JP4132993B2 - Water absorbent resin and method for producing the same - Google Patents

Water absorbent resin and method for producing the same Download PDF

Info

Publication number
JP4132993B2
JP4132993B2 JP2002161917A JP2002161917A JP4132993B2 JP 4132993 B2 JP4132993 B2 JP 4132993B2 JP 2002161917 A JP2002161917 A JP 2002161917A JP 2002161917 A JP2002161917 A JP 2002161917A JP 4132993 B2 JP4132993 B2 JP 4132993B2
Authority
JP
Japan
Prior art keywords
water
absorbent resin
weight
polysaccharide
polyvinyl alcohol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002161917A
Other languages
Japanese (ja)
Other versions
JP2004010634A (en
Inventor
一寛 吉野
康博 縄田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Seika Chemicals Co Ltd
Original Assignee
Sumitomo Seika Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Seika Chemicals Co Ltd filed Critical Sumitomo Seika Chemicals Co Ltd
Priority to JP2002161917A priority Critical patent/JP4132993B2/en
Priority to TW92114862A priority patent/TW200307721A/en
Priority to PCT/JP2003/006979 priority patent/WO2003106551A1/en
Publication of JP2004010634A publication Critical patent/JP2004010634A/en
Application granted granted Critical
Publication of JP4132993B2 publication Critical patent/JP4132993B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/092Polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、吸水性樹脂およびその製造方法に関する。さらに詳しくは、吸水能および生分解性に優れ、しかも溶解分が少ない吸水性樹脂およびその製造方法に関する。
【0002】
【従来の技術】
近年、吸水性樹脂は、紙オムツや生理用品等の衛生材料としての利用のみならず、体液吸収材等の医療分野;シーリング材(止水材)や結露防止材等の土木、建築分野;鮮度保持材等の食品分野;溶剤から水を除去する脱水剤等の工業分野;緑化等の農業、園芸分野等の非常に多種多様な分野に利用されている。そして、これらの用途に応じた吸水性樹脂が種々提案されている。中でも、ポリアクリル酸(塩)系の吸水性樹脂が吸水能に優れ、かつ、安価であるため、幅広く用いられている。しかしながら、ポリアクリル酸(塩)系の吸水性樹脂は、吸水状態では光分解性を若干有するものの、生分解性をほとんど有していない。したがって、ポリアクリル酸(塩)系の吸水性樹脂を廃棄物として処理する際、例えば、埋め立て処分等を行うと、土中の細菌や微生物により分解されにくく、環境汚染等を引き起こすといった問題がある。
【0003】
一方、吸水能が優れ、かつ生分解性を有する吸水性樹脂としては、例えば、多糖類そのものを架橋させた吸水性樹脂(特開昭56−5137号公報、特開昭58−79006号公報、特開昭60−58443号公報、特開平8−89796号公報)、多糖類誘導体としてセルロース誘導体を用い、このセルロース誘導体を架橋させた吸水性樹脂(特開昭49−128987号公報、特開昭50−85689号公報、特開昭54−163981号公報、特公昭55−500785号公報、特開昭54−28755号公報、特開昭57−137301号公報、特開昭58−1701号公報、特開昭61−89364号公報、特開平5−49925公報、特開平5−123573号公報、特開平7−82301号公報)等が知られている。
【0004】
しかしながら、多糖類または多糖類誘導体を架橋させた吸水性樹脂の生分解性は、原料である多糖類または多糖類誘導体の生分解性よりも劣っている。さらに、吸水性樹脂の吸水能を高めるためには、理論的に架橋密度を小さくする必要があるが、架橋密度を小さくすれば未架橋の多糖類または多糖類誘導体が水に溶解し、溶解分が高くなるといった問題がある。したがって、吸水能および生分解性に優れ、しかも水への溶解分が少ない吸水性樹脂およびその製造方法が嘱望されている。
【0005】
【発明が解決しようとする課題】
本発明は、吸水能および生分解性に優れ、しかも溶解分が少ない吸水性樹脂およびその製造方法を提供することにある。
【0006】
【課題を解決するための手段】
本発明者らは、多糖類とポリビニルアルコールを架橋剤によって架橋させて得られる吸水性樹脂が、吸水能および生分解性に優れ、しかも溶解分が少ないことを見出し、本発明を完成した。
すなわち、本発明は、多糖類とポリビニルアルコールを架橋剤によって架橋させて得られる吸水性樹脂に関する。また、本発明は、多糖類とポリビニルアルコールと架橋剤とを混合して、加熱することを特徴とする吸水性樹脂の製造方法に関する。
【0007】
【発明の実施の形態】
本発明に用いられる多糖類としては、特に限定されるものではないが、多糖類、多糖類誘導体およびこれらのナトリウム塩やカリウム塩等のアルカリ金属塩等が挙げられる。
多糖類としては、例えば、セルロース、メチルセルロース、エチルセルロース、メチルエチルセルロース、ヘミセルロース、デンプン、メチルデンプン、エチルデンプン、メチルエチルデンプン、寒天、カラギーナン、アルギン酸、ペクチン酸、グアーガム、タマリンドガム、ローカストビーンガム、コンニャクマンナン、デキストラン、ザンサンガム、プルラン、ゲランガム、キチン、キトサン、コンドロイチン硫酸、ヘパリン、ヒアルロン酸等が挙げられる。
【0008】
多糖類誘導体としては、例えば、前記多糖類をカルボキシアルキル化あるいはヒドロキシアルキル化したカルボキシメチルセルロース、ヒドロキシエチルセルロース、デンプングリコール酸、寒天誘導体、カラギーナン誘導体等が挙げられる。
なお、本明細書において多糖類には、多糖類誘導体およびこれらの金属塩も含まれる。
【0009】
これらの多糖類、多糖類誘導体及びこれらの金属塩は、単独で使用してもよく、また、二種類以上を適宜混合してもよい。中でも、高い吸水能を有する吸水性樹脂が得られる観点から、カルボキシメチルセルロースおよびそのナトリウム塩やカリウム塩等のアルカリ金属塩が好適に用いられる。
【0010】
前記多糖類のアルカリ金属塩および多糖類誘導体のアルカリ金属塩における塩による置換度は、0.2〜1.2、好ましくは0.4〜0.9であることが望ましい。置換度が0.2未満の場合、得られる吸水性樹脂の吸水能が低下するおそれがある。また、置換度が1.2を超える場合、得られる吸水性樹脂の生分解率が低下するおそれがある。
【0011】
本発明に用いられるポリビニルアルコールの重量平均分子量は、特に限定されず、好ましくは100000以下、より好ましくは90000以下、さらに好ましくは80000〜10000である。重量平均分子量が100000を超える場合、得られる吸水性樹脂の生分解性が低下するおそれがある。
【0012】
ポリビニルアルコールのケン化度は、特に限定されず、好ましくは60〜99.9%、より好ましくは80〜99%である。ケン化度が60%未満の場合、または、99.9%を超える場合、得られる吸水性樹脂の吸水能が低くなるおそれがある。
【0013】
ポリビニルアルコールの好ましい割合は、多糖類100重量部に対して0.1〜200重量部、より好ましくは1〜150重量部、さらに好ましくは10〜120重量部である。ポリビニルアルコールの割合が0.1重量部未満の場合、得られる吸水性樹脂の溶解分が多くなるおそれがある。また、ポリビニルアルコールの割合が200重量部を超える場合、得られる吸水性樹脂の吸水能が低下するおそれがある。
【0014】
本発明に用いられる架橋剤としては、特に限定されないが、ジアルデヒド類、多価カルボン酸類、エポキシ化合物等が挙げられる。中でも、ジアルデヒド類、多価カルボン酸類が好ましい。
【0015】
ジアルデヒド類としては、例えば、グリオキザール、グルタルアルデヒド、テレフタルアルデヒド等が挙げられる。中でも、入手が容易で安価である観点から、グリオキザール、グルタルアルデヒドが好適に用いられる。
【0016】
多価カルボン酸類としては、シュウ酸、マレイン酸、コハク酸、アスパラギン酸、ポリアクリル酸等が挙げられる。中でも、安全性が高い観点からコハク酸が好適に用いられる。
【0017】
エポキシ化合物としては、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、グリセロールポリグリシジルエーテル、ジグリセロールジグリシジルエーテル、ポリグリセロールポリグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、グリシドール、γ−グリシドキシプロピルトリメトキシシラン等が挙げられる。
【0018】
架橋剤の好ましい使用量は、多糖類とポリビニルアルコールの合計量100重量部に対して0.05〜50重量部、より好ましくは0.1〜20重量部、さらに好ましくは1〜10重量部である。架橋剤の使用量が0.05重量部未満の場合、得られる吸水性樹脂の溶解分が増加するおそれがある。また、架橋剤の使用量が50重量部を超える場合、使用量に見合った効果が得られないばかりか、得られる吸水性樹脂の吸水能が低下するおそれがある。
【0019】
本発明の吸水性樹脂は、多糖類とポリビニルアルコールと架橋剤とを混合して、加熱し、架橋することによって製造することができる。
多糖類とポリビニルアルコールを架橋剤によって架橋させる際には、均一な架橋反応が行われるように、均一にかつ充分に混合することが好ましい。例えば、粉体同士で混合する方法、スラリー状態で混合する方法、溶液状態で混合する方法等が挙げられる。中でも、より均一にかつ充分に混合することができる観点から、溶液状態で混合する方法が好適に用いられる。
【0020】
前記混合方法において使用する溶媒は、例えば、水またはメチルアルコール、エチルアルコール、プロピルアルコール等の低級アルコール等の親水性有機溶媒等が挙げられる。
【0021】
多糖類とポリビニルアルコールを溶液とする場合、その溶液の濃度は0.1〜20重量%であることが好ましく、より好ましくは0.5〜10重量%である。濃度が、0.1重量%未満の場合、溶液の量が多くなるとともに、溶媒を除去するため長時間の加熱を必要とし、製造効率が低下するおそれがある。また、濃度が20重量%を超える場合、水溶液の粘度が高くなり、多糖類とポリビニルアルコールとを均一にかつ充分に混合することが困難となるおそれがある。
【0022】
また、架橋剤を溶液とする場合、その溶液の濃度は1重量%〜飽和濃度であることが好ましく、より好ましくは5重量%〜飽和濃度である。濃度が1重量%未満の場合、溶液の量が多くなるとともに、溶媒を除去するため長時間の加熱を必要とし、製造効率が低下するおそれがある。
【0023】
加熱して架橋する際の、加熱温度は60〜180℃であることが好ましく、より好ましくは70〜150℃である。加熱温度が60℃未満の場合、架橋反応が進行しにくくなるおそれがある。また、加熱温度が180℃を超える場合、多糖類が着色したり、架橋反応が進みすぎて吸水能が低下するおそれがある。なお、加熱方法は、特に限定させるものではないが、遠赤外線、マイクロ波等を照射する方法、熱風乾燥機、減圧乾燥機等を用いる方法等が挙げられる。
加熱時間は、特に限定されるものではなく、多糖類、ポリビニルアルコール、架橋剤、および溶媒の種類や組み合わせ、加熱温度、所望する吸水性樹脂の物性に応じて、適宜設定すればよいが、通常、1〜20時間程度である。
【0024】
本発明においては、必要に応じて架橋反応を円滑に進行させるために触媒を添加して架橋反応を行ってもよい。触媒としては、硫酸、塩酸、リン酸、硝酸等の酸が好適に用いられる。
触媒の使用量は、架橋剤100重量部に対して、1〜200重量部であることが好ましい。触媒の使用量が1重量部未満の場合、反応が進行しにくくなるおそれがある。また、触媒の使用量が200重量部を超える場合、使用量に見合う効果がなく経済的でない。
【0025】
本発明の吸水性樹脂の製造方法においては、例えば、多糖類、ポリビニルアルコール、架橋剤のそれぞれを水溶液とし、多糖類とポリビニルアルコールの水溶液を予め混合した後、架橋剤の水溶液を添加して再度混合する。得られた水溶液を加熱して、架橋反応を進行させながら、水溶液から水を除去して乾燥させることにより乾燥品が得られる。得られた乾燥品を粉砕することにより吸水性樹脂を製造することができる。
【0026】
かくして得られた吸水性樹脂は、その生理食塩水に対する吸水能が10g/g以上、好ましくは15〜80g/gである。吸水能が10g/g未満の場合、吸水性樹脂の使用量が増大するため好ましくない。なお、本発明における吸水能とは、吸水性樹脂1gを0.9重量%食塩水200ml中に入れ、充分膨潤させ、次いで、200メッシュの金網で吸水性樹脂をろ別して得られた吸水性樹脂の重量A(g)を測定したときに、次式によって算出される値である。
吸水能(g/g)=A/1
【0027】
また、本発明の吸水性樹脂の生理食塩水に対する溶解分は、30%以下、好ましくは25%以下である。溶解分が30%を超える場合、吸水能が低下するため好ましくない。なお、本発明における溶解分とは、吸水性樹脂1gを0.9重量%食塩水250ml中に入れ、スターラーで3時間攪拌を行い、次いで、200メッシュの金網で濾過し、回収した濾液50mlをあらかじめ乾燥させた重量既知A(g)のビーカーに正確に測りとり、140℃で16時間乾燥した後の重量B(g)を測定したときに、次式によって算出される値である。
溶解分(%)=[(B−A)/50×250−250×0.009]×100
【0028】
さらに、本発明の吸水性樹脂の生分解率は、15%以上、好ましくは20%以上である。生分解率が15%未満の場合、生分解性に劣り、環境汚染等の問題を引き起こすおそれがある。なお、本発明における生分解率とは、JIS K 6951に準拠し、無水りん酸二水素カリウム8.5g、無水りん酸水素二カリウム21.75g、りん酸水素二ナトリウム二水和物33.4g、塩化アンモニウム0.5gを蒸留水に溶解して1000mlにした標準試験培養液400mlに、吸水性樹脂80mgを添加し、次いで、標準活性汚泥を30ppmとなるように添加した培養液をスターラーで攪拌しながら、25℃で28日間培養したときに発生した二酸化炭素の総量A(mg)を求め、一方、吸水性樹脂を添加しない培養液から発生する二酸化炭素の総量B(mg)を同様にして求め、さらに、吸水性樹脂が完全に分解した時に発生する二酸化炭素の量の計算値C(mg)を求めたときに、次式によって算出される値である。
生分解率(%)=(A−B)/C×100
【0029】
本発明の吸水性樹脂には、加工性の改良および品質性能向上のために、必要に応じて、シリカ微粒子等の無機微粒子や、パルプ繊維等からなる充填剤、活性炭や鉄フタロシアニン誘導体、植物性精油等を吸着させたゼオライト等を主体とする消臭剤、芳香剤、銀や銅、亜鉛等の金属等を主体とする抗菌剤、殺菌剤、防カビ剤、防腐剤、脱酸素剤(酸化防止剤)、界面活性剤、発泡剤、香料等の添加剤を添加してもよい。前記添加剤の添加量は、添加剤の種類により一概に決定されないが、吸水性樹脂100重量部に対して、通常、0.01〜5重量部程度である。
【0030】
本発明の吸水性樹脂は、紙オムツや生理用品等の衛生材料等の衛生分野のみならず、外科手術時の体液吸収材、創傷保護材等の医療分野;シールド工法時のシーリング材、コンクリート養生材、ゲル水嚢、結露防止材等の土木・建築分野;肉や魚等のドリップ吸収材や鮮度保持材、野菜等の鮮度保持材等の食品分野;溶剤から水を除去する脱水材等の工業分野;緑化等を行う際の土壌保水材や植物栽培用保水材、種子コーティング材等の農業、園芸分野等、さらには、油水分離材、廃液吸収剤、防振材、防音材、家庭用雑貨品、玩具、人工雪等の非常に多種多様な分野に利用することができる。
【0031】
【実施例】
以下、本発明を実施例および比較例により詳細に説明するが、本発明はこれらの実施例にのみ限定されるものではない。
【0032】
参考例1)
カルボキシメチルセルロース(アルドリッチ社製、置換度0.7)の5重量%水溶液400gとポリビニルアルコール(和光純薬工業株式会社製、分子量44000、ケン化度88%)の5重量%水溶液100gとを80℃で5時間攪拌して混合した。次いで、40重量%グリオキザール水溶液5gと濃硫酸0.25gとを加え、さらに充分に攪拌して混合した。得られた混合液を100℃に設定した熱風乾燥機内に7時間静置して、架橋反応を進行させながら、混合液から水を除去して乾燥させた。得られた乾燥物をミキサーを用いて粉砕し、吸水性樹脂24.5gを得た。
【0033】
参考例2)
参考例1において、熱風乾燥機内の静置時間を7時間から10時間に変更した以外は参考例1と同様にして吸水性樹脂23.8gを得た。
【0034】
参考例3)
参考例1において、熱風乾燥機の設定温度を100℃から140℃に変更した以外は参考例1と同様にして吸水性樹脂23.4gを得た。
【0035】
参考例4)
参考例1において、グリオキザールをグルタルアルデヒドに変更した以外は参考例1と同様にして吸水性樹脂24.4gを得た。
【0036】
(実施例
参考例1において、グリオキザールをコハク酸に変更した以外、参考例1と同様にして吸水性樹脂24.4gを得た。
【0037】
参考例5
参考例1において、カルボキシメチルセルロースの5重量%水溶液およびポリビニルアルコールの5重量%水溶液の量を、それぞれ250gに変更した以外は参考例1と同様にして吸水性樹脂24.2gを得た。
【0038】
(比較例1)
カルボキシメチルセルロース(アルドリッチ社製、置換度0.7)の5重量%水溶液500g、40重量%グリオキザール水溶液5g、濃硫酸0.25gを攪拌して混合した。得られた混合液を100℃に設定した熱風乾燥機内に7時間静置して、架橋反応を進行させながら、混合液から水を除去して乾燥させた。得られた乾燥物をミキサーを用いて粉砕し、吸水性樹脂24.3gを得た。
【0039】
(比較例2)
ポリビニルアルコール(和光純薬工業株式会社製、分子量44000、ケン化度88%)の5重量%水溶液500g、40重量%グリオキザール水溶液5g、濃硫酸0.25gを攪拌して混合した。得られた混合液を100℃に設定した熱風乾燥機内に7時間静置して、架橋反応を進行させながら、混合液から水を除去して乾燥させた。得られた乾燥物をミキサーを用いて粉砕し、吸水性樹脂24.1gを得た。
【0040】
各実施例および比較例において得られた吸水性樹脂の物性値は以下に示す方法により測定した。結果を表1に示した。
【0041】
(1)吸水能(g/g)
吸水性樹脂1gを0.9重量%食塩水200ml中に入れ、充分膨潤させた。次いで、200メッシュの金網で吸水性樹脂をろ別した。得られた吸水性樹脂の重量A(g)を測定し、次式によって吸水能(g/g)を算出した。
吸水能(g/g)=A/1
【0042】
(2)溶解分
吸水性樹脂1gを0.9重量%食塩水250ml中に入れ、スターラーで3時間攪拌を行った。次いで、200メッシュの金網で濾過し、濾液を回収した。回収した濾液50mlをあらかじめ乾燥させた重量既知A(g)のビーカーに正確に測りとり、140℃で16時間乾燥した後の重量B(g)を測定し、次式によって、溶解分を算出した。
溶解分(%)=[(B−A)/50×250−250×0.009]×100
【0043】
(3)生分解率
JIS K 6951に準拠し、無水りん酸二水素カリウム8.5g、無水りん酸水素二カリウム21.75g、りん酸水素二ナトリウム二水和物33.4g、塩化アンモニウム0.5gを蒸留水に溶解して1000mlにした標準試験培養液400mlに、吸水性樹脂80mgを添加し、次いで、標準活性汚泥((財)化学物質評価研究機構製)が30ppmとなるように添加した。この培養液をスターラーで攪拌しながら、25℃で28日間培養した。前記期間中に発生した二酸化炭素の量を定期的に測定し、発生した二酸化炭素の総量A(mg)を求めた。また、吸水性樹脂を添加しない培養液から発生する二酸化炭素の総量B(mg)を同様に求めた。さらに、吸水性樹脂が完全に分解した時に発生する二酸化炭素の量の計算値C(mg)とから、次式によって生分解率(%)を算出した。
生分解率(%)=(A−B)/C×100
【0044】
【表1】

Figure 0004132993
【0045】
表1より、実施例1、参考例1〜5の吸水性樹脂は、吸水能および生分解性に優れ、しかも溶解分が少ないことがわかる。それに対して、多糖類のみを架橋させた比較例1の吸水性樹脂は、吸水能および生分解率に優れているものの、溶解分が多いことがわかる。また、ポリビニルアルコールのみを架橋させた比較例2の吸水性樹脂は、溶解分が少ないものの、吸水能および生分解率が低いことがわかる。
【0046】
【発明の効果】
本発明によると、吸水能および生分解性に優れ、しかも溶解分が少ない吸水性樹脂およびその製造方法を提供することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a water absorbent resin and a method for producing the same. More specifically, the present invention relates to a water-absorbent resin excellent in water-absorbing ability and biodegradability and having a low dissolved content, and a method for producing the same.
[0002]
[Prior art]
In recent years, water-absorbing resins have been used not only as sanitary materials such as paper diapers and sanitary products, but also in the medical field such as body fluid absorbing materials; civil engineering such as sealing materials (water-stopping materials) and anti-condensation materials; It is used in a wide variety of fields such as food fields such as holding materials; industrial fields such as dehydrating agents that remove water from solvents; agriculture and horticultural fields such as greening. Various water-absorbing resins according to these uses have been proposed. Among them, polyacrylic acid (salt) -based water-absorbing resins are widely used because they are excellent in water-absorbing ability and inexpensive. However, the polyacrylic acid (salt) water-absorbing resin has little photodegradability in the water-absorbing state, but hardly has biodegradability. Therefore, when polyacrylic acid (salt) water-absorbing resin is treated as waste, for example, when landfill disposal is performed, there is a problem that it is difficult to be decomposed by bacteria and microorganisms in the soil and causes environmental pollution. .
[0003]
On the other hand, examples of the water-absorbing resin having excellent water-absorbing ability and biodegradability include, for example, water-absorbing resins obtained by crosslinking polysaccharides (Japanese Patent Laid-Open Nos. 56-5137 and 58-79006, JP-A-60-58443, JP-A-8-89796), a water-absorbent resin obtained by crosslinking a cellulose derivative using a cellulose derivative as a polysaccharide derivative (JP-A-49-128987, JP-A-5-89987). No. 50-85689, JP-A No. 54-163981, JP-B No. 55-5000785, JP-A No. 54-28755, JP-A No. 57-137301, JP-A No. 58-1701, JP-A-61-89364, JP-A-5-49925, JP-A-5-123573, JP-A-7-82301) and the like are known.
[0004]
However, the biodegradability of a water-absorbent resin obtained by crosslinking a polysaccharide or polysaccharide derivative is inferior to that of a polysaccharide or polysaccharide derivative that is a raw material. Furthermore, in order to increase the water absorption capacity of the water-absorbent resin, it is theoretically necessary to reduce the crosslinking density. However, if the crosslinking density is reduced, the uncrosslinked polysaccharide or polysaccharide derivative dissolves in water, There is a problem that becomes high. Therefore, a water-absorbing resin excellent in water-absorbing ability and biodegradability and having a low water-soluble content and a method for producing the same are desired.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide a water-absorbent resin excellent in water-absorbing ability and biodegradability and having a low dissolved content, and a method for producing the same.
[0006]
[Means for Solving the Problems]
The present inventors have found that a water-absorbent resin obtained by cross-linking polysaccharide and polyvinyl alcohol with a cross-linking agent is excellent in water-absorbing ability and biodegradability, and has a small amount of dissolution, thereby completing the present invention.
That is, the present invention relates to a water-absorbent resin obtained by crosslinking polysaccharide and polyvinyl alcohol with a crosslinking agent. Moreover, this invention relates to the manufacturing method of the water absorbing resin characterized by mixing polysaccharides, polyvinyl alcohol, and a crosslinking agent, and heating.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The polysaccharide used in the present invention is not particularly limited, and examples thereof include polysaccharides, polysaccharide derivatives, and alkali metal salts such as sodium salts and potassium salts thereof.
Examples of the polysaccharide include cellulose, methylcellulose, ethylcellulose, methylethylcellulose, hemicellulose, starch, methyl starch, ethyl starch, methylethyl starch, agar, carrageenan, alginic acid, pectic acid, guar gum, tamarind gum, locust bean gum, konjac mannan Dextran, xanthan gum, pullulan, gellan gum, chitin, chitosan, chondroitin sulfate, heparin, hyaluronic acid and the like.
[0008]
Examples of the polysaccharide derivative include carboxymethyl cellulose, hydroxyethyl cellulose, starch glycolic acid, agar derivative, and carrageenan derivative obtained by carboxyalkylating or hydroxyalkylating the polysaccharide.
In the present specification, the polysaccharide includes polysaccharide derivatives and metal salts thereof.
[0009]
These polysaccharides, polysaccharide derivatives and their metal salts may be used alone or in combination of two or more. Among these, carboxymethylcellulose and alkali metal salts such as sodium salt and potassium salt thereof are preferably used from the viewpoint of obtaining a water-absorbing resin having high water absorption ability.
[0010]
The degree of substitution with the alkali metal salt of the polysaccharide and the alkali metal salt of the polysaccharide derivative is 0.2 to 1.2, preferably 0.4 to 0.9. If the degree of substitution is less than 0.2, the water absorbing ability of the resulting water absorbent resin may be reduced. Moreover, when a substitution degree exceeds 1.2, there exists a possibility that the biodegradation rate of the water absorbent resin obtained may fall.
[0011]
The weight average molecular weight of the polyvinyl alcohol used for this invention is not specifically limited, Preferably it is 100,000 or less, More preferably, it is 90000 or less, More preferably, it is 80000-10000. When a weight average molecular weight exceeds 100,000, there exists a possibility that the biodegradability of the water absorbent resin obtained may fall.
[0012]
The saponification degree of polyvinyl alcohol is not particularly limited, and is preferably 60 to 99.9%, more preferably 80 to 99%. If the degree of saponification is less than 60% or exceeds 99.9%, the water-absorbing capacity of the resulting water-absorbent resin may be lowered.
[0013]
A preferred ratio of the polyvinyl alcohol is 0.1 to 200 parts by weight, more preferably 1 to 150 parts by weight, and still more preferably 10 to 120 parts by weight with respect to 100 parts by weight of the polysaccharide. When the ratio of polyvinyl alcohol is less than 0.1 part by weight, there is a possibility that the amount of the water-absorbing resin to be obtained increases. Moreover, when the ratio of polyvinyl alcohol exceeds 200 weight part, there exists a possibility that the water absorption ability of the water-absorbing resin obtained may fall.
[0014]
Although it does not specifically limit as a crosslinking agent used for this invention, Dialdehydes, polyhydric carboxylic acids, an epoxy compound, etc. are mentioned. Of these, dialdehydes and polycarboxylic acids are preferred.
[0015]
Examples of dialdehydes include glyoxal, glutaraldehyde, terephthalaldehyde, and the like. Among these, glyoxal and glutaraldehyde are preferably used from the viewpoint of easy availability and low cost.
[0016]
Examples of polyvalent carboxylic acids include oxalic acid, maleic acid, succinic acid, aspartic acid, polyacrylic acid, and the like. Among these, succinic acid is preferably used from the viewpoint of high safety.
[0017]
As epoxy compounds, ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, glycerol polyglycidyl ether, diglycerol diglycidyl ether, polyglycerol polyglycidyl ether, propylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, glycidol, γ- Examples thereof include glycidoxypropyltrimethoxysilane.
[0018]
The preferred use amount of the crosslinking agent is 0.05 to 50 parts by weight, more preferably 0.1 to 20 parts by weight, and even more preferably 1 to 10 parts by weight with respect to 100 parts by weight of the total amount of polysaccharide and polyvinyl alcohol. is there. When the usage-amount of a crosslinking agent is less than 0.05 weight part, there exists a possibility that the melt | dissolution content of the water-absorbing resin obtained may increase. Moreover, when the usage-amount of a crosslinking agent exceeds 50 weight part, the effect corresponding to the usage-amount will not be acquired, but there exists a possibility that the water absorption ability of the water-absorbing resin obtained may fall.
[0019]
The water-absorbent resin of the present invention can be produced by mixing a polysaccharide, polyvinyl alcohol and a crosslinking agent, heating and crosslinking.
When the polysaccharide and polyvinyl alcohol are cross-linked by the cross-linking agent, it is preferable to mix uniformly and sufficiently so that a uniform cross-linking reaction is performed. Examples thereof include a method of mixing powders, a method of mixing in a slurry state, a method of mixing in a solution state, and the like. Especially, the method of mixing in a solution state is used suitably from a viewpoint which can mix more uniformly and fully.
[0020]
Examples of the solvent used in the mixing method include water or hydrophilic organic solvents such as lower alcohols such as methyl alcohol, ethyl alcohol, and propyl alcohol.
[0021]
When making polysaccharide and polyvinyl alcohol into a solution, it is preferable that the density | concentration of the solution is 0.1 to 20 weight%, More preferably, it is 0.5 to 10 weight%. When the concentration is less than 0.1% by weight, the amount of the solution increases, and it takes a long time to remove the solvent, which may reduce the production efficiency. Moreover, when a density | concentration exceeds 20 weight%, there exists a possibility that the viscosity of aqueous solution may become high and it may become difficult to mix polysaccharide and polyvinyl alcohol uniformly and fully.
[0022]
Moreover, when making a crosslinking agent into a solution, it is preferable that the density | concentration of the solution is 1 weight%-saturation concentration, More preferably, it is 5 weight%-saturation concentration. When the concentration is less than 1% by weight, the amount of the solution increases, and it takes a long time to remove the solvent, which may reduce the production efficiency.
[0023]
The heating temperature at the time of crosslinking by heating is preferably 60 to 180 ° C, more preferably 70 to 150 ° C. When heating temperature is less than 60 degreeC, there exists a possibility that a crosslinking reaction may become difficult to advance. Moreover, when heating temperature exceeds 180 degreeC, there exists a possibility that polysaccharide may color or a crosslinking reaction may advance too much and water absorption ability may fall. The heating method is not particularly limited, and examples thereof include a method of irradiating far infrared rays, microwaves, and the like, a method using a hot air dryer, a vacuum dryer, and the like.
The heating time is not particularly limited, and may be appropriately set according to the type and combination of polysaccharide, polyvinyl alcohol, crosslinking agent, and solvent, the heating temperature, and the desired physical properties of the water-absorbent resin. 1 to 20 hours.
[0024]
In the present invention, if necessary, a crosslinking reaction may be performed by adding a catalyst in order to smoothly advance the crosslinking reaction. As the catalyst, acids such as sulfuric acid, hydrochloric acid, phosphoric acid and nitric acid are preferably used.
It is preferable that the usage-amount of a catalyst is 1-200 weight part with respect to 100 weight part of crosslinking agents. When the usage-amount of a catalyst is less than 1 weight part, there exists a possibility that reaction may become difficult to advance. Moreover, when the usage-amount of a catalyst exceeds 200 weight part, there is no effect corresponding to a usage-amount and it is not economical.
[0025]
In the method for producing the water-absorbent resin of the present invention, for example, each of polysaccharide, polyvinyl alcohol, and crosslinking agent is used as an aqueous solution, and after the polysaccharide and polyvinyl alcohol aqueous solution are mixed in advance, the aqueous solution of the crosslinking agent is added again. Mix. The resulting aqueous solution is heated to remove the water from the aqueous solution while allowing the crosslinking reaction to proceed, and then dried to obtain a dried product. The water-absorbing resin can be produced by pulverizing the obtained dried product.
[0026]
The water-absorbent resin thus obtained has a water absorption capacity of 10 g / g or more, preferably 15 to 80 g / g, with respect to physiological saline. When the water absorption capacity is less than 10 g / g, the amount of water-absorbing resin used is increased, which is not preferable. The water absorption capacity in the present invention refers to a water absorbent resin obtained by placing 1 g of a water absorbent resin in 200 ml of 0.9% by weight saline, sufficiently swelled, and then filtering the water absorbent resin with a 200 mesh wire mesh. When the weight A (g) is measured, it is a value calculated by the following equation.
Water absorption capacity (g / g) = A / 1
[0027]
Moreover, the soluble part with respect to the physiological saline of the water absorbing resin of this invention is 30% or less, Preferably it is 25% or less. If the dissolved content exceeds 30%, the water absorption capacity is lowered, which is not preferable. The dissolved content in the present invention means that 1 g of water-absorbing resin is placed in 250 ml of 0.9 wt% saline, stirred with a stirrer for 3 hours, then filtered through a 200-mesh wire mesh, and 50 ml of the collected filtrate is used. It is a value calculated by the following equation when the weight B (g) after accurately measuring in a beaker of known weight A (g) dried in advance and drying at 140 ° C. for 16 hours is measured.
Dissolved content (%) = [(B−A) /50×250−250×0.009] × 100
[0028]
Furthermore, the biodegradation rate of the water absorbent resin of the present invention is 15% or more, preferably 20% or more. When the biodegradation rate is less than 15%, the biodegradability is inferior and there is a risk of causing problems such as environmental pollution. The biodegradation rate in the present invention is based on JIS K 6951, 8.5 g of anhydrous potassium dihydrogen phosphate, 21.75 g of anhydrous dipotassium hydrogen phosphate, 33.4 g of disodium hydrogen phosphate dihydrate. Then, 80 mg of water-absorbent resin was added to 400 ml of standard test culture solution prepared by dissolving 0.5 g of ammonium chloride in distilled water to 1000 ml, and then the culture solution to which standard activated sludge was added to 30 ppm was stirred with a stirrer. Meanwhile, the total amount A (mg) of carbon dioxide generated when cultured at 25 ° C. for 28 days was obtained, while the total amount B (mg) of carbon dioxide generated from the culture solution to which no water-absorbent resin was added was similarly determined. Further, when the calculated value C (mg) of the amount of carbon dioxide generated when the water-absorbent resin is completely decomposed is obtained, it is a value calculated by the following equation.
Biodegradation rate (%) = (A−B) / C × 100
[0029]
In order to improve processability and quality performance, the water-absorbent resin of the present invention includes inorganic fine particles such as silica fine particles, fillers made of pulp fibers, etc., activated carbon, iron phthalocyanine derivatives, vegetable properties, as necessary. Deodorant mainly composed of zeolite adsorbed with essential oil, etc., fragrance, antibacterial agent mainly composed of metals such as silver, copper and zinc, bactericidal agent, antifungal agent, antiseptic agent, oxygen scavenger (oxidation) An additive such as an inhibitor), a surfactant, a foaming agent, and a fragrance may be added. The addition amount of the additive is not generally determined depending on the type of the additive, but is usually about 0.01 to 5 parts by weight with respect to 100 parts by weight of the water absorbent resin.
[0030]
The water-absorbent resin of the present invention is not only used in the hygiene field such as sanitary materials such as paper diapers and sanitary products, but also in the medical field such as body fluid absorbing materials and wound protection materials during surgical operations; sealing materials during shield construction, concrete curing Civil engineering and construction fields such as wood, gel water sacs, anti-condensation materials; food fields such as drip absorbent materials such as meat and fish, freshness preservation materials, freshness preservation materials such as vegetables, etc .; dehydration materials that remove water from solvents Industrial field: Agricultural and horticultural fields such as soil water retention material, plant cultivation water retention material, seed coating material, etc. for greening, oil / water separation material, waste liquid absorbent, vibration proofing material, soundproofing material, household use It can be used in a wide variety of fields such as general goods, toys, and artificial snow.
[0031]
【Example】
EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention in detail, this invention is not limited only to these Examples.
[0032]
( Reference Example 1)
400 g of a 5 wt% aqueous solution of carboxymethylcellulose (Aldrich, substitution degree 0.7) and 100 g of a 5 wt% aqueous solution of polyvinyl alcohol (Wako Pure Chemical Industries, Ltd., molecular weight 44000, saponification degree 88%) at 80 ° C. And stirred for 5 hours. Next, 5 g of a 40 wt% aqueous glyoxal solution and 0.25 g of concentrated sulfuric acid were added, and the mixture was further stirred and mixed. The obtained mixed solution was allowed to stand in a hot air drier set at 100 ° C. for 7 hours, and water was removed from the mixed solution and dried while the crosslinking reaction proceeded. The obtained dried product was pulverized using a mixer to obtain 24.5 g of a water absorbent resin.
[0033]
( Reference Example 2)
In Reference Example 1, 23.8 g of a water-absorbent resin was obtained in the same manner as in Reference Example 1, except that the standing time in the hot air dryer was changed from 7 hours to 10 hours.
[0034]
( Reference Example 3)
In Reference Example 1, 23.4 g of a water-absorbent resin was obtained in the same manner as in Reference Example 1 except that the set temperature of the hot air dryer was changed from 100 ° C to 140 ° C.
[0035]
( Reference Example 4)
In Reference Example 1, 24.4 g of a water-absorbent resin was obtained in the same manner as in Reference Example 1 except that glyoxal was changed to glutaraldehyde.
[0036]
(Example 1 )
In Reference Example 1, 24.4 g of a water-absorbent resin was obtained in the same manner as in Reference Example 1, except that glyoxal was changed to succinic acid.
[0037]
( Reference Example 5 )
In Reference Example 1, 24.2 g of a water-absorbent resin was obtained in the same manner as in Reference Example 1 except that the amounts of a 5% by weight aqueous solution of carboxymethyl cellulose and a 5% by weight aqueous solution of polyvinyl alcohol were changed to 250 g.
[0038]
(Comparative Example 1)
500 g of a 5 wt% aqueous solution of carboxymethylcellulose (Aldrich, substitution degree 0.7), 5 g of 40 wt% glyoxal aqueous solution, and 0.25 g of concentrated sulfuric acid were mixed with stirring. The obtained mixed solution was allowed to stand in a hot air drier set at 100 ° C. for 7 hours, and water was removed from the mixed solution and dried while the crosslinking reaction proceeded. The obtained dried product was pulverized using a mixer to obtain 24.3 g of a water absorbent resin.
[0039]
(Comparative Example 2)
500 g of 5 wt% aqueous solution of polyvinyl alcohol (manufactured by Wako Pure Chemical Industries, Ltd., molecular weight 44000, saponification degree 88%), 5 g of 40 wt% glyoxal aqueous solution, and 0.25 g of concentrated sulfuric acid were mixed with stirring. The obtained mixed solution was allowed to stand in a hot air drier set at 100 ° C. for 7 hours, and water was removed from the mixed solution and dried while the crosslinking reaction proceeded. The obtained dried product was pulverized using a mixer to obtain 24.1 g of a water absorbent resin.
[0040]
The physical property values of the water-absorbing resins obtained in each Example and Comparative Example were measured by the following methods. The results are shown in Table 1.
[0041]
(1) Water absorption capacity (g / g)
1 g of the water-absorbent resin was placed in 200 ml of 0.9% by weight saline and sufficiently swollen. Next, the water-absorbent resin was filtered off with a 200-mesh wire mesh. The weight A (g) of the obtained water-absorbing resin was measured, and the water absorption capacity (g / g) was calculated according to the following formula.
Water absorption capacity (g / g) = A / 1
[0042]
(2) 1 g of the dissolved water-absorbing resin was placed in 250 ml of 0.9 wt% saline and stirred with a stirrer for 3 hours. Next, the mixture was filtered through a 200 mesh wire net, and the filtrate was recovered. The recovered filtrate (50 ml) was accurately measured in a beaker with a known weight (A) (g) that had been dried in advance, and the weight B (g) after drying at 140 ° C. for 16 hours was measured. .
Dissolved content (%) = [(B−A) /50×250−250×0.009] × 100
[0043]
(3) Biodegradation rate In accordance with JIS K 6951, anhydrous potassium dihydrogen phosphate 8.5 g, anhydrous dipotassium hydrogen phosphate 21.75 g, disodium hydrogen phosphate dihydrate 33.4 g, ammonium chloride 0.8. 80 mg of a water-absorbing resin was added to 400 ml of a standard test culture solution prepared by dissolving 5 g in distilled water to 1000 ml, and then added so that standard activated sludge (manufactured by Chemicals Evaluation and Research Institute) was 30 ppm. . This culture solution was cultured at 25 ° C. for 28 days while stirring with a stirrer. The amount of carbon dioxide generated during the period was periodically measured to determine the total amount A (mg) of carbon dioxide generated. Further, the total amount B (mg) of carbon dioxide generated from the culture solution to which no water-absorbent resin was added was determined in the same manner. Furthermore, from the calculated value C (mg) of the amount of carbon dioxide generated when the water absorbent resin was completely decomposed, the biodegradation rate (%) was calculated by the following equation.
Biodegradation rate (%) = (A−B) / C × 100
[0044]
[Table 1]
Figure 0004132993
[0045]
From Table 1, it can be seen that the water-absorbent resins of Example 1 and Reference Examples 1 to 5 are excellent in water-absorbing ability and biodegradability and have a small amount of dissolution. In contrast, it can be seen that the water-absorbent resin of Comparative Example 1 in which only polysaccharides are cross-linked is excellent in water-absorbing ability and biodegradability but has a large amount of dissolution. Moreover, although the water absorbing resin of the comparative example 2 which bridge | crosslinked only polyvinyl alcohol has few melt | dissolution contents, it turns out that water absorption ability and a biodegradation rate are low.
[0046]
【The invention's effect】
According to the present invention, it is possible to provide a water-absorbent resin excellent in water absorption ability and biodegradability and having a low dissolved content, and a method for producing the same.

Claims (5)

多糖類とポリビニルアルコールを多価カルボン酸類によって架橋させて得られる吸水性樹脂。A water-absorbent resin obtained by crosslinking polysaccharide and polyvinyl alcohol with polyvalent carboxylic acids . ポリビニルアルコールの割合が、多糖類100重量部に対して、0.1〜200重量部である請求項1記載の吸水性樹脂。The water-absorbent resin according to claim 1, wherein the ratio of polyvinyl alcohol is 0.1 to 200 parts by weight with respect to 100 parts by weight of the polysaccharide. 多価カルボン酸類の使用量が、多糖類とポリビニルアルコールの合計量100重量部に対して、0.05〜50重量部である請求項1または2に記載の吸水性樹脂。The water-absorbent resin according to claim 1 or 2 , wherein the polycarboxylic acid is used in an amount of 0.05 to 50 parts by weight with respect to 100 parts by weight of the total amount of polysaccharide and polyvinyl alcohol. 多糖類が、カルボキシメチルセルロースである請求項1ないしいずれか1項に記載の吸水性樹脂。The water absorbent resin according to any one of claims 1 to 3 , wherein the polysaccharide is carboxymethylcellulose. 多糖類とポリビニルアルコールと多価カルボン酸類とを混合して、加熱することを特徴とする吸水性樹脂の製造方法。A method for producing a water-absorbent resin, comprising mixing a polysaccharide, polyvinyl alcohol, and polyvalent carboxylic acids and heating the mixture.
JP2002161917A 2002-06-03 2002-06-03 Water absorbent resin and method for producing the same Expired - Lifetime JP4132993B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002161917A JP4132993B2 (en) 2002-06-03 2002-06-03 Water absorbent resin and method for producing the same
TW92114862A TW200307721A (en) 2002-06-03 2003-06-02 Water-absorption resin and manufacturing method thereof
PCT/JP2003/006979 WO2003106551A1 (en) 2002-06-03 2003-06-03 Water-absorbent resin and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002161917A JP4132993B2 (en) 2002-06-03 2002-06-03 Water absorbent resin and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004010634A JP2004010634A (en) 2004-01-15
JP4132993B2 true JP4132993B2 (en) 2008-08-13

Family

ID=29727541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002161917A Expired - Lifetime JP4132993B2 (en) 2002-06-03 2002-06-03 Water absorbent resin and method for producing the same

Country Status (3)

Country Link
JP (1) JP4132993B2 (en)
TW (1) TW200307721A (en)
WO (1) WO2003106551A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4655505B2 (en) * 2004-04-28 2011-03-23 東レ株式会社 Crosslinked biodegradable particles and method for producing the same
WO2009022358A1 (en) 2007-08-10 2009-02-19 Luigi Ambrosio Superabsorbent polymer hydro gels and a method of preparing thereof
JP5188824B2 (en) * 2008-02-07 2013-04-24 サンダイヤポリマー株式会社 Absorbent resin particles and method for producing the same
JP5430091B2 (en) * 2008-07-09 2014-02-26 旭化成せんい株式会社 Superabsorbent resin and method for producing the same
WO2011024021A1 (en) * 2009-08-31 2011-03-03 Ovc Intellectual Capital, Llc Sizing composition containing a biodegradable polymer
CA2838006C (en) 2011-06-07 2020-06-02 Gelesis Ip, Lp Method for producing hydrogels
MX2016016800A (en) 2014-06-20 2017-05-03 Gelesis Llc Methods for treating overweight or obesity.
PL3250612T3 (en) 2015-01-29 2021-06-14 Gelesis Llc Method for producing hydrogels coupling high elastic modulus and absorbance
WO2017189422A1 (en) 2016-04-25 2017-11-02 Gelesis, Llc. Method for treating constipation
CN110845635B (en) * 2019-11-29 2022-07-29 江苏哈齐诺生物环保科技有限公司 Preparation method of amphoteric polysaccharide water-absorbing material

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2161904C (en) * 1993-05-03 2001-01-30 Helmut Klimmek Polymer compositions and their production, in particular absorbent materials, and their use
JPH10279693A (en) * 1997-04-03 1998-10-20 Fuji Xerox Co Ltd Production of water-absorbing gel particle
US6222091B1 (en) * 1997-11-19 2001-04-24 Basf Aktiengesellschaft Multicomponent superabsorbent gel particles
DE19800489A1 (en) * 1998-01-09 1999-07-15 Thomas Prof Dr Mang Polysaccharide-containing sealing composition
JP4382909B2 (en) * 1999-07-02 2009-12-16 ミヨシ油脂株式会社 Biodegradable resin aqueous dispersion and biodegradable composite material
JP2001114803A (en) * 1999-10-18 2001-04-24 Unitika Ltd Water-absorbing agent and its production

Also Published As

Publication number Publication date
TW200307721A (en) 2003-12-16
JP2004010634A (en) 2004-01-15
WO2003106551A1 (en) 2003-12-24

Similar Documents

Publication Publication Date Title
Chang et al. Superabsorbent polymers used for agricultural water retention
Ma et al. Advances in cellulose-based superabsorbent hydrogels
JP3720084B2 (en) Water-absorbent resin, method for producing the same, and water-absorbent article
DE69421345T2 (en) Water absorbent resins and process for their manufacture
JP4132993B2 (en) Water absorbent resin and method for producing the same
Lv et al. Progress in preparation and properties of chitosan-based hydrogels
JP2018145328A (en) Water-absorbing resin and method for producing the same
JP4819984B2 (en) Self-crosslinking alkylcellulose derivatives and methods for producing them
JP2005263858A (en) Water absorbing material, method for producing the same and water absorbing article
JP2003052742A (en) Absorbent and absorptive structure using the same
JP5024921B2 (en) Method for controlling gelation of biodegradable gel by temperature control and molded article
JP2006262847A (en) Soil water-retaining material for horticulture
JP3598141B2 (en) Water absorbing material and method for producing the same
Omidian et al. Advancements in cellulose-based superabsorbent hydrogels: Sustainable solutions across industries
JP2001224959A (en) Method for manufacturing water-absorbent
US20210061960A1 (en) Polymer gels, method of preparation and uses thereof
Li et al. Recent progress in the utilization of chitin/chitosan for chemicals and materials
JP5937066B2 (en) Water-absorbing and liquid-absorbing polymers
JP4674357B2 (en) Crosslinking of starch derivatives and methods for their production
JP2003154262A (en) Water absorbent, method for manufacturing the same and water absorbing article
JP2003159528A (en) Water absorbing material and water absorbing article containing the same
JP2008280429A (en) Highly water-absorptive resin and its preparation method
JP2005247891A (en) Water absorbent of improved water holding property, method for producing the same, and water-absorbing article
JP2008094989A (en) Method for dissolution of chitosan to water and resulting composition
JP2001114803A (en) Water-absorbing agent and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080513

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080602

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4132993

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term