JP4134974B2 - High toughness UOE steel pipe for low temperature - Google Patents

High toughness UOE steel pipe for low temperature Download PDF

Info

Publication number
JP4134974B2
JP4134974B2 JP2004305367A JP2004305367A JP4134974B2 JP 4134974 B2 JP4134974 B2 JP 4134974B2 JP 2004305367 A JP2004305367 A JP 2004305367A JP 2004305367 A JP2004305367 A JP 2004305367A JP 4134974 B2 JP4134974 B2 JP 4134974B2
Authority
JP
Japan
Prior art keywords
less
toughness
weld metal
surface side
low temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004305367A
Other languages
Japanese (ja)
Other versions
JP2005023429A (en
Inventor
伸夫 手塚
忠政 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2004305367A priority Critical patent/JP4134974B2/en
Publication of JP2005023429A publication Critical patent/JP2005023429A/en
Application granted granted Critical
Publication of JP4134974B2 publication Critical patent/JP4134974B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

本発明は、低温用高靱性UOE鋼管に関し、詳しくは両面1層サブマージドアーク溶接により製造される低温用高靱性UOE鋼管において、内面側、外面側ともに優れた低温靱性を有する低温用高靱性UOE鋼管に関するものである。   The present invention relates to a low temperature high toughness UOE steel pipe, and in particular, in a low temperature high toughness UOE steel pipe manufactured by double-sided single-layer submerged arc welding, the low temperature high toughness UOE having excellent low temperature toughness on both the inner surface side and the outer surface side. It relates to steel pipes.

近年エネルギー開発は極寒地にまで及んでおり、そこで使用されるラインパイプには極めて高い低温靱性が要求される。このラインパイプにおける溶接金属の低温靱性を確保するために最も効果的な方法としては、たとえば特許文献1に開示されているように、Mo,TiそしてBなどを含む溶接材料を用いて溶接を行い、微細な溶接金属組織を得ることが有効であることが知られており、Mo−Ti−B系の溶接金属は低温靱性を要する鋼管の溶接部に広く用いられている。   In recent years, energy development has extended to extremely cold regions, and line pipes used there require extremely high low temperature toughness. As the most effective method for ensuring the low temperature toughness of the weld metal in this line pipe, for example, as disclosed in Patent Document 1, welding is performed using a welding material containing Mo, Ti, and B. It is known that it is effective to obtain a fine weld metal structure, and Mo—Ti—B based weld metal is widely used for welded portions of steel pipes that require low temperature toughness.

また、溶接金属の成分組成だけでなく、その後のラインパイプに加える熱処理を適正化することにより低温靱性を確保する技術が特許文献2や特許文献3に開示されている。   Patent Documents 2 and 3 disclose techniques for ensuring low temperature toughness by optimizing not only the composition of weld metal components but also the subsequent heat treatment applied to the line pipe.

しかしながら、Mo−Ti−B系の溶接金属とする場合は、両面1層溶接の場合、内面側溶接金属は外面側溶接により再熱され、その結果著しく脆化することが問題となっている。このような再熱脆化対策として、溶接金属の低酸素化を計ったり(特許文献4)、Mn,Moの添加を抑制し、その代わりにNiを添加したり(特許文献5)、Ceqを限定したうえで圧延条件を適正化する(特許文献6)技術が開示されている。
特開昭53−63238号公報 特公平1−38851号公報 特公平2−11654号公報 特開昭59−156599号公報 特開昭62−34694号公報 特開昭61−266126号公報
However, when the Mo-Ti-B weld metal is used, in the case of double-sided single-layer welding, the inner surface side weld metal is reheated by the outer surface side welding, and as a result, there is a problem that it becomes brittle. As a countermeasure against such reheat embrittlement, the oxygen content of the weld metal is measured (Patent Document 4), the addition of Mn and Mo is suppressed, and Ni is added instead (Patent Document 5). A technique for optimizing rolling conditions after limiting (Patent Document 6) is disclosed.
JP-A-53-63238 Japanese Patent Publication No. 1-38851 Japanese Patent Publication No.2-11654 JP 59-156599 JP-A-62-34694 JP-A-61-266126

しかしながら上記従来の技術はいずれも溶接金属を内外面同一とみなして成分調整しているため、本質的な解決にはなっていなかった。   However, none of the above conventional techniques has been an essential solution because the components are adjusted by regarding the weld metal as the same on the inner and outer surfaces.

本発明者らはこのMo−Ti−B系の溶接金属の再熱による脆化の原因を鋭意追求した。その結果の一部を図1に示す。同図は片面1層Mo−Ti−B系溶接金属に外面の溶接に相当する再現熱サイクルを付与した際の溶接金属再熱部の靱性と最高加熱温度の関係を示すものである。これより本発明者らは、Mo−Ti−B系の溶接金属は溶接のまま(以下AWと記す)では良好な靱性が得られるものの、800〜1200℃付近の温度に再熱された領域で靱性が著しく劣化することが明らかにした。   The inventors diligently pursued the cause of embrittlement due to reheating of the Mo-Ti-B weld metal. A part of the result is shown in FIG. The figure shows the relationship between the toughness of the weld metal reheat zone and the maximum heating temperature when a reproducible thermal cycle corresponding to welding of the outer surface is applied to a single-sided, single-layer Mo-Ti-B weld metal. From this, the present inventors can obtain good toughness when the Mo-Ti-B weld metal is welded (hereinafter referred to as AW), but in a region reheated to a temperature around 800 to 1200 ° C. It was clarified that the toughness deteriorates significantly.

すなわち、この点の詳細な検討の結果、前述の従来のMo−Ti−B系の組成を有する溶接金属は、溶接ままの部分において微細なアシキュラーフェライト(以下AFと記す)組織であり、高靱性を示すが、800〜1200℃付近の温度に再熱された部分においては靱性の劣る上部ベイナイト(以下UBと記す)に変化し、靱性が大きく劣化することを明らかにしたのである。すなわち、再熱による靱性の劣化はUB組織の形成によるもので、溶接金属の焼入性が高いことに原因があると考えられる。   That is, as a result of detailed examination of this point, the above-mentioned conventional weld metal having the Mo-Ti-B composition has a fine acicular ferrite (hereinafter referred to as AF) structure in the as-welded portion. It showed toughness, but it changed to upper bainite (hereinafter referred to as UB) having poor toughness in the portion reheated to a temperature in the vicinity of 800 to 1200 ° C., revealing that the toughness was greatly deteriorated. That is, the deterioration of toughness due to reheating is due to the formation of the UB structure, which is considered to be caused by the high hardenability of the weld metal.

そこで本発明は、低温用高靱性UOE鋼管の両面1層サブマージドアーク溶接法における上記従来技術の欠陥を克服し、外面溶接による加熱によっても脆化を防止し得る効果的なサブマージドアーク溶接技術を確立して、内面側、外面側ともに優れた低温靱性を有する低温用高靱性UOE鋼管を提供することを目的とする。   Therefore, the present invention overcomes the above-mentioned deficiencies in the double-sided single-layer submerged arc welding method of a high-toughness UOE steel pipe for low temperature, and is an effective submerged arc welding technique that can prevent embrittlement even by heating by external surface welding And to provide a low temperature high toughness UOE steel pipe having excellent low temperature toughness on both the inner surface side and the outer surface side.

本発明は、母材組成が、C:0.10wt%以下,Si:0.5wt%以下,Mn:2.0wt%以下,Cu:0.5wt%以下,Cr:0.5wt%以下,Ni:0.5wt%以下,Nb:0.07wt%以下,V:0.07wt%以下を含み、さらにMo:0.3wt%以下,Ti:0.1wt%以下,B:0.003 wt%以下のうちから選ばれる1種または2種以上を含み、残部Feおよび不可避的不純物からなる鋼材を、Ti−B系溶接用鋼ワイヤと、SiO2−CaO−CaF2系のフラックスとを用いて両面1層サブマージドアーク溶接により、
先に形成された
内面側溶接金属の組成が、C:0.08wt%以下,Si:0.5wt%以下,Mn:0.8〜1.8wt%,Cu:0.20wt%以下,Cr:0.20wt%以下,Ni:0.20wt%以下,V:0.05wt%以下,Nb:0.025wt%以下,Mo:0.2wt%以下,Ti:0.005〜0.03wt%,B:0.0005〜0.0030wt%,N:0.0080wt%以下,O:0.035wt%以下,残部Feおよび不可避的不純物からなりかつ下記の式で示されるPcmが0.110〜0.170wt%であり、
後に形成された
外面溶接金属の組成が、C:0.10wt%以下,Si:0.5wt%以下,Mn:0.8 〜1.8wt%,Cu:0.20wt%以下,Cr:0.20wt%以下,Ni:0.20wt%以下,V:0.05wt%以下,Nb:0.020wt%以下,Mo:0.1〜0.4wt%,Ti:0.005〜0.05wt%,B:0.0005〜0.0060wt%,N:0.0080wt%以下,O:0.035wt%以下,残部Feおよび不可避的不純物からなりかつ下記の式に示すPcmが0.140〜0.200wt%であることを特徴とする低温用高靱性UOE鋼管である。

In the present invention, the base material composition is C: 0.10 wt% or less, Si: 0.5 wt% or less, Mn: 2.0 wt% or less, Cu: 0.5 wt% or less, Cr: 0.5 wt% or less, Ni: 0.5 wt% or less , Nb: 0.07 wt% or less, V: 0.07 wt% or less, Mo: 0.3 wt% or less, Ti: 0.1 wt% or less, B: 0.003 wt% or less The steel material comprising the remaining Fe and unavoidable impurities is subjected to double-sided single-layer submerged arc welding using a Ti-B welding steel wire and a SiO 2 —CaO—CaF 2 flux.
The composition of the weld metal formed on the inner surface is C: 0.08 wt% or less, Si: 0.5 wt% or less, Mn: 0.8 to 1.8 wt%, Cu: 0.20 wt% or less, Cr: 0.20 wt% or less, Ni : 0.20 wt% or less, V: 0.05 wt% or less, Nb: 0.025 wt% or less, Mo: 0.2 wt% or less, Ti: 0.005 to 0.03 wt%, B: 0.0005 to 0.0030 wt%, N: 0.0080 wt% or less, O: 0.035 wt% or less, balance Fe and inevitable impurities, and Pcm represented by the following formula is 0.110 to 0.170 wt%,
The composition of the outer surface side weld metal formed later is C: 0.10 wt% or less, Si: 0.5 wt% or less, Mn: 0.8 to 1.8 wt%, Cu: 0.20 wt% or less, Cr: 0.20 wt% or less, Ni: 0.20 wt% or less, V: 0.05 wt% or less, Nb: 0.020 wt% or less, Mo: 0.1 to 0.4 wt%, Ti: 0.005 to 0.05 wt%, B: 0.0005 to 0.0060 wt%, N: 0.0080 wt% or less, O: A tough UOE steel pipe for low temperature, characterized by being 0.035 wt% or less, the balance Fe and unavoidable impurities, and Pcm represented by the following formula being 0.140 to 0.200 wt%.
Record

本発明によれば、低温用高靱性UOE鋼管の母材の化学成分ならびに両面1層サブマージドアーク溶接により形成される内面側および外面側溶接金属の化学成分をそれぞれ区別して限定したので、内外面ともに優れた低温靱性を有する低温用高靱性UOE鋼管を得ることができる。   According to the present invention, the chemical composition of the base material of the low temperature high toughness UOE steel pipe and the chemical composition of the inner surface side and outer surface side weld metal formed by double-sided single layer submerged arc welding are distinguished and limited, respectively. A high-temperature toughness UOE steel pipe having excellent low-temperature toughness can be obtained.

上記したような母材の化学成分の限定理由はつぎの通りである。   The reasons for limiting the chemical components of the base material as described above are as follows.

C: 母材の強度と靱性に非常に大きな影響を及ぼす元素であり、0.10wt%を超えると靱性や延性に悪影響を及ぼすため、0.10wt%以下とした。   C: An element that has a great influence on the strength and toughness of the base metal. If it exceeds 0.10 wt%, the toughness and ductility are adversely affected.

Si: Siは、鋼の脱酸過程で必然的に含まれる元素であるが、HAZ部の靱性向上のためには0.5wt%以下にすべきである。   Si: Si is an element that is inevitably contained in the deoxidation process of steel, but should be 0.5 wt% or less in order to improve the toughness of the HAZ part.

Mn: 母材の強度と靱性を同時に向上する極めて重要な元素であるが、2.0wt%を超えると偏析等により鋼材に悪影響を及ぼすために上限を2.0wt%とした。   Mn: An extremely important element that improves the strength and toughness of the base material at the same time. However, if it exceeds 2.0 wt%, the upper limit is set to 2.0 wt% because it adversely affects the steel material due to segregation and the like.

Cu: 母材の強度を確保するために必要な元素であるが、0.5wt%を超えて含有すると母材およびHAZ部が硬化するため0.5wt%を上限とした。   Cu: An element necessary for ensuring the strength of the base material. If the content exceeds 0.5 wt%, the base material and the HAZ portion are hardened, so 0.5 wt% was set as the upper limit.

Cr: 母材の強度を確保するために必要な元素であるが、0.5wt%を超えて含有するとHAZ部の靱性を劣化させるため0.5wt%を上限とした。   Cr: An element necessary for ensuring the strength of the base metal, but if contained in excess of 0.5 wt%, the upper limit is set to 0.5 wt% because the toughness of the HAZ part is deteriorated.

Ni: 母材の強度と靱性を向上させる元素であるが、0.5wt%を超えて含有するとHAZ部が硬化するため0.5wt%を上限とした。   Ni: An element that improves the strength and toughness of the base metal. However, if the content exceeds 0.5 wt%, the HAZ portion is cured, so 0.5 wt% was made the upper limit.

Nb,V: 母材およびHAZ部の強度と靱性を確保するために添加されているが、Nb,V共に0.07wt%を超えると靱性に悪影響を及ぼすため、Nbを0.07wt%以下、Vを0.07wt%以下とした。   Nb, V: It is added to ensure the strength and toughness of the base metal and the HAZ part, but if both Nb and V exceed 0.07wt%, the toughness will be adversely affected. It was set to 0.07 wt% or less.

Mo: Moは、母材の強度を確保するために必要な元素であるが、0.3 wt%を超えて含有するとHAZ部が硬化するために0.3wt%を上限とした。   Mo: Mo is an element necessary for ensuring the strength of the base material. However, if the content exceeds 0.3 wt%, the HAZ portion is hardened, so 0.3 wt% was set as the upper limit.

Ti: Tiは、母材の靱性確保に必要な元素であるが、0.1wt%を超えて含有すると、逆に母材の靱性を劣化させるために、0.1wt%を上限とした。   Ti: Ti is an element necessary for securing the toughness of the base material. However, if the Ti content exceeds 0.1 wt%, the upper limit is set to 0.1 wt% in order to deteriorate the toughness of the base material.

B: Bは、圧延中にオーステナイト粒界に偏析して焼入性を上げる作用があるが、0.003wt%を超えるとHAZ部の靱性を劣化させるために、上限を0.003wt%とした。   B: B segregates at the austenite grain boundaries during rolling to increase the hardenability, but if it exceeds 0.003 wt%, the upper limit is set to 0.003 wt% in order to deteriorate the toughness of the HAZ part.

そして溶接金属の成分組成を限定した理由はつぎの通りである。   The reason for limiting the component composition of the weld metal is as follows.

C: Cは高焼入性成分であり、その増加により炭化物やマルテンサイトが生成し、靱性は低下するので、内面側では0.08wt%以下、外面側では0.10wt%以下にする必要がある。   C: C is a highly hardenable component, and its increase generates carbides and martensite and decreases toughness. Therefore, it is necessary to make 0.08 wt% or less on the inner surface side and 0.10 wt% or less on the outer surface side.

Si: Siは脱酸剤として添加され、溶接金属中にも含有される成分であるが、内面側、外面側ともに0.5wt%を超えると靱性は低下する。   Si: Si is added as a deoxidizer and is also contained in the weld metal, but if it exceeds 0.5 wt% on both the inner surface side and the outer surface side, the toughness decreases.

Mn: Mnは脱酸剤および焼入性成分として必要であるが、内面側、外面側ともに0.8wt%未満ではその効果に乏しく、一方 1.8wt%を超えるとUBが生成し、靱性が低下する。   Mn: Mn is necessary as a deoxidizer and hardenability component, but if it is less than 0.8 wt% on both the inner and outer surfaces, the effect is poor, while if it exceeds 1.8 wt%, UB is generated and toughness decreases. .

Cu: Cuは焼入性成分であり、母材希釈およびワイヤのメッキから混入する成分であるが、内面側、外面側ともに0.20wt%を超えて含有すると焼入性が過剰となり靱性を害するので、0.20wt%を上限とした。   Cu: Cu is a hardenability component, and it is a component mixed from base metal dilution and wire plating. However, if it exceeds 0.20 wt% on both the inner and outer surfaces, the hardenability becomes excessive and the toughness is impaired. The upper limit was 0.20 wt%.

Cr: Crは焼入性成分であり、母材希釈により含有されるが、内面側、外面側ともに0.20wt%を超えて含有すると焼入性が過剰となり靱性を害するので、0.20wt%を上限とした。   Cr: Cr is a hardenability component and is contained by dilution of the base material. However, if it exceeds 0.20 wt% on both the inner and outer surfaces, the hardenability becomes excessive and the toughness is impaired, so the upper limit is 0.20 wt%. It was.

Ni: Niは焼入性成分であり、母材希釈により含有されるが、内面側、外面側ともに0.20wt%を超えて含有すると焼入性が過剰となり靱性を害するので、0.20wt%を上限とした。   Ni: Ni is a hardenability component and is contained by dilution of the base material. However, if it exceeds 0.20wt% on both the inner and outer surfaces, the hardenability becomes excessive and the toughness is impaired, so the upper limit is 0.20wt%. It was.

V: Vは焼入性成分であり、母材希釈により含有されるが、内面側、外面側ともに0.05wt%を超えて含有すると焼入性が過剰となり靱性を害するので、0.05wt%を上限とした。   V: V is a hardenability component and is contained by dilution of the base material. However, if it exceeds 0.05 wt% on both the inner and outer surfaces, the hardenability becomes excessive and the toughness is impaired, so 0.05 wt% is the upper limit. It was.

Nb: Nbは、母材希釈により含有されるが、内面側で0.025wt%、外面側で0.020wt%、を超えて含有すると靱性を害するので、靭性確保の観点から、内面側では0.025wt%、外面側では0.020wt%を上限とした。   Nb: Nb is contained by dilution of the base material, but if it exceeds 0.025wt% on the inner surface side and 0.020wt% on the outer surface side, it will damage toughness, so from the viewpoint of securing toughness, 0.025wt% on the inner surface side. On the outer surface side, the upper limit was 0.020 wt%.

Mo: Moは焼入性成分であり、組織を微細化して靱性を向上させるが、再熱によるUBの生成を助長することにより内面側溶接金属の靱性を低下させるので、内面側では0.2wt%以下に抑える必要がある。一方外面側では組織微細化による靱性改善のため最低0.1wt%は必要であるが、0.4wt%を超えて添加する焼入性が過剰となってマルテンサイト組織となり、靱性を害するので上限を0.4wt%とする。   Mo: Mo is a hardenability component and refines the structure to improve toughness. However, it promotes the formation of UB by reheating, which reduces the toughness of the weld metal on the inner surface, so 0.2 wt% on the inner surface side. It is necessary to keep it below. On the other hand, at least 0.1 wt% is necessary on the outer surface side to improve toughness by refining the structure, but the hardenability added exceeding 0.4 wt% becomes a martensite structure and harms the toughness, so the upper limit is 0.4. wt%.

Ti: Tiは微細なフェライトを形成させて靱性を向上させるが、内面側、外面側ともに 0.005wt%未満ではこの効果は乏しいので最低限 0.005wt%以上は必要である。一方、内面側では0.03wt%、外面側では0.05wt%を超えると固溶Tiが増加して炭化物、窒化物の析出により靱性は低下する。   Ti: Ti improves the toughness by forming fine ferrite. However, this effect is insufficient if the inner surface and the outer surface are less than 0.005 wt%, so at least 0.005 wt% is required. On the other hand, if it exceeds 0.03 wt% on the inner surface side and 0.05 wt% on the outer surface side, the solid solution Ti increases and the toughness decreases due to precipitation of carbides and nitrides.

B: Bは高焼入性成分であり、またTiとの相乗効果で微細なAFを形成させ、靱性を向上させるが、内面側、外面側ともに0.0005wt%未満ではこの効果に乏しく、内面側では0.0030wt%、外面側では0.0060wt%を超えるとマルテンサイトが生成し、靱性は低下する。   B: B is a high hardenability component, and by synergistic effects with Ti, fine AF is formed and toughness is improved. However, if both the inner surface and outer surface are less than 0.0005 wt%, this effect is poor and the inner surface If it exceeds 0.0030wt% and the outer surface exceeds 0.0060wt%, martensite is generated and the toughness decreases.

N: Nは溶接金属中に不可避的に含まれる成分であるが、Bを窒化して粒界フェライトの生成を促進し、靱性を低下させるので、内面側、外面側ともに0.0080wt%以下とする必要がある。   N: N is a component inevitably contained in the weld metal, but nitriding B promotes the formation of intergranular ferrite and reduces toughness, so the inner side and the outer side are both 0.0080 wt% or less. There is a need.

O: Oは溶接金属中に不可避的に含まれる成分であるが、内面側、外面側ともに0.035wt%を超えると溶接金属中の介在物の増加により靱性は低下する。   O: O is a component inevitably contained in the weld metal, but if it exceeds 0.035 wt% on both the inner surface side and the outer surface side, the toughness decreases due to an increase in inclusions in the weld metal.

Pcm: Pcmは溶接金属の組成全体としての焼入性を示すものであり、焼入性が不足すると初析フェライトが析出して靱性が劣化する。このため、外面側では0.140wt%以上を必要とする。それに対し内面側は、外面側溶接により再熱されるので0.110wt%以上にする必要がある。また0.200wt%を超えて過大となると焼入性が過剰となるので溶接のままでも靱性が劣化する。さらに0.170〜0.200wt%の範囲では再熱時にUBが析出して靱性が劣化する。そこで再熱を受ける内面側では0.110〜0.170wt%に限定し、また再熱を受けない外面側では0.140〜0.200wt%に限定した。   Pcm: Pcm indicates the hardenability of the entire weld metal composition. When the hardenability is insufficient, proeutectoid ferrite is precipitated and the toughness is deteriorated. For this reason, 0.140 wt% or more is required on the outer surface side. On the other hand, the inner surface side is reheated by the outer surface side welding, so it must be 0.110 wt% or more. On the other hand, if it exceeds 0.200 wt%, the hardenability becomes excessive and the toughness deteriorates even with welding. Furthermore, in the range of 0.170 to 0.200 wt%, UB precipitates during reheating and the toughness deteriorates. Therefore, it was limited to 0.110 to 0.170 wt% on the inner surface side subjected to reheating, and limited to 0.140 to 0.200 wt% on the outer surface side not subjected to reheating.

なお、使用する溶接ワイヤとしては、C:0.08wt%以下,Si:0.5wt%以下,Mn:1.00〜2.00wt%,Mo:0.8wt%以下,Ti:0.10〜0.30wt%,B:0.01〜0.03wt%,残部Feおよび不可避的不純物からなるTi−B系溶接ワイヤ(溶接用鋼ワイヤ)が好ましい。   In addition, as a welding wire to be used, C: 0.08 wt% or less, Si: 0.5 wt% or less, Mn: 1.00 to 2.00 wt%, Mo: 0.8 wt% or less, Ti: 0.10 to 0.30 wt%, B: 0.01 to A Ti-B welding wire (welding steel wire) composed of 0.03 wt%, the balance Fe and inevitable impurities is preferable.

理由は以下のとおりである。   The reason is as follows.

C:0.08wt%を超えると溶接金属の焼入性過剰となり靱性が劣化する。   C: When it exceeds 0.08 wt%, the hardenability of the weld metal becomes excessive and the toughness deteriorates.

Si:0.5wt%を超えると溶接金属の焼入性過剰となり靱性が劣化する。   Si: If it exceeds 0.5 wt%, the hardenability of the weld metal becomes excessive and the toughness deteriorates.

Mn:1.00wt%未満では溶接金属の強度・靱性が十分でなく、2.00wt%を超えると溶接金属の焼入性過剰となり靱性が劣化する。   If Mn is less than 1.00 wt%, the strength and toughness of the weld metal are not sufficient, and if it exceeds 2.00 wt%, the hardenability of the weld metal becomes excessive and the toughness deteriorates.

Mo:0.8wt%を超えると溶接金属の焼入性過剰となり靱性が劣化する。   Mo: If it exceeds 0.8 wt%, the hardenability of the weld metal becomes excessive and the toughness deteriorates.

Ti:0.10wt%未満では前述した溶接金属の最低Ti量が確保できず、0.30wt%を超えると固溶硬化、析出硬化により靱性が劣化する。   If Ti is less than 0.10 wt%, the minimum Ti content of the weld metal cannot be ensured, and if it exceeds 0.30 wt%, toughness deteriorates due to solid solution hardening and precipitation hardening.

B:0.01wt%未満では前述した溶接金属の最低B量が確保できず、0.03wt%を超えると焼入性過剰となり靱性が劣化する。   B: If the content is less than 0.01 wt%, the minimum B content of the weld metal cannot be ensured. If the content exceeds 0.03 wt%, the hardenability becomes excessive and the toughness deteriorates.

使用するSiO2−CaO−CaF2系溶接フラックスとしては、SiO2:20〜35wt%、CaO :15〜40wt%、CaF2:10〜30wt%を含むものが好ましい。これは塩基度を高めて溶接金属中の酸素量を低減するためである。 The SiO 2 -CaO-CaF 2 based welding flux used, SiO 2: 20~35wt%, CaO : 15~40wt%, CaF 2: preferably those containing 10 to 30 wt%. This is for increasing the basicity and reducing the amount of oxygen in the weld metal.

表1に示すような化学組成を有する板厚23.8mmのAPI規格X60クラスUOパイプ鋼板PA,PBを溶接するに際し、本発明法による実施例と、本発明法の限定要件を満たさない比較例とについて同一溶接条件で溶接を実施し、その靱性を比較した。この比較試験には表2に示すような化学組成の異なる溶融型フラックスと表3に示すような化学組成の異なるワイヤを組み合わせて4電極両面1層盛りサブマージドアーク溶接を行った。この場合の溶接条件は表4に示すとおりであり、その開先形状は図2に示すとおりである。   When welding API standard X60 class UO pipe steel plates PA and PB with a thickness of 23.8mm having the chemical composition shown in Table 1, an example according to the present invention method and a comparative example that does not satisfy the limiting requirements of the present method method and We conducted welding under the same welding conditions and compared their toughness. In this comparative test, four-electrode double-sided one-layer submerged arc welding was performed by combining molten fluxes having different chemical compositions as shown in Table 2 and wires having different chemical compositions as shown in Table 3. The welding conditions in this case are as shown in Table 4, and the groove shape is as shown in FIG.

溶接終了後図3に示すように5mmサイズのシャルピー衝撃試験片を内面側、外面側溶接金属よりそれぞれ採取し、シャルピー衝撃試験を行った。表5に溶接金属の化学組成を示す。内面側、外面側溶接金属から採取した試料に基づく衝撃試験結果は表6に示した通りである。   After the completion of welding, as shown in FIG. 3, 5 mm-sized Charpy impact test pieces were sampled from the inner and outer surface weld metals, respectively, and subjected to Charpy impact tests. Table 5 shows the chemical composition of the weld metal. The impact test results based on the samples taken from the inner surface and outer surface side weld metals are as shown in Table 6.

表6より明らかなように、本発明による溶接金属では外面により再熱を受ける内面側と外面側ともに高い靱性を示す。   As is apparent from Table 6, the weld metal according to the present invention exhibits high toughness on both the inner surface side and the outer surface side that are reheated by the outer surface.

なお、内面側と外面側の溶接金属の組成およびPcmを変えるにあたり、本実施例においては、内外面での溶接条件を同一としそれぞれ組成の異なる溶接ワイヤを使用することで対処したが、サブマージドアーク溶接では母材の溶け込みが大きいので、内外面で使用する溶接ワイヤの組成は同じとし溶接条件のほうをそれぞれ変えるというやり方で対処してもよい。   Incidentally, in changing the composition and Pcm of the weld metal on the inner surface side and the outer surface side, in this example, the welding conditions on the inner and outer surfaces were made the same and different welding compositions were used. In arc welding, since the penetration of the base metal is large, the welding wire composition used on the inner and outer surfaces may be the same and the welding conditions may be changed.

本発明は、パイプライン用鋼管特に極寒地で用いるパイプライン用鋼管に利用することができる。   INDUSTRIAL APPLICABILITY The present invention can be used for pipeline steel pipes, particularly pipeline steel pipes used in extremely cold regions.

溶接金属の靱性と最高加熱温度との関係を示す特性図である。It is a characteristic view which shows the relationship between the toughness of a weld metal, and the maximum heating temperature. 本発明の実施例における開先形状を示す断面図である。It is sectional drawing which shows the groove shape in the Example of this invention. 本発明の実施例におけるシャルピー衝撃試験片採取位置を示す断面図である。It is sectional drawing which shows the Charpy impact test piece collection position in the Example of this invention.

符号の説明Explanation of symbols

1 外面側溶接金属衝撃試験片
2 内面側溶接金属衝撃試験片
1 Outer side weld metal impact test piece 2 Inner side weld metal impact test piece

Claims (1)

母材組成が、C:0.10wt%以下,Si:0.5wt%以下,Mn:2.0wt%以下,Cu:0.5wt%以下,Cr:0.5wt%以下,Ni:0.5wt%以下,Nb:0.07wt%以下,V:0.07wt%以下を含み、さらに
Mo:0.3wt%以下,Ti:0.1wt%以下,B:0.003wt%以下のうちから選ばれる1種または2種以上を含み、残部Feおよび不可避的不純物からなる鋼材を、Ti−B系溶接用鋼ワイヤと、SiO2−CaO−CaF2系のフラックスとを用いて両面1層サブマージドアーク溶接により、
先に形成された
内面側溶接金属の組成が、C:0.08wt%以下,Si:0.5wt%以下,Mn:0.8〜1.8wt%,Cu:0.20wt%以下,Cr:0.20wt%以下,Ni:0.20wt%以下,V:0.05wt%以下,Nb:0.025wt%以下,Mo:0.2wt%以下,Ti:0.005〜0.03wt%,B:0.0005〜0.0030wt%,N:0.0080wt%以下,O:0.035wt%以下,残部Feおよび不可避的不純物からなりかつ下記の式で示されるPcmが0.110〜0.170wt%であり、
後に形成された
外面溶接金属の組成が、C:0.10wt%以下,Si:0.5wt%以下,Mn:0.8〜1.8wt%,Cu:0.20wt%以下,Cr:0.20wt%以下,Ni:0.20wt%以下,V:0.05wt%以下,Nb:0.020wt%以下,Mo:0.1〜0.4wt%,Ti:0.005〜0.05wt%,B:0.0005〜0.0060wt%,N:0.0080wt%以下,O:0.035wt%以下,残部Feおよび不可避的不純物からなりかつ下記の式に示すPcmが0.140〜0.200wt%であることを特徴とする低温用高靱性UOE鋼管。

Base material composition is C: 0.10 wt% or less, Si: 0.5 wt% or less, Mn: 2.0 wt% or less, Cu: 0.5 wt% or less, Cr: 0.5 wt% or less, Ni: 0.5 wt% or less, Nb: 0.07 wt% or less, V: 0.07wt% or less, and
Ti: B-based welding of steel material containing one or more selected from Mo: 0.3 wt% or less, Ti: 0.1 wt% or less, B: 0.003 wt% or less, and the balance Fe and inevitable impurities and use steel wire, the submerged arc welding duplex one layer with a flux of SiO 2 -CaO-CaF 2 based,
The composition of the weld metal formed on the inner surface is C: 0.08 wt% or less, Si: 0.5 wt% or less, Mn: 0.8 to 1.8 wt%, Cu: 0.20 wt% or less, Cr: 0.20 wt% or less, Ni : 0.20 wt% or less, V: 0.05 wt% or less, Nb: 0.025 wt% or less, Mo: 0.2 wt% or less, Ti: 0.005 to 0.03 wt%, B: 0.0005 to 0.0030 wt%, N: 0.0080 wt% or less, O: 0.035 wt% or less, balance Fe and inevitable impurities, and Pcm represented by the following formula is 0.110 to 0.170 wt%,
The composition of the outer surface side weld metal formed later is C: 0.10 wt% or less, Si: 0.5 wt% or less, Mn: 0.8 to 1.8 wt%, Cu: 0.20 wt% or less, Cr: 0.20 wt% or less, Ni: 0.20 wt% or less, V: 0.05 wt% or less, Nb: 0.020 wt% or less, Mo: 0.1 to 0.4 wt%, Ti: 0.005 to 0.05 wt%, B: 0.0005 to 0.0060 wt%, N: 0.0080 wt% or less, O: A high toughness UOE steel pipe for low temperature, comprising 0.035 wt% or less, balance Fe and unavoidable impurities, and Pcm represented by the following formula being 0.140 to 0.200 wt%.
Record
JP2004305367A 2004-10-20 2004-10-20 High toughness UOE steel pipe for low temperature Expired - Fee Related JP4134974B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004305367A JP4134974B2 (en) 2004-10-20 2004-10-20 High toughness UOE steel pipe for low temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004305367A JP4134974B2 (en) 2004-10-20 2004-10-20 High toughness UOE steel pipe for low temperature

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP14749895A Division JPH091344A (en) 1995-06-14 1995-06-14 Low temp. high toughness uoe steel tube

Publications (2)

Publication Number Publication Date
JP2005023429A JP2005023429A (en) 2005-01-27
JP4134974B2 true JP4134974B2 (en) 2008-08-20

Family

ID=34191926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004305367A Expired - Fee Related JP4134974B2 (en) 2004-10-20 2004-10-20 High toughness UOE steel pipe for low temperature

Country Status (1)

Country Link
JP (1) JP4134974B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103170762A (en) * 2013-01-23 2013-06-26 中广核工程有限公司 Solder wire special for nuclear power 20-control chrome steel

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5870664B2 (en) * 2011-12-08 2016-03-01 Jfeスチール株式会社 High strength welded steel pipe and manufacturing method thereof
JP5870665B2 (en) * 2011-12-08 2016-03-01 Jfeスチール株式会社 High-strength welded steel pipe with excellent tensile stress strength of 600 MPa or more with excellent resistance to sulfide stress corrosion cracking
CN103361575A (en) * 2013-07-04 2013-10-23 南通宝钢钢铁有限公司 Continuously cast bloom for low-carbon steel wire and preparation method thereof
JP6191393B2 (en) * 2013-10-28 2017-09-06 新日鐵住金株式会社 Submerged arc welding metal with excellent cryogenic toughness, and wire and flux for forming submerged arc welding

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103170762A (en) * 2013-01-23 2013-06-26 中广核工程有限公司 Solder wire special for nuclear power 20-control chrome steel
CN103170762B (en) * 2013-01-23 2015-06-17 中广核工程有限公司 Solder wire special for nuclear power 20-control chrome steel

Also Published As

Publication number Publication date
JP2005023429A (en) 2005-01-27

Similar Documents

Publication Publication Date Title
JP5202862B2 (en) High-strength welded steel pipe with weld metal having excellent cold cracking resistance and method for producing the same
JP6191393B2 (en) Submerged arc welding metal with excellent cryogenic toughness, and wire and flux for forming submerged arc welding
WO2013058274A1 (en) Duplex stainless steel, duplex stainless steel slab, and duplex stainless steel material
JP3045856B2 (en) Method for producing high toughness Cu-containing high tensile steel
JP2009045671A (en) Wire for high-heat input electroslag welding
JP2005089828A (en) Ferritic stainless steel sheet improved in crevice corrosion resistance
JP4016800B2 (en) Thick large-diameter straight UOE steel pipe that satisfies the strict toughness requirements of both the inner weld metal and the reheated part, and its manufacturing method
JP3290247B2 (en) Method for manufacturing high tensile strength and high toughness bent pipe with excellent corrosion resistance
JP4134974B2 (en) High toughness UOE steel pipe for low temperature
JP4441372B2 (en) High strength and high toughness gas shielded arc welding wire
KR101937005B1 (en) Weld joint
JPH091344A (en) Low temp. high toughness uoe steel tube
JP3526722B2 (en) Ultra high strength steel pipe with excellent low temperature toughness
JP3582463B2 (en) Welding material and metal for low alloy heat resistant steel
JP4396303B2 (en) High strength welded steel pipe with excellent low temperature toughness
JP5552967B2 (en) Thick high-strength steel sheet with excellent low-temperature toughness of welds and method for producing the same
JP3508189B2 (en) Submerged arc welding of high toughness UOE steel pipe for low temperature
JP2007246933A (en) High strength steel pipe with excellent weld zone toughness, and its manufacturing method
JP5194807B2 (en) Manufacturing method of high yield strength and high toughness thick steel plate
JP3184657B2 (en) Covered arc welding rod for high Cr ferritic heat resistant steel
JPH09122972A (en) Coated electrode for high-cr ferrite heat resisting steel
JP2000096187A (en) High-strength welded steel tube
JP2543801B2 (en) Coated arc welding rod for high Cr ferritic heat resistant steel
JP3194207B2 (en) Covered arc welding rod for high Cr ferritic heat resistant steel
JP3705161B2 (en) High tensile steel plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080520

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140613

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees