbed. Thus, since leakage to adjacent cells can be suppressed, it is possible to suppress a reduction in the sharpness of the obtained image. The shielding layer is preferably composed mainly of metal. In addition, that metal is a main component means that the proportion of metal in the shielding layer is 50% by volume or more.
 遮蔽層形成法としては、例えば、真空蒸着法、スパッタ法若しくはCVD法等の真空製膜法、メッキ法、ペースト塗布法又はスプレーによる噴射法が挙げられる。遮蔽層が含有する金属としては、例えば、アルミニウム、クロム、銀、タングステン、モリブデン又は鉛が挙げられるが、X線の吸収率が高い、銀、タングステン、モリブデン又は鉛が好ましい。遮蔽層の平均厚さは、0.0001~0.5mmが好ましい。遮蔽層の平均厚さが0.0001mm未満であると、シンチレーション光の漏れの抑制効果やX線吸収効果が不十分となりやすい。一方で、0.5mmを超えると、蛍光体層の体積が不十分となるため、シンチレータパネルの輝度が低下する場合がある。遮蔽層の平均厚さは、反射層の平均厚さと同様の手法で算出することができる。 Examples of the shielding layer forming method include a vacuum film-forming method such as a vacuum deposition method, a sputtering method, or a CVD method, a plating method, a paste coating method, or a spraying method by spraying. Examples of the metal contained in the shielding layer include aluminum, chromium, silver, tungsten, molybdenum, and lead. Silver, tungsten, molybdenum, and lead having high X-ray absorption are preferable. The average thickness of the shielding layer is preferably 0.0001 to 0.5 mm. When the average thickness of the shielding layer is less than 0.0001 mm, the effect of suppressing scintillation light leakage and the X-ray absorption effect tend to be insufficient. On the other hand, if the thickness exceeds 0.5 mm, the phosphor layer volume becomes insufficient, and the brightness of the scintillator panel may be lowered. The average thickness of the shielding layer can be calculated by the same method as the average thickness of the reflective layer.
 隔壁と蛍光体層との間に、遮蔽層及び反射層の両方を形成する場合は、遮蔽層による吸収で反射率が不十分となることを回避するため、遮蔽層上に反射層を形成することが好ましい。 When both the shielding layer and the reflecting layer are formed between the barrier rib and the phosphor layer, the reflecting layer is formed on the shielding layer in order to avoid insufficient reflectance due to absorption by the shielding layer. It is preferable.
 本発明の大型構造物の検査装置が具備するシンチレータパネルにおいては、隔壁により区画されたセル内に、蛍光体層が充填されている。蛍光体層が含有する蛍光体としては、例えば、CsI、CsBr、BaF、BaFI、BaFBr、GOS(GdS)、GSO(GdSiO)、BGO(BiGe12)、LSO(LuSiO)、LuAP(LuAlO)、PbWO又はCaWOが挙げられる。発光効率を高めるため、蛍光体に賦活剤を添加しても構わない。蛍光体に添加する賦活剤としては、例えば、インジウム(In)、タリウム(Tl)、リチウム(Li)、カリウム(K)、ルビジウム(Rb)、ナトリウム(Na)、テルビウム(Tb)、ユーロピウム(Eu)又はプラセオジム(Pr)が挙げられる。 In the scintillator panel provided in the inspection apparatus for large structures of the present invention, the phosphor layer is filled in the cells partitioned by the partition walls. Examples of the phosphor contained in the phosphor layer include CsI, CsBr, BaF 2 , BaFI, BaFBr, GOS (Gd 2 O 2 S), GSO (Gd 2 SiO 5 ), BGO (BiGe 3 O 12 ), and LSO. (Lu 2 SiO 5 ), LuAP (LuAlO 3 ), PbWO 4 or CaWO 4 may be mentioned. In order to increase the luminous efficiency, an activator may be added to the phosphor. Examples of the activator added to the phosphor include indium (In), thallium (Tl), lithium (Li), potassium (K), rubidium (Rb), sodium (Na), terbium (Tb), and europium (Eu). ) Or praseodymium (Pr).
 本発明の大型構造物の検査装置が具備するシンチレータパネルは、蛍光体層が、粒状の蛍光体を含有し、該蛍光体の平均一次粒子径が、1~50μmであることが好ましい。蛍光体層が粒状の蛍光体を含有すると、蛍光体層中でのシンチレーション光の散乱を好適なものに制御することができ、隔壁が散乱X線によるシンチレーション光を適度に吸収して、得られる画像の鮮鋭性が向上する。 In the scintillator panel provided in the inspection apparatus for large structures according to the present invention, it is preferable that the phosphor layer contains a granular phosphor, and the average primary particle diameter of the phosphor is 1 to 50 μm. When the phosphor layer contains a granular phosphor, it is possible to control the scintillation light scattering in the phosphor layer to a suitable one, and the barrier ribs are obtained by appropriately absorbing scintillation light due to scattered X-rays. The sharpness of the image is improved.
 蛍光体層が粒状の蛍光体を含有する、とは、基板に対して垂直な、シンチレータパネルの断面において、無作為に選択した10セルに充填された全ての蛍光体について、断面の長径と短径とを測定し、該長径を短径で除した値の平均値が10以下であることをいう。また、蛍光体の平均一次粒子径とは、基板に対して垂直な、シンチレータパネルの断面において、無作為に選択した10セルに充填された全ての粒状の蛍光体について、断面積の円換算粒子径を算出し、それらを面積率で重み付けした加重平均値をいう。より具体的には、蛍光体の平均一次粒子径は、基板に対して垂直な、シンチレータパネルの断面を研磨装置により露出させ、走査型電子顕微鏡で断面を観察し、画像処理をして算出することができる。 The phosphor layer contains a granular phosphor. In the cross section of the scintillator panel perpendicular to the substrate, all the phosphors filled in 10 cells randomly selected have a major axis and a short axis. The average value of the values obtained by measuring the diameter and dividing the major axis by the minor axis is 10 or less. In addition, the average primary particle diameter of the phosphor is the circular equivalent particle of the cross-sectional area of all the granular phosphors filled in 10 cells selected at random in the cross section of the scintillator panel perpendicular to the substrate. It is a weighted average value obtained by calculating diameters and weighting them by area ratio. More specifically, the average primary particle diameter of the phosphor is calculated by exposing a cross section of the scintillator panel perpendicular to the substrate with a polishing apparatus, observing the cross section with a scanning electron microscope, and performing image processing. be able to.
 また、粒状の蛍光体を含有する蛍光体層内でのシンチレーション光の散乱をさらに好適なものに制御するため、蛍光体粒子同士の空間を、高屈折率の樹脂で充填することが好ましい。粒状の蛍光体としては、例えば、タリウム(Tl)をドープしたGOS(GdS)が挙げられる。 Moreover, in order to control the scattering of the scintillation light in the phosphor layer containing the granular phosphor to be more suitable, it is preferable to fill the space between the phosphor particles with a high refractive index resin. Examples of the granular phosphor include GOS (Gd 2 O 2 S) doped with thallium (Tl).
 本発明のシンチレータパネルは、隔壁により区画されたセル内に充填された蛍光体層が、組成及び/又は厚さが異なる複数の態様からなることが好ましい。このような構成とすることにより、蛍光体層が、X線吸収率が異なる、複数の態様の蛍光体層からなる、シンチレータパネルが得られる。ここでX線吸収率とは、1MeVのX線についての各蛍光体層の吸収率をいい、各蛍光体層の組成及び厚さに基づいて、放射線シミュレーションプログラムであるEGS5を用いて算出することができる。 In the scintillator panel of the present invention, it is preferable that the phosphor layers filled in the cells partitioned by the partition walls have a plurality of modes having different compositions and / or thicknesses. By setting it as such a structure, the scintillator panel which a fluorescent substance layer consists of a fluorescent substance layer of the several aspect from which X-ray absorptivity differs is obtained. Here, the X-ray absorption rate refers to the absorption rate of each phosphor layer for 1 MeV X-ray, and is calculated using EGS5, which is a radiation simulation program, based on the composition and thickness of each phosphor layer. Can do.
 組成及び/又は厚さが異なる複数の態様からなる蛍光体層を形成する方法としては、例えば、隔壁により区画されたセル内に、パターン化されたメタルマスクを介して、特定のセルにのみ蛍光体ペーストを真空印刷する方法を、複数種の蛍光体ペーストを用いて繰り返す方法が挙げられる。 As a method of forming a phosphor layer having a plurality of modes with different compositions and / or thicknesses, for example, fluorescence is emitted only to a specific cell through a patterned metal mask in a cell partitioned by a partition wall. The method of repeating the method of vacuum-printing a body paste using several types of fluorescent substance paste is mentioned.
 本発明の大型構造物の検査装置が具備するシンチレータパネルは、大型構造物の検査に用いるものであって、高エネルギーのX線に対して高い感度及び画像の鮮鋭性を奏することから、大型構造物の内部構造等を、非破壊ながら高い精度で検査することができる。ここで大型構造物とは、その最小幅が20cm以上であり、かつ、500keVのエネルギーを有するX線の透過率が、JIS A5308で規定されるレディミクストコンクリートである普通18-8-20-Nの硬化物の、厚さ20cmの部位における透過率よりも小さい物体をいう。 The scintillator panel provided in the inspection apparatus for large structures of the present invention is used for inspection of large structures and exhibits high sensitivity and sharpness of images with respect to high energy X-rays. The internal structure of an object can be inspected with high accuracy while being non-destructive. Here, the large structure is ordinary 18-8-20-N which is a ready-mixed concrete whose minimum width is 20 cm or more and whose X-ray transmittance with energy of 500 keV is defined by JIS A5308. Of the cured product is smaller than the transmittance at a site of 20 cm in thickness.
 本発明の大型構造物の検査装置は、加速電圧500kV~30MVのX線源から、大型構造物にX線を照射する、照射機能と、上記大型構造物を透過したX線を、放射線検出器で検出する、検出機能と、を備えることを特徴とする。言い換えれば、本発明の大型構造物の検査装置は、加速電圧500kV~30MVのX線源から、大型構造物にX線を照射する、照射工程と、上記大型構造物を透過したX線を、放射線検出器で検出する、検出工程と、を備える、大型構造物の検査方法を実現するためのものである。 The inspection apparatus for a large structure of the present invention is a radiation detector that irradiates a large structure with X-rays from an X-ray source having an acceleration voltage of 500 kV to 30 MV, and an X-ray transmitted through the large structure. A detection function. In other words, the inspection apparatus for a large structure according to the present invention irradiates the large structure with an X-ray from an X-ray source having an acceleration voltage of 500 kV to 30 MV, and an X-ray transmitted through the large structure. It is for implement | achieving the inspection method of a large sized structure provided with the detection process detected with a radiation detector.
 X線源の加速電圧は、高エネルギーのX線の発生効率を高めるため、1MV以上が好ましく、2MV以上がより好ましい。また、検出器における検出効率を高めるため、20MV以下が好ましく、10MV以下がより好ましい。 The acceleration voltage of the X-ray source is preferably 1 MV or more, and more preferably 2 MV or more, in order to increase the generation efficiency of high energy X-rays. Moreover, in order to raise the detection efficiency in a detector, 20 MV or less is preferable and 10 MV or less is more preferable.
 上記の検査方法が備える照射工程と検出工程とは、同時に開始/終了をしても構わないし、それらのタイミングが前後しても構わない。より具体的には、例えば、大型構造物に予め弱めのX線を照射して検出工程を開始しておき、一定時間後にX線源の加速電圧を500kV~30MVにして、照射工程を開始しても構わないし、大型構造物に加速電圧500kV~30MVのX線源からX線を予め照射しておき、一定時間後に検出工程を開始しても構わない。 The irradiation process and the detection process included in the inspection method may be started / finished at the same time, or their timing may be mixed. More specifically, for example, the detection process is started by irradiating a weak structure with weak X-rays in advance, and the irradiation process is started after the acceleration voltage of the X-ray source is set to 500 kV to 30 MV after a certain time. Alternatively, a large structure may be irradiated with X-rays from an X-ray source having an acceleration voltage of 500 kV to 30 MV in advance, and the detection process may be started after a certain time.
 隔壁を形成する方法としては、例えば、機械加工、フォトリソグラフィー又は3Dプリンタによる形成が挙げられるが、高強度の隔壁を高精細に形成できることから、感光性ペーストを用いてフォトリソグラフィー又は3Dプリンタで隔壁を形成することが好ましい。中でも、大面積の加工が容易であり、タクトタイムが短く、さらに製造コストが安価であることから、感光性ガラスペーストを用いてフォトリソグラフィーでガラスを主成分とする隔壁を形成することが好ましい。 Examples of the method for forming the partition include machining, photolithography, or formation by a 3D printer. Since a high-strength partition can be formed with high definition, the partition is formed by photolithography or 3D printer using a photosensitive paste. Is preferably formed. Among them, it is preferable to form a partition mainly composed of glass by photolithography using a photosensitive glass paste because processing of a large area is easy, tact time is short, and manufacturing cost is low.
 ガラスを主成分とする隔壁は、例えば、基材の表面に、ガラス粉末を含有する感光性ペーストを塗布して塗布膜を得る、塗布工程と、塗布膜を露光及び現像して、隔壁の焼成前パターンを得る、パターン形成工程と、パターンを焼成して、隔壁パターンを得る、焼成工程と、により形成できる。ガラスを主成分とする隔壁を製造するためには、塗布工程で用いるガラス粉末含有ペーストが含有する無機成分の50~100質量%がガラス粉末である必要がある。 The partition wall mainly composed of glass is obtained by, for example, applying a photosensitive paste containing glass powder to the surface of a base material to obtain a coating film, exposing and developing the coating film, and baking the partition wall. It can be formed by a pattern forming step of obtaining a previous pattern and a firing step of firing the pattern to obtain a partition pattern. In order to produce a partition mainly composed of glass, 50 to 100% by mass of the inorganic component contained in the glass powder-containing paste used in the coating step needs to be glass powder.
 ガラス粉末含有ペーストが含有するガラス粉末は、焼成温度で軟化するガラスが好ましく、軟化温度が700℃以下である、低軟化点ガラスがより好ましい。 The glass powder contained in the glass powder-containing paste is preferably glass that softens at the firing temperature, and more preferably low-softening point glass having a softening temperature of 700 ° C. or lower.
 軟化温度は、示差熱分析装置(例えば、差動型示差熱天秤TG8120;株式会社リガク製)を用いて、サンプルを測定して得られるDTA曲線から、吸熱ピークにおける吸熱終了温度を接線法により外挿して求めることができる。より具体的には、まず、示差熱分析装置を用いて、アルミナ粉末を標準試料として、室温から20℃/分で昇温して、測定サンプルとなる無機粉末を測定し、DTA曲線を得る。そして得られたDTA曲線より、吸熱ピークにおける吸熱終了温度を接線法により外挿して求めた軟化点Tsを、軟化温度とすることができる。 The softening temperature is determined by calculating the endothermic end temperature at the endothermic peak from the DTA curve obtained by measuring the sample using a differential thermal analyzer (eg, differential type differential thermal balance TG8120; manufactured by Rigaku Corporation) by the tangent method. It can be obtained by inserting. More specifically, first, using a differential thermal analyzer, using alumina powder as a standard sample, the temperature is raised from room temperature at 20 ° C./min to measure the inorganic powder serving as a measurement sample to obtain a DTA curve. Then, from the obtained DTA curve, the softening point Ts obtained by extrapolating the endothermic end temperature at the endothermic peak by the tangent method can be used as the softening temperature.
 低軟化点ガラスを得るためには、ガラスを低軟化点化するために有効な化合物である、酸化鉛、酸化ビスマス、酸化亜鉛及びアルカリ金属の酸化物からなる群から選ばれる金属酸化物を用いることができるが、アルカリ金属の酸化物を用いて、ガラスの軟化温度を調整することが好ましい。ここでアルカリ金属とは、リチウム、ナトリウム及びカリウムからなる群から選ばれる金属をいう。 In order to obtain a low softening point glass, a metal oxide selected from the group consisting of lead oxide, bismuth oxide, zinc oxide and alkali metal oxides, which is an effective compound for lowering the softening point of glass, is used. However, it is preferable to adjust the softening temperature of the glass using an alkali metal oxide. Here, the alkali metal refers to a metal selected from the group consisting of lithium, sodium and potassium.
 低軟化点ガラスに占めるアルカリ金属酸化物の割合は、2~20質量%であることが好ましい。アルカリ金属酸化物の割合が2質量%未満であると、軟化温度が高くなり、焼成工程を高温で行う必要が生じてしまい、隔壁に欠陥が生じ易い。一方で、アルカリ金属酸化物の割合が20質量%を超えると、焼成工程においてガラスの粘度が過度に低下し、得られる格子状の焼成後パターンの形状に歪みが生じ易い。 The proportion of the alkali metal oxide in the low softening point glass is preferably 2 to 20% by mass. When the proportion of the alkali metal oxide is less than 2% by mass, the softening temperature becomes high, and it becomes necessary to perform the firing step at a high temperature, and defects are likely to occur in the partition walls. On the other hand, when the ratio of the alkali metal oxide exceeds 20% by mass, the viscosity of the glass is excessively lowered in the firing step, and the shape of the obtained grid-like post-firing pattern tends to be distorted.
 また低軟化点ガラスは、高温での粘度を至適なものとするために、酸化亜鉛を3~10質量%含有することが好ましい。低軟化点ガラスに占める酸化亜鉛の割合が3質量%未満であると、高温での粘度が高くなる。一方で、酸化亜鉛の含有量が10質量%を超えると、低軟化点ガラスの製造コストが高くなる。 The low softening point glass preferably contains 3 to 10% by mass of zinc oxide in order to optimize the viscosity at high temperature. When the proportion of zinc oxide in the low softening point glass is less than 3% by mass, the viscosity at high temperature increases. On the other hand, when the content of zinc oxide exceeds 10% by mass, the production cost of the low softening point glass increases.
 さらに低軟化点ガラスは、安定性、結晶性、透明性、屈折率又は熱膨張特性の調整のため、酸化ケイ素、酸化ホウ素、酸化アルミニウム及びアルカリ土類金属の酸化物からなる群から選ばれる金属酸化物を含有することが好ましい。ここでアルカリ土類金属とは、マグネシウム、カルシウム、バリウム及びストロンチウムからなる群から選ばれる金属をいう。好ましい低軟化点ガラスの組成範囲の一例を、以下に示す。
アルカリ金属酸化物 : 2~20質量%
酸化亜鉛 : 3~10質量%
酸化ケイ素 : 20~40質量%
酸化ホウ素 : 25~40質量%
酸化アルミニウム : 10~30質量%
アルカリ土類金属酸化物 : 5~15質量%
 ガラス粉末を含む無機粉末の粒子径は、粒度分布測定装置(例えば、MT3300;日機装株式会社製)を用いて測定をすることができる。より具体的には、水を満たした粒度分布測定装置の試料室に無機粉末を投入し、300秒間超音波処理を行ってから測定をすることができる。
Further, the low softening point glass is a metal selected from the group consisting of oxides of silicon oxide, boron oxide, aluminum oxide and alkaline earth metal for the purpose of adjusting stability, crystallinity, transparency, refractive index or thermal expansion characteristics. It is preferable to contain an oxide. Here, the alkaline earth metal refers to a metal selected from the group consisting of magnesium, calcium, barium and strontium. An example of the composition range of a preferred low softening point glass is shown below.
Alkali metal oxide: 2 to 20% by mass
Zinc oxide: 3-10% by mass
Silicon oxide: 20-40% by mass
Boron oxide: 25-40% by mass
Aluminum oxide: 10-30% by mass
Alkaline earth metal oxide: 5 to 15% by mass
The particle diameter of the inorganic powder containing glass powder can be measured using a particle size distribution measuring device (for example, MT3300; manufactured by Nikkiso Co., Ltd.). More specifically, the measurement can be performed after the inorganic powder is introduced into the sample chamber of the particle size distribution measuring apparatus filled with water and subjected to ultrasonic treatment for 300 seconds.
 低軟化点ガラス粉末の50%体積平均粒子径(以下、「D50」)は、1.0~4.0μmであることが好ましい。D50が1.0μm未満であると、ガラス粉末が凝集し、均一な分散性が得られなくなって、ペーストの流動安定性が低下する。一方で、D50が4.0μmを超えると、焼成工程で得られる焼成後パターンの表面凹凸が大きくなり、事後的に隔壁が破壊される原因となり易い。 The 50% volume average particle diameter (hereinafter referred to as “D50”) of the low softening point glass powder is preferably 1.0 to 4.0 μm. When D50 is less than 1.0 μm, the glass powder is aggregated, and uniform dispersibility cannot be obtained, and the flow stability of the paste is lowered. On the other hand, when D50 exceeds 4.0 μm, the surface unevenness of the post-baking pattern obtained in the baking process becomes large, and this tends to cause the partition wall to be destroyed later.
 ガラス粉末含有ペーストは、焼成工程における格子状パターンの収縮率の制御や、最終的に得られる隔壁の形状保持のため、低軟化点ガラス以外に、軟化温度が700℃を超える高軟化点ガラス又は酸化ケイ素、酸化アルミニウム、酸化チタン若しくは酸化ジルコニウム等のセラミックス粒子を、フィラーとして含有しても構わない。無機成分全体に占めるフィラーの割合は、ガラス粉末の焼結が阻害されることによる隔壁の強度低下を防ぐため、50質量%以下であることが好ましい。フィラーのD50は、低軟化点ガラス粉末と同様であることが好ましい。 In order to control the shrinkage rate of the lattice pattern in the baking process and to maintain the shape of the partition wall finally obtained, the glass powder-containing paste is not only a low softening point glass but also a high softening point glass having a softening temperature exceeding 700 ° C. Ceramic particles such as silicon oxide, aluminum oxide, titanium oxide or zirconium oxide may be contained as a filler. The proportion of the filler in the entire inorganic component is preferably 50% by mass or less in order to prevent the strength of the partition walls from being reduced due to inhibition of the sintering of the glass powder. The filler D50 is preferably the same as that of the low softening point glass powder.
 塗布工程は、基材の表面に、ガラス粉末含有ペーストを全面又は部分的に塗布して塗布膜を得る工程である。基材としては、ガラス板又はセラミックス板等の高耐熱性の支持体を用いることができる。ガラス粉末含有ペーストを塗布する方法としては、例えば、スクリーン印刷法、バーコーター、ロールコーター、ダイコーター又はブレードコーターが挙げられる。得られる塗布膜の厚さは、塗布回数、スクリーンのメッシュサイズ又はペーストの粘度等により調整することができる。 The coating step is a step of applying a glass powder-containing paste to the entire surface or a part of the surface of the substrate to obtain a coating film. As the substrate, a highly heat-resistant support such as a glass plate or a ceramic plate can be used. Examples of the method for applying the glass powder-containing paste include a screen printing method, a bar coater, a roll coater, a die coater, and a blade coater. The thickness of the resulting coating film can be adjusted by the number of coatings, the screen mesh size, the viscosity of the paste, or the like.
 パターン形成工程は、例えば、塗布工程で得られた塗布膜を、所定の開口部を有するフォトマスクを介して露光する露光工程と、露光後の塗布膜における、現像液に可溶な部分を溶解除去する現像工程と、から構成することができる。 In the pattern formation process, for example, the coating film obtained in the coating process is exposed through a photomask having a predetermined opening, and a portion soluble in the developer in the coating film after exposure is dissolved. And a developing step to be removed.
 露光工程は、露光により塗布膜の必要な部分を光硬化させて、又は、塗布膜の不要な部分を光分解させて、塗布膜の任意の部分を、現像液に可溶とする工程である。現像工程は、露光後の塗布膜における、現像液に可溶な部分を現像液で溶解除去して、必要な部分のみが残存した格子状の焼成前パターンを得る工程である。 The exposure process is a process in which a necessary part of the coating film is photocured by exposure or an unnecessary part of the coating film is photodecomposed to make any part of the coating film soluble in the developer. . The development step is a step of obtaining a lattice-shaped pre-baking pattern in which only a necessary portion remains by dissolving and removing a portion soluble in the developer in the coating film after exposure with the developer.
 露光工程においてはフォトマスクを用いずに、レーザー光等で任意のパターンを直接描画しても構わない。露光装置としては、例えば、プロキシミティ露光機が挙げられる。露光工程で照射する活性光線としては、例えば、近赤外線、可視光線又は紫外線が挙げられるが、紫外線が好ましい。またその光源としては、例えば、低圧水銀灯、高圧水銀灯、超高圧水銀灯、ハロゲンランプ又は殺菌灯が挙げられるが、超高圧水銀灯が好ましい。露光条件は塗布膜の厚さにより異なるが、1~100mW/cmの出力の超高圧水銀灯を用いて、0.01~30分間露光をすることが通常である。 In the exposure process, an arbitrary pattern may be directly drawn with a laser beam or the like without using a photomask. An example of the exposure apparatus is a proximity exposure machine. Examples of the actinic rays irradiated in the exposure step include near infrared rays, visible rays, and ultraviolet rays, and ultraviolet rays are preferable. Examples of the light source include a low pressure mercury lamp, a high pressure mercury lamp, an ultra high pressure mercury lamp, a halogen lamp, and a germicidal lamp, and an ultra high pressure mercury lamp is preferable. Although exposure conditions vary depending on the thickness of the coating film, exposure is usually carried out for 0.01 to 30 minutes using an ultrahigh pressure mercury lamp with an output of 1 to 100 mW / cm 2 .
 現像工程における現像の方法としては、例えば、浸漬法、スプレー法又はブラシ法が挙げられる。現像液としては、露光後の塗布膜における不要な部分を溶解することが可能な溶媒を適宜選択すればよいが、水を主成分とする水溶液が好ましい。例えば、ガラス粉末含有ペーストがカルボキシル基を有するポリマーを含有する場合には、現像液としてアルカリ水溶液を選択することができる。アルカリ水溶液としては、例えば、水酸化ナトリウム、炭酸ナトリウム又は水酸化カルシウム等の無機アルカリ水溶液又はテトラメチルアンモニウムヒドロキサイド、トリメチルベンジルアンモニウムヒドロキサイド、モノエタノールアミン若しくはジエタノールアミン等の有機アルカリ水溶液が挙げられるが、焼成工程における除去が容易であることから、有機アルカリ水溶液が好ましい。アルカリ水溶液の濃度は、0.05~5質量%が好ましく、0.1~1質量%がより好ましい。アルカリ濃度が0.05質量%未満であると、露光後の塗布膜における不要な部分が十分に除去されない場合がある。一方で、アルカリ濃度が5質量%を超えると、格子状の焼成前パターンの剥離又は腐食のおそれがある。現像温度は、工程管理を容易にするため、20~50℃が好ましい。 Examples of the development method in the development process include an immersion method, a spray method, and a brush method. As the developer, a solvent capable of dissolving unnecessary portions in the coating film after exposure may be appropriately selected, but an aqueous solution containing water as a main component is preferable. For example, when the glass powder-containing paste contains a polymer having a carboxyl group, an alkaline aqueous solution can be selected as the developer. Examples of the alkaline aqueous solution include an inorganic alkaline aqueous solution such as sodium hydroxide, sodium carbonate or calcium hydroxide, or an organic alkaline aqueous solution such as tetramethylammonium hydroxide, trimethylbenzylammonium hydroxide, monoethanolamine or diethanolamine. An organic alkali aqueous solution is preferable because it can be easily removed in the firing step. The concentration of the alkaline aqueous solution is preferably 0.05 to 5% by mass, and more preferably 0.1 to 1% by mass. If the alkali concentration is less than 0.05% by mass, unnecessary portions in the coated film after exposure may not be sufficiently removed. On the other hand, when the alkali concentration exceeds 5% by mass, there is a risk of peeling or corrosion of the lattice-shaped pattern before firing. The development temperature is preferably 20 to 50 ° C. to facilitate process control.
 露光及び現像によるパターン形成を行うには、塗布工程で塗布するガラス粉末含有ペーストが、感光性であることが必要である。すなわち、ガラス粉末含有ペーストが、感光性有機成分を含有する必要がある。感光性のガラス粉末含有ペーストに占める有機成分の割合は、30~80質量%であることが好ましく、40~70質量%であることがより好ましい。有機成分が30質量%未満であると、ペースト中の無機成分の分散性が低下し、焼成工程で欠陥が生じ易くなるばかりでなく、ペースト粘度が高くなって塗布性が低下し、さらにペーストの安定性も低下し易い。一方で、有機成分が80質量%を超えると、焼成工程における格子状パターンの収縮率が大きくなって、欠陥が生じ易くなる。 In order to perform pattern formation by exposure and development, the glass powder-containing paste applied in the coating process needs to be photosensitive. That is, the glass powder-containing paste needs to contain a photosensitive organic component. The proportion of the organic component in the photosensitive glass powder-containing paste is preferably 30 to 80% by mass, and more preferably 40 to 70% by mass. When the organic component is less than 30% by mass, the dispersibility of the inorganic component in the paste is lowered, and not only is the defect easily generated in the baking process, but the paste viscosity is increased and the applicability is lowered. Stability is also likely to decrease. On the other hand, when the organic component exceeds 80% by mass, the shrinkage rate of the lattice pattern in the baking process is increased and defects are easily generated.
 感光性のガラス粉末含有ペーストが含有するガラス粉末は、焼成工程において有機成分をほぼ完全に除去し、最終的に得られる隔壁の強度を確保するため、軟化温度が480℃以上であることが好ましい。軟化温度が480℃未満であると、焼成工程において有機成分が十分に除去される前にガラス粉末が軟化してしまい、焼結後のガラス中に有機成分が残存し、隔壁の着色を誘発してシンチレータパネルの輝度を低下させる等の懸念がある。 The glass powder contained in the photosensitive glass powder-containing paste preferably has a softening temperature of 480 ° C. or higher in order to remove organic components almost completely in the firing step and ensure the strength of the partition wall finally obtained. . When the softening temperature is less than 480 ° C., the glass powder is softened before the organic components are sufficiently removed in the firing step, and the organic components remain in the glass after sintering, which induces coloring of the partition walls. There is a concern that the brightness of the scintillator panel is lowered.
 感光性のガラス粉末含有ペーストにおいては、露光時の光散乱を抑制し、高精度のパターンを形成するため、ガラス粉末の屈折率n1と、有機成分の屈折率n2とが、-0.1 < n1-n2 < 0.1の関係を満たすことが好ましく、-0.01 ≦ n1-n2 ≦ 0.01の関係を満たすことがより好ましく、-0.005 ≦ n1-n2 ≦ 0.005の関係を満たすことがさらに好ましい。なお、ガラス粉末の屈折率は、ガラス粉末が含有する金属酸化物の組成によって、適宜調整することができる。 In the photosensitive glass powder-containing paste, in order to suppress light scattering during exposure and form a highly accurate pattern, the refractive index n1 of the glass powder and the refractive index n2 of the organic component are -0.1 < It is preferable that the relationship of n1-n2 <0.1 is satisfied, more preferably the relationship of -0.01 ≦ n1-n2 ≦ 0.01, and the relationship of −0.005 ≦ n1-n2 ≦ 0.005. It is further preferable to satisfy In addition, the refractive index of glass powder can be suitably adjusted with the composition of the metal oxide which glass powder contains.
 ガラス粉末の屈折率は、ベッケ線検出法により測定することができる。また、有機成分の屈折率は、有機成分からなる塗膜をエリプソメトリーにより測定することで求めることができる。より具体的には、ガラス粉末又は有機成分の、25℃での波長436nm(g線)における屈折率(ng)を、それぞれn1又はn2とすることができる。 The refractive index of glass powder can be measured by the Becke line detection method. Moreover, the refractive index of an organic component can be calculated | required by measuring the coating film which consists of an organic component by ellipsometry. More specifically, the refractive index (ng) of the glass powder or organic component at a wavelength of 436 nm (g line) at 25 ° C. can be set to n1 or n2, respectively.
 感光性のガラス粉末含有ペーストが含有する感光性有機成分としては、例えば、感光性モノマー、感光性オリゴマー又は感光性ポリマーが挙げられる。ここで感光性モノマー、感光性オリゴマー又は感光性ポリマーとは、活性光線の照射により、光架橋又は光重合等の反応を起こして化学構造が変化するモノマー、オリゴマー又はポリマーをいう。 Examples of the photosensitive organic component contained in the photosensitive glass powder-containing paste include a photosensitive monomer, a photosensitive oligomer, and a photosensitive polymer. Here, the photosensitive monomer, photosensitive oligomer or photosensitive polymer refers to a monomer, oligomer or polymer whose chemical structure is changed by a reaction such as photocrosslinking or photopolymerization upon irradiation with actinic rays.
 感光性モノマーとしては、活性の炭素-炭素不飽和二重結合を有する化合物が好ましい。そのような化合物としては、例えば、ビニル基、アクリロイル基、メタクリロイル基又はアクリルアミド基を有する化合物が挙げられるが、光架橋の密度を高め、高精度のパターンを形成するため、多官能アクリレート化合物又は多官能メタクリレート化合物が好ましい。 As the photosensitive monomer, a compound having an active carbon-carbon unsaturated double bond is preferable. Examples of such a compound include a compound having a vinyl group, an acryloyl group, a methacryloyl group, or an acrylamide group. However, in order to increase the density of photocrosslinking and form a highly accurate pattern, Functional methacrylate compounds are preferred.
 感光性オリゴマー又は感光性ポリマーとしては、活性の炭素-炭素不飽和二重結合を有し、かつカルボキシル基を有するオリゴマー又はポリマーが好ましい。そのようなオリゴマー又はポリマーは、例えば、アクリル酸、メタクリル酸、イタコン酸、クロトン酸、マレイン酸、フマル酸、ビニル酢酸若しくはこれらの酸無水物等のカルボキシル基含有モノマー、メタクリル酸エステル、アクリル酸エステル、スチレン、アクリロニトリル、酢酸ビニル又は2-ヒドロキシアクリレートを共重合することにより得られる。活性の炭素-炭素不飽和二重結合をオリゴマー又はポリマーに導入する方法としては、例えば、オリゴマー又はポリマーが有するメルカプト基、アミノ基、水酸基又はカルボキシル基に対して、アクリル酸クロライド、メタクリル酸クロライド若しくはアリルクロライド、グリシジル基若しくはイソシアネート基を有するエチレン性不飽和化合物又はマレイン酸等のカルボン酸を反応させる方法が挙げられる。 The photosensitive oligomer or photosensitive polymer is preferably an oligomer or polymer having an active carbon-carbon unsaturated double bond and a carboxyl group. Such oligomers or polymers include, for example, acrylic acid, methacrylic acid, itaconic acid, crotonic acid, maleic acid, fumaric acid, vinyl acetic acid or their anhydrides, carboxyl group-containing monomers, methacrylic acid esters, acrylic acid esters , Styrene, acrylonitrile, vinyl acetate or 2-hydroxyacrylate. Examples of a method for introducing an active carbon-carbon unsaturated double bond into an oligomer or polymer include acrylic acid chloride, methacrylic acid chloride, or a mercapto group, amino group, hydroxyl group or carboxyl group of the oligomer or polymer. Examples thereof include a method of reacting an allylic chloride, an ethylenically unsaturated compound having a glycidyl group or an isocyanate group, or a carboxylic acid such as maleic acid.
 ウレタン結合を有する感光性モノマー又は感光性オリゴマーを用いることにより、焼成工程の初期における応力を緩和することが可能な、焼成工程においてパターン欠損をしにくいガラス粉末含有ペーストを得ることができる。 By using a photosensitive monomer or photosensitive oligomer having a urethane bond, it is possible to obtain a glass powder-containing paste that can relieve stress in the initial stage of the baking process and that is less likely to cause pattern defects in the baking process.
 感光性のガラス粉末含有ペーストは、必要に応じて、光重合開始剤を含有しても構わない。ここで光重合開始剤とは、活性光線の照射により、ラジカルを発生する化合物をいう。光重合開始剤としては、例えば、ベンゾフェノン、o-ベンゾイル安息香酸メチル、4,4-ビス(ジメチルアミノ)ベンゾフェノン、4,4-ビス(ジエチルアミノ)ベンゾフェノン、4,4-ジクロロベンゾフェノン、4-ベンゾイル-4-メチルジフェニルケトン、ジベンジルケトン、フルオレノン、2,2-ジメトキシ-2-フェニルアセトフェノン、2-ヒドロキシ-2-メチルプロピオフェノン、チオキサントン、2-メチルチオキサントン、2-クロロチオキサントン、2-イソプロピルチオキサントン、ジエチルチオキサントン、ベンジル、ベンジルメトキシエチルアセタール、ベンゾイン、ベンゾインメチルエーテル、ベンゾインブチルエーテル、アントラキノン、2-t-ブチルアントラキノン、アントロン、ベンズアントロン、ジベンゾスベロン、メチレンアントロン、4-アジドベンザルアセトフェノン、2,6-ビス(p-アジドベンジリデン)シクロヘキサノン、2,6-ビス(p-アジドベンジリデン)-4-メチルシクロヘキサノン、1-フェニル-1,2-ブタジオン-2-(O-メトキシカルボニル)オキシム、1-フェニル-1,2-プロパンジオン-2-(O-エトキシカルボニル)オキシム、1,3-ジフェニルプロパントリオン-2-(O-エトキシカルボニル)オキシム、1-フェニル-3-エトキシプロパントリオン-2-(O-ベンゾイル)オキシム、ミヒラーケトン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノ-1-プロパノン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)ブタノン-1、ナフタレンスルホニルクロライド、キノリンスルホニルクロライド、N-フェニルチオアクリドン、ベンズチアゾールジスルフィド、トリフェニルホルフィン、過酸化ベンゾイン若しくはエオシン又はメチレンブルー等の光還元性の色素とアスコルビン酸若しくはトリエタノールアミン等との還元剤の組合せが挙げられる。 The photosensitive glass powder-containing paste may contain a photopolymerization initiator as necessary. Here, the photopolymerization initiator refers to a compound that generates radicals upon irradiation with actinic rays. Examples of the photopolymerization initiator include benzophenone, methyl o-benzoylbenzoate, 4,4-bis (dimethylamino) benzophenone, 4,4-bis (diethylamino) benzophenone, 4,4-dichlorobenzophenone, 4-benzoyl- 4-methyldiphenyl ketone, dibenzyl ketone, fluorenone, 2,2-dimethoxy-2-phenylacetophenone, 2-hydroxy-2-methylpropiophenone, thioxanthone, 2-methylthioxanthone, 2-chlorothioxanthone, 2-isopropylthioxanthone , Diethylthioxanthone, benzyl, benzylmethoxyethyl acetal, benzoin, benzoin methyl ether, benzoin butyl ether, anthraquinone, 2-t-butylanthraquinone, anthrone, benza Throne, dibenzosuberone, methyleneanthrone, 4-azidobenzalacetophenone, 2,6-bis (p-azidobenzylidene) cyclohexanone, 2,6-bis (p-azidobenzylidene) -4-methylcyclohexanone, 1-phenyl- 1,2-Butadione-2- (O-methoxycarbonyl) oxime, 1-phenyl-1,2-propanedione-2- (O-ethoxycarbonyl) oxime, 1,3-diphenylpropanetrione-2- (O— Ethoxycarbonyl) oxime, 1-phenyl-3-ethoxypropanetrione-2- (O-benzoyl) oxime, Michler's ketone, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholino-1-propanone, -Benzyl-2-dimethylamino-1- (4-morpholinofe E) Photoreductive dyes such as butanone-1, naphthalenesulfonyl chloride, quinolinesulfonyl chloride, N-phenylthioacridone, benzthiazole disulfide, triphenylformine, benzoin peroxide, eosin or methylene blue and ascorbic acid or triethanol A combination of a reducing agent with an amine or the like can be mentioned.
 感光性のガラス粉末含有ペーストが、感光性ポリマーとしてカルボキシル基を有するポリマーを含有することにより、現像時のアルカリ水溶液への溶解性が向上する。カルボキシル基を有するポリマーの酸価は、50~150mgKOH/gが好ましい。酸価が150mgKOH/g以下であると、現像マージンが広くなる。一方で、酸価が50mgKOH/g以上であると、アルカリ水溶液への溶解性が低下せず、高精細のパターンを得ることができる。 When the photosensitive glass powder-containing paste contains a polymer having a carboxyl group as the photosensitive polymer, the solubility in an alkaline aqueous solution during development is improved. The acid value of the polymer having a carboxyl group is preferably 50 to 150 mgKOH / g. When the acid value is 150 mgKOH / g or less, the development margin becomes wide. On the other hand, when the acid value is 50 mgKOH / g or more, the solubility in an alkaline aqueous solution is not lowered, and a high-definition pattern can be obtained.
 感光性のガラス粉末含有ペーストは、各種成分を所定の組成となるように調合した後、3本ローラー又は混練機で均質に混合分散して得ることができる。 The photosensitive glass powder-containing paste can be obtained by preparing various components so as to have a predetermined composition and then uniformly mixing and dispersing them with a three-roller or a kneader.
 感光性のガラス粉末含有ペーストの粘度は、無機粉末、増粘剤、有機溶媒、重合禁止剤、可塑剤又は沈降防止剤等の添加割合によって適宜調整することができるが、その範囲は2~200Pa・sが好ましい。例えば、感光性のガラス粉末含有ペーストをスピンコート法で基材に塗布する場合には、2~5Pa・sの粘度が好ましく、ブレードコーター法又はダイコーター法で基材に塗布する場合には、10~50Pa・sの粘度が好ましい。感光性のガラス粉末含有ペーストを1回のスクリーン印刷法で塗布して膜厚10~20μmの塗布膜を得る場合には、50~200Pa・sの粘度が好ましい。 The viscosity of the photosensitive glass powder-containing paste can be appropriately adjusted depending on the addition ratio of inorganic powder, thickener, organic solvent, polymerization inhibitor, plasticizer, anti-settling agent, etc., but the range is 2 to 200 Pa. -S is preferable. For example, when a photosensitive glass powder-containing paste is applied to a substrate by a spin coating method, a viscosity of 2 to 5 Pa · s is preferable, and when applied to a substrate by a blade coater method or a die coater method, A viscosity of 10 to 50 Pa · s is preferred. When a photosensitive glass powder-containing paste is applied by a single screen printing method to obtain a coating film having a thickness of 10 to 20 μm, a viscosity of 50 to 200 Pa · s is preferable.
 焼成工程は、パターン形成工程で得られた格子状の焼成前パターンを焼成して、ガラス粉末含有ペーストが含有する有機成分を分解除去し、ガラス粉末を軟化及び焼結させて、格子状の焼成後パターンすなわち隔壁を得る工程である。焼成条件はガラス粉末含有ペーストの組成や基材の種類により異なるが、例えば、空気、窒素又は水素雰囲気の焼成炉で焼成することができる。焼成炉としては、例えば、バッチ式の焼成炉又はベルト式の連続型焼成炉が挙げられる。焼成の温度は、500~1000℃が好ましく、500~800℃がより好ましく、500~700℃がさらに好ましい。焼成の温度が500℃未満であると、有機成分の分解除去が不十分となる。一方で、焼成温度が1000℃を超えると、用いることが可能な基材が高耐熱性セラミック板等に限定されてしまう。焼成の時間は、10~60分間が好ましい。 In the firing step, the lattice-shaped pre-fired pattern obtained in the pattern forming step is fired to decompose and remove the organic components contained in the glass powder-containing paste, and the glass powder is softened and sintered, thereby firing the lattice. This is a step of obtaining a post pattern, that is, a partition wall. The firing conditions vary depending on the composition of the glass powder-containing paste and the type of substrate, but can be fired in a firing furnace in an air, nitrogen or hydrogen atmosphere, for example. Examples of the firing furnace include a batch-type firing furnace or a belt-type continuous firing furnace. The firing temperature is preferably 500 to 1000 ° C., more preferably 500 to 800 ° C., and further preferably 500 to 700 ° C. When the firing temperature is lower than 500 ° C., the organic components are not sufficiently decomposed and removed. On the other hand, if the firing temperature exceeds 1000 ° C., the base material that can be used is limited to a high heat-resistant ceramic plate or the like. The firing time is preferably 10 to 60 minutes.
 以下、実施例及び比較例を挙げて、本発明をさらに詳しく説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto.
 (ガラス粉末含有ペーストの原料)
 感光性のガラス粉末含有ペーストの作製に用いた原料は次のとおりである。
感光性モノマーM-1 : トリメチロールプロパントリアクリレート
感光性モノマーM-2 : テトラプロピレングリコールジメタクリレート
感光性ポリマー : メタクリル酸/メタクリル酸メチル/スチレン=40/40/30の質量比からなる共重合体のカルボキシル基に対して0.4当量のグリシジルメタクリレートを付加反応させたもの(重量平均分子量43000;酸価100)
光重合開始剤 : 2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)ブタノン-1(IC369;BASF社製)
重合禁止剤 : 1,6-ヘキサンジオール-ビス[(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート])
紫外線吸収剤溶液 : スダンIV(東京応化工業株式会社製)のγ-ブチロラクトン0.3質量%溶液
粘度調整剤 : フローノンEC121(共栄社化学社製)
溶媒 : γ-ブチロラクトン
低軟化点ガラス粉末:
SiO 27質量%、B 31質量%、ZnO 6質量%、LiO 7質量%、MgO 2質量%、CaO 2質量%、BaO 2質量%、Al 23質量%、屈折率(ng)1.56、ガラス軟化温度588℃、熱膨張係数70×10-7(K-1)、平均粒子径2.3μm
高軟化点ガラス粉末:
SiO 30質量%、B 31質量%、ZnO 6質量%、MgO 2質量%、CaO 2質量%、BaO 2質量%、Al 27質量%、屈折率(ng)1.55、軟化温度790℃、熱膨張係数32×10-7(K-1)、平均粒子径2.3μm
 (ガラス粉末含有ペーストの作製)
 4質量部の感光性モノマーM-1、6質量部の感光性モノマーM-2、24質量部の感光性ポリマー、6質量部の光重合開始剤、0.2質量部の重合禁止剤及び12.8質量部の紫外線吸収剤溶液を、38質量部の溶媒に、温度80℃で加熱溶解した。得られた溶液を冷却した後、9質量部の粘度調整剤を添加して、有機溶液1を得た。得られた有機溶液1をガラス板に塗布して乾燥することにより得られた有機塗膜の屈折率(ng)は、1.555であった。
(Raw material for glass powder-containing paste)
The raw materials used for the production of the photosensitive glass powder-containing paste are as follows.
Photosensitive monomer M-1: Trimethylolpropane triacrylate photosensitive monomer M-2: Tetrapropylene glycol dimethacrylate photosensitive polymer: Copolymer having a mass ratio of methacrylic acid / methyl methacrylate / styrene = 40/40/30 Of 0.4 equivalent of glycidyl methacrylate with respect to the carboxyl group (weight average molecular weight 43000; acid value 100)
Photopolymerization initiator: 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) butanone-1 (IC369; manufactured by BASF)
Polymerization inhibitor: 1,6-hexanediol-bis [(3,5-di-tert-butyl-4-hydroxyphenyl) propionate])
Ultraviolet absorber solution: Sudan IV (manufactured by Tokyo Ohka Kogyo Co., Ltd.) γ-butyrolactone 0.3% by mass solution viscosity modifier: Flownon EC121 (manufactured by Kyoeisha Chemical Co., Ltd.)
Solvent: γ-butyrolactone low softening point glass powder:
SiO 2 27% by mass, B 2 O 3 31% by mass, ZnO 6% by mass, Li 2 O 7% by mass, MgO 2% by mass, CaO 2% by mass, BaO 2% by mass, Al 2 O 3 23% by mass, refraction. Rate (ng) 1.56, glass softening temperature 588 ° C., thermal expansion coefficient 70 × 10 −7 (K −1 ), average particle diameter 2.3 μm
High softening point glass powder:
SiO 2 30% by mass, B 2 O 3 31% by mass, ZnO 6% by mass, MgO 2% by mass, CaO 2% by mass, BaO 2% by mass, Al 2 O 3 27% by mass, refractive index (ng) 1.55 , Softening temperature 790 ° C., thermal expansion coefficient 32 × 10 −7 (K −1 ), average particle diameter 2.3 μm
(Preparation of paste containing glass powder)
4 parts by weight of photosensitive monomer M-1, 6 parts by weight of photosensitive monomer M-2, 24 parts by weight of photosensitive polymer, 6 parts by weight of photopolymerization initiator, 0.2 part by weight of polymerization inhibitor, and 12 parts 8 parts by mass of the UV absorber solution was dissolved in 38 parts by mass of solvent at a temperature of 80 ° C. After cooling the obtained solution, 9 parts by mass of a viscosity modifier was added to obtain an organic solution 1. The refractive index (ng) of the organic coating film obtained by applying and drying the obtained organic solution 1 on a glass plate was 1.555.
 50質量部の有機溶液1に、40質量部の低軟化点ガラス粉末及び10質量部の高軟化点ガラス粉末を添加した後、3本ローラー混練機にて混練し、ガラス粉末含有ペーストを得た。 After adding 40 parts by mass of the low softening point glass powder and 10 parts by mass of the high softening point glass powder to 50 parts by mass of the organic solution 1, the mixture was kneaded with a three-roller kneader to obtain a glass powder-containing paste. .
 (蛍光体ペーストの原料)
蛍光体1 : 平均粒子径10μmの、テルビウムをドープした酸硫化ガドリニウム
蛍光体2 : 平均粒子径2μmの、テルビウムをドープした酸硫化ガドリニウム
蛍光体3 : 平均粒子径5μmの、テルビウムをドープした酸硫化ガドリニウム
蛍光体4 : 平均粒子径30μmの、テルビウムをドープした酸硫化ガドリニウム
バインダー : 7cpエトセル(登録商標)(一般名:エチルセルロース;日進化成製)
溶媒 : テルピネオール
 (蛍光体ペーストの作製)
 85質量部の蛍光体1、3質量部のバインダー及び12質量部の溶媒を撹拌し、蛍光体ペースト1を得た。
(Raw material for phosphor paste)
Phosphor 1: terbium-doped gadolinium oxysulfide phosphor with an average particle diameter of 10 μm 2: terbium-doped gadolinium oxysulfide phosphor with an average particle diameter of 2 μm 3: terbium-doped oxysulfide with an average particle diameter of 5 μm Gadolinium phosphor 4: Terbium-doped gadolinium oxysulfide binder having an average particle diameter of 30 μm: 7 cp etosel (registered trademark) (generic name: ethyl cellulose; manufactured by Nissei Seisaku)
Solvent: Terpineol (Preparation of phosphor paste)
85 parts by mass of phosphor 1, 3 parts by mass of binder and 12 parts by mass of solvent were stirred to obtain phosphor paste 1.
 また、85質量部の蛍光体2、3質量部のバインダー及び12質量部の溶媒を撹拌し、蛍光体ペースト2を得た。 Further, 85 parts by mass of phosphor 2, 3 parts by mass of binder and 12 parts by mass of solvent were stirred to obtain phosphor paste 2.
 また、85質量部の蛍光体3、3質量部のバインダー及び12質量部の溶媒を撹拌し、蛍光体ペースト3を得た。 Further, 85 parts by mass of phosphor 3, 3 parts by mass of binder and 12 parts by mass of solvent were stirred to obtain phosphor paste 3.
 また、85質量部の蛍光体4、3質量部のバインダー及び12質量部の溶媒を撹拌し、蛍光体ペースト4を得た。 In addition, 85 parts by mass of phosphor 4, 3 parts by mass of binder and 12 parts by mass of solvent were stirred to obtain phosphor paste 4.
 また、10質量部の蛍光体1、3質量部のバインダー及び87質量部の溶媒を撹拌し、蛍光体ペースト5を得た。 Further, 10 parts by mass of phosphor 1, 3 parts by mass of binder and 87 parts by mass of solvent were stirred to obtain phosphor paste 5.
 また、42質量部の蛍光体1、3質量部のバインダー及び55質量部の溶媒を撹拌し、蛍光体ペースト6を得た。 Further, 42 parts by mass of phosphor 1, 3 parts by mass of binder and 55 parts by mass of solvent were stirred to obtain phosphor paste 6.
 (反射層ペーストの原料)
金属酸化物1 : 平均粒子径0.25μmの酸化チタン
金属酸化物2 : 平均粒子径0.3μmの酸化ジルコニウム
金属酸化物3 : 平均粒子径0.2μmの酸化アルミニウム
金属酸化物4 : 平均粒子径0.5μmの酸化バリウム
金属酸化物5 : 平均粒子径0.5μmの酸化ガドリニウム
金属酸化物6 : 平均粒子径0.3μmの酸化ビスマス
金属酸化物7 : 平均粒子径0.25μmの酸化鉛
金属酸化物8 : 平均粒子径0.2μmの酸化コバルト
バインダー : 100cpエトセル(登録商標)(一般名:エチルセルロース;日進化成製)
溶媒 : テルピネオール
 (反射層ペーストの作製)
 1質量部のバインダーを、90質量部の有機溶媒に80℃で加熱溶解した有機溶液に、9質量部の金属酸化物1を添加して混練し、反射層ペースト1を得た。
(Raw material for reflective layer paste)
Metal oxide 1: Titanium oxide metal oxide having an average particle diameter of 0.25 μm 2: Zirconium oxide metal oxide having an average particle diameter of 0.3 μm 3: Aluminum oxide metal oxide having an average particle diameter of 0.2 μm 4: Average particle diameter 0.5 μm barium oxide metal oxide 5: Gadolinium oxide metal oxide having an average particle size of 0.5 μm 6: Bismuth oxide metal oxide having an average particle size of 0.3 μm 7: Lead oxide metal oxide having an average particle size of 0.25 μm Product 8: Cobalt oxide binder having an average particle size of 0.2 μm: 100 cp etosel (registered trademark) (generic name: ethyl cellulose; manufactured by Nisshinsei)
Solvent: Terpineol (Preparation of reflective layer paste)
A reflective layer paste 1 was obtained by adding 9 parts by mass of the metal oxide 1 to an organic solution obtained by heating and dissolving 1 part by mass of a binder in 90 parts by mass of an organic solvent at 80 ° C.
 また、1質量部のバインダーを、90質量部の有機溶媒に80℃で加熱溶解した有機溶液に、9質量部の金属酸化物2を添加して混練し、反射層ペースト2を得た。 Further, 9 parts by mass of metal oxide 2 was added and kneaded in an organic solution obtained by heating and dissolving 1 part by mass of a binder in 90 parts by mass of an organic solvent at 80 ° C. to obtain a reflective layer paste 2.
 また、1質量部のバインダーを、90質量部の有機溶媒に80℃で加熱溶解した有機溶液に、9質量部の金属酸化物3を添加して混練し、反射層ペースト3を得た。 Further, 9 parts by mass of metal oxide 3 was added and kneaded in an organic solution obtained by dissolving 1 part by mass of a binder in 90 parts by mass of an organic solvent at 80 ° C. to obtain a reflective layer paste 3.
 また、1質量部のバインダーを、90質量部の有機溶媒に80℃で加熱溶解した有機溶液に、9質量部の金属酸化物4を添加して混練し、反射層ペースト4を得た。 Further, 9 parts by mass of metal oxide 4 was added and kneaded in an organic solution in which 1 part by mass of a binder was dissolved in 90 parts by mass of an organic solvent by heating at 80 ° C. to obtain a reflective layer paste 4.
 また、1質量部のバインダーを、90質量部の有機溶媒に80℃で加熱溶解した有機溶液に、9質量部の金属酸化物5を添加して混練し、反射層ペースト5を得た。 Further, 9 parts by mass of metal oxide 5 was added and kneaded in an organic solution obtained by dissolving 1 part by mass of a binder in 90 parts by mass of an organic solvent at 80 ° C. to obtain a reflective layer paste 5.
 また、1質量部のバインダーを、90質量部の有機溶媒に80℃で加熱溶解した有機溶液に、9質量部の金属酸化物6を添加して混練し、反射層ペースト6を得た。 Further, 9 parts by mass of metal oxide 6 was added and kneaded in an organic solution obtained by dissolving 1 part by mass of a binder in 90 parts by mass of an organic solvent at 80 ° C. to obtain a reflective layer paste 6.
 また、1質量部のバインダーを、90質量部の有機溶媒に80℃で加熱溶解した有機溶液に、9質量部の金属酸化物7を添加して混練し、反射層ペースト7を得た。 Further, 9 parts by mass of the metal oxide 7 was added to and kneaded with 1 part by mass of a binder in an organic solution obtained by heating and dissolving in 90 parts by mass of an organic solvent at 80 ° C. to obtain a reflective layer paste 7.
 また、1質量部のバインダーを、90質量部の有機溶媒に80℃で加熱溶解した有機溶液に、9質量部の金属酸化物8を添加して混練し、反射層ペースト8を得た。 Further, 9 parts by mass of metal oxide 8 was added and kneaded in an organic solution obtained by dissolving 1 part by mass of a binder in 90 parts by mass of an organic solvent at 80 ° C. to obtain a reflective layer paste 8.
 また、0.1質量部のバインダーを、99質量部の有機溶媒に80℃で加熱溶解した有機溶液に、0.9質量部の金属酸化物1を添加して混練し、反射層ペースト9を得た。 Further, 0.1 parts by mass of a binder is added to 99 parts by mass of an organic solvent heated and dissolved at 80 ° C. at 80 ° C., and 0.9 parts by mass of metal oxide 1 is added and kneaded. Obtained.
 また、0.3質量部のバインダーを、97質量部の有機溶媒に80℃で加熱溶解した有機溶液に、2.7質量部の金属酸化物1を添加して混練し、反射層ペースト10を得た。 Further, 2.7 parts by mass of metal oxide 1 was added and kneaded in an organic solution obtained by dissolving 0.3 parts by mass of a binder in 97 parts by mass of an organic solvent at 80 ° C. Obtained.
 また、2質量部のバインダーを、80質量部の有機溶媒に80℃で加熱溶解した有機溶液に、18質量部の金属酸化物1を添加して混練し、反射層ペースト11を得た。 Further, 18 parts by mass of metal oxide 1 was added and kneaded in an organic solution obtained by heating and dissolving 2 parts by mass of a binder in 80 parts by mass of an organic solvent at 80 ° C. to obtain a reflective layer paste 11.
 また、3質量部のバインダーを、70質量部の有機溶媒に80℃で加熱溶解した有機溶液に、27質量部の金属酸化物1を添加して混練し、反射層ペースト12を得た。 In addition, 27 parts by mass of metal oxide 1 was added and kneaded in an organic solution obtained by dissolving 3 parts by mass of a binder in 70 parts by mass of an organic solvent at 80 ° C. to obtain a reflective layer paste 12.
 また、5質量部のバインダーを、50質量部の有機溶媒に80℃で加熱溶解した有機溶液に、45質量部の金属酸化物1を添加して混練し、反射層ペースト13を得た。 Further, 45 parts by mass of metal oxide 1 was added to and kneaded in an organic solution obtained by dissolving 5 parts by mass of a binder in 50 parts by mass of an organic solvent at 80 ° C. to obtain a reflective layer paste 13.
 (隔壁の形成)
 基材として、125mm×125mm×0.7mmのソーダガラス板を用いた。基材の表面に、ガラス粉末含有ペーストを、乾燥後の厚さが所望の厚さになるようにダイコーターで塗布して乾燥し、ガラス粉末含有ペーストの塗布膜を得た。次に、所望のパターンに対応する開口部を有するフォトマスクを介して、ガラス粉末含有ペーストの塗布膜を、超高圧水銀灯を用いて露光した。露光後の塗布膜は、0.5質量%のエタノールアミン水溶液中で現像し、未露光部分を除去して、格子状の焼成前パターンを得た。得られた格子状の焼成前パターンを、空気中585℃で15分間焼成して、ガラスを主成分とする、格子状の隔壁を形成した。
(Formation of partition walls)
As a substrate, a soda glass plate of 125 mm × 125 mm × 0.7 mm was used. The glass powder-containing paste was applied to the surface of the substrate with a die coater so that the thickness after drying was a desired thickness, and dried to obtain a coating film of the glass powder-containing paste. Next, the coating film of the glass powder-containing paste was exposed using an ultrahigh pressure mercury lamp through a photomask having openings corresponding to a desired pattern. The exposed coating film was developed in a 0.5% by mass ethanolamine aqueous solution, and the unexposed portion was removed to obtain a lattice-shaped pre-baking pattern. The obtained lattice-shaped pre-fired pattern was fired in air at 585 ° C. for 15 minutes to form lattice-shaped partition walls mainly composed of glass.
 (反射率の評価)
 分光測色計(CM-2600d;コニカミノルタ社製)を用い、波長530nmのSCI反射率を測定した。
(Evaluation of reflectance)
Using a spectrocolorimeter (CM-2600d; manufactured by Konica Minolta), SCI reflectance at a wavelength of 530 nm was measured.
 (輝度及び鮮鋭性の評価)
 シンチレータパネルと出力基板とを貼り合わせた放射線検出器を用いて、厚さ30cmの鉄筋コンクリートに対し、X線を一定時間照射した場合のX線透過検査を行い、得られた画像の明るさから輝度を、撮影された画像中に映った鉄筋の明瞭さから鮮鋭性を評価した。輝度及び鮮鋭性のいずれも目視による5段階評価とし、最良の場合をAと判定して、以下良好な順にB、C、D、Eと判定した。なお、鮮鋭性がEの場合には、本発明の大型構造物の検査装置を構成する放射線検出器としては、不適となる可能性が高い。
(Evaluation of brightness and sharpness)
Using a radiation detector with a scintillator panel and an output board bonded together, X-ray transmission inspection is performed for a 30 cm thick reinforced concrete when X-rays are irradiated for a certain period of time. The sharpness was evaluated from the clarity of the reinforcing bars in the captured image. Both brightness and sharpness were evaluated by visual five-step evaluation, the best case was determined as A, and B, C, D, and E were determined in order of goodness. When the sharpness is E, it is highly likely that the radiation detector constituting the large-structure inspection apparatus of the present invention is not suitable.
 (実施例1)
 隔壁の形成操作において、ガラス粉末含有ペーストを、乾燥後の厚さが1.5mmになるように塗布した。露光には、ピッチ0.5mm、開口幅0.03mmの、格子状開口部を有するクロムマスクを用いた。得られた隔壁の空隙率は2.5%、隔壁の高さL1は1mm、隔壁の間隔L2は0.5mm、隔壁の底部幅L3は0.05mm、隔壁の頂部幅L4は0.03mmであった。また、得られた隔壁を形成した基材の反射率は15%であった。
(Example 1)
In the partition wall forming operation, the glass powder-containing paste was applied so that the thickness after drying was 1.5 mm. For the exposure, a chromium mask having a grid-like opening with a pitch of 0.5 mm and an opening width of 0.03 mm was used. The porosity of the obtained partition wall is 2.5%, the partition wall height L1 is 1 mm, the partition wall distance L2 is 0.5 mm, the partition wall bottom width L3 is 0.05 mm, and the partition wall top width L4 is 0.03 mm. there were. Moreover, the reflectance of the base material in which the obtained partition was formed was 15%.
 格子状の隔壁を形成した基材を真空印刷機にセットし、蛍光体ペースト1を印刷してセル内に蛍光体ペーストをフル充填した。その後、150℃で60分乾燥して、シンチレータパネル1を得た。基板に対して垂直な、シンチレータパネルの断面を研磨装置により露出させ、走査型電子顕微鏡で断面を観察し、画像処理をして算出した蛍光体の平均一次粒子径は10μmであった。 The base material on which the grid-like partition walls were formed was set in a vacuum printer, and the phosphor paste 1 was printed to fully fill the cells with the phosphor paste. Then, it dried at 150 degreeC for 60 minutes, and the scintillator panel 1 was obtained. The average primary particle diameter of the phosphor calculated by exposing the cross section of the scintillator panel perpendicular to the substrate with a polishing apparatus, observing the cross section with a scanning electron microscope, and performing image processing was 10 μm.
 得られたシンチレータパネル1を、0.5mmピッチの解像度を有する出力基板にセルと画素が1対1対応するようにアライメントしてから貼り合わせ、放射線検出器1を得た。放射線検出器1の輝度と鮮鋭性とを、加速電圧1MVのX線源を利用して評価したところ、輝度はC、鮮鋭性はCであり、いずれも良好であった。 The obtained scintillator panel 1 was bonded to an output substrate having a resolution of 0.5 mm pitch so that the cells and the pixels correspond to each other on a one-to-one basis, whereby the radiation detector 1 was obtained. When the brightness and sharpness of the radiation detector 1 were evaluated using an X-ray source having an acceleration voltage of 1 MV, the brightness was C and the sharpness was C, both of which were good.
 (実施例2)
 実施例1と同様に隔壁を形成した基材を作製した。該基材を真空印刷機にセットし、反射層ペースト9を印刷してセル内に反射層ペーストをフル充填した。その後90℃で60分間乾燥し、基板及び隔壁の表面に反射層を形成した。反射層の平均厚さは2μm、反射層形成後の基板の反射率は20%であった。その後、実施例1と同様に蛍光体ペーストを充填してシンチレータパネル2を得た後、出力基板にアライメントしてから貼り合わせ、放射線検出器2を得た。放射線検出器2の輝度はC、鮮鋭性はCであり、いずれも良好であった。
(Example 2)
A base material on which partition walls were formed in the same manner as in Example 1 was produced. The base material was set in a vacuum printing machine, the reflective layer paste 9 was printed, and the cell was fully filled with the reflective layer paste. Thereafter, it was dried at 90 ° C. for 60 minutes to form a reflective layer on the surfaces of the substrate and the partition walls. The average thickness of the reflective layer was 2 μm, and the reflectance of the substrate after forming the reflective layer was 20%. Thereafter, the phosphor paste was filled in the same manner as in Example 1 to obtain the scintillator panel 2, and after alignment with the output substrate, bonding was performed to obtain the radiation detector 2. The brightness of the radiation detector 2 was C, and the sharpness was C, both of which were good.
 (実施例3)
 反射層ペーストとして反射層ペースト10を用いた以外は、実施例2と同様にして放射線検出器3を得た。反射層の平均厚さは5μm、反射層形成後の基板の反射率は25%、放射線検出器3の輝度はC、鮮鋭性はBであり、いずれも良好であった。
(Example 3)
A radiation detector 3 was obtained in the same manner as in Example 2 except that the reflective layer paste 10 was used as the reflective layer paste. The average thickness of the reflective layer was 5 μm, the reflectance of the substrate after forming the reflective layer was 25%, the luminance of the radiation detector 3 was C, and the sharpness was B, both of which were good.
 (実施例4)
 反射層ペーストとして反射層ペースト1を用いた以外は、実施例2と同様にして放射線検出器4を得た。反射層の平均厚さは20μm、反射層形成後の基板の反射率は60%、放射線検出器4の輝度はB、鮮鋭性はBであり、いずれも良好であった。
Example 4
A radiation detector 4 was obtained in the same manner as in Example 2 except that the reflective layer paste 1 was used as the reflective layer paste. The average thickness of the reflective layer was 20 μm, the reflectivity of the substrate after forming the reflective layer was 60%, the luminance of the radiation detector 4 was B, and the sharpness was B, both of which were good.
 (実施例5)
 反射層ペーストとして反射層ペースト12を用いた以外は、実施例2と同様にして放射線検出器5を得た。反射層の平均厚さは50μm、反射層形成後の基板の反射率は85%、放射線検出器5の輝度はB、鮮鋭性はCであり、いずれも良好であった。
(Example 5)
A radiation detector 5 was obtained in the same manner as in Example 2 except that the reflective layer paste 12 was used as the reflective layer paste. The average thickness of the reflective layer was 50 μm, the reflectivity of the substrate after forming the reflective layer was 85%, the luminance of the radiation detector 5 was B, and the sharpness was C, both of which were good.
 (実施例6)
 反射層ペーストとして反射層ペースト13を用いた以外は、実施例2と同様にして放射線検出器5を得た。反射層の平均厚さは80μm、反射層形成後の基板の反射率は90%、放射線検出器5の輝度はCであり、良好であった。また、鮮鋭性はDであり、比較的良好であった。
(Example 6)
A radiation detector 5 was obtained in the same manner as in Example 2 except that the reflective layer paste 13 was used as the reflective layer paste. The average thickness of the reflective layer was 80 μm, the reflectance of the substrate after forming the reflective layer was 90%, and the luminance of the radiation detector 5 was C, which was good. The sharpness was D, which was relatively good.
 (実施例7)
 隔壁の形成において、露光にピッチ0.2mm、開口幅0.02mmの、格子状開口部を有するクロムマスクを用いた以外は、実施例4と同様にしてシンチレータパネル7を得た。得られた隔壁の空隙率は2%、隔壁の高さL1は1mm、隔壁の間隔L2は0.2mm、隔壁の底部幅L3は0.04mm、隔壁の頂部幅L4は0.02mmであった。また、反射層の平均厚さは20μm、反射層形成後の基板の反射率は40%であった。
(Example 7)
A scintillator panel 7 was obtained in the same manner as in Example 4 except that in the formation of the partition walls, a chrome mask having a grid-like opening with a pitch of 0.2 mm and an opening width of 0.02 mm was used for exposure. The porosity of the obtained partition wall was 2%, the partition wall height L1 was 1 mm, the partition wall distance L2 was 0.2 mm, the partition wall bottom width L3 was 0.04 mm, and the partition wall top width L4 was 0.02 mm. . The average thickness of the reflective layer was 20 μm, and the reflectance of the substrate after forming the reflective layer was 40%.
 得られたシンチレータパネル7を、0.2mmピッチの解像度を有する出力基板にセルと画素が1対1対応するようにアライメントしてから貼り合わせ、放射線検出器7を得た。放射線検出器7の輝度はC、鮮鋭性はAであり、いずれも良好であった。 The obtained scintillator panel 7 was bonded to an output substrate having a resolution of 0.2 mm pitch so that the cells and the pixels correspond to each other on a one-to-one basis, whereby the radiation detector 7 was obtained. The brightness of the radiation detector 7 was C and the sharpness was A, both of which were good.
 (実施例8)
 隔壁の形成において、露光にピッチ1mm、開口幅0.04mmの、格子状開口部を有するクロムマスクを用いた以外は、実施例4と同様にしてシンチレータパネル8を得た。得られた隔壁の空隙率は3%、隔壁の高さL1は1mm、隔壁の間隔L2は1mm、隔壁の底部幅L3は0.08mm、隔壁の頂部幅L4は0.04mmであった。また、反射層の平均厚さは20μm、反射層形成後の基板の反射率は70%であった。
(Example 8)
A scintillator panel 8 was obtained in the same manner as in Example 4 except that in the formation of the partition walls, a chrome mask having a grid-like opening having a pitch of 1 mm and an opening width of 0.04 mm was used for exposure. The partition wall obtained had a porosity of 3%, partition wall height L1 of 1 mm, partition wall spacing L2 of 1 mm, partition wall bottom width L3 of 0.08 mm, and partition wall top width L4 of 0.04 mm. The average thickness of the reflective layer was 20 μm, and the reflectance of the substrate after forming the reflective layer was 70%.
 得られたシンチレータパネル8を、1mmピッチの解像度を有する出力基板にセルと画素が1対1対応するようにアライメントしてから貼り合わせ、放射線検出器8を得た。放射線検出器8の輝度はA、鮮鋭性はCであり、いずれも良好であった。 The obtained scintillator panel 8 was bonded to an output substrate having a resolution of 1 mm pitch so that the cells and the pixels correspond to each other on a one-to-one basis, whereby the radiation detector 8 was obtained. The brightness of the radiation detector 8 was A and the sharpness was C, both of which were good.
 (実施例9)
 実施例4と同様に格子状の隔壁を形成した基材に、アルミニウムをスパッタして遮蔽層を形成した。遮蔽層の平均厚さは1μmであった。その後、実施例4と同様に、反射層を形成し、蛍光体ペーストを充填し、出力基板に貼り合わせて放射線検出器9を得た。反射層の平均厚さは20μm、隔壁を形成した基材の反射率は45%、放射線検出器9の輝度はC、鮮鋭性はAであり、いずれも良好であった。
Example 9
In the same manner as in Example 4, a shielding layer was formed by sputtering aluminum on a substrate on which lattice-like partition walls were formed. The average thickness of the shielding layer was 1 μm. Thereafter, in the same manner as in Example 4, a reflection layer was formed, filled with a phosphor paste, and bonded to an output substrate to obtain a radiation detector 9. The average thickness of the reflective layer was 20 μm, the reflectance of the substrate on which the barrier ribs were formed was 45%, the luminance of the radiation detector 9 was C, and the sharpness was A, both of which were good.
 (実施例10)
 反射層ペーストとして反射層ペースト11を用いた以外は、実施例9と同様にして放射線検出器10を得た。反射層の平均厚さは30μm、反射層形成後の基板の反射率は55%、放射線検出器10の輝度はB、鮮鋭性はAであり、いずれも良好であった。
(Example 10)
A radiation detector 10 was obtained in the same manner as in Example 9 except that the reflective layer paste 11 was used as the reflective layer paste. The average thickness of the reflective layer was 30 μm, the reflectivity of the substrate after forming the reflective layer was 55%, the brightness of the radiation detector 10 was B, and the sharpness was A, both of which were good.
 (実施例11)
 反射層ペーストとして反射層ペースト12を用いた以外は、実施例9と同様にして放射線検出器11を得た。反射層の平均厚さは50μm、反射層形成後の基板の反射率は65%、放射線検出器11の輝度はC、鮮鋭性はBであり、いずれも良好であった。
(Example 11)
A radiation detector 11 was obtained in the same manner as in Example 9 except that the reflective layer paste 12 was used as the reflective layer paste. The average thickness of the reflective layer was 50 μm, the reflectivity of the substrate after forming the reflective layer was 65%, the luminance of the radiation detector 11 was C, and the sharpness was B, both of which were good.
 (実施例12)
 反射層ペーストとして反射層ペースト13を用いた以外は、実施例9と同様にして放射線検出器12を得た。反射層の平均厚さは80μm、反射層形成後の基板の反射率は65%、放射線検出器12の輝度はC、鮮鋭性はCであり、いずれも良好であった。
Example 12
A radiation detector 12 was obtained in the same manner as in Example 9 except that the reflective layer paste 13 was used as the reflective layer paste. The average thickness of the reflective layer was 80 μm, the reflectivity of the substrate after forming the reflective layer was 65%, the luminance of the radiation detector 12 was C, and the sharpness was C, both of which were good.
 (実施例13)
 2質量部のバインダー(100cPエトセル)を、60質量部の有機溶媒(テルピネオール)に80℃で加熱溶解した有機溶液に、38質量部のタングステン粉末(粒径1μm)を添加して混練し、X線吸収層ペーストを得た。実施例4と同様にして格子状の隔壁を形成した基材を、真空印刷機にセットし、X線吸収層ペーストを印刷してセル内にX線吸収層ペーストをフル充填した。その後、90℃で60分乾燥し、基板及び隔壁の表面にX線吸収層を形成した。X線吸収層の平均厚さは10μmであった。その後、実施例4と同様に、反射層を形成し、蛍光体ペーストを充填し、出力基板に貼り合わせて放射線検出器12を得た。反射層の平均厚さは20μm、反射層形成後の基板の反射率は40%、放射線検出器13の輝度はC、鮮鋭性はAであり、いずれも良好であった。
(Example 13)
To an organic solution obtained by dissolving 2 parts by mass of a binder (100 cP etcel) in 60 parts by mass of an organic solvent (terpineol) at 80 ° C., 38 parts by mass of tungsten powder (particle size: 1 μm) was added and kneaded. A line absorbing layer paste was obtained. The base material on which grid-like partition walls were formed in the same manner as in Example 4 was set in a vacuum printer, the X-ray absorbing layer paste was printed, and the cells were fully filled with the X-ray absorbing layer paste. Then, it dried at 90 degreeC for 60 minutes, and formed the X-ray absorption layer on the surface of a board | substrate and a partition. The average thickness of the X-ray absorption layer was 10 μm. Thereafter, as in Example 4, a reflective layer was formed, filled with a phosphor paste, and bonded to an output substrate to obtain a radiation detector 12. The average thickness of the reflective layer was 20 μm, the reflectance of the substrate after the reflective layer was formed was 40%, the luminance of the radiation detector 13 was C, and the sharpness was A, both of which were good.
 (実施例14)
 反射層ペーストとして反射層ペースト2を用いた以外は、実施例2と同様にして放射線検出器14を得た。反射層の平均厚さは20μm、反射層形成後の基板の反射率は55%、放射線検出器14の輝度はB、鮮鋭性はBであり、いずれも良好であった。
(Example 14)
A radiation detector 14 was obtained in the same manner as in Example 2 except that the reflective layer paste 2 was used as the reflective layer paste. The average thickness of the reflective layer was 20 μm, the reflectance of the substrate after forming the reflective layer was 55%, the brightness of the radiation detector 14 was B, and the sharpness was B, both of which were good.
 (実施例15)
 反射層ペーストとして反射層ペースト3を用いた以外は、実施例2と同様にして放射線検出器15を得た。反射層の平均厚さは25μm、反射層形成後の基板の反射率は40%、放射線検出器15の輝度はC、鮮鋭性はBであり、いずれも良好であった。
(Example 15)
A radiation detector 15 was obtained in the same manner as in Example 2 except that the reflective layer paste 3 was used as the reflective layer paste. The average thickness of the reflective layer was 25 μm, the reflectivity of the substrate after the reflective layer was formed was 40%, the luminance of the radiation detector 15 was C, and the sharpness was B, both of which were good.
 (実施例16)
 反射層ペーストとして反射層ペースト4を用いた以外は、実施例2と同様にして放射線検出器16を得た。反射層の平均厚さは20μm、反射層形成後の基板の反射率は45%、放射線検出器16の輝度はB、鮮鋭性はBであり、いずれも良好であった。
(Example 16)
A radiation detector 16 was obtained in the same manner as in Example 2 except that the reflective layer paste 4 was used as the reflective layer paste. The average thickness of the reflective layer was 20 μm, the reflectivity of the substrate after forming the reflective layer was 45%, the luminance of the radiation detector 16 was B, and the sharpness was B, both of which were good.
 (実施例17)
 反射層ペーストとして反射層ペースト5を用いた以外は、実施例2と同様にして放射線検出器17を得た。反射層の平均厚さは15μm、反射層形成後の基板の反射率は55%、放射線検出器17の輝度はB、鮮鋭性はAであり、いずれも良好であった。
(Example 17)
A radiation detector 17 was obtained in the same manner as in Example 2 except that the reflective layer paste 5 was used as the reflective layer paste. The average thickness of the reflective layer was 15 μm, the reflectance of the substrate after forming the reflective layer was 55%, the luminance of the radiation detector 17 was B, and the sharpness was A, both of which were good.
 (実施例18)
 反射層ペーストとして反射層ペースト6を用いた以外は、実施例2と同様にして放射線検出器18を得た。反射層の平均厚さは15μm、反射層形成後の基板の反射率は30%、放射線検出器18の輝度はC、鮮鋭性はBであり、いずれも良好であった。
(Example 18)
A radiation detector 18 was obtained in the same manner as in Example 2 except that the reflective layer paste 6 was used as the reflective layer paste. The average thickness of the reflective layer was 15 μm, the reflectance of the substrate after the reflective layer was formed was 30%, the luminance of the radiation detector 18 was C, and the sharpness was B. Both were good.
 (実施例19)
 反射層ペーストとして反射層ペースト7を用いた以外は、実施例2と同様にして放射線検出器19を得た。反射層の平均厚さは15μm、反射層形成後の基板の反射率は20%、放射線検出器19の輝度はDであり、比較的良好であった。また、鮮鋭性はBであり、良好であった。
(Example 19)
A radiation detector 19 was obtained in the same manner as in Example 2 except that the reflective layer paste 7 was used as the reflective layer paste. The average thickness of the reflective layer was 15 μm, the reflectance of the substrate after forming the reflective layer was 20%, and the luminance of the radiation detector 19 was D, which was relatively good. The sharpness was B, which was good.
 (実施例20)
 反射層ペーストとして反射層ペースト8を用いた以外は、実施例2と同様にして放射線検出器20を得た。反射層の平均厚さは20μm、反射層形成後の基板の反射率は5%、放射線検出器20の輝度はEであったが、鮮鋭性はBであり、良好であった。
(Example 20)
A radiation detector 20 was obtained in the same manner as in Example 2 except that the reflective layer paste 8 was used as the reflective layer paste. The average thickness of the reflective layer was 20 μm, the reflectance of the substrate after forming the reflective layer was 5%, and the brightness of the radiation detector 20 was E, but the sharpness was B, which was good.
 (実施例21)
 蛍光体ペーストとして蛍光体ペースト2を用いた以外は、実施例9と同様にして放射線検出器21を得た。蛍光体の平均一次粒子径は2μmであった。反射層の平均厚さは20μm、反射層形成後の基板の反射率は45%、放射線検出器21の輝度はDであり、比較的良好であった。また、鮮鋭性はAであり、良好であった。
(Example 21)
A radiation detector 21 was obtained in the same manner as in Example 9 except that the phosphor paste 2 was used as the phosphor paste. The average primary particle diameter of the phosphor was 2 μm. The average thickness of the reflective layer was 20 μm, the reflectance of the substrate after forming the reflective layer was 45%, and the luminance of the radiation detector 21 was D, which was relatively good. The sharpness was A, which was good.
 (実施例22)
 蛍光体ペーストとして蛍光体ペースト3を用いた以外は、実施例9と同様にして放射線検出器22を得た。蛍光体の平均一次粒子径は5μmであった。反射層の平均厚さは20μm、反射層形成後の基板の反射率は45%、放射線検出器22の輝度はC、鮮鋭性はAであり、いずれも良好であった。
(Example 22)
A radiation detector 22 was obtained in the same manner as in Example 9 except that the phosphor paste 3 was used as the phosphor paste. The average primary particle diameter of the phosphor was 5 μm. The average thickness of the reflective layer was 20 μm, the reflectance of the substrate after the reflective layer was formed was 45%, the luminance of the radiation detector 22 was C, and the sharpness was A, both of which were good.
 (実施例23)
 蛍光体ペーストとして蛍光体ペースト4を用いた以外は、実施例9と同様にして放射線検出器23を得た。蛍光体の平均一次粒子径は30μmであった。反射層の平均厚さは20μm、反射層形成後の基板の反射率は45%、放射線検出器23の輝度はB、鮮鋭性はAであり、いずれも良好であった。
(Example 23)
A radiation detector 23 was obtained in the same manner as in Example 9 except that the phosphor paste 4 was used as the phosphor paste. The average primary particle diameter of the phosphor was 30 μm. The average thickness of the reflective layer was 20 μm, the reflectance of the substrate after forming the reflective layer was 45%, the luminance of the radiation detector 23 was B, and the sharpness was A, both of which were good.
 (実施例24)
 蛍光体として、テルビウムをドープした酸硫化ガドリニウムの焼結体インゴットを、0.9×0.3×0.3mmの柱状直方体に機械加工し、各セルに1つずつ挿入して蛍光体層を形成した以外は、実施例9と同様にして放射線検出器24を得た。反射層の平均厚さは20μm、反射層形成後の基板の反射率は45%、放射線検出器24の輝度はC、鮮鋭性はCであり、いずれも良好であった。
(Example 24)
As a phosphor, a sintered body ingot of terbium-doped gadolinium oxysulfide is machined into a columnar rectangular parallelepiped of 0.9 × 0.3 × 0.3 mm, and inserted into each cell one by one to form a phosphor layer. Except for the formation, a radiation detector 24 was obtained in the same manner as in Example 9. The average thickness of the reflective layer was 20 μm, the reflectance of the substrate after forming the reflective layer was 45%, the luminance of the radiation detector 24 was C, and the sharpness was C, both of which were good.
 (実施例25)
 隔壁の形成において、ガラス粉末含有ペーストを乾燥後の厚さが3mmになるように塗布した以外は、実施例4と同様にして放射線検出器25を得た。得られた隔壁の空隙率は2.5%、隔壁の高さL1は2mm、隔壁の間隔L2は0.5mm、隔壁の底部幅L3は0.07mm、隔壁の頂部幅L4は0.03mmであった。また、反射層の平均厚さは20μm、反射層形成後の基板の反射率は45%、放射線検出器25の輝度はA、鮮鋭性はBであり、いずれも良好であった。
(Example 25)
In the formation of the partition walls, a radiation detector 25 was obtained in the same manner as in Example 4 except that the glass powder-containing paste was applied so that the thickness after drying was 3 mm. The partition wall porosity was 2.5%, the partition wall height L1 was 2 mm, the partition wall spacing L2 was 0.5 mm, the partition wall bottom width L3 was 0.07 mm, and the partition wall top width L4 was 0.03 mm. there were. The average thickness of the reflective layer was 20 μm, the reflectance of the substrate after the reflective layer was formed was 45%, the luminance of the radiation detector 25 was A, and the sharpness was B, both of which were good.
 (実施例26)
 隔壁の形成において、ガラス粉末含有ペーストを乾燥後の厚さが1mmになるように塗布した以外は、実施例4と同様にして放射線検出器26を得た。得られた隔壁の空隙率は2%、隔壁の高さL1は0.5mm、隔壁の間隔L2は0.5mm、隔壁の底部幅L3は0.04mm、隔壁の頂部幅L4は0.03mmであった。また、反射層の平均厚さは20μm、反射層形成後の基板の反射率は70%、放射線検出器26の輝度はC、鮮鋭性はBであり、いずれも良好であった。
(Example 26)
A radiation detector 26 was obtained in the same manner as in Example 4 except that the partition wall was formed by applying the glass powder-containing paste so that the thickness after drying was 1 mm. The porosity of the obtained partition wall is 2%, the partition wall height L1 is 0.5 mm, the partition wall distance L2 is 0.5 mm, the partition wall bottom width L3 is 0.04 mm, and the partition wall top width L4 is 0.03 mm. there were. The average thickness of the reflective layer was 20 μm, the reflectivity of the substrate after forming the reflective layer was 70%, the luminance of the radiation detector 26 was C, and the sharpness was B, both of which were good.
 (実施例27)
 隔壁の形成において、ガラス粉末含有ペーストを乾燥後の厚さが0.4mmになるように塗布した以外は、実施例4と同様にして放射線検出器27を得た。得られた隔壁の空隙率は1.5%、隔壁の高さL1は0.2mm、隔壁の間隔L2は0.5mm、隔壁の底部幅L3は0.03mm、隔壁の頂部幅L4は0.03mmであった。また、反射層の平均厚さは25μm、反射層形成後の基板の反射率は75%、放射線検出器27の輝度はD、鮮鋭性はDであり、隔壁が低いために輝度、鮮鋭性ともに若干低めであったが、いずれも比較的良好であった。
(Example 27)
A radiation detector 27 was obtained in the same manner as in Example 4 except that the partition wall was formed by applying the glass powder-containing paste so that the thickness after drying was 0.4 mm. The obtained partition wall has a porosity of 1.5%, the partition wall height L1 is 0.2 mm, the partition wall interval L2 is 0.5 mm, the partition wall bottom width L3 is 0.03 mm, and the partition wall top width L4 is 0.00 mm. It was 03 mm. The average thickness of the reflective layer is 25 μm, the reflectance of the substrate after the reflective layer is formed is 75%, the luminance of the radiation detector 27 is D, and the sharpness is D. Since the partition is low, both the luminance and the sharpness are high. Although slightly lower, both were relatively good.
 (実施例28)
 放射線検出器4について、輝度、鮮鋭性の評価において、加速電圧0.5MVのX線源を利用して評価した。輝度はD、鮮鋭性はBであり、いずれも良好であった。
(Example 28)
The radiation detector 4 was evaluated using an X-ray source having an acceleration voltage of 0.5 MV in the evaluation of luminance and sharpness. The brightness was D and the sharpness was B, both of which were good.
 (実施例29)
 蛍光体層の形成において、実施例2と同様に、格子状の隔壁及び反射層を形成した基板を真空印刷機にセットし、その上に、0.2mm四方の開口部がピッチ0.5mmの市松模様状に配列されたメタルマスクを配置し、メタルマスクの開口部と、隔壁により区画されたセルの開口部と、が一致するようにアライメントを行った後、蛍光体ペースト5を印刷し、対象セル内に蛍光体ペースト5をフル充填した。次に、メタルマスクを0.5mmシフトし、同様にアライメントを行なった後、蛍光体ペースト1を印刷し、対象セル内に蛍光体ペースト1をフル充填した。その後、150℃で60分乾燥して、互いに隣接するセル間で、蛍光体層の態様が異なる、図4の模式図と同様の態様のシンチレータパネル29を得た。蛍光体ペースト5を充填したセルのX線吸収率Qに対する蛍光体ペースト1を充填したセルのX線吸収率Pの比、P/Qは10であった。
(Example 29)
In the formation of the phosphor layer, as in Example 2, the substrate on which the grid-like partition walls and the reflective layer were formed was set in a vacuum printing machine, on which 0.2 mm square openings had a pitch of 0.5 mm. After arranging the metal mask arranged in a checkered pattern and performing alignment so that the opening of the metal mask and the opening of the cell partitioned by the partition wall are aligned, the phosphor paste 5 is printed, The target cell was fully filled with the phosphor paste 5. Next, after shifting the metal mask by 0.5 mm and performing alignment in the same manner, the phosphor paste 1 was printed and the target cell was fully filled with the phosphor paste 1. Then, it dried at 150 degreeC for 60 minutes, and obtained the scintillator panel 29 of the aspect similar to the schematic diagram of FIG. 4 from which the aspect of a fluorescent substance layer differs between the mutually adjacent cells. The ratio, P / Q, of the X-ray absorption rate P of the cell filled with the phosphor paste 1 to the X-ray absorption rate Q of the cell filled with the phosphor paste 5 was 10.
 シンチレータパネル29を、0.5mmピッチの解像度を有する出力基板にアライメントしてから貼り合わせ、放射線検出器29を得た。放射線検出器29を用いて、厚さ30cmの鉄筋コンクリートに対し、加速電圧1MVのX線源からのX線を照射した場合のX線透過検査を行った。高エネルギーのX線すなわち直進X線の強度のみを求める演算、すなわち蛍光体ペースト1を充填したセルの信号から、蛍光体ペースト5を充填したセルの信号に適切な係数を掛けた後に減算する演算を行い、さらに蛍光体ペースト5を充填したセルについては上下左右の4セルの信号の平均値で補完した透過像を構築したところ、輝度はC、鮮鋭性はBであり、いずれも良好であった。 The radiation detector 29 was obtained by bonding the scintillator panel 29 after alignment to an output substrate having a resolution of 0.5 mm pitch. Using the radiation detector 29, an X-ray transmission test was performed when X-rays from an X-ray source with an acceleration voltage of 1 MV were applied to 30 cm thick reinforced concrete. An operation for obtaining only the intensity of high-energy X-rays, that is, straight X-rays, that is, an operation for subtracting the signal of the cell filled with the phosphor paste 1 after multiplying the signal of the cell filled with the phosphor paste 5 by an appropriate coefficient. In addition, for the cell filled with the phosphor paste 5, a transmission image complemented by the average value of the signals of the four cells in the upper, lower, left and right directions was constructed. As a result, the brightness was C and the sharpness was B. It was.
 (実施例30)
 実施例29において、蛍光体層の形成で、蛍光体ペースト5を印刷する際に用いるメタルマスクとして、0.2mm四方の開口部がピッチ2mmの格子状に配列されたメタルマスクを用いた。また、蛍光体ペースト1は、蛍光体ペースト5が充填されたセル以外のセルのみに印刷されるように設計したメタルマスクを用い、アライメントして充填した。その後、150℃で60分乾燥して、互いに隣接するセル間で、蛍光体層の態様が異なる、図5の模式図と同様の態様のシンチレータパネル30を得た。蛍光体ペースト5を充填したセルのX線吸収率Qに対する蛍光体ペースト1を充填したセルのX線吸収率Pの比、P/Qは10であった。
(Example 30)
In Example 29, a metal mask in which 0.2 mm square openings were arranged in a grid pattern with a pitch of 2 mm was used as a metal mask used for printing the phosphor paste 5 in forming the phosphor layer. The phosphor paste 1 was aligned and filled using a metal mask designed to be printed only on cells other than the cells filled with the phosphor paste 5. Then, it dried at 150 degreeC for 60 minutes, and obtained the scintillator panel 30 of the aspect similar to the schematic diagram of FIG. 5 from which the aspect of a fluorescent substance layer differs between the mutually adjacent cells. The ratio, P / Q, of the X-ray absorption rate P of the cell filled with the phosphor paste 1 to the X-ray absorption rate Q of the cell filled with the phosphor paste 5 was 10.
 その後、実施例29と同様にして評価を行った。輝度はC、鮮鋭性はAであり、いずれも良好であった。 Thereafter, evaluation was performed in the same manner as in Example 29. The luminance was C and the sharpness was A, both of which were good.
 (実施例31)
 実施例30において、蛍光体ペースト5に代わり蛍光体ペースト6を用いた以外は同様に評価を行った。蛍光体ペースト6を充填したセルのX線吸収率Qに対する蛍光体ペースト1を充填したセルのX線吸収率Pの比、P/Qは2であった。輝度はC、鮮鋭性はBであり、いずれも良好であった。
(Example 31)
In Example 30, evaluation was performed in the same manner except that the phosphor paste 6 was used instead of the phosphor paste 5. The ratio of the X-ray absorption rate P of the cell filled with the phosphor paste 1 to the X-ray absorption rate Q of the cell filled with the phosphor paste 6, P / Q was 2. The brightness was C and the sharpness was B, both of which were good.
 (実施例32)
 反射層ペースト12の印刷後の乾燥温度を160℃とした以外は、実施例5と同様にして放射線検出器32を得た。反射層の平均厚さは50μm、反射層形成後の基板の反射率は85%、放射線検出器32の輝度はB、鮮鋭性はBであり、放射線検出器5に比べ、鮮鋭性が向上した。
(Example 32)
A radiation detector 32 was obtained in the same manner as in Example 5 except that the drying temperature after printing of the reflective layer paste 12 was set to 160 ° C. The average thickness of the reflective layer is 50 μm, the reflectivity of the substrate after forming the reflective layer is 85%, the brightness of the radiation detector 32 is B, and the sharpness is B. The sharpness is improved compared to the radiation detector 5. .
 放射線検出器5及び放射線検出器32を構成するシンチレータパネルの反射層の厚さについて詳細に解析したところ、放射線検出器5では、セルの上半部における反射層の平均厚さは45μm、セルの下半部における反射層の平均厚さは55μmであり、セルの上半部における反射層の平均厚さが、セルの下半部における反射層の平均厚さよりも小さかったのに対し、放射線検出器32では、セルの上半部における反射層の平均厚さは60μm、セルの下半部における反射層の平均厚さは40μmであり、セルの上半部における反射層の平均厚さが、セルの下半部における反射層の平均厚さよりも大きかった。 When the thickness of the reflection layer of the scintillator panel constituting the radiation detector 5 and the radiation detector 32 was analyzed in detail, the average thickness of the reflection layer in the upper half of the cell in the radiation detector 5 was 45 μm. The average thickness of the reflective layer in the lower half was 55 μm, and the average thickness of the reflective layer in the upper half of the cell was smaller than the average thickness of the reflective layer in the lower half of the cell, whereas radiation detection In the vessel 32, the average thickness of the reflective layer in the upper half of the cell is 60 μm, the average thickness of the reflective layer in the lower half of the cell is 40 μm, and the average thickness of the reflective layer in the upper half of the cell is It was larger than the average thickness of the reflective layer in the lower half of the cell.
 (実施例33)
 反射層ペースト13の印刷後の乾燥温度を160℃とした以外は、実施例12と同様にして放射線検出器33を得た。反射層の平均厚さは80μm、反射層形成後の基板の反射率は75%、放射線検出器33の輝度はC、鮮鋭性はBであり、放射線検出器12に比べ、鮮鋭性が向上した。
(Example 33)
A radiation detector 33 was obtained in the same manner as in Example 12 except that the drying temperature after printing of the reflective layer paste 13 was set to 160 ° C. The average thickness of the reflective layer is 80 μm, the reflectance of the substrate after the reflective layer is formed is 75%, the brightness of the radiation detector 33 is C, and the sharpness is B. The sharpness is improved compared to the radiation detector 12. .
 放射線検出器12及び放射線検出器33を構成するシンチレータパネルの反射層の厚さについて詳細に解析したところ、放射線検出器12では、セルの上半部における反射層の平均厚さは75μm、セルの下半部における反射層の平均厚さは85μmであり、セルの上半部における反射層の平均厚さが、セルの下半部における反射層の平均厚さよりも小さかったのに対し、放射線検出器32では、セルの上半部における反射層の平均厚さは90μm、セルの下半部における反射層の平均厚さは75μmであり、セルの上半部における反射層の平均厚さが、セルの下半部における反射層の平均厚さよりも大きかった。 When the thickness of the reflection layer of the scintillator panel constituting the radiation detector 12 and the radiation detector 33 was analyzed in detail, in the radiation detector 12, the average thickness of the reflection layer in the upper half of the cell was 75 μm. The average thickness of the reflective layer in the lower half was 85 μm, and the average thickness of the reflective layer in the upper half of the cell was smaller than the average thickness of the reflective layer in the lower half of the cell, whereas radiation detection In the vessel 32, the average thickness of the reflective layer in the upper half of the cell is 90 μm, the average thickness of the reflective layer in the lower half of the cell is 75 μm, and the average thickness of the reflective layer in the upper half of the cell is It was larger than the average thickness of the reflective layer in the lower half of the cell.
 (比較例1)
 基材として、125mm×125mm×0.7mmのソーダガラス板を用いた。基材の表面に、蛍光体ペースト1を乾燥後の厚さが1.5mmになるようにダイコーターで塗布して乾燥し、シンチレータパネル2を得た。得られたシンチレータパネル2を、0.25mmピッチの解像度を有する出力基板に貼り合わせ、放射線検出器31を得た。放射線検出器31を用いて、厚さ30cmの鉄筋コンクリートに対し、加速電圧1MVのX線源からのX線を照射した場合のX線透過検査を行った。得られた画像の輝度はA、鮮鋭性はEであり、非常に鮮鋭性が低いものであった。
(Comparative Example 1)
As a substrate, a soda glass plate of 125 mm × 125 mm × 0.7 mm was used. The phosphor paste 1 was applied to the surface of the base material with a die coater so that the thickness after drying was 1.5 mm, and dried to obtain a scintillator panel 2. The obtained scintillator panel 2 was bonded to an output substrate having a resolution of 0.25 mm to obtain a radiation detector 31. Using the radiation detector 31, an X-ray transmission test was performed when X-rays from an X-ray source with an acceleration voltage of 1 MV were applied to 30 cm thick reinforced concrete. The brightness of the obtained image was A, the sharpness was E, and the sharpness was very low.
 (比較例2)
 比較例1において、蛍光体層の乾燥後の厚さが1mmとなるように塗布して乾燥した以外は、比較例1と同様に評価を行った。得られた画像の輝度はA、鮮鋭性はEであり、非常に鮮鋭性が低いものであった。
(Comparative Example 2)
In Comparative Example 1, evaluation was performed in the same manner as in Comparative Example 1 except that the phosphor layer was applied and dried so that the thickness after drying was 1 mm. The brightness of the obtained image was A, the sharpness was E, and the sharpness was very low.
 (比較例3)
 比較例1において、蛍光体層の乾燥後の厚さが0.2mmとなるように塗布して乾燥した以外は、比較例1と同様に評価を行った。得られた画像の輝度はD、鮮鋭性はEであり、非常に鮮鋭性が低いものであった。
(Comparative Example 3)
In Comparative Example 1, the evaluation was performed in the same manner as in Comparative Example 1 except that the phosphor layer was applied and dried so that the thickness after drying was 0.2 mm. The brightness of the obtained image was D, the sharpness was E, and the sharpness was very low.
 (比較例4)
 放射線検出器31について、輝度、鮮鋭性の評価において、加速電圧0.5MVのX線源を利用して評価した。得られた画像の輝度はC、鮮鋭性はEであり、非常に鮮鋭性が低いものであった。
(Comparative Example 4)
The radiation detector 31 was evaluated using an X-ray source having an acceleration voltage of 0.5 MV in the evaluation of luminance and sharpness. The luminance of the obtained image was C, the sharpness was E, and the sharpness was very low.
 (比較例5)
 放射線検出器4について、輝度、鮮鋭性の評価において、加速電圧0.2MVのX線源を利用して評価したが、画像が得られなかった。これはX線の透過性が低すぎて、コンクリートをX線が透過しなかったためと考えられる。
(Comparative Example 5)
The radiation detector 4 was evaluated using an X-ray source having an acceleration voltage of 0.2 MV in the evaluation of luminance and sharpness, but no image was obtained. This is considered to be because the X-ray permeability was too low and X-rays did not pass through the concrete.
 以上の結果より、本発明の大型構造物の検査装置が、非破壊検査における画像の鮮鋭性の顕著な向上に資することは明らかである。 From the above results, it is clear that the inspection apparatus for large structures of the present invention contributes to a marked improvement in image sharpness in nondestructive inspection.
1 放射線検出器
2 シンチレータパネル
3 出力基板
4 基板
5 隔壁
6 蛍光体層
7 隔膜層
8 光電変換層
9 出力層
10 基板
11 電源部
12 遮蔽層
13 反射層
DESCRIPTION OF SYMBOLS 1 Radiation detector 2 Scintillator panel 3 Output board | substrate 4 Board | substrate 5 Partition 6 Phosphor layer 7 Diaphragm layer 8 Photoelectric conversion layer 9 Output layer 10 Board | substrate 11 Power supply part 12 Shielding layer 13 Reflective layer
 本発明は、大型構造物の非破壊検査に有用に利用できる。 The present invention is useful for nondestructive inspection of large structures.

Claims (11)

  1.  加速電圧500kV~30MVのX線源から、大型構造物にX線を照射する、照射機能と、
     前記大型構造物を透過したX線を、放射線検出器で検出する、検出機能と、を備える、大型構造物の検査装置であって、前記放射線検出器が、基板、該基板上に載置された隔壁、及び、該隔壁により区画されたセル内に充填された蛍光体層からなるシンチレータパネルを具備する、大型構造物の検査装置。
    An irradiation function for irradiating a large structure with X-rays from an X-ray source with an acceleration voltage of 500 kV to 30 MV
    An inspection apparatus for a large structure comprising a detection function for detecting X-rays transmitted through the large structure with a radiation detector, wherein the radiation detector is placed on the substrate. And a scintillator panel comprising a phosphor layer filled in a cell partitioned by the partition, and a large structure inspection apparatus.
  2.  前記基板及び該基板上に載置された隔壁の反射率が、25~85%である、請求項1記載の大型構造物の検査装置。 2. The inspection apparatus for a large structure according to claim 1, wherein the reflectance of the substrate and the partition wall placed on the substrate is 25 to 85%.
  3.  前記シンチレータパネルが、前記隔壁と前記蛍光体層との間に、反射層を有し、該反射層は、金属酸化物を含有する、請求項1又は2記載の大型構造物の検査装置。 3. The inspection apparatus for a large structure according to claim 1, wherein the scintillator panel includes a reflective layer between the partition wall and the phosphor layer, and the reflective layer contains a metal oxide.
  4.  前記反射層の平均厚さが、5~50μmである、請求項3記載の大型構造物の検査装置。 The large-structure inspection device according to claim 3, wherein an average thickness of the reflective layer is 5 to 50 µm.
  5.  前記金属酸化物が、酸化チタン、酸化ジルコニウム、酸化アルミニウム、酸化バリウム、酸化ビスマス及び酸化ガドリニウムからなる群から選ばれる化合物である、請求項3又は4記載の大型構造物の検査装置。 5. The inspection apparatus for a large structure according to claim 3, wherein the metal oxide is a compound selected from the group consisting of titanium oxide, zirconium oxide, aluminum oxide, barium oxide, bismuth oxide and gadolinium oxide.
  6.  前記セルの上半部における前記反射層の平均厚さが、前記セルの下半部における前記反射層の平均厚さよりも大きい、請求項3~5のいずれか一項記載の大型構造物の検査装置。 The inspection of the large structure according to any one of claims 3 to 5, wherein an average thickness of the reflective layer in the upper half of the cell is larger than an average thickness of the reflective layer in the lower half of the cell. apparatus.
  7.  前記蛍光体層が、粒状の蛍光体を含有し、該蛍光体の平均一次粒子径が、1~50μmである、請求項1~6のいずれか一項記載の大型構造物の検査装置。 The inspection apparatus for a large structure according to any one of claims 1 to 6, wherein the phosphor layer contains a granular phosphor, and an average primary particle diameter of the phosphor is 1 to 50 µm.
  8.  前記シンチレータパネルが、前記隔壁と前記蛍光体層との間に、遮蔽層を有し、該遮蔽層は、金属を含有する、請求項1~7のいずれか一項記載の大型構造物の検査装置。 The large structure inspection according to any one of claims 1 to 7, wherein the scintillator panel includes a shielding layer between the partition wall and the phosphor layer, and the shielding layer contains a metal. apparatus.
  9.  前記隔壁の高さが、0.4~50mmである、請求項1~8のいずれか一項記載の大型構造物の検査装置。 The large structure inspection apparatus according to any one of claims 1 to 8, wherein a height of the partition wall is 0.4 to 50 mm.
  10.  前記蛍光体層が、組成及び/又は厚さが異なる複数の態様からなる、請求項1~9のいずれか一項記載の大型構造物の検査装置。 The inspection apparatus for a large structure according to any one of claims 1 to 9, wherein the phosphor layer has a plurality of modes having different compositions and / or thicknesses.
  11.  X線吸収率が最大の前記蛍光体層におけるX線吸収率をP、
     X線吸収率が最小の前記蛍光体層におけるX線吸収率をQ、としたときに、
     P/Q≧1.5の関係を満たす、請求項1~10のいずれか一項記載の大型構造物の検査装置。
    The X-ray absorption rate in the phosphor layer having the maximum X-ray absorption rate is P,
    When the X-ray absorption rate in the phosphor layer having the minimum X-ray absorption rate is Q,
    The inspection apparatus for a large structure according to any one of claims 1 to 10, which satisfies a relationship of P / Q≥1.5.
PCT/JP2015/068599 2014-07-08 2015-06-29 Large-building inspection device WO2016006484A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016532883A JP6662291B2 (en) 2014-07-08 2015-06-29 Inspection equipment for large structures

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014140173 2014-07-08
JP2014-140173 2014-07-08

Publications (1)

Publication Number Publication Date
WO2016006484A1 true WO2016006484A1 (en) 2016-01-14

Family

ID=55064121

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/068599 WO2016006484A1 (en) 2014-07-08 2015-06-29 Large-building inspection device

Country Status (2)

Country Link
JP (1) JP6662291B2 (en)
WO (1) WO2016006484A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018500549A (en) * 2014-11-13 2018-01-11 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Pixelated scintillator with optimized efficiency

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002181940A (en) * 2000-12-15 2002-06-26 Canon Inc Wavelength conversion-type light sensor
JP2006084309A (en) * 2004-09-15 2006-03-30 Shimadzu Corp Radiation detector
JP4134993B2 (en) * 2005-03-24 2008-08-20 日立金属株式会社 X-ray detector
JP2013200290A (en) * 2012-03-26 2013-10-03 Katsuhiro Dobashi Method of manufacturing scintillator array radiation detector
JP2014106021A (en) * 2012-11-26 2014-06-09 Toray Ind Inc Scintillator panel

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8466421B2 (en) * 2010-07-30 2013-06-18 Varian Medical Systems Inc. Radiation detector with multiple operating schemes

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002181940A (en) * 2000-12-15 2002-06-26 Canon Inc Wavelength conversion-type light sensor
JP2006084309A (en) * 2004-09-15 2006-03-30 Shimadzu Corp Radiation detector
JP4134993B2 (en) * 2005-03-24 2008-08-20 日立金属株式会社 X-ray detector
JP2013200290A (en) * 2012-03-26 2013-10-03 Katsuhiro Dobashi Method of manufacturing scintillator array radiation detector
JP2014106021A (en) * 2012-11-26 2014-06-09 Toray Ind Inc Scintillator panel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018500549A (en) * 2014-11-13 2018-01-11 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Pixelated scintillator with optimized efficiency

Also Published As

Publication number Publication date
JPWO2016006484A1 (en) 2017-04-27
JP6662291B2 (en) 2020-03-11

Similar Documents

Publication Publication Date Title
JP5110230B1 (en) Scintillator panel and method for manufacturing scintillator panel
WO2014080941A1 (en) Scintillator panel and method for producing same
KR102098124B1 (en) Scintillator panel
JP5488773B1 (en) Scintillator panel and method for manufacturing scintillator panel
WO2016021540A1 (en) Scintillator panel and radiation detector
KR102099091B1 (en) Method for manufacturing three-dimensional structure, method for manufacturing scintillator panel, three-dimensional structure, and scintillator panel
JP5704258B2 (en) Scintillator panel and method for manufacturing scintillator panel
WO2014069284A1 (en) Radiation detection device and manufacturing method therefor
WO2014021415A1 (en) Scintillator panel and method for producing scintillator panel
JP6593169B2 (en) Scintillator panel, radiation image detection apparatus and method for manufacturing the same
WO2016006484A1 (en) Large-building inspection device
JP7136188B2 (en) Scintillator panel, radiation detector, and method for manufacturing scintillator panel
JP6217076B2 (en) Scintillator panel and method for manufacturing scintillator panel
JP2016017818A (en) Scintillator panel, radiation detector and nondestructive inspection method
JP6003623B2 (en) Scintillator panel and method for manufacturing scintillator panel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15818598

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016532883

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15818598

Country of ref document: EP

Kind code of ref document: A1