JP2004010634A - Water absorbing resin and method for producing the same - Google Patents

Water absorbing resin and method for producing the same Download PDF

Info

Publication number
JP2004010634A
JP2004010634A JP2002161917A JP2002161917A JP2004010634A JP 2004010634 A JP2004010634 A JP 2004010634A JP 2002161917 A JP2002161917 A JP 2002161917A JP 2002161917 A JP2002161917 A JP 2002161917A JP 2004010634 A JP2004010634 A JP 2004010634A
Authority
JP
Japan
Prior art keywords
water
weight
absorbent resin
polysaccharide
polyvinyl alcohol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002161917A
Other languages
Japanese (ja)
Other versions
JP4132993B2 (en
Inventor
Kazuhiro Yoshino
吉野 一寛
Yasuhiro Nawata
縄田 康博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Seika Chemicals Co Ltd
Original Assignee
Sumitomo Seika Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Seika Chemicals Co Ltd filed Critical Sumitomo Seika Chemicals Co Ltd
Priority to JP2002161917A priority Critical patent/JP4132993B2/en
Priority to TW92114862A priority patent/TW200307721A/en
Priority to PCT/JP2003/006979 priority patent/WO2003106551A1/en
Publication of JP2004010634A publication Critical patent/JP2004010634A/en
Application granted granted Critical
Publication of JP4132993B2 publication Critical patent/JP4132993B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/092Polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a water absorbing resin having an excellent water absorbing capacity, biodegradability and a low dissolution ratio, and to provide a method for producing the same. <P>SOLUTION: The water absorbing resin is obtained by crosslinking polysaccharides and polyvinyl alcohol using a crosslinking agent. A dialdehyde compound or a polyvalent carboxylic acid compound is used as the crosslinking agent. The water absorbing resin has ≥10 g/g water absorbing capacity for physiological saline, ≤30% dissolution ratio in the physiological saline and ≥15% biodegradation ratio. The method for producing the water absorbing resin comprises mixing the polysaccharides and polyvinyl alcohol with the crosslinking agent and heating the resultant mixture. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、吸水性樹脂およびその製造方法に関する。さらに詳しくは、吸水能および生分解性に優れ、しかも溶解分が少ない吸水性樹脂およびその製造方法に関する。
【0002】
【従来の技術】
近年、吸水性樹脂は、紙オムツや生理用品等の衛生材料としての利用のみならず、体液吸収材等の医療分野;シーリング材(止水材)や結露防止材等の土木、建築分野;鮮度保持材等の食品分野;溶剤から水を除去する脱水剤等の工業分野;緑化等の農業、園芸分野等の非常に多種多様な分野に利用されている。そして、これらの用途に応じた吸水性樹脂が種々提案されている。中でも、ポリアクリル酸(塩)系の吸水性樹脂が吸水能に優れ、かつ、安価であるため、幅広く用いられている。しかしながら、ポリアクリル酸(塩)系の吸水性樹脂は、吸水状態では光分解性を若干有するものの、生分解性をほとんど有していない。したがって、ポリアクリル酸(塩)系の吸水性樹脂を廃棄物として処理する際、例えば、埋め立て処分等を行うと、土中の細菌や微生物により分解されにくく、環境汚染等を引き起こすといった問題がある。
【0003】
一方、吸水能が優れ、かつ生分解性を有する吸水性樹脂としては、例えば、多糖類そのものを架橋させた吸水性樹脂(特開昭56−5137号公報、特開昭58−79006号公報、特開昭60−58443号公報、特開平8−89796号公報)、多糖類誘導体としてセルロース誘導体を用い、このセルロース誘導体を架橋させた吸水性樹脂(特開昭49−128987号公報、特開昭50−85689号公報、特開昭54−163981号公報、特公昭55−500785号公報、特開昭54−28755号公報、特開昭57−137301号公報、特開昭58−1701号公報、特開昭61−89364号公報、特開平5−49925公報、特開平5−123573号公報、特開平7−82301号公報)等が知られている。
【0004】
しかしながら、多糖類または多糖類誘導体を架橋させた吸水性樹脂の生分解性は、原料である多糖類または多糖類誘導体の生分解性よりも劣っている。さらに、吸水性樹脂の吸水能を高めるためには、理論的に架橋密度を小さくする必要があるが、架橋密度を小さくすれば未架橋の多糖類または多糖類誘導体が水に溶解し、溶解分が高くなるといった問題がある。したがって、吸水能および生分解性に優れ、しかも水への溶解分が少ない吸水性樹脂およびその製造方法が嘱望されている。
【0005】
【発明が解決しようとする課題】
本発明は、吸水能および生分解性に優れ、しかも溶解分が少ない吸水性樹脂およびその製造方法を提供することにある。
【0006】
【課題を解決するための手段】
本発明者らは、多糖類とポリビニルアルコールを架橋剤によって架橋させて得られる吸水性樹脂が、吸水能および生分解性に優れ、しかも溶解分が少ないことを見出し、本発明を完成した。
すなわち、本発明は、多糖類とポリビニルアルコールを架橋剤によって架橋させて得られる吸水性樹脂に関する。また、本発明は、多糖類とポリビニルアルコールと架橋剤とを混合して、加熱することを特徴とする吸水性樹脂の製造方法に関する。
【0007】
【発明の実施の形態】
本発明に用いられる多糖類としては、特に限定されるものではないが、多糖類、多糖類誘導体およびこれらのナトリウム塩やカリウム塩等のアルカリ金属塩等が挙げられる。
多糖類としては、例えば、セルロース、メチルセルロース、エチルセルロース、メチルエチルセルロース、ヘミセルロース、デンプン、メチルデンプン、エチルデンプン、メチルエチルデンプン、寒天、カラギーナン、アルギン酸、ペクチン酸、グアーガム、タマリンドガム、ローカストビーンガム、コンニャクマンナン、デキストラン、ザンサンガム、プルラン、ゲランガム、キチン、キトサン、コンドロイチン硫酸、ヘパリン、ヒアルロン酸等が挙げられる。
【0008】
多糖類誘導体としては、例えば、前記多糖類をカルボキシアルキル化あるいはヒドロキシアルキル化したカルボキシメチルセルロース、ヒドロキシエチルセルロース、デンプングリコール酸、寒天誘導体、カラギーナン誘導体等が挙げられる。
なお、本明細書において多糖類には、多糖類誘導体およびこれらの金属塩も含まれる。
【0009】
これらの多糖類、多糖類誘導体及びこれらの金属塩は、単独で使用してもよく、また、二種類以上を適宜混合してもよい。中でも、高い吸水能を有する吸水性樹脂が得られる観点から、カルボキシメチルセルロースおよびそのナトリウム塩やカリウム塩等のアルカリ金属塩が好適に用いられる。
【0010】
前記多糖類のアルカリ金属塩および多糖類誘導体のアルカリ金属塩における塩による置換度は、0.2〜1.2、好ましくは0.4〜0.9であることが望ましい。置換度が0.2未満の場合、得られる吸水性樹脂の吸水能が低下するおそれがある。また、置換度が1.2を超える場合、得られる吸水性樹脂の生分解率が低下するおそれがある。
【0011】
本発明に用いられるポリビニルアルコールの重量平均分子量は、特に限定されず、好ましくは100000以下、より好ましくは90000以下、さらに好ましくは80000〜10000である。重量平均分子量が100000を超える場合、得られる吸水性樹脂の生分解性が低下するおそれがある。
【0012】
ポリビニルアルコールのケン化度は、特に限定されず、好ましくは60〜99.9%、より好ましくは80〜99%である。ケン化度が60%未満の場合、または、99.9%を超える場合、得られる吸水性樹脂の吸水能が低くなるおそれがある。
【0013】
ポリビニルアルコールの好ましい割合は、多糖類100重量部に対して0.1〜200重量部、より好ましくは1〜150重量部、さらに好ましくは10〜120重量部である。ポリビニルアルコールの割合が0.1重量部未満の場合、得られる吸水性樹脂の溶解分が多くなるおそれがある。また、ポリビニルアルコールの割合が200重量部を超える場合、得られる吸水性樹脂の吸水能が低下するおそれがある。
【0014】
本発明に用いられる架橋剤としては、特に限定されないが、ジアルデヒド類、多価カルボン酸類、エポキシ化合物等が挙げられる。中でも、ジアルデヒド類、多価カルボン酸類が好ましい。
【0015】
ジアルデヒド類としては、例えば、グリオキザール、グルタルアルデヒド、テレフタルアルデヒド等が挙げられる。中でも、入手が容易で安価である観点から、グリオキザール、グルタルアルデヒドが好適に用いられる。
【0016】
多価カルボン酸類としては、シュウ酸、マレイン酸、コハク酸、アスパラギン酸、ポリアクリル酸等が挙げられる。中でも、安全性が高い観点からコハク酸が好適に用いられる。
【0017】
エポキシ化合物としては、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、グリセロールポリグリシジルエーテル、ジグリセロールジグリシジルエーテル、ポリグリセロールポリグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、グリシドール、γ−グリシドキシプロピルトリメトキシシラン等が挙げられる。
【0018】
架橋剤の好ましい使用量は、多糖類とポリビニルアルコールの合計量100重量部に対して0.05〜50重量部、より好ましくは0.1〜20重量部、さらに好ましくは1〜10重量部である。架橋剤の使用量が0.05重量部未満の場合、得られる吸水性樹脂の溶解分が増加するおそれがある。また、架橋剤の使用量が50重量部を超える場合、使用量に見合った効果が得られないばかりか、得られる吸水性樹脂の吸水能が低下するおそれがある。
【0019】
本発明の吸水性樹脂は、多糖類とポリビニルアルコールと架橋剤とを混合して、加熱し、架橋することによって製造することができる。
多糖類とポリビニルアルコールを架橋剤によって架橋させる際には、均一な架橋反応が行われるように、均一にかつ充分に混合することが好ましい。例えば、粉体同士で混合する方法、スラリー状態で混合する方法、溶液状態で混合する方法等が挙げられる。中でも、より均一にかつ充分に混合することができる観点から、溶液状態で混合する方法が好適に用いられる。
【0020】
前記混合方法において使用する溶媒は、例えば、水またはメチルアルコール、エチルアルコール、プロピルアルコール等の低級アルコール等の親水性有機溶媒等が挙げられる。
【0021】
多糖類とポリビニルアルコールを溶液とする場合、その溶液の濃度は0.1〜20重量%であることが好ましく、より好ましくは0.5〜10重量%である。濃度が、0.1重量%未満の場合、溶液の量が多くなるとともに、溶媒を除去するため長時間の加熱を必要とし、製造効率が低下するおそれがある。また、濃度が20重量%を超える場合、水溶液の粘度が高くなり、多糖類とポリビニルアルコールとを均一にかつ充分に混合することが困難となるおそれがある。
【0022】
また、架橋剤を溶液とする場合、その溶液の濃度は1重量%〜飽和濃度であることが好ましく、より好ましくは5重量%〜飽和濃度である。濃度が1重量%未満の場合、溶液の量が多くなるとともに、溶媒を除去するため長時間の加熱を必要とし、製造効率が低下するおそれがある。
【0023】
加熱して架橋する際の、加熱温度は60〜180℃であることが好ましく、より好ましくは70〜150℃である。加熱温度が60℃未満の場合、架橋反応が進行しにくくなるおそれがある。また、加熱温度が180℃を超える場合、多糖類が着色したり、架橋反応が進みすぎて吸水能が低下するおそれがある。なお、加熱方法は、特に限定させるものではないが、遠赤外線、マイクロ波等を照射する方法、熱風乾燥機、減圧乾燥機等を用いる方法等が挙げられる。
加熱時間は、特に限定されるものではなく、多糖類、ポリビニルアルコール、架橋剤、および溶媒の種類や組み合わせ、加熱温度、所望する吸水性樹脂の物性に応じて、適宜設定すればよいが、通常、1〜20時間程度である。
【0024】
本発明においては、必要に応じて架橋反応を円滑に進行させるために触媒を添加して架橋反応を行ってもよい。触媒としては、硫酸、塩酸、リン酸、硝酸等の酸が好適に用いられる。
触媒の使用量は、架橋剤100重量部に対して、1〜200重量部であることが好ましい。触媒の使用量が1重量部未満の場合、反応が進行しにくくなるおそれがある。また、触媒の使用量が200重量部を超える場合、使用量に見合う効果がなく経済的でない。
【0025】
本発明の吸水性樹脂の製造方法においては、例えば、多糖類、ポリビニルアルコール、架橋剤のそれぞれを水溶液とし、多糖類とポリビニルアルコールの水溶液を予め混合した後、架橋剤の水溶液を添加して再度混合する。得られた水溶液を加熱して、架橋反応を進行させながら、水溶液から水を除去して乾燥させることにより乾燥品が得られる。得られた乾燥品を粉砕することにより吸水性樹脂を製造することができる。
【0026】
かくして得られた吸水性樹脂は、その生理食塩水に対する吸水能が10g/g以上、好ましくは15〜80g/gである。吸水能が10g/g未満の場合、吸水性樹脂の使用量が増大するため好ましくない。なお、本発明における吸水能とは、吸水性樹脂1gを0.9重量%食塩水200ml中に入れ、充分膨潤させ、次いで、200メッシュの金網で吸水性樹脂をろ別して得られた吸水性樹脂の重量A(g)を測定したときに、次式によって算出される値である。
吸水能(g/g)=A/1
【0027】
また、本発明の吸水性樹脂の生理食塩水に対する溶解分は、30%以下、好ましくは25%以下である。溶解分が30%を超える場合、吸水能が低下するため好ましくない。なお、本発明における溶解分とは、吸水性樹脂1gを0.9重量%食塩水250ml中に入れ、スターラーで3時間攪拌を行い、次いで、200メッシュの金網で濾過し、回収した濾液50mlをあらかじめ乾燥させた重量既知A(g)のビーカーに正確に測りとり、140℃で16時間乾燥した後の重量B(g)を測定したときに、次式によって算出される値である。
溶解分(%)=[(B−A)/50×250−250×0.009]×100
【0028】
さらに、本発明の吸水性樹脂の生分解率は、15%以上、好ましくは20%以上である。生分解率が15%未満の場合、生分解性に劣り、環境汚染等の問題を引き起こすおそれがある。なお、本発明における生分解率とは、JIS K 6951に準拠し、無水りん酸二水素カリウム8.5g、無水りん酸水素二カリウム21.75g、りん酸水素二ナトリウム二水和物33.4g、塩化アンモニウム0.5gを蒸留水に溶解して1000mlにした標準試験培養液400mlに、吸水性樹脂80mgを添加し、次いで、標準活性汚泥を30ppmとなるように添加した培養液をスターラーで攪拌しながら、25℃で28日間培養したときに発生した二酸化炭素の総量A(mg)を求め、一方、吸水性樹脂を添加しない培養液から発生する二酸化炭素の総量B(mg)を同様にして求め、さらに、吸水性樹脂が完全に分解した時に発生する二酸化炭素の量の計算値C(mg)を求めたときに、次式によって算出される値である。
生分解率(%)=(A−B)/C×100
【0029】
本発明の吸水性樹脂には、加工性の改良および品質性能向上のために、必要に応じて、シリカ微粒子等の無機微粒子や、パルプ繊維等からなる充填剤、活性炭や鉄フタロシアニン誘導体、植物性精油等を吸着させたゼオライト等を主体とする消臭剤、芳香剤、銀や銅、亜鉛等の金属等を主体とする抗菌剤、殺菌剤、防カビ剤、防腐剤、脱酸素剤(酸化防止剤)、界面活性剤、発泡剤、香料等の添加剤を添加してもよい。前記添加剤の添加量は、添加剤の種類により一概に決定されないが、吸水性樹脂100重量部に対して、通常、0.01〜5重量部程度である。
【0030】
本発明の吸水性樹脂は、紙オムツや生理用品等の衛生材料等の衛生分野のみならず、外科手術時の体液吸収材、創傷保護材等の医療分野;シールド工法時のシーリング材、コンクリート養生材、ゲル水嚢、結露防止材等の土木・建築分野;肉や魚等のドリップ吸収材や鮮度保持材、野菜等の鮮度保持材等の食品分野;溶剤から水を除去する脱水材等の工業分野;緑化等を行う際の土壌保水材や植物栽培用保水材、種子コーティング材等の農業、園芸分野等、さらには、油水分離材、廃液吸収剤、防振材、防音材、家庭用雑貨品、玩具、人工雪等の非常に多種多様な分野に利用することができる。
【0031】
【実施例】
以下、本発明を実施例および比較例により詳細に説明するが、本発明はこれらの実施例にのみ限定されるものではない。
【0032】
(実施例1)
カルボキシメチルセルロース(アルドリッチ社製、置換度0.7)の5重量%水溶液400gとポリビニルアルコール(和光純薬工業株式会社製、分子量44000、ケン化度88%)の5重量%水溶液100gとを80℃で5時間攪拌して混合した。次いで、40重量%グリオキザール水溶液5gと濃硫酸0.25gとを加え、さらに充分に攪拌して混合した。得られた混合液を100℃に設定した熱風乾燥機内に7時間静置して、架橋反応を進行させながら、混合液から水を除去して乾燥させた。得られた乾燥物をミキサーを用いて粉砕し、吸水性樹脂24.5gを得た。
【0033】
(実施例2)
実施例1において、熱風乾燥機内の静置時間を7時間から10時間に変更した以外は実施例1と同様にして吸水性樹脂23.8gを得た。
【0034】
(実施例3)
実施例1において、熱風乾燥機の設定温度を100℃から140℃に変更した以外は実施例1と同様にして吸水性樹脂23.4gを得た。
【0035】
(実施例4)
実施例1において、グリオキザールをグルタルアルデヒドに変更した以外は実施例1と同様にして吸水性樹脂24.4gを得た。
【0036】
(実施例5)
実施例1において、グリオキザールをコハク酸に変更した以外、実施例1と同様にして吸水性樹脂24.4gを得た。
【0037】
(実施例6)
実施例1において、カルボキシメチルセルロースの5重量%水溶液およびポリビニルアルコールの5重量%水溶液の量を、それぞれ250gに変更した以外は実施例1と同様にして吸水性樹脂24.2gを得た。
【0038】
(比較例1)
カルボキシメチルセルロース(アルドリッチ社製、置換度0.7)の5重量%水溶液500g、40重量%グリオキザール水溶液5g、濃硫酸0.25gを攪拌して混合した。得られた混合液を100℃に設定した熱風乾燥機内に7時間静置して、架橋反応を進行させながら、混合液から水を除去して乾燥させた。得られた乾燥物をミキサーを用いて粉砕し、吸水性樹脂24.3gを得た。
【0039】
(比較例2)
ポリビニルアルコール(和光純薬工業株式会社製、分子量44000、ケン化度88%)の5重量%水溶液500g、40重量%グリオキザール水溶液5g、濃硫酸0.25gを攪拌して混合した。得られた混合液を100℃に設定した熱風乾燥機内に7時間静置して、架橋反応を進行させながら、混合液から水を除去して乾燥させた。得られた乾燥物をミキサーを用いて粉砕し、吸水性樹脂24.1gを得た。
【0040】
各実施例および比較例において得られた吸水性樹脂の物性値は以下に示す方法により測定した。結果を表1に示した。
【0041】
(1)吸水能(g/g)
吸水性樹脂1gを0.9重量%食塩水200ml中に入れ、充分膨潤させた。次いで、200メッシュの金網で吸水性樹脂をろ別した。得られた吸水性樹脂の重量A(g)を測定し、次式によって吸水能(g/g)を算出した。
吸水能(g/g)=A/1
【0042】
(2)溶解分
吸水性樹脂1gを0.9重量%食塩水250ml中に入れ、スターラーで3時間攪拌を行った。次いで、200メッシュの金網で濾過し、濾液を回収した。回収した濾液50mlをあらかじめ乾燥させた重量既知A(g)のビーカーに正確に測りとり、140℃で16時間乾燥した後の重量B(g)を測定し、次式によって、溶解分を算出した。
溶解分(%)=[(B−A)/50×250−250×0.009]×100
【0043】
(3)生分解率
JIS K 6951に準拠し、無水りん酸二水素カリウム8.5g、無水りん酸水素二カリウム21.75g、りん酸水素二ナトリウム二水和物33.4g、塩化アンモニウム0.5gを蒸留水に溶解して1000mlにした標準試験培養液400mlに、吸水性樹脂80mgを添加し、次いで、標準活性汚泥((財)化学物質評価研究機構製)が30ppmとなるように添加した。この培養液をスターラーで攪拌しながら、25℃で28日間培養した。前記期間中に発生した二酸化炭素の量を定期的に測定し、発生した二酸化炭素の総量A(mg)を求めた。また、吸水性樹脂を添加しない培養液から発生する二酸化炭素の総量B(mg)を同様に求めた。さらに、吸水性樹脂が完全に分解した時に発生する二酸化炭素の量の計算値C(mg)とから、次式によって生分解率(%)を算出した。
生分解率(%)=(A−B)/C×100
【0044】
【表1】

Figure 2004010634
【0045】
表1より、実施例1〜実施例6の吸水性樹脂は、吸水能および生分解性に優れ、しかも溶解分が少ないことがわかる。それに対して、多糖類のみを架橋させた比較例1の吸水性樹脂は、吸水能および生分解率に優れているものの、溶解分が多いことがわかる。また、ポリビニルアルコールのみを架橋させた比較例2の吸水性樹脂は、溶解分が少ないものの、吸水能および生分解率が低いことがわかる。
【0046】
【発明の効果】
本発明によると、吸水能および生分解性に優れ、しかも溶解分が少ない吸水性樹脂およびその製造方法を提供することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a water absorbent resin and a method for producing the same. More specifically, the present invention relates to a water-absorbing resin having excellent water-absorbing ability and biodegradability and having a small amount of dissolved components, and a method for producing the same.
[0002]
[Prior art]
In recent years, water-absorbent resins have been used not only as sanitary materials such as disposable diapers and sanitary products, but also in the medical field such as body fluid absorbing materials; civil engineering such as sealing materials (water blocking materials) and anti-condensation materials; It is used in a wide variety of fields such as food fields such as holding materials; industrial fields such as a dehydrating agent for removing water from a solvent; and agriculture such as tree planting and horticulture. Various water-absorbing resins according to these uses have been proposed. Among them, polyacrylic acid (salt) -based water-absorbing resins are widely used because of their excellent water-absorbing ability and low cost. However, a polyacrylic acid (salt) -based water-absorbing resin has some photodegradability in a water-absorbing state, but has little biodegradability. Therefore, when the polyacrylic acid (salt) -based water-absorbent resin is treated as waste, for example, when it is landfilled, there is a problem that it is hard to be decomposed by bacteria and microorganisms in the soil and causes environmental pollution. .
[0003]
On the other hand, examples of the water-absorbing resin having excellent water-absorbing ability and having biodegradability include, for example, water-absorbing resins obtained by crosslinking polysaccharide itself (JP-A-56-5137, JP-A-58-79006, JP-A-60-58443, JP-A-8-89796), a water-absorbing resin obtained by using a cellulose derivative as a polysaccharide derivative and crosslinking the cellulose derivative (JP-A-49-128987, JP-A-50-85689, JP-A-54-163981, JP-B-55-500785, JP-A-54-28755, JP-A-57-137301, JP-A-58-1701, JP-A-61-89364, JP-A-5-49925, JP-A-5-123573, and JP-A-7-82301) are known.
[0004]
However, the biodegradability of the water-absorbent resin obtained by crosslinking the polysaccharide or the polysaccharide derivative is inferior to that of the raw material polysaccharide or polysaccharide derivative. Further, in order to increase the water absorbing ability of the water-absorbing resin, it is theoretically necessary to reduce the crosslink density, but if the crosslink density is reduced, the uncrosslinked polysaccharide or polysaccharide derivative is dissolved in water, Is high. Therefore, a water-absorbing resin which has excellent water-absorbing ability and biodegradability and has a low solubility in water, and a method for producing the same are desired.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide a water-absorbing resin having excellent water-absorbing ability and biodegradability, and having a low dissolved content, and a method for producing the same.
[0006]
[Means for Solving the Problems]
The present inventors have found that a water-absorbing resin obtained by crosslinking a polysaccharide and polyvinyl alcohol with a crosslinking agent has excellent water-absorbing ability and biodegradability, and has a small amount of dissolved components, and has completed the present invention.
That is, the present invention relates to a water-absorbing resin obtained by crosslinking a polysaccharide and polyvinyl alcohol with a crosslinking agent. The present invention also relates to a method for producing a water-absorbent resin, which comprises mixing a polysaccharide, polyvinyl alcohol, and a crosslinking agent and heating the mixture.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
The polysaccharide used in the present invention is not particularly limited, but includes polysaccharides, polysaccharide derivatives, and alkali metal salts such as sodium salts and potassium salts thereof.
Examples of polysaccharides include cellulose, methyl cellulose, ethyl cellulose, methyl ethyl cellulose, hemicellulose, starch, methyl starch, ethyl starch, methyl ethyl starch, agar, carrageenan, alginic acid, pectic acid, guar gum, tamarind gum, locust bean gum, konjac mannan Dextran, xanthan gum, pullulan, gellan gum, chitin, chitosan, chondroitin sulfate, heparin, hyaluronic acid and the like.
[0008]
Examples of polysaccharide derivatives include carboxyalkylated or hydroxyalkylated carboxymethyl cellulose, hydroxyethyl cellulose, starch glycolic acid, agar derivatives, carrageenan derivatives and the like.
In this specification, the polysaccharide also includes a polysaccharide derivative and a metal salt thereof.
[0009]
These polysaccharides, polysaccharide derivatives, and metal salts thereof may be used alone, or two or more kinds may be appropriately mixed. Among them, carboxymethylcellulose and alkali metal salts such as sodium salt and potassium salt thereof are preferably used from the viewpoint of obtaining a water-absorbing resin having high water absorbing ability.
[0010]
The degree of substitution of the alkali metal salt of the polysaccharide and the alkali metal salt of the polysaccharide derivative by the salt is preferably from 0.2 to 1.2, and more preferably from 0.4 to 0.9. If the degree of substitution is less than 0.2, the water-absorbing ability of the resulting water-absorbent resin may be reduced. If the degree of substitution exceeds 1.2, the biodegradability of the resulting water-absorbent resin may be reduced.
[0011]
The weight average molecular weight of the polyvinyl alcohol used in the present invention is not particularly limited, and is preferably 100,000 or less, more preferably 90,000 or less, and further preferably 80,000 to 10,000. If the weight average molecular weight exceeds 100,000, the biodegradability of the resulting water-absorbent resin may be reduced.
[0012]
The saponification degree of the polyvinyl alcohol is not particularly limited, and is preferably 60 to 99.9%, more preferably 80 to 99%. When the saponification degree is less than 60% or more than 99.9%, the water absorbing ability of the resulting water-absorbent resin may be low.
[0013]
The preferred ratio of polyvinyl alcohol is 0.1 to 200 parts by weight, more preferably 1 to 150 parts by weight, and still more preferably 10 to 120 parts by weight, based on 100 parts by weight of the polysaccharide. If the proportion of polyvinyl alcohol is less than 0.1 parts by weight, the resulting water-absorbent resin may have a large amount of dissolved components. If the proportion of polyvinyl alcohol exceeds 200 parts by weight, the water absorbing ability of the resulting water absorbent resin may be reduced.
[0014]
The crosslinking agent used in the present invention is not particularly limited, and examples thereof include dialdehydes, polycarboxylic acids, and epoxy compounds. Among them, dialdehydes and polycarboxylic acids are preferred.
[0015]
Examples of dialdehydes include glyoxal, glutaraldehyde, terephthalaldehyde and the like. Among them, glyoxal and glutaraldehyde are preferably used from the viewpoint of easy availability and low cost.
[0016]
Examples of the polycarboxylic acids include oxalic acid, maleic acid, succinic acid, aspartic acid, polyacrylic acid and the like. Among them, succinic acid is preferably used from the viewpoint of high safety.
[0017]
Epoxy compounds include ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, glycerol polyglycidyl ether, diglycerol diglycidyl ether, polyglycerol polyglycidyl ether, propylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, glycidol, γ- Glycidoxypropyltrimethoxysilane and the like can be mentioned.
[0018]
The preferred amount of the crosslinking agent is 0.05 to 50 parts by weight, more preferably 0.1 to 20 parts by weight, and still more preferably 1 to 10 parts by weight, based on 100 parts by weight of the total amount of the polysaccharide and polyvinyl alcohol. is there. If the amount of the crosslinking agent used is less than 0.05 parts by weight, the amount of dissolved water-absorbent resin obtained may increase. When the amount of the cross-linking agent exceeds 50 parts by weight, not only the effect corresponding to the amount used is not obtained, but also the water absorbing ability of the obtained water-absorbing resin may be reduced.
[0019]
The water-absorbent resin of the present invention can be produced by mixing a polysaccharide, polyvinyl alcohol, and a crosslinking agent, heating and crosslinking.
When the polysaccharide and polyvinyl alcohol are cross-linked by a cross-linking agent, it is preferable to mix them uniformly and sufficiently so that a uniform cross-linking reaction is performed. For example, a method of mixing powders, a method of mixing in a slurry state, a method of mixing in a solution state, and the like are exemplified. Among them, a method of mixing in a solution state is preferably used from the viewpoint of more uniform and sufficient mixing.
[0020]
Examples of the solvent used in the mixing method include water and hydrophilic organic solvents such as lower alcohols such as methyl alcohol, ethyl alcohol, and propyl alcohol.
[0021]
When a polysaccharide and polyvinyl alcohol are used as a solution, the concentration of the solution is preferably 0.1 to 20% by weight, and more preferably 0.5 to 10% by weight. If the concentration is less than 0.1% by weight, the amount of the solution increases, and a long time of heating is required to remove the solvent, which may lower the production efficiency. On the other hand, when the concentration exceeds 20% by weight, the viscosity of the aqueous solution increases, and it may be difficult to uniformly and sufficiently mix the polysaccharide and polyvinyl alcohol.
[0022]
When the crosslinking agent is used as a solution, the concentration of the solution is preferably 1% by weight to a saturated concentration, more preferably 5% by weight to a saturated concentration. When the concentration is less than 1% by weight, the amount of the solution increases, and a long time of heating is required to remove the solvent, which may lower the production efficiency.
[0023]
The heating temperature at the time of heating and crosslinking is preferably from 60 to 180 ° C, more preferably from 70 to 150 ° C. When the heating temperature is lower than 60 ° C., the crosslinking reaction may not easily proceed. If the heating temperature exceeds 180 ° C., the polysaccharide may be colored, or the crosslinking reaction may proceed too much, resulting in a decrease in water absorption capacity. The heating method is not particularly limited, and examples thereof include a method of irradiating far infrared rays, microwaves, and the like, and a method of using a hot air dryer, a reduced pressure dryer, and the like.
The heating time is not particularly limited, and may be appropriately set according to the type and combination of the polysaccharide, polyvinyl alcohol, the crosslinking agent, and the solvent, the heating temperature, and the desired physical properties of the water-absorbing resin. , About 1 to 20 hours.
[0024]
In the present invention, a crosslinking reaction may be carried out by adding a catalyst, if necessary, to allow the crosslinking reaction to proceed smoothly. As the catalyst, acids such as sulfuric acid, hydrochloric acid, phosphoric acid, and nitric acid are suitably used.
The use amount of the catalyst is preferably 1 to 200 parts by weight based on 100 parts by weight of the crosslinking agent. If the amount of the catalyst used is less than 1 part by weight, the reaction may not easily proceed. On the other hand, if the amount of the catalyst exceeds 200 parts by weight, there is no effect corresponding to the amount of the catalyst and it is not economical.
[0025]
In the method for producing a water-absorbent resin of the present invention, for example, each of a polysaccharide, polyvinyl alcohol, and a crosslinking agent is used as an aqueous solution. Mix. The obtained aqueous solution is heated to remove the water from the aqueous solution and dried while the crosslinking reaction proceeds to obtain a dried product. A water-absorbent resin can be produced by pulverizing the obtained dried product.
[0026]
The water-absorbing resin thus obtained has a water-absorbing ability for physiological saline of 10 g / g or more, preferably 15 to 80 g / g. If the water absorbing ability is less than 10 g / g, the amount of the water absorbing resin used is undesirably increased. The water-absorbing ability in the present invention refers to a water-absorbent resin obtained by putting 1 g of a water-absorbent resin in 200 ml of 0.9% by weight saline solution, sufficiently swelling, and then filtering the water-absorbent resin through a 200-mesh wire net. Is a value calculated by the following equation when the weight A (g) is measured.
Water absorption capacity (g / g) = A / 1
[0027]
The dissolved amount of the water-absorbent resin of the present invention in physiological saline is 30% or less, preferably 25% or less. If the dissolved content exceeds 30%, the water absorption capacity is undesirably reduced. In the present invention, 1 g of the water-absorbent resin was placed in 250 ml of 0.9% by weight saline solution, stirred for 3 hours with a stirrer, and then filtered through a 200-mesh wire gauze. It is a value calculated by the following equation when accurately measuring in a beaker of a known weight A (g) previously dried and measuring the weight B (g) after drying at 140 ° C. for 16 hours.
Dissolution (%) = [(BA) /50×250-250×0.009] × 100
[0028]
Furthermore, the biodegradability of the water-absorbent resin of the present invention is 15% or more, preferably 20% or more. When the biodegradation rate is less than 15%, the biodegradability is poor, and there is a possibility of causing problems such as environmental pollution. In addition, the biodegradation rate in the present invention is based on JIS K 6951 and is based on 8.5 g of anhydrous potassium dihydrogen phosphate, 21.75 g of anhydrous dipotassium hydrogen phosphate, and 33.4 g of disodium hydrogen phosphate dihydrate. Then, 80 mg of a water-absorbent resin was added to 400 ml of a standard test culture solution prepared by dissolving 0.5 g of ammonium chloride in distilled water to 1000 ml, and then the culture solution to which standard activated sludge was added to be 30 ppm was stirred with a stirrer. Meanwhile, the total amount A (mg) of carbon dioxide generated when cultured at 25 ° C. for 28 days was determined, and the total amount B (mg) of carbon dioxide generated from a culture solution to which no water-absorbing resin was added was determined in the same manner. When the calculated value C (mg) of the amount of carbon dioxide generated when the water-absorbent resin is completely decomposed is calculated, the value is calculated by the following equation.
Biodegradation rate (%) = (AB) / C × 100
[0029]
In the water-absorbent resin of the present invention, in order to improve processability and quality performance, if necessary, inorganic fine particles such as silica fine particles, a filler composed of pulp fiber and the like, activated carbon and iron phthalocyanine derivative, vegetable Deodorant mainly composed of zeolite or the like to which essential oil is adsorbed, fragrance, antibacterial agent mainly composed of metals such as silver, copper, zinc, etc., bactericide, fungicide, preservative, deoxidizer (oxidation Additives such as a surfactant, a surfactant, a foaming agent, and a fragrance. The amount of the additive is not generally determined by the type of the additive, but is usually about 0.01 to 5 parts by weight based on 100 parts by weight of the water-absorbing resin.
[0030]
The water-absorbent resin of the present invention is used not only in the field of hygiene such as sanitary materials such as disposable diapers and sanitary products, but also in the medical field such as body fluid absorbing materials during surgical operations and wound protection materials; sealing materials during shield method, concrete curing, etc. Materials, gel blisters, anti-condensation materials, etc .; civil engineering and construction fields; drip absorbing materials such as meat and fish, and freshness preserving materials such as vegetables, vegetables and other freshness preserving materials; dehydrating materials that remove water from solvents, etc. Industrial field; Agricultural and horticultural fields, such as soil water retention materials for planting trees, water retention materials for plant cultivation, seed coating materials, etc., as well as oil / water separation materials, waste liquid absorbents, vibration damping materials, soundproofing materials, household use It can be used in a wide variety of fields such as miscellaneous goods, toys, artificial snow, and the like.
[0031]
【Example】
Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples, but the present invention is not limited to only these Examples.
[0032]
(Example 1)
400 g of a 5% by weight aqueous solution of carboxymethylcellulose (manufactured by Aldrich, substitution degree 0.7) and 100 g of a 5% by weight aqueous solution of polyvinyl alcohol (manufactured by Wako Pure Chemical Industries, Ltd., molecular weight: 44000, saponification degree: 88%) were heated to 80 ° C. For 5 hours to mix. Next, 5 g of a 40% by weight glyoxal aqueous solution and 0.25 g of concentrated sulfuric acid were added, followed by sufficient stirring and mixing. The obtained mixture was allowed to stand in a hot-air drier set at 100 ° C. for 7 hours, and water was removed from the mixture and dried while the crosslinking reaction proceeded. The obtained dried product was pulverized using a mixer to obtain 24.5 g of a water absorbent resin.
[0033]
(Example 2)
In Example 1, 23.8 g of a water-absorbent resin was obtained in the same manner as in Example 1, except that the standing time in the hot air dryer was changed from 7 hours to 10 hours.
[0034]
(Example 3)
In Example 1, 23.4 g of a water-absorbent resin was obtained in the same manner as in Example 1 except that the set temperature of the hot air dryer was changed from 100 ° C to 140 ° C.
[0035]
(Example 4)
In Example 1, 24.4 g of a water-absorbent resin was obtained in the same manner as in Example 1 except that glyoxal was changed to glutaraldehyde.
[0036]
(Example 5)
In Example 1, 24.4 g of a water-absorbent resin was obtained in the same manner as in Example 1, except that succinic acid was used instead of glyoxal.
[0037]
(Example 6)
In Example 1, 24.2 g of a water-absorbent resin was obtained in the same manner as in Example 1 except that the amounts of the 5% by weight aqueous solution of carboxymethyl cellulose and the 5% by weight aqueous solution of polyvinyl alcohol were changed to 250 g, respectively.
[0038]
(Comparative Example 1)
500 g of a 5% by weight aqueous solution of carboxymethylcellulose (manufactured by Aldrich, substitution degree 0.7), 5 g of a 40% by weight glyoxal aqueous solution, and 0.25 g of concentrated sulfuric acid were stirred and mixed. The obtained mixture was allowed to stand in a hot-air drier set at 100 ° C. for 7 hours, and water was removed from the mixture and dried while the crosslinking reaction proceeded. The obtained dried product was pulverized using a mixer to obtain 24.3 g of a water absorbent resin.
[0039]
(Comparative Example 2)
500 g of a 5% by weight aqueous solution of polyvinyl alcohol (manufactured by Wako Pure Chemical Industries, Ltd., molecular weight: 44000, saponification degree: 88%), 5 g of a 40% by weight glyoxal aqueous solution, and 0.25 g of concentrated sulfuric acid were mixed by stirring. The obtained mixture was allowed to stand in a hot-air drier set at 100 ° C. for 7 hours, and water was removed from the mixture and dried while the crosslinking reaction proceeded. The obtained dried product was pulverized using a mixer to obtain 24.1 g of a water absorbent resin.
[0040]
The physical properties of the water-absorbing resins obtained in each of the examples and comparative examples were measured by the following methods. The results are shown in Table 1.
[0041]
(1) Water absorption capacity (g / g)
1 g of the water-absorbing resin was placed in 200 ml of 0.9% by weight saline solution and sufficiently swelled. Next, the water-absorbing resin was filtered off with a 200-mesh wire net. The weight A (g) of the obtained water-absorbent resin was measured, and the water absorption capacity (g / g) was calculated by the following equation.
Water absorption capacity (g / g) = A / 1
[0042]
(2) 1 g of the water-absorbent resin for the dissolved component was placed in 250 ml of 0.9% by weight saline solution, and stirred for 3 hours with a stirrer. Then, the mixture was filtered through a 200-mesh wire net, and the filtrate was recovered. 50 ml of the collected filtrate was accurately measured in a beaker of a known weight A (g) which had been dried in advance, and the weight B (g) after drying at 140 ° C. for 16 hours was measured. .
Dissolution (%) = [(BA) /50×250-250×0.009] × 100
[0043]
(3) Biodegradation rate According to JIS K 6951, 8.5 g of anhydrous potassium dihydrogen phosphate, 21.75 g of anhydrous dipotassium hydrogen phosphate, 33.4 g of disodium hydrogen phosphate dihydrate, and 0.3% of ammonium chloride were used. 80 mg of a water-absorbent resin was added to 400 ml of a standard test culture solution in which 5 g was dissolved in distilled water to make 1000 ml, and then standard activated sludge (manufactured by Chemicals Evaluation and Research Institute) was added to 30 ppm. . This culture was cultured at 25 ° C. for 28 days while stirring with a stirrer. The amount of carbon dioxide generated during the period was measured periodically, and the total amount A (mg) of generated carbon dioxide was determined. In addition, the total amount B (mg) of carbon dioxide generated from the culture solution to which no water-absorbing resin was added was similarly obtained. Further, from the calculated value C (mg) of the amount of carbon dioxide generated when the water-absorbent resin was completely decomposed, the biodegradation rate (%) was calculated by the following equation.
Biodegradation rate (%) = (AB) / C × 100
[0044]
[Table 1]
Figure 2004010634
[0045]
Table 1 shows that the water-absorbent resins of Examples 1 to 6 are excellent in water-absorbing ability and biodegradability, and have a small amount of dissolved components. In contrast, the water-absorbent resin of Comparative Example 1 in which only the polysaccharide was crosslinked was excellent in the water-absorbing ability and the biodegradability, but had a large amount of dissolved components. Further, it can be seen that the water-absorbing resin of Comparative Example 2 in which only polyvinyl alcohol was crosslinked had a low water-absorbing ability and a low biodegradation rate, though the amount of dissolved components was small.
[0046]
【The invention's effect】
According to the present invention, it is possible to provide a water-absorbing resin which is excellent in water-absorbing ability and biodegradability and has a small amount of dissolved components, and a method for producing the same.

Claims (7)

多糖類とポリビニルアルコールを架橋剤によって架橋させて得られる吸水性樹脂。A water-absorbent resin obtained by crosslinking a polysaccharide and polyvinyl alcohol with a crosslinking agent. 生理食塩水に対する吸水能が10g/g以上、生理食塩水に対する溶解分が30%以下であり、かつ、生分解率が15%以上である請求項1に記載の吸水性樹脂。The water-absorbent resin according to claim 1, wherein the water-absorbent resin has a water-absorbing capacity of 10 g / g or more in physiological saline, a dissolved content in physiological saline of 30% or less, and a biodegradability of 15% or more. ポリビニルアルコールの割合が、多糖類100重量部に対して、0.1〜200重量部である請求項1または2に記載の吸水性樹脂。The water-absorbent resin according to claim 1 or 2, wherein the ratio of the polyvinyl alcohol is 0.1 to 200 parts by weight based on 100 parts by weight of the polysaccharide. 架橋剤の使用量が、多糖類とポリビニルアルコールの合計量100重量部に対して、0.05〜50重量部である請求項1ないし3いずれか1項に記載の吸水性樹脂。The water-absorbent resin according to any one of claims 1 to 3, wherein the amount of the crosslinking agent used is 0.05 to 50 parts by weight based on 100 parts by weight of the total amount of the polysaccharide and polyvinyl alcohol. 架橋剤が、ジアルデヒド類又は多価カルボン酸類である請求項1ないし4いずれか1項に記載の吸水性樹脂。The water-absorbing resin according to any one of claims 1 to 4, wherein the crosslinking agent is a dialdehyde or a polycarboxylic acid. 多糖類が、カルボキシメチルセルロースである請求項1ないし5いずれか1項に記載の吸水性樹脂。The water-absorbing resin according to any one of claims 1 to 5, wherein the polysaccharide is carboxymethyl cellulose. 多糖類とポリビニルアルコールと架橋剤とを混合して、加熱することを特徴とする吸水性樹脂の製造方法。A method for producing a water-absorbent resin, comprising mixing a polysaccharide, polyvinyl alcohol, and a crosslinking agent and heating the mixture.
JP2002161917A 2002-06-03 2002-06-03 Water absorbent resin and method for producing the same Expired - Lifetime JP4132993B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002161917A JP4132993B2 (en) 2002-06-03 2002-06-03 Water absorbent resin and method for producing the same
TW92114862A TW200307721A (en) 2002-06-03 2003-06-02 Water-absorption resin and manufacturing method thereof
PCT/JP2003/006979 WO2003106551A1 (en) 2002-06-03 2003-06-03 Water-absorbent resin and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002161917A JP4132993B2 (en) 2002-06-03 2002-06-03 Water absorbent resin and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004010634A true JP2004010634A (en) 2004-01-15
JP4132993B2 JP4132993B2 (en) 2008-08-13

Family

ID=29727541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002161917A Expired - Lifetime JP4132993B2 (en) 2002-06-03 2002-06-03 Water absorbent resin and method for producing the same

Country Status (3)

Country Link
JP (1) JP4132993B2 (en)
TW (1) TW200307721A (en)
WO (1) WO2003106551A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005314535A (en) * 2004-04-28 2005-11-10 Toray Ind Inc Crosslinked biodegradable particle and method for producing the same
JP2009185216A (en) * 2008-02-07 2009-08-20 San-Dia Polymer Ltd Absorbent resin particle and method of producing the same
JP2010018670A (en) * 2008-07-09 2010-01-28 Asahi Kasei Fibers Corp Highly water-absorbing resin and method for producing the same
JP2010535911A (en) * 2007-08-10 2010-11-25 サンニーノ、アレッサンドロ Polymer hydrogel and preparation method thereof
WO2011024021A1 (en) * 2009-08-31 2011-03-03 Ovc Intellectual Capital, Llc Sizing composition containing a biodegradable polymer
US9353191B2 (en) 2011-06-07 2016-05-31 Gelesis Llc Method for producing hydrogels
US10098907B2 (en) 2016-04-25 2018-10-16 Gelesis Llc Method for treating constipation
US10179824B2 (en) 2015-01-29 2019-01-15 Gelesis Llc Method for producing hydrogels coupling high elastic modulus and absorbance
US10953038B2 (en) 2014-06-20 2021-03-23 Gelesis Llc Methods for treating overweight or obesity

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110845635B (en) * 2019-11-29 2022-07-29 江苏哈齐诺生物环保科技有限公司 Preparation method of amphoteric polysaccharide water-absorbing material

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100292923B1 (en) * 1993-05-03 2001-06-15 브루노 케레스, 헬무트 클림멕 Polymer compositions, absorbent compositions, methods for their preparation and methods of use
JPH10279693A (en) * 1997-04-03 1998-10-20 Fuji Xerox Co Ltd Production of water-absorbing gel particle
US6222091B1 (en) * 1997-11-19 2001-04-24 Basf Aktiengesellschaft Multicomponent superabsorbent gel particles
DE19800489A1 (en) * 1998-01-09 1999-07-15 Thomas Prof Dr Mang Polysaccharide-containing sealing composition
JP4382909B2 (en) * 1999-07-02 2009-12-16 ミヨシ油脂株式会社 Biodegradable resin aqueous dispersion and biodegradable composite material
JP2001114803A (en) * 1999-10-18 2001-04-24 Unitika Ltd Water-absorbing agent and its production

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4655505B2 (en) * 2004-04-28 2011-03-23 東レ株式会社 Crosslinked biodegradable particles and method for producing the same
JP2005314535A (en) * 2004-04-28 2005-11-10 Toray Ind Inc Crosslinked biodegradable particle and method for producing the same
JP2020097741A (en) * 2007-08-10 2020-06-25 ジェレシス エルエルシー Polymer hydrogels and methods of preparation thereof
JP2010535911A (en) * 2007-08-10 2010-11-25 サンニーノ、アレッサンドロ Polymer hydrogel and preparation method thereof
US8658147B2 (en) 2007-08-10 2014-02-25 Gelesis Llc Polymer hydrogels and methods of preparation thereof
JP2014065717A (en) * 2007-08-10 2014-04-17 Sannino Alessandro Polymer hydrogel and preparation method thereof
JP2018040002A (en) * 2007-08-10 2018-03-15 ジェレシス エルエルシー Polymer hydrogel and preparing method thereof
JP7027083B2 (en) 2007-08-10 2022-03-01 ジェレシス エルエルシー Polymer hydrogel and its preparation method
JP2009185216A (en) * 2008-02-07 2009-08-20 San-Dia Polymer Ltd Absorbent resin particle and method of producing the same
JP2010018670A (en) * 2008-07-09 2010-01-28 Asahi Kasei Fibers Corp Highly water-absorbing resin and method for producing the same
WO2011024021A1 (en) * 2009-08-31 2011-03-03 Ovc Intellectual Capital, Llc Sizing composition containing a biodegradable polymer
US9353191B2 (en) 2011-06-07 2016-05-31 Gelesis Llc Method for producing hydrogels
US11130823B2 (en) 2011-06-07 2021-09-28 Gelesis Llc Method for producing hydrogels
US10953038B2 (en) 2014-06-20 2021-03-23 Gelesis Llc Methods for treating overweight or obesity
US11628184B2 (en) 2014-06-20 2023-04-18 Gelesis, Llc Methods for treating overweight or obesity
US10584183B2 (en) 2015-01-29 2020-03-10 Gelesis, Llc Method for producing hydrogels coupling high elastic modulus and absorbance
US10179824B2 (en) 2015-01-29 2019-01-15 Gelesis Llc Method for producing hydrogels coupling high elastic modulus and absorbance
US11130824B2 (en) 2015-01-29 2021-09-28 Gelesis Llc Method for producing hydrogels coupling high elastic modulus and absorbance
US10098907B2 (en) 2016-04-25 2018-10-16 Gelesis Llc Method for treating constipation

Also Published As

Publication number Publication date
WO2003106551A1 (en) 2003-12-24
TW200307721A (en) 2003-12-16
JP4132993B2 (en) 2008-08-13

Similar Documents

Publication Publication Date Title
Chang et al. Superabsorbent polymers used for agricultural water retention
Ma et al. Advances in cellulose-based superabsorbent hydrogels
JP2018145328A (en) Water-absorbing resin and method for producing the same
JPH0889796A (en) Water-absorbing resin, its production and water-absorbing product
JP4132993B2 (en) Water absorbent resin and method for producing the same
JP2021008638A (en) Water-absorbing resin and agricultural water-retention material
JP5024921B2 (en) Method for controlling gelation of biodegradable gel by temperature control and molded article
JP2018145329A (en) Water-absorbing resin
Dong et al. Preparation and properties of multifunctional eco-friendly slow-release urea fertilizer encapsulated by diatomite filter aid waste-based superabsorbent
JP2006262847A (en) Soil water-retaining material for horticulture
JP2006328346A (en) Biodegradable water-absorbing material, its production method, and composting aid comprising the material
JP3598141B2 (en) Water absorbing material and method for producing the same
JPH026689A (en) Novel composite sheet and production thereof
JP2001224959A (en) Method for manufacturing water-absorbent
JP5937066B2 (en) Water-absorbing and liquid-absorbing polymers
US20210061960A1 (en) Polymer gels, method of preparation and uses thereof
JPWO2019132029A1 (en) Water-absorbent resin and agricultural water-retaining material
JP2008280429A (en) Highly water-absorptive resin and its preparation method
JP2005247891A (en) Water absorbent of improved water holding property, method for producing the same, and water-absorbing article
JP2004018565A (en) Water absorbing resin
JP4309626B2 (en) Manufacturing method of water absorbing material
JP2001114803A (en) Water-absorbing agent and its production
JP2001226525A (en) Water absorbent and its manufacturing method
JP4613155B2 (en) Water absorbent resin and method for producing water absorbent resin
WO2015097036A1 (en) Polysaccharide hydrogels

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080513

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080602

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4132993

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term