JP2008280429A - Highly water-absorptive resin and its preparation method - Google Patents

Highly water-absorptive resin and its preparation method Download PDF

Info

Publication number
JP2008280429A
JP2008280429A JP2007125433A JP2007125433A JP2008280429A JP 2008280429 A JP2008280429 A JP 2008280429A JP 2007125433 A JP2007125433 A JP 2007125433A JP 2007125433 A JP2007125433 A JP 2007125433A JP 2008280429 A JP2008280429 A JP 2008280429A
Authority
JP
Japan
Prior art keywords
cellulose
superabsorbent resin
water
water absorption
cellulose derivative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007125433A
Other languages
Japanese (ja)
Inventor
Shunsuke Hosoya
俊介 細谷
Tetsuko Takahashi
哲子 高橋
Jinichiro Kato
仁一郎 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Fibers Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Fibers Corp filed Critical Asahi Kasei Fibers Corp
Priority to JP2007125433A priority Critical patent/JP2008280429A/en
Publication of JP2008280429A publication Critical patent/JP2008280429A/en
Pending legal-status Critical Current

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a highly water-absorptive resin being excellent in biodegradability and saline- and seawater-absorption capacities, and its preparation method. <P>SOLUTION: The highly water-absorptive resin satisfies the following conditions: (1) the cellulose or cellulose derivative content is ≥50 wt.%; (2) the polymerization degree of the cellulose or the cellulose derivative is 80-1,800; (3) the saline- and seawater-absorbing capacities are ≥50 g/g and ≥30 g/g, respectively. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、高吸水性樹脂およびその製造方法に関する。さらに詳しくは、活性汚泥処理剤や土壌保水剤、生ゴミ処理補助剤として有効に利用できる生理食塩水、海水に対する吸水性能および生分解性に優れた高吸水性樹脂およびその製造方法に関する。   The present invention relates to a superabsorbent resin and a method for producing the same. More specifically, the present invention relates to a physiological saline that can be effectively used as an activated sludge treatment agent, a soil water retention agent, a garbage disposal aid, a superabsorbent resin excellent in water absorption performance and biodegradability for seawater, and a method for producing the same.

高吸水性樹脂は、紙オムツや生理用品等の衛生材分野、湿布剤や体液吸収剤等の医療分野、活性汚泥処理剤、土壌保水剤等の農業・園芸分野、鮮度保持材等の食品分野、シーリング材や結露防止材等の土木・建築分野、その他電気電子材料分野や塗料・接着剤分野など、多種多様な分野に利用されている。特に近年、活性汚泥処理における大量のエネルギー使用や、森林伐採による砂漠化、ゴミ処理などの環境面での問題から、活性汚泥処理剤や土壌保水剤、生ゴミ処理補助剤としてのニーズが高まってきている。   Superabsorbent resins are used in sanitary materials such as paper diapers and sanitary products, medical fields such as poultices and body fluid absorbents, agricultural and horticultural fields such as activated sludge treatment agents and soil water retention agents, and food fields such as freshness retaining materials. It is used in a wide variety of fields such as civil engineering and construction fields such as sealing materials and anti-condensation materials, and other fields such as electrical and electronic materials and paints and adhesives. In particular, in recent years, there has been an increasing need for activated sludge treatment agents, soil water retention agents, and garbage disposal aids due to the use of large amounts of energy in activated sludge treatment, desertification by deforestation, and waste disposal. ing.

活性汚泥処理剤や土壌保水剤、生ゴミ処理補助剤として利用するためには、高塩濃度の水溶液に対する高い吸水性能が必要であるが、一般的なポリアクリル酸系の高吸水性樹脂は、純水中での吸水性能には優れるものの、水中の塩濃度が高まるにつれて吸水性能が一気に低下する。さらに、ポリアクリル酸系の高吸水性樹脂は生分解性を有していない。したがって、ポリアクリル酸系の高吸水性樹脂を活性汚泥処理剤や土壌保水剤、生ゴミ処理補助剤として利用することはできない。
一方、生分解性を高めた高吸水性樹脂として、カルボキシメチルセルロースとポリビニルアルコールの混合架橋体が特許文献1に開示されている。しかしながら、この混合架橋体の生理食塩水に対する吸水性能は20g/g程度であり、高塩濃度の水溶液に対する吸水性能が低いという課題は改善されていない。
In order to use it as an activated sludge treatment agent, soil water retention agent, and garbage disposal aid, it is necessary to have a high water absorption performance with respect to a high salt concentration aqueous solution. Although the water absorption performance in pure water is excellent, the water absorption performance decreases at a stretch as the salt concentration in water increases. Furthermore, polyacrylic acid-based superabsorbent resins do not have biodegradability. Therefore, the polyacrylic acid-based superabsorbent resin cannot be used as an activated sludge treatment agent, a soil water retention agent, or a garbage disposal aid.
On the other hand, Patent Document 1 discloses a mixed cross-linked product of carboxymethyl cellulose and polyvinyl alcohol as a highly water-absorbing resin with improved biodegradability. However, the water absorption performance of the mixed crosslinked body with respect to physiological saline is about 20 g / g, and the problem of low water absorption performance with respect to an aqueous solution having a high salt concentration has not been improved.

特開2004−10634号公報JP 2004-10634 A

本発明は、活性汚泥処理剤や土壌保水剤、生ゴミ処理補助剤として有効に利用できる生理食塩水、海水に対する吸水性能および生分解性に優れた高吸水性樹脂およびその製造方法を提供することにある。   The present invention provides a physiological saline that can be effectively used as an activated sludge treatment agent, a soil water retention agent, and a garbage disposal aid, a superabsorbent resin excellent in water absorption performance and biodegradability for seawater, and a method for producing the same. It is in.

本発明者らは、上記課題を解決するために鋭意検討を加えて結果、特定の要件を満たす高吸水性樹脂が上記課題を解決し得ることを見出し、本発明を完成するに到った。
即ち、本発明は、下記(1)〜(3)の要件を満足することを特徴とする高吸水性樹脂である。
(1)セルロースまたはセルロース誘導体の含有量が50wt%以上である。
(2)セルロースまたはセルロース誘導体の重合度が80〜1800である。
(3)生理食塩水に対する吸水量が50g/g以上、海水に対する吸水量が30g/g以上である。
The inventors of the present invention have made extensive studies to solve the above problems, and as a result, have found that a superabsorbent resin satisfying specific requirements can solve the above problems, and have completed the present invention.
That is, the present invention is a superabsorbent resin characterized by satisfying the following requirements (1) to (3).
(1) The content of cellulose or cellulose derivative is 50 wt% or more.
(2) The degree of polymerization of the cellulose or cellulose derivative is 80 to 1800.
(3) The water absorption with respect to physiological saline is 50 g / g or more, and the water absorption with respect to seawater is 30 g / g or more.

本発明により、生理食塩水、海水に対する吸水性能および生分解性に優れた吸水性樹脂およびその製造方法を提供することができる。   ADVANTAGE OF THE INVENTION By this invention, the water absorbing resin excellent in the water absorption performance with respect to physiological saline and seawater, and biodegradability, and its manufacturing method can be provided.

本発明の高吸水性樹脂は、セルロースまたはセルロース誘導体の含有量が50wt%以上、好ましくは70wt%以上であることが必要である。セルロースまたはセルロース誘導体の含有量が50wt%未満である場合には、吸水性能が低下する。
また、本発明の高吸水性樹脂は、生理食塩水に対する吸水性能が50g/g以上であり、海水に対する吸水性能が30g/g以上であることが必要である。生理食塩水に対する吸水性能が50g/g未満、海水に対する吸水性能が30g/g未満の場合には、例えば活性汚泥処理剤として使用する場合に、活性汚泥乾燥重量に対して20wt%以上の高吸水性樹脂の添加が必要であり、活性汚泥を土壌改良剤として利用する場合にその効果を発現することができない。またコスト面で不利となる。
高吸水性樹脂の生理食塩水、海水に対する吸水性能は、高吸水性樹脂の使用量抑制の観点から、好ましくは生理食塩水に対して100g/g以上、海水に対して80g/g以上である。生理食塩水、海水に対する吸水性能に特に上限はないが、吸水ゲル強度保持の観点から、いずれも2000g/g以下が好ましい。
The superabsorbent resin of the present invention needs to have a cellulose or cellulose derivative content of 50 wt% or more, preferably 70 wt% or more. When the content of cellulose or cellulose derivative is less than 50 wt%, the water absorption performance is lowered.
The superabsorbent resin of the present invention is required to have a water absorption performance of 50 g / g or more for physiological saline and a water absorption performance of 30 g / g or more for seawater. When the water absorption performance with respect to physiological saline is less than 50 g / g and the water absorption performance with respect to seawater is less than 30 g / g, for example, when used as an activated sludge treatment agent, a high water absorption of 20 wt% or more with respect to the activated sludge dry weight. When the activated sludge is used as a soil conditioner, the effect cannot be expressed. It is also disadvantageous in terms of cost.
The water-absorbing performance of the superabsorbent resin with respect to physiological saline and seawater is preferably 100 g / g or more with respect to physiological saline and 80 g / g or more with respect to seawater, from the viewpoint of suppressing the amount of superabsorbent resin used. . Although there is no upper limit in particular in the water absorption performance with respect to physiological saline and seawater, both are preferably 2000 g / g or less from the viewpoint of maintaining the water absorption gel strength.

本発明で用いるセルロースは、特に限定されるものではないが、パルプ、精製セルロース、セルロース誘導体およびこれらのナトリウム塩やカリウム塩等のアルカリ金属塩、アンモニウム塩等が挙げられる。セルロース誘導体としては、例えば、カルボキシメチルセルロース、硫酸セルロース、リン酸セルロース等の酸性基を有するセルロース誘導体、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース等のヒドロキシアルキル化されたセルロース誘導体、メチルセルロース、エチルセルロース、メチルエチルセルロース等のアルキル化されたセルロース誘導体が挙げられる。   The cellulose used in the present invention is not particularly limited, and examples thereof include pulp, purified cellulose, cellulose derivatives, alkali metal salts such as sodium salts and potassium salts, ammonium salts, and the like. Examples of the cellulose derivative include cellulose derivatives having an acidic group such as carboxymethyl cellulose, cellulose sulfate, and cellulose phosphate; hydroxyalkylated cellulose derivatives such as hydroxyethyl cellulose and hydroxypropyl cellulose; alkyls such as methyl cellulose, ethyl cellulose, and methyl ethyl cellulose. The cellulose derivative which was made into is mentioned.

これらのセルロースまたはセルロース誘導体は、単独で使用してもよく、また、二種類以上を混合して用いてもよい。また、セルロースおよびセルロース誘導体の含有量が50wt%以上であれば、例えばポリビニルアルコールのような生分解性ポリマーを混合してもよい。セルロース誘導体の中では、高い吸水性能が得られる観点から、カルボキシメチルセルロースおよびそのナトリウム塩やカリウム塩等のアルカリ金属塩、アンモニウム塩が好ましい。   These celluloses or cellulose derivatives may be used alone or in combination of two or more. Moreover, if content of a cellulose and a cellulose derivative is 50 wt% or more, you may mix biodegradable polymers, such as polyvinyl alcohol, for example. Among the cellulose derivatives, carboxymethyl cellulose and alkali metal salts such as sodium salt and potassium salt thereof and ammonium salts are preferable from the viewpoint of obtaining high water absorption performance.

前記セルロース誘導体の置換度は、0.2〜1.5の範囲、好ましくは0.4〜1.0の範囲である。置換度が0.2未満の場合、得られる高吸水性樹脂の吸水性能が低下する。また、置換度が1.5を超える場合、得られる高吸水性樹脂の生分解率の低下や架橋効率の低下が生じる。
前記セルロースまたはセルロース誘導体の重合度は、80〜1800の範囲である。セルロースまたはセルロース誘導体の重合度が80未満の場合、得られる高吸水性樹脂の吸水性能が低下する。一方、重合度が1800を超える場合、セルロース誘導体の溶液粘度の上昇により溶解効率が低下し、架橋反応の不均一化を招いて吸水性能が低下する。好ましくは150〜1500、より好ましくは300〜1000の範囲である。
The degree of substitution of the cellulose derivative is in the range of 0.2 to 1.5, preferably in the range of 0.4 to 1.0. When the degree of substitution is less than 0.2, the water-absorbing performance of the resulting highly water-absorbent resin is lowered. Moreover, when substitution degree exceeds 1.5, the fall of the biodegradation rate of the superabsorbent resin obtained and the fall of crosslinking efficiency will arise.
The degree of polymerization of the cellulose or cellulose derivative is in the range of 80-1800. When the polymerization degree of cellulose or a cellulose derivative is less than 80, the water absorbing performance of the resulting superabsorbent resin is lowered. On the other hand, when the degree of polymerization exceeds 1800, the dissolution efficiency is lowered due to an increase in the solution viscosity of the cellulose derivative, resulting in non-uniform cross-linking reaction and reduced water absorption performance. Preferably it is the range of 150-1500, More preferably, it is the range of 300-1000.

また、本発明の高吸水性樹脂の生分解率は、好ましくは15%以上である。15%未満の場合、廃棄物処理による埋め立ての際、土壌を汚染するおそれがある。
さらに、本発明の高吸水性樹脂の生理食塩水、海水に対する溶解分は、30%以下であることが好ましい。溶解分が30%を超える場合、充分なゲル強度や安定性を保つことができない。
本発明の高吸水性樹脂は、セルロースまたはセルロース誘導体と架橋剤とを混合することによって製造することができる。混合する方法としては、粉体のまま混合する方法、スラリー状のまま混合する方法、溶液状態で混合する方法等が挙げられる。均一に架橋させるという観点から、溶液状態で混合する方法が好ましい。
The biodegradation rate of the superabsorbent resin of the present invention is preferably 15% or more. If it is less than 15%, soil may be contaminated during landfill by waste disposal.
Furthermore, the amount of the superabsorbent resin of the present invention dissolved in physiological saline and seawater is preferably 30% or less. When the dissolved amount exceeds 30%, sufficient gel strength and stability cannot be maintained.
The superabsorbent resin of the present invention can be produced by mixing cellulose or a cellulose derivative and a crosslinking agent. Examples of the mixing method include a method of mixing in a powder state, a method of mixing in a slurry state, a method of mixing in a solution state, and the like. From the viewpoint of uniform crosslinking, a method of mixing in a solution state is preferable.

前記溶液状態で混合する方法において使用する溶媒には、水が挙げられる。
セルロース誘導体を均一な溶液とする場合、その溶液の濃度は0.1〜20wt%、好ましくは1〜10wt%である。濃度が0.1wt%未満の場合、溶液の量が多くなることや架橋剤との架橋効率が低下することにより、製造効率が低下する。また、濃度が20wt%を超える場合、溶液粘度が高くなり、均一にかつ充分に混合することが困難になる。
The solvent used in the method of mixing in the solution state includes water.
When making a cellulose derivative into a uniform solution, the density | concentration of the solution is 0.1-20 wt%, Preferably it is 1-10 wt%. When the concentration is less than 0.1 wt%, the production efficiency is lowered due to an increase in the amount of the solution and a decrease in the crosslinking efficiency with the crosslinking agent. On the other hand, when the concentration exceeds 20 wt%, the solution viscosity becomes high, and it becomes difficult to mix uniformly and sufficiently.

本発明では、ジビニルスルホン、エピクロロヒドリン、多官能エポキシ化合物の群の中から選ばれる少なくとも1種の架橋剤を用いる。
多官能エポキシ化合物としては、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、グリセロールポリグリシジルエーテル、ジグリセロールジグリシジルエーテル、ジグリセロールポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテル、ソルビトールポリグリシジルエーテル、ペンタエリシトールジグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル等が挙げられる。水溶性の高さ、吸水性能、ゲル強度の観点から、ジビニルスルホンおよびエチレングリコールジグリシジルエーテル、グリセロールポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテルが好ましい。
架橋剤の使用量は、セルロースまたはセルロース誘導体中の水酸基やカルボン酸等、架橋剤と反応し得る官能基のモル数に対して、0.1〜50モル%、好ましくは1〜20モル%の範囲である。架橋剤の使用量が、0.1モル%未満の場合、得られる高吸水性樹脂の溶解分が増加し、ゲル強度が低下する。また、架橋剤の使用量が50モル%を超える場合、得られる高吸水性樹脂の吸水性能が低下する。
In the present invention, at least one crosslinking agent selected from the group of divinyl sulfone, epichlorohydrin, and polyfunctional epoxy compounds is used.
Examples of the polyfunctional epoxy compound include ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, glycerol polyglycidyl ether, diglycerol diglycidyl ether, diglycerol polyglycidyl ether, polyglycerol polyglycidyl ether, sorbitol polyglycidyl ether, pentaerythric ether. Examples include tall diglycidyl ether, trimethylolpropane polyglycidyl ether, propylene glycol diglycidyl ether, and polypropylene glycol diglycidyl ether. From the viewpoints of high water solubility, water absorption performance, and gel strength, divinyl sulfone and ethylene glycol diglycidyl ether, glycerol polyglycidyl ether, and polyglycerol polyglycidyl ether are preferred.
The amount of the crosslinking agent used is 0.1 to 50 mol%, preferably 1 to 20 mol%, based on the number of moles of functional groups capable of reacting with the crosslinking agent, such as hydroxyl groups and carboxylic acids in cellulose or cellulose derivatives. It is a range. When the usage-amount of a crosslinking agent is less than 0.1 mol%, the melt | dissolution content of the obtained superabsorbent resin will increase, and gel strength will fall. Moreover, when the usage-amount of a crosslinking agent exceeds 50 mol%, the water absorption performance of the highly water-absorbing resin obtained will fall.

本発明の架橋反応は、pH8以上のアルカリ性条件下で行われる。アルカリ性媒体としては、特に限定されるものではないが、水酸化ナトリウム等のアルカリ金属の水酸化物、水酸化カルシウム等のアルカリ土類金属の水酸化物、トリエチルアミン等のアミン系の化合物等が挙げられる。
架橋する際の温度は、0〜100℃である。温度が0℃未満の場合、架橋反応速度が遅くなり、製造効率が低下する。温度が100℃を超える場合、架橋剤が溶媒である水やアルコール類と反応し、架橋効率が低下する。好ましくは20〜80℃である。
架橋反応の時間は、特に限定されるものではなく、反応温度、吸水性樹脂の物性に応じて、適宜設定すればよいが、通常5分〜48時間程度である。
得られた架橋体の後処理方法は特に限定されないが、メタノール等の親水性有機溶媒に浸漬・再沈殿させ、真空乾燥機等を用いて完全に水分或いは残存する溶剤を除去した後、粉砕することにより高吸水性樹脂を製造することができる。
The crosslinking reaction of the present invention is performed under alkaline conditions of pH 8 or higher. The alkaline medium is not particularly limited, and examples thereof include alkali metal hydroxides such as sodium hydroxide, alkaline earth metal hydroxides such as calcium hydroxide, and amine compounds such as triethylamine. It is done.
The temperature at the time of crosslinking is 0 to 100 ° C. When temperature is less than 0 degreeC, a crosslinking reaction rate becomes slow and manufacturing efficiency falls. When temperature exceeds 100 degreeC, a crosslinking agent reacts with water and alcohol which are solvents, and crosslinking efficiency falls. Preferably it is 20-80 degreeC.
The time for the crosslinking reaction is not particularly limited, and may be appropriately set according to the reaction temperature and the physical properties of the water-absorbent resin, but is usually about 5 minutes to 48 hours.
The post-treatment method of the obtained crosslinked product is not particularly limited, but it is immersed and re-precipitated in a hydrophilic organic solvent such as methanol, and after completely removing moisture or remaining solvent using a vacuum dryer or the like, it is pulverized. Thus, a highly water-absorbing resin can be produced.

本発明の高吸水性樹脂は、特に活性汚泥処理剤や土壌保水剤として利用することができる。
その場合、土壌中の高吸水性樹脂含有量は0.01〜1wt%の範囲であることが好ましい。土壌中の高吸水性樹脂含有量が、0.01wt%未満の場合、土壌中で十分な保水効果が現れない。土壌中の高吸水性樹脂含有量が、1wt%以上の場合、コスト面で不利となる。
The superabsorbent resin of the present invention can be used particularly as an activated sludge treatment agent or a soil water retention agent.
In that case, the superabsorbent resin content in the soil is preferably in the range of 0.01 to 1 wt%. When the superabsorbent resin content in the soil is less than 0.01 wt%, a sufficient water retention effect does not appear in the soil. When the superabsorbent resin content in the soil is 1 wt% or more, it is disadvantageous in terms of cost.

本発明の高吸水性樹脂は、紙オムツや生理用品等の衛生分野、湿布剤や体液吸水剤等の医療分野、泥水シールド工法の逸泥防止用の汚泥ゲル化剤、シーリング材、結露防止材等の土木・建築分野、野菜、肉や魚等の鮮度保持材等の食品分野、農業用の土壌保水剤や種子コーティング剤等の農業・園芸分野、化粧品、保冷材、芳香剤・消臭剤、雑貨等の化粧品・トイレタリー分野、電気・電子材料分野、塗料・接着剤分野等、さらには、油水分離材や廃液吸収剤、防振材、防音材、玩具等多種多様な分野に利用することができる。特に、本発明の高吸水性樹脂の高塩濃度の水溶液に対する吸水性能が必要となる用途としては
、活性汚泥処理剤や土壌保水剤、生ゴミ処理補助剤等が挙げられ、本発明の高吸水性樹脂はこのような用途に対しても利用することができる。
The highly water-absorbing resin of the present invention is a sanitary field such as paper diapers and sanitary products, a medical field such as a poultice and a body fluid water absorbent, a sludge gelling agent, a sealing material, and a dew condensation prevention material for preventing mud loss in the muddy water shield method Civil engineering / architecture field, etc., food field such as freshness-keeping materials such as vegetables, meat and fish, agricultural / horticultural fields such as soil water retention agents and seed coating agents for agriculture, cosmetics, cold insulation materials, fragrances and deodorants To be used in various fields such as cosmetics and toiletries such as miscellaneous goods, electrical / electronic materials, paints / adhesives, and oil / water separators, waste liquid absorbers, anti-vibration materials, soundproof materials, toys, etc. Can do. In particular, the applications requiring water absorption performance for the high salt concentration aqueous solution of the superabsorbent resin of the present invention include activated sludge treatment agents, soil water retention agents, garbage disposal aids, and the like. Resin can also be used for such applications.

以下、本発明を実施例などにより更に詳細に説明するが、本発明はこれらの実施例などにより何ら限定されるものではない。本発明における測定方法を以下に示す。
(1)吸水性能(g/g)
高吸水性樹脂0.2gをナイロン製ティーバッグ中に入れ、過剰の0.9%塩化ナトリウム水溶液または海水中に浸漬し、24時間放置した。吸水後に、ティーバッグごと重量A(g)と高吸水性樹脂を入れていないティーバッグの吸水後の重量B(g)を測定し、次式によって吸水性能(g/g)を算出した。
吸水能(g/g)=(A−B)/0.2
EXAMPLES Hereinafter, although an Example etc. demonstrate this invention further in detail, this invention is not limited at all by these Examples. The measurement method in the present invention is shown below.
(1) Water absorption performance (g / g)
0.2 g of the superabsorbent resin was placed in a nylon tea bag, immersed in an excess of 0.9% aqueous sodium chloride solution or in seawater, and allowed to stand for 24 hours. After water absorption, the weight A (g) with the tea bag and the weight B (g) after water absorption of the tea bag not containing the superabsorbent resin were measured, and the water absorption performance (g / g) was calculated by the following equation.
Water absorption capacity (g / g) = (A−B) /0.2

(2)生分解率
JIS−K−6951に従い、無水リン酸二水素カリウム8.5g、無水リン酸水素二カリウム21.75g、リン酸水素二ナトリウム33.4g、塩化アンモニウム0.5gを蒸留水に溶解して1000mlにした標準試験培養液400mlに、高吸水性樹脂80mgを添加し、次いで、標準活性汚泥が30ppmとなるように添加した。この培養液を攪拌しながら、25℃で28日間培養した。前記期間中に発生した二酸化炭素の量を定期的に測定し、発生した二酸化炭素の総量A(mg)を求めた。また、高吸水性樹脂を添加していない培養液から発生する二酸化炭素の総量B(mg)を同様に求めた。さらに、高吸水性樹脂が完全に分解した時に発生する二酸化炭素の量の計算値C(mg)とから、次式により生分解率(%)を求めた。
生分解率(%)=(A−B)/C×100
(2) Biodegradation rate According to JIS-K-6951, anhydrous potassium dihydrogen phosphate 8.5 g, anhydrous dipotassium hydrogen phosphate 21.75 g, disodium hydrogen phosphate 33.4 g, and ammonium chloride 0.5 g were distilled water. 80 mg of a superabsorbent resin was added to 400 ml of a standard test culture solution dissolved in 1000 ml, and then added so that the standard activated sludge was 30 ppm. The culture was stirred for 28 days at 25 ° C. with stirring. The amount of carbon dioxide generated during the period was periodically measured to determine the total amount A (mg) of carbon dioxide generated. Further, the total amount B (mg) of carbon dioxide generated from the culture solution not added with the superabsorbent resin was similarly determined. Furthermore, from the calculated value C (mg) of the amount of carbon dioxide generated when the superabsorbent resin was completely decomposed, the biodegradation rate (%) was determined by the following equation.
Biodegradation rate (%) = (A−B) / C × 100

(3)溶解分
高吸水性樹脂0.5gを0.9%食塩水150ml中に入れ、充分に膨潤させた。次いで、200メッシュの金属ふるいで高吸水性樹脂を濾別し、濾液50mlを重量A(g)のビーカーに回収し、熱風乾燥機で乾燥させた。乾燥後のビーカーごとの重量B(g)を測定し、次式により、溶解分を算出した。
溶解分(%)=[(B−A)/50×150−150×0.009]×100
(4)二十日大根育成試験(発芽率)
土壌1kgに、二十日大根の種子100粒を播種した。2日に1回水やりし、3週間の育成試験を行った。3週間後に発芽した種子数を数え、次式により発芽率を算出した。
発芽率(%)=(発芽した種子数/播種した種子数)×100
(3) Dissolved content 0.5 g of a superabsorbent resin was placed in 150 ml of 0.9% saline and sufficiently swollen. Next, the superabsorbent resin was filtered off with a 200-mesh metal sieve, and 50 ml of the filtrate was collected in a beaker having a weight A (g) and dried with a hot air dryer. The weight B (g) for each beaker after drying was measured, and the dissolved content was calculated by the following formula.
Dissolved content (%) = [(B−A) /50×150−150×0.009] × 100
(4) Twenty-day radish growth test (germination rate)
100 kg of radish seeds were sown in 1 kg of soil. Watering was performed once every two days, and a three-week growth test was conducted. The number of seeds germinated after 3 weeks was counted, and the germination rate was calculated by the following formula.
Germination rate (%) = (number of germinated seeds / number of seeds sown) × 100

(実施例1)
カルボキシメチルセルロース(置換度0.7、重合度800)の3%水溶液20gとジビニルスルホン0.1g(セルロース誘導体の官能基のモル数に対して10モル%)とを室温で攪拌して混合した。この混合液に1M水酸化ナトリウム水溶液5.2g加え、混合溶液をpH13に調製した後、25℃で24時間静置して、架橋反応を進行させた。得られたゲル状の固定物をメタノール400gで沈殿させ、得られた沈殿物を真空乾燥機で乾燥させた。得られた乾燥物を粉砕機で粉砕し、高吸水性樹脂を得た。得られた高吸水性樹脂の生分解率は20%、溶解分が27%であった。
Example 1
20 g of a 3% aqueous solution of carboxymethylcellulose (substitution degree 0.7, polymerization degree 800) and 0.1 g divinylsulfone (10 mol% based on the number of moles of functional groups of the cellulose derivative) were stirred and mixed at room temperature. To this mixed solution, 5.2 g of 1M aqueous sodium hydroxide solution was added to adjust the mixed solution to pH 13, and then allowed to stand at 25 ° C. for 24 hours to advance the crosslinking reaction. The obtained gel-like fixed matter was precipitated with 400 g of methanol, and the obtained precipitate was dried with a vacuum dryer. The obtained dried product was pulverized with a pulverizer to obtain a highly water-absorbent resin. The resulting superabsorbent resin had a biodegradation rate of 20% and a dissolved content of 27%.

(実施例2)
実施例1において、架橋剤であるジビニルスルホンをエチレングリコールジグリシジルエーテル(セルロース誘導体の官能基のモル数に対して10モル%)に変更し、架橋反応を40℃、5時間で実施した以外は、実施例1と同様にして高吸水性樹脂を得た。
(実施例3)
実施例1において、カルボキシメチルセルロースの3%水溶液14gとポリビニルアルコール(分子量3500、けん化度86%以上)の3%水溶液6gの混合溶液(セルロースの含有量70%)に変更した以外は、実施例1と同様にして高吸水性樹脂を得た。
(Example 2)
In Example 1, except that divinyl sulfone as a crosslinking agent was changed to ethylene glycol diglycidyl ether (10 mol% with respect to the number of moles of functional groups of the cellulose derivative), and the crosslinking reaction was carried out at 40 ° C. for 5 hours. In the same manner as in Example 1, a highly water-absorbent resin was obtained.
(Example 3)
In Example 1, except that it was changed to a mixed solution (cellulose content 70%) of 3 g aqueous solution of 14% 3% aqueous solution of carboxymethyl cellulose and 6 g of 3% aqueous solution of polyvinyl alcohol (molecular weight 3500, saponification degree 86% or more). In the same manner as above, a highly water-absorbent resin was obtained.

(実施例4)
実施例1において、カルボキシメチルセルロースを重合度300のものに変更した以外は、実施例1と同様にして、高吸水性樹脂を得た。
(実施例5)
実施例1において、カルボキシメチルセルロースを重合度1500のものに変更し、架橋反応を25℃、48時間で実施した以外は、実施例1と同様にして、高吸水性樹脂を得た。
Example 4
In Example 1, a highly water-absorbent resin was obtained in the same manner as in Example 1 except that carboxymethyl cellulose was changed to one having a polymerization degree of 300.
(Example 5)
In Example 1, a superabsorbent resin was obtained in the same manner as in Example 1 except that carboxymethylcellulose was changed to one having a polymerization degree of 1500 and the crosslinking reaction was carried out at 25 ° C. for 48 hours.

(比較例1)
実施例1において、カルボキシメチルセルロースの3%水溶液6gとポリビニルアルコール(分子量3500、けん化度86%以上)の3%水溶液14gの混合溶液に変更した以外は実施例1と同様にして、高吸水性樹脂0.6gを得た。
(比較例2)
実施例1において、カルボキシメチルセルロースを重合度50のものに変更した以外は実施例1と同様にして、高吸水性樹脂を得た。
(比較例3)
実施例1において、ジビニルスルホンの量を0.7g(セルロース誘導体の官能基のモル数に対して70モル%)に変更した以外は実施例1と同様にして、高吸水性樹脂を得た。
実施例1〜5、比較例1〜3で得られた高吸水性樹脂の生理食塩水及び海水に対する吸水量を下記表1に示す。
(Comparative Example 1)
In Example 1, a superabsorbent resin was obtained in the same manner as in Example 1 except that it was changed to a mixed solution of 6 g of 3% aqueous solution of carboxymethylcellulose and 14 g of 3% aqueous solution of polyvinyl alcohol (molecular weight 3500, saponification degree 86% or more). 0.6 g was obtained.
(Comparative Example 2)
In Example 1, a superabsorbent resin was obtained in the same manner as in Example 1 except that carboxymethylcellulose was changed to one having a polymerization degree of 50.
(Comparative Example 3)
In Example 1, a superabsorbent resin was obtained in the same manner as in Example 1 except that the amount of divinyl sulfone was changed to 0.7 g (70 mol% with respect to the number of moles of functional groups of the cellulose derivative).
Table 1 shows the water absorption amounts of the superabsorbent resins obtained in Examples 1 to 5 and Comparative Examples 1 to 3 with respect to physiological saline and seawater.

表1より、実施例1〜3の高吸水性樹脂は、生理食塩水、海水に対する吸水性能に優れていることがわかる。一方、比較例1のセルロース誘導体とポリビニルアルコール比が3
:7で混合して製造された高吸水性樹脂、比較例2の重合度が150未満のカルボキシメチルセルロースを用いて製造された高吸水性樹脂、比較例3の架橋剤を過剰に入れて製造された高吸水性樹脂はいずれも、吸水性能が低下した。
From Table 1, it can be seen that the highly water-absorbent resins of Examples 1 to 3 are excellent in water absorption performance for physiological saline and seawater. On the other hand, the ratio of the cellulose derivative of Comparative Example 1 to polyvinyl alcohol is 3
: Superabsorbent resin produced by mixing in No. 7, superabsorbent resin produced using carboxymethylcellulose having a polymerization degree of less than 150 in Comparative Example 2, and produced by adding the crosslinking agent in Comparative Example 3 in excess. In addition, the water-absorbing performance of all the highly water-absorbing resins decreased.

(実施例6)
20%濃度の活性汚泥500gに対して、実施例1の高吸水性樹脂0.3gを混合し、24時間室温で放置した。得られた活性汚泥と高吸水性樹脂の混合物50gを赤玉土950gに混合し、二十日大根の育成試験を行った。尚、水やりは2日に1度の頻度で行った。発芽結果を表2に示す。
(比較例4)
赤玉土950gと20%濃度の活性汚泥50gを混合し、実施例7と同様にして、二十日大根の育成試験を行った。発芽結果を表2に示す。
(比較例5)
赤玉土1kgに対して、二十日大根の育成試験を行った。発芽結果を表2に示す。
(Example 6)
0.3 g of the superabsorbent resin of Example 1 was mixed with 500 g of activated sludge having a concentration of 20%, and left at room temperature for 24 hours. 50 g of the mixture of the obtained activated sludge and the superabsorbent resin was mixed with 950 g of red clay, and a growth test for radish was performed. Watering was performed once every two days. The germination results are shown in Table 2.
(Comparative Example 4)
950 g of red bean clay and 50 g of activated sludge having a concentration of 20% were mixed, and a radish growth test was conducted in the same manner as in Example 7. The germination results are shown in Table 2.
(Comparative Example 5)
A 20-day radish growth test was conducted on 1 kg of red corn soil. The germination results are shown in Table 2.

表2より、実施例7の活性汚泥と高吸水性樹脂を含有した土壌は、高い発芽率を示した。比較例4の活性汚泥を混合した土壌は、比較例5の活性汚泥を混合していない土壌に比べて、高い発芽率を示したが、実施例7の土壌の発芽率には及ばなかった。   From Table 2, the soil containing the activated sludge of Example 7 and the superabsorbent resin showed a high germination rate. The soil mixed with the activated sludge of Comparative Example 4 showed a higher germination rate than that of the soil not mixed with the activated sludge of Comparative Example 5, but did not reach the germination rate of the soil of Example 7.

本発明の高吸水性樹脂は、活性汚泥処理剤や土壌保水剤、生ゴミ処理補助剤として有効に利用できる。   The superabsorbent resin of the present invention can be effectively used as an activated sludge treatment agent, a soil water retention agent, and a garbage disposal aid.

Claims (4)

下記(1)〜(3)の要件を満足することを特徴とする高吸水性樹脂。
(1)セルロースまたはセルロース誘導体の含有量が50wt%以上である。
(2)セルロースまたはセルロース誘導体の重合度が80〜1800である。
(3)生理食塩水に対する吸水量が50g/g以上、海水に対する吸水量が30g/g以上である。
A superabsorbent resin characterized by satisfying the following requirements (1) to (3).
(1) The content of cellulose or cellulose derivative is 50 wt% or more.
(2) The degree of polymerization of the cellulose or cellulose derivative is 80 to 1800.
(3) The water absorption with respect to physiological saline is 50 g / g or more, and the water absorption with respect to seawater is 30 g / g or more.
生分解率が15%以上であることを特徴とする請求項1に記載の高吸水性樹脂。   The superabsorbent resin according to claim 1, wherein the biodegradation rate is 15% or more. 請求項1又は2に記載の高吸水性樹脂の製造方法であって、少なくとも下記(1)〜(3)の工程を含むことを特徴とする高吸水性樹脂の製造方法。
(1)セルロースまたはセルロース誘導体を、水に0.1〜20wt%の濃度で溶解させる。
(2)上記(1)の溶液に、ジビニルスルホン、エピクロロヒドリン、多官能エポキシ化合物の群の中から選ばれる少なくとも一種の架橋剤をセルロースまたはセルロース誘導体の官能基のモル数に対して、0.1〜50モル%添加する。
(3)架橋反応を0〜100℃、5分〜48時間、pH8以上のアルカリ条件下で行う。
It is a manufacturing method of the superabsorbent resin of Claim 1 or 2, Comprising: The manufacturing method of superabsorbent resin characterized by including the process of following (1)-(3) at least.
(1) Cellulose or cellulose derivative is dissolved in water at a concentration of 0.1 to 20 wt%.
(2) In the solution of (1) above, at least one cross-linking agent selected from the group of divinyl sulfone, epichlorohydrin, and polyfunctional epoxy compound is used with respect to the number of moles of functional groups of cellulose or cellulose derivative. Add 0.1-50 mol%.
(3) The crosslinking reaction is performed at 0 to 100 ° C. for 5 minutes to 48 hours under alkaline conditions of pH 8 or higher.
請求項1又は2に記載の高吸水性樹脂を0.001〜1wt%含有することを特徴とする土壌。   A soil comprising 0.001 to 1 wt% of the superabsorbent resin according to claim 1 or 2.
JP2007125433A 2007-05-10 2007-05-10 Highly water-absorptive resin and its preparation method Pending JP2008280429A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007125433A JP2008280429A (en) 2007-05-10 2007-05-10 Highly water-absorptive resin and its preparation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007125433A JP2008280429A (en) 2007-05-10 2007-05-10 Highly water-absorptive resin and its preparation method

Publications (1)

Publication Number Publication Date
JP2008280429A true JP2008280429A (en) 2008-11-20

Family

ID=40141517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007125433A Pending JP2008280429A (en) 2007-05-10 2007-05-10 Highly water-absorptive resin and its preparation method

Country Status (1)

Country Link
JP (1) JP2008280429A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010018670A (en) * 2008-07-09 2010-01-28 Asahi Kasei Fibers Corp Highly water-absorbing resin and method for producing the same
CN108752531A (en) * 2018-05-24 2018-11-06 中国农业大学 Boric acid monoglyceride mono acrylic ester super absorbent resin and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010018670A (en) * 2008-07-09 2010-01-28 Asahi Kasei Fibers Corp Highly water-absorbing resin and method for producing the same
CN108752531A (en) * 2018-05-24 2018-11-06 中国农业大学 Boric acid monoglyceride mono acrylic ester super absorbent resin and preparation method thereof
CN108752531B (en) * 2018-05-24 2020-06-12 中国农业大学 Boric acid monoglyceride monoacrylate super absorbent resin and preparation method thereof

Similar Documents

Publication Publication Date Title
Ma et al. Advances in cellulose-based superabsorbent hydrogels
EP0637594B1 (en) Water-absorbent resins and manufacturing methods thereof
AU2011276313B2 (en) Degradable superabsorbent polymers
JP5430091B2 (en) Superabsorbent resin and method for producing the same
JP2018145328A (en) Water-absorbing resin and method for producing the same
JPH0889796A (en) Water-absorbing resin, its production and water-absorbing product
KR102558451B1 (en) Method for preparing antibacterial super absorbent polymer
CN111511778B (en) Water-absorbent resin and agricultural water-retaining material
KR102322774B1 (en) Biodegradable and superabsorbent polymer based on polyitaconic acid and method for preparing the same
JP2018145329A (en) Water-absorbing resin
JP4132993B2 (en) Water absorbent resin and method for producing the same
JP2008280429A (en) Highly water-absorptive resin and its preparation method
JP2006328346A (en) Biodegradable water-absorbing material, its production method, and composting aid comprising the material
JP2001224959A (en) Method for manufacturing water-absorbent
JP3598141B2 (en) Water absorbing material and method for producing the same
JP5937066B2 (en) Water-absorbing and liquid-absorbing polymers
JP2006075054A (en) Water-holding material for growing plant, consisting mainly of biodegradable water-absorbing resin
JP2020536981A (en) Production of nutritional gel raw materials from soybean waste
JPH10324750A (en) Purification of water-absorbing resin
JP4574214B2 (en) Method for producing poly-γ-glutamic acid crosslinked product
KR102584470B1 (en) Biodegradable superabsorbent polymer having the excellent absorption under load performance and method for preparing the same
JP2004018565A (en) Water absorbing resin
Sarkar et al. Hydrogel Formulations for Increasing Input Use Efficiency in Agriculture
JP2001114803A (en) Water-absorbing agent and its production
JP4613155B2 (en) Water absorbent resin and method for producing water absorbent resin