WO2003106551A1 - Water-absorbent resin and process for producing the same - Google Patents

Water-absorbent resin and process for producing the same Download PDF

Info

Publication number
WO2003106551A1
WO2003106551A1 PCT/JP2003/006979 JP0306979W WO03106551A1 WO 2003106551 A1 WO2003106551 A1 WO 2003106551A1 JP 0306979 W JP0306979 W JP 0306979W WO 03106551 A1 WO03106551 A1 WO 03106551A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
absorbent resin
weight
polysaccharide
parts
Prior art date
Application number
PCT/JP2003/006979
Other languages
French (fr)
Japanese (ja)
Inventor
吉野 一寛
縄田 康博
Original Assignee
住友精化株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友精化株式会社 filed Critical 住友精化株式会社
Publication of WO2003106551A1 publication Critical patent/WO2003106551A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/092Polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives

Definitions

  • the present invention relates to a water-absorbing resin and a method for producing the same. More specifically, the present invention relates to a water-absorbent resin which is excellent in water-absorbing ability and biodegradability and has a low dissolved content, and a method for producing the same. Background art
  • water-absorbent resins have been used not only as sanitary materials such as paper mummies and sanitary products, but also in the medical field such as bodily fluid absorbents; civil engineering and construction fields such as sealing materials (water-stopping materials) and anti-condensation materials; It is used in a wide variety of fields such as food fields such as holding materials; industrial fields such as dehydrating agents that remove water from solvents; and agriculture and horticulture fields such as greening.
  • various water-absorbing resins according to these uses have been proposed.
  • polyacrylic acid (salt) -based water-absorbing resins are widely used because of their excellent water-absorbing ability and low cost.
  • the polyacrylic acid (salt) -based water-absorbing resin has some photodegradability in the water-absorbing state, but hardly any biodegradability. Therefore, when treating a polyacrylic acid (salt) -based water-absorbent resin as waste, for example, if it is landfilled, it is less likely to be decomposed by bacteria and microorganisms in the soil, causing problems such as environmental pollution. is there.
  • examples of the water-absorbing resin having excellent water-absorbing ability and biodegradability include, for example, a water-absorbing resin obtained by crosslinking a polysaccharide itself (JP-A-56-137, JP-A-58-137). 79006, JP-A-60-58443, JP-A-8-89796), a water-absorbent resin obtained by using a cellulose derivative as a polysaccharide derivative and cross-linking the cellulose derivative (Japanese Patent Laid-Open No.
  • the biodegradability of the water-absorbent resin obtained by crosslinking the polysaccharide or polysaccharide derivative is inferior to that of the raw material polysaccharide or polysaccharide derivative. Furthermore, in order to increase the water absorbing ability of the water-absorbing resin, it is theoretically necessary to reduce the crosslink density. There is a problem that the minutes become high. Therefore, a water-absorbent resin excellent in water-absorbing ability and biodegradability and having a low solubility in water, and a method for producing the same are desired.
  • An object of the present invention is to provide a water-absorbing resin which is excellent in water-absorbing ability and biodegradability and has a small amount of dissolved components, and a method for producing the same.
  • a water-absorbing resin obtained by crosslinking a polysaccharide and polyvinyl alcohol with a crosslinking agent has excellent water-absorbing ability and biodegradability, and has a small amount of dissolved components, and has completed the present invention.
  • the present invention relates to a water-absorbing resin obtained by crosslinking a polysaccharide and polyvinyl alcohol with a crosslinking agent.
  • the water-absorbent resin preferably has a water-absorbing capacity of 10 g Z g or more in physiological saline, a dissolved content in physiological saline of 30% or less, and a biodegradation rate of 15% or more.
  • the proportion of the polyvinyl alcohol is preferably 0.1 to 200 parts by weight based on 100 parts by weight of the polysaccharide.
  • the amount of the crosslinking agent used is preferably 0.05 to 50 parts by weight based on 100 parts by weight of the total amount of the polysaccharide and the polybutyl alcohol.
  • the crosslinking agent is preferably a dialdehyde or a polycarboxylic acid.
  • the polysaccharide is carboxymethyl cellulose.
  • the present invention also relates to a method for producing a water-absorbent resin, which comprises mixing a polysaccharide, a polybiol alcohol, and a crosslinking agent and heating the mixture.
  • polysaccharide used in the present invention examples include, but are not limited to, polysaccharides, polysaccharide derivatives, and alkali metal salts such as sodium salts and potassium salts.
  • Polysaccharides include, for example, cellulose, methinoresenorelose, ethylcellulose, methylethylcellulose, hemicenolerose, starch, methinolestarch, ethinole starch, methylethylstarch, agar, carrageenan, alginic acid, pectic acid, Guar gum, tamarind gum, locust bean gum, konnyaku mannan, dextran, xanthan gum, pullulan, gellan gum, chitin, chitosan, chondroitin sulfate, heparin, hyaluronic acid and the like.
  • polysaccharide derivative examples include canolepoxymethylcellulose obtained by carboxyalkylating or hydroxylating the polysaccharide, hydroxyshethylcenolorose, starch glycolic acid, agar derivatives, carrageenan-inducing conductor, and the like. It is possible.
  • the polysaccharide also includes a polysaccharide derivative and a metal salt thereof.
  • polysaccharides, polysaccharide derivatives and metal salts thereof may be used alone or in combination of two or more.
  • carboxymethylcellulose and alkali metal salts thereof such as sodium salt and potassium salt are preferably used from the viewpoint of obtaining a water-absorbing resin having high water-absorbing ability.
  • the degree of substitution of the polysaccharide metal salt and the polysaccharide derivative by the metal salt is preferably from 0.2 to 1.2, and more preferably from 0.4 to 0.9. If the degree of substitution is less than 0.2, the resulting water-absorbent resin may have a reduced water-absorbing ability. If the degree of substitution exceeds 1.2, the biodegradability of the resulting water-absorbent resin may be reduced.
  • the weight average molecular weight of the polyvinyl alcohol used in the present study is not particularly limited, but is preferably 100,000 or less, more preferably 900,000 or less, and still more preferably 800,000 to 1 0 0 0 0. When the weight average molecular weight exceeds 100,000, the biodegradability of the obtained water-absorbent resin may be reduced.
  • the saponification degree of the polybutyl alcohol is not particularly limited, and is preferably 60 to 99.9%, more preferably 80 to 99%. If the degree of saponification is less than 60%, or if it exceeds 99.9%, the water absorbing ability of the resulting water-absorbing resin may decrease.
  • a preferable ratio of the polybutyl alcohol is 0.1 to 200 parts by weight, more preferably 1 to 150 parts by weight, and still more preferably 10 to 120 parts by weight with respect to 100 parts by weight of the polysaccharide. It is. If the proportion of polyvinyl alcohol is less than 0.1 part by weight, the resulting water-absorbent resin may have an increased amount of dissolved components. If the proportion of the polybutyl alcohol exceeds 200 parts by weight, the water absorbing ability of the resulting water-absorbing resin may be reduced.
  • the cross-linking agent used in the present invention is not particularly limited, and examples include a dialdehyde, a polycarboxylic acid, and an epoxy compound. Among them, dialdehydes and polycarboxylic acids are preferred.
  • dialdehydes examples include glioxal, glutaraldehyde, telephthalaldehyde and the like. Among them, darioxizal and glutaraldehyde are preferably used from the viewpoint of easy availability and low cost.
  • polycarboxylic acids examples include oxalic acid, maleic acid, succinic acid, aspartic acid, polyacrylic acid, and the like.
  • succinic acid is preferably used from the viewpoint of high safety.
  • Epoxy compounds include ethylene glycol diglycidyl ether, polyethylene glycol monoresidic glycidyl ether, glycerol polyglycidinole ether, diglycerol monoglycidyl ether, polyglycerol polyglycidyl ether, and propylene glycol. Monoglycidinoleate ether, polypropylene glycol diglycidyl ether, glycidol, ⁇ -glycidoxypropyltrimethoxysilane and the like.
  • the preferred amount of the crosslinking agent used is 0.05 to 50 parts by weight, more preferably 0.1 to 20 parts by weight, more preferably 0.1 to 20 parts by weight, based on 100 parts by weight of the total amount of the polysaccharide and the polybutyl alcohol. Preferably it is 1 to 10 parts by weight. If the amount of the crosslinking agent used is less than 0.05 part by weight, the amount of the dissolved water-absorbent resin obtained may increase. Use of cross-linking agent When the amount exceeds 50 parts by weight, not only the effect corresponding to the amount used is not obtained, but also the water absorbing ability of the obtained water-absorbing resin may be reduced.
  • the water-absorbent resin of the present invention can be produced by mixing a polysaccharide, polybutyl alcohol, and a crosslinking agent, heating and crosslinking.
  • the polysaccharide and the polybutyl alcohol are cross-linked by a cross-linking agent, they are preferably mixed uniformly and sufficiently so that a uniform cross-linking reaction is performed.
  • a method of mixing powders a method of mixing in a slurry state, a method of mixing in a solution state, and the like.
  • a method of mixing in a solution state is preferably used from the viewpoint of more uniform and sufficient mixing.
  • Examples of the solvent used in the mixing method include water and hydrophilic organic solvents such as lower alcohols such as methyl alcohol, ethyl alcohol, and propyl alcohol.
  • the concentration of the solution is preferably 0.1 to 20% by weight, more preferably 0.5 to 10% by weight.
  • the concentration is less than 0.1% by weight, the amount of the solution becomes large, and a long time of heating is required to remove the solvent, which may reduce the production efficiency.
  • the concentration is 20 weight. If the ratio exceeds / 0 , the viscosity of the aqueous solution increases, and it may be difficult to uniformly and sufficiently mix the polysaccharide and polyvier alcohol.
  • the concentration of the solution is preferably 1% by weight to a saturated concentration, more preferably 5% by weight to a saturated concentration. If the concentration is less than 1% by weight, the amount of the solution increases, and a long heating time is required to remove the solvent, which may lower the production efficiency.
  • the heating temperature for crosslinking by heating is preferably from 60 to 180 ° C, and more preferably from 70 to 150 ° C. If the heating temperature is lower than 60 ° C, the crosslinking reaction may not easily proceed. If the heating temperature exceeds 180 ° C., the polysaccharide may be colored or the crosslinking reaction may proceed too much, resulting in a decrease in water absorption capacity.
  • the heating method is not particularly limited, and examples thereof include a method of irradiating far infrared rays, microwaves, and the like, and a method of using a hot air dryer, a reduced pressure dryer, and the like.
  • the heating time is not particularly limited, and includes polysaccharides, polyvinyl alcohol, It may be appropriately set according to the type and combination of the crosslinking agent and the solvent, the heating temperature, and the desired physical properties of the water-absorbing resin. .
  • a catalyst may be added to carry out the crosslinking reaction so that the crosslinking reaction proceeds smoothly.
  • acids such as sulfuric acid, hydrochloric acid, phosphoric acid, and nitric acid are suitably used.
  • the amount of the catalyst used is preferably 1 to 200 parts by weight based on 100 parts by weight of the crosslinking agent. If the amount of the catalyst is less than 1 part by weight, the reaction may not easily proceed. If the amount of the catalyst exceeds 200 parts by weight, there is no effect corresponding to the amount of the catalyst, and it is not economical.
  • a water-absorbent resin of the present invention for example, an aqueous solution of a polysaccharide, a polyvinyl alcohol, and a crosslinking agent are used, and an aqueous solution of a polysaccharide and a polyvinyl alcohol are mixed in advance, and then an aqueous solution of a crosslinking agent is added. And mix again.
  • the obtained aqueous solution is heated to remove the water from the aqueous solution while the crosslinking reaction proceeds, and then dried to obtain a dried product.
  • a water-absorbent resin can be produced by pulverizing the obtained dried product.
  • the water-absorbing resin thus obtained has a water-absorbing capacity for physiological saline of 10 gZg or more, preferably 15 to 80 gZg. If the water absorption capacity is less than 10 g Z g, the amount of the water-absorbing resin used is undesirably increased.
  • the water-absorbing ability in the present invention refers to a water-absorbent resin obtained by putting 1 g of a water-absorbent resin into 0.9 ml of 0.9% by weight saline solution, sufficiently swelling, and then filtering the water-absorbent resin through a 200-mesh wire net. When the weight A (g) of the water-absorbent resin is measured, the value is calculated by the following equation.
  • the content of the water-absorbent resin of the present invention in physiological saline is 30% or less, and preferably 25% or less. If the dissolved content exceeds 30%, the water absorption capacity is undesirably reduced.
  • the dissolved matter was 1 g of a water-absorbent resin in 25 Oml of 0.9% by weight saline solution, stirred for 3 hours with a stirrer, and then collected by filtration through a 200-mesh wire net.
  • the filtrate (5 Om1) was accurately measured in a previously dried beaker of known weight A (g), and the weight B (g) after drying at 140 ° C for 16 hours was measured. Value.
  • the biodegradability of the water-absorbent resin of the present invention is 15% or more. It is preferably at least 20%. If the biodegradation rate is less than 15%, the biodegradability is poor and may cause environmental pollution and other problems.
  • the biodegradation rate in the present invention is based on JIS K 6951, 8.5 g of anhydrous dihydrogen phosphate, 21.75 g of anhydrous hydrogen phosphate, 21.75 g of disodium hydrogen phosphate, Dissolve 33.4 g of the hydrate and 0.5 g of ammonium chloride in distilled water: Add 400 mg of the water-absorbent resin to 400 ml of the standard test culture broth made LOO Oml, and then add The total amount A (mg) of carbon dioxide generated when culturing at 25 ° C for 28 days while stirring the culture solution to which raw sludge was added to 30 ppm with a stirrer was determined.
  • the total amount B (mg) of carbon dioxide generated from the culture solution to which no water was added was calculated in the same manner, and the calculated value C (mg) of carbon dioxide generated when the water-absorbent resin was completely decomposed was calculated. Sometimes it is a value calculated by the following equation.
  • Biodegradation rate (%) (A-B) / C 100
  • the water-absorbent resin of the present invention may contain, as necessary, inorganic fine particles such as silica fine particles, a filler made of pulp fiber, and the like, activated carbon and iron phthalocyanine derivatives, and vegetable properties in order to improve processability and quality performance.
  • Deodorant mainly composed of zeolite etc. to which essential oil is adsorbed, aromatic agent, antibacterial agent mainly composed of metals such as silver, copper, zinc, etc., bactericide, antibacterial agent, preservative, deoxidizer (Antioxidants), additives such as surfactants, foaming agents, and fragrances may be added.
  • the amount of the additive to be added is not generally determined by the type of the additive, but is usually about 0.01 to 5 parts by weight based on 100 parts by weight of the water absorbent resin.
  • the water-absorbent resin of the present invention can be used not only in the field of hygiene such as sanitary materials such as paper mummies and sanitary products, but also in the medical field such as a bodily fluid absorbent at the time of surgery and a wound protecting material; Civil engineering and construction fields such as concrete curing materials, gel blisters, and anti-condensation materials; drip absorbing materials such as meat and fish; food products such as freshness preserving materials and freshness preserving materials such as vegetables; dehydration to remove water from solvents Industrial fields such as lumber; soil water retention materials for greening, etc .; water retention materials for plant cultivation, seed coating materials, etc.
  • Example 1 23.8 g of a water-absorbent resin was obtained in the same manner as in Example 1, except that the standing time in the hot air dryer was changed from 7 hours to 10 hours.
  • Example 1 23.4 g of a water-absorbent resin was obtained in the same manner as in Example 1, except that the set temperature of the hot air dryer was changed from 100 ° C to 140 ° C. (Example 4)
  • Example 1 24.4 g of a water-absorbent resin was obtained in the same manner as in Example 1, except that glyoxal was changed to dartalaldehyde.
  • Example 5 In Example 1, 24.4 g of a water-absorbent resin was obtained in the same manner as in Example 1, except that succinic acid was used instead of dalioxal.
  • Example 1 the amount of 5 wt% aqueous solution of 5 weight 0/0 aqueous solution and poly Biel alcohol carboxymethylcellulose, except for changing each 250 g of Example 1 a water-absorbent resin 24. 2 g in the same manner Obtained.
  • Dissolution (%) [(B-A) / 50x250- 250xO. 009] xl O O
  • Biodegradation rate (%) (AB) / Cxi 00 Water absorption capacity
  • the present invention it is possible to provide a water-absorbing resin which is excellent in water-absorbing ability and biodegradability and has a small amount of dissolved components, and a method for producing the same.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

A water-absorbent resin that is excellent in water absorption power and biodegradability and exhibits a low soluble content, and a process for producing the same. This water-absorbent resin is obtained by crosslinking a polysaccharide and polyvinyl alcohol with the use of a crosslinking agent.

Description

明細書  Specification
吸水性樹脂およびその製造方法 技術分野  Technical Field of the Invention
本発明は、 吸水性樹脂およびその製造方法に関する。 さらに詳しくは、 吸水能 およぴ生分解性に優れ、 しかも溶解分が少なレ、吸水性樹脂およびその製造方法に 関する。 背景技術  The present invention relates to a water-absorbing resin and a method for producing the same. More specifically, the present invention relates to a water-absorbent resin which is excellent in water-absorbing ability and biodegradability and has a low dissolved content, and a method for producing the same. Background art
近年、 吸水性樹脂は、 紙ォムッや生理用品等の衛生材料としての利用のみなら ず、 体液吸収材等の医療分野;シーリング材 (止水材) や結露防止材等の土木、 建築分野;鮮度保持材等の食品分野;溶剤から水を除去する脱水剤等の工業分野 ;緑化等の農業、 園芸分野等の非常に多種多様な分野に利用されている。 そして、 これらの用途に応じた吸水性樹脂が種々提案されている。 中でも、 ポリアクリル 酸 (塩) 系の吸水性樹脂が吸水能に優れ、 かつ、 安価であるため、 幅広く用いら れている。 し力 しながら、 ポリアクリル酸 (塩) 系の吸水性樹脂は、 吸水状態で は光分解性を若干有するものの、 生分解性をほとんど有していない。 したがって、 ポリアクリル酸 (塩) 系の吸水性樹脂を廃棄物として処理する際、 例えば、 埋め 立て処分等を行うと、 土中の細菌や微生物により分解されにくく、 環境汚染等を 引き起こすといった問題がある。  In recent years, water-absorbent resins have been used not only as sanitary materials such as paper mummies and sanitary products, but also in the medical field such as bodily fluid absorbents; civil engineering and construction fields such as sealing materials (water-stopping materials) and anti-condensation materials; It is used in a wide variety of fields such as food fields such as holding materials; industrial fields such as dehydrating agents that remove water from solvents; and agriculture and horticulture fields such as greening. Then, various water-absorbing resins according to these uses have been proposed. Among them, polyacrylic acid (salt) -based water-absorbing resins are widely used because of their excellent water-absorbing ability and low cost. However, the polyacrylic acid (salt) -based water-absorbing resin has some photodegradability in the water-absorbing state, but hardly any biodegradability. Therefore, when treating a polyacrylic acid (salt) -based water-absorbent resin as waste, for example, if it is landfilled, it is less likely to be decomposed by bacteria and microorganisms in the soil, causing problems such as environmental pollution. is there.
—方、 吸水能が優れ、 かつ生分解性を有する吸水性樹脂としては、 例えば、 多 糖類そのものを架橋させた吸水性樹脂 (特開昭 56 - 5 1 37号公報、 特開昭 5 8-79006号公報、 特開昭 60 _ 58443号公報、 特開平 8— 89796 号公報) 、 多糖類誘導体としてセルロース誘導体を用い、 このセルロース誘導体 を架橋させた吸水性樹脂 (特開昭 49- 1 28987号公報、 特開昭 50— 85 689号公報、 特開昭 54— 163981号公報、 特公昭 55— 500785号 公報、 特開昭 54— 28755号公報、 特開昭 57— 1 37301号公報、 特開 昭 58— 1 701号公報、 特開昭 61— 89364号公報、 特開平 5— 4992 5公報、 特開平 5— 123573号公報、 特開平 7— 82301号公報) 等が知 られている。 On the other hand, examples of the water-absorbing resin having excellent water-absorbing ability and biodegradability include, for example, a water-absorbing resin obtained by crosslinking a polysaccharide itself (JP-A-56-137, JP-A-58-137). 79006, JP-A-60-58443, JP-A-8-89796), a water-absorbent resin obtained by using a cellulose derivative as a polysaccharide derivative and cross-linking the cellulose derivative (Japanese Patent Laid-Open No. 49-28987) JP, JP-A-50-85689, JP-A-54-163981, JP-B-55-500785, JP-A-54-28755, JP-A-57-137301, JP-A 58-1701, JP-A-61-89364, JP-A-5-49925, JP-A-5-123573, JP-A-7-82301), etc. Have been.
しかしながら、 多糖類または多糖類誘導体を架橋させた吸水性樹脂の生分解性 は、 原料である多糖類または多糖類誘導体の生分解性よりも劣っている。 さらに、 吸水性樹脂の吸水能を高めるためには、 理論的に架橋密度を小さくする必要があ るが、 架橋密度を小さくすれば未架橋の多糖類または多糖類誘導体が水に溶解し、 溶解分が高くなるといった問題がある。 したがって、 吸水能および生分解性に優 れ、 しかも水への溶解分が少な 、吸水性樹脂およびその製造方法が嘱望されてい る。 発明の要約  However, the biodegradability of the water-absorbent resin obtained by crosslinking the polysaccharide or polysaccharide derivative is inferior to that of the raw material polysaccharide or polysaccharide derivative. Furthermore, in order to increase the water absorbing ability of the water-absorbing resin, it is theoretically necessary to reduce the crosslink density. There is a problem that the minutes become high. Therefore, a water-absorbent resin excellent in water-absorbing ability and biodegradability and having a low solubility in water, and a method for producing the same are desired. Summary of the Invention
本発明の目的は、 吸水能および生分解性に優れ、 しかも溶解分が少ない吸水性 樹脂およびその製造方法を提供することにある。  An object of the present invention is to provide a water-absorbing resin which is excellent in water-absorbing ability and biodegradability and has a small amount of dissolved components, and a method for producing the same.
本発明者らは、 多糖類とポリビニルアルコールを架橋剤によって架橋させて得 られる吸水性樹脂が、 吸水能および生分解性に優れ、 しかも溶解分が少ないこと を見出し、 本発明を完成した。  The present inventors have found that a water-absorbing resin obtained by crosslinking a polysaccharide and polyvinyl alcohol with a crosslinking agent has excellent water-absorbing ability and biodegradability, and has a small amount of dissolved components, and has completed the present invention.
すなわち、 本発明は、 多糖類とポリビニルアルコールを架橋剤によって架橋さ せて得られる吸水性樹脂に関する。  That is, the present invention relates to a water-absorbing resin obtained by crosslinking a polysaccharide and polyvinyl alcohol with a crosslinking agent.
上記吸水性樹脂は、 生理食塩水に対する吸水能が 1 0 g Z g以上、 生理食塩水 に対する溶解分が 3 0 %以下であり、 かつ、 生分解率が 1 5 %以上であることが 好ましい。  The water-absorbent resin preferably has a water-absorbing capacity of 10 g Z g or more in physiological saline, a dissolved content in physiological saline of 30% or less, and a biodegradation rate of 15% or more.
上記ポリビニルアルコールの割合が、 多糖類 1 0 0重量部に対して、 0 . 1〜 2 0 0重量部であることが好ましい。  The proportion of the polyvinyl alcohol is preferably 0.1 to 200 parts by weight based on 100 parts by weight of the polysaccharide.
上記架橋剤の使用量が、 多糖類とポリビュルアルコールの合計量 1 0 0重量部 に対して、 0 . 0 5 ~ 5 0重量部であることが好ましい。  The amount of the crosslinking agent used is preferably 0.05 to 50 parts by weight based on 100 parts by weight of the total amount of the polysaccharide and the polybutyl alcohol.
上記架橋剤が、 ジアルデヒド類又は多価カルボン酸類であることが好ましい。 上記多糖類が、 カルボキシメチルセルロースであることが好ましい。  The crosslinking agent is preferably a dialdehyde or a polycarboxylic acid. Preferably, the polysaccharide is carboxymethyl cellulose.
また、 本発明は、 多糖類とポリビエルアルコールと架橋剤とを混合して、 加熱 することを特徴とする吸水性樹脂の製造方法に関する。 発明の詳細な開示 The present invention also relates to a method for producing a water-absorbent resin, which comprises mixing a polysaccharide, a polybiol alcohol, and a crosslinking agent and heating the mixture. Detailed Disclosure of the Invention
本発明に用いられる多糖類としては、 特に限定されるものではないが、 多糖類、 多糖類誘導体およびこれらのナトリゥム塩や力リゥム塩等のアルカリ金属塩等が 挙げられる。  Examples of the polysaccharide used in the present invention include, but are not limited to, polysaccharides, polysaccharide derivatives, and alkali metal salts such as sodium salts and potassium salts.
多糖類としては、 例えば、 セルロース、 メチノレセノレロース、 ェチルセルロース、 メチルェチルセルロース、 へミセノレロース、 デンプン、 メチノレデンプン、 ェチノレ デンプン、 メチルェチルデンプン、 寒天、 カラギ一ナン、 アルギン酸、 ぺクチン 酸、 グァーガム、 タマリンドガム、 ローカス トビーンガム、 コンニヤクマンナン、 デキストラン、 ザンサンガム、 プルラン、 ゲランガム、 キチン、 キトサン、 コン ドロイチン硫酸、 へパリン、 ヒアルロン酸等が挙げられる。  Polysaccharides include, for example, cellulose, methinoresenorelose, ethylcellulose, methylethylcellulose, hemicenolerose, starch, methinolestarch, ethinole starch, methylethylstarch, agar, carrageenan, alginic acid, pectic acid, Guar gum, tamarind gum, locust bean gum, konnyaku mannan, dextran, xanthan gum, pullulan, gellan gum, chitin, chitosan, chondroitin sulfate, heparin, hyaluronic acid and the like.
多糖類誘導体としては、 例えば、 前記多糖類をカルボキシアルキル化あるいは ヒ ドロキシァノレキノレ化したカノレポキシメチルセルロース、 ヒ ドロキシェチルセノレ ロース、 デンプングリコール酸、 寒天誘導体、 カラギーナン誘.導体等が挙げられ る。  Examples of the polysaccharide derivative include canolepoxymethylcellulose obtained by carboxyalkylating or hydroxylating the polysaccharide, hydroxyshethylcenolorose, starch glycolic acid, agar derivatives, carrageenan-inducing conductor, and the like. It is possible.
なお、 本明細書において多糖類には、 多糖類誘導体およびこれらの金属塩も含 まれる。  In the present specification, the polysaccharide also includes a polysaccharide derivative and a metal salt thereof.
これらの多糖類、 多糖類誘導体及びこれらの金属塩は、 単独で使用してもよく、 また、 二種類以上を適宜混合してもよい。 中でも、 高い吸水能を有する吸水性樹 脂が得られる観点から、 カルポキシメチルセルロースおよびそのナトリゥム塩や カリウム塩等のアルカリ金属塩が好適に用いられる。  These polysaccharides, polysaccharide derivatives and metal salts thereof may be used alone or in combination of two or more. Among them, carboxymethylcellulose and alkali metal salts thereof such as sodium salt and potassium salt are preferably used from the viewpoint of obtaining a water-absorbing resin having high water-absorbing ability.
前記多糖類のアル力リ金属塩および多糖類誘導体のアル力リ金属塩における塩 による置換度は、 0 . 2〜1 . 2、 好ましくは 0 . 4〜0 . 9であることが望ま しい。 置換度が 0 . 2未満の場合、 得られる吸水性樹脂の吸水能が低下するおそ れがある。 また、 置換度が 1 . 2を超える場合、 得られる吸水性樹脂の生分解率 が低下するおそれがある。  The degree of substitution of the polysaccharide metal salt and the polysaccharide derivative by the metal salt is preferably from 0.2 to 1.2, and more preferably from 0.4 to 0.9. If the degree of substitution is less than 0.2, the resulting water-absorbent resin may have a reduced water-absorbing ability. If the degree of substitution exceeds 1.2, the biodegradability of the resulting water-absorbent resin may be reduced.
本究明に用いられるポリビエルアルコールの重量平均分子量は、 特に限定され ず、 好ましくは 1 0 0 0 0 0以下、 より好ましくは 9 0 0 0 0以下、 さらに好ま しくは 8 0 0 0 0〜 1 0 0 0 0である。 重量平均分子量が 1 0 0 0 0 0を超える 場合、 得られる吸水性樹脂の生分解性が低下するおそれがある。 ポリビュルアルコールのケン化度は、 特に限定されず、 好ましくは 6 0〜9 9 . 9 %、 より好ましくは 8 0〜 9 9 %である。 ケン化度が 6 0 %未満の場合、 また は、 9 9 . 9 %を超える場合、 得られる吸水性樹脂の吸水能が低くなるおそれが める。 The weight average molecular weight of the polyvinyl alcohol used in the present study is not particularly limited, but is preferably 100,000 or less, more preferably 900,000 or less, and still more preferably 800,000 to 1 0 0 0 0. When the weight average molecular weight exceeds 100,000, the biodegradability of the obtained water-absorbent resin may be reduced. The saponification degree of the polybutyl alcohol is not particularly limited, and is preferably 60 to 99.9%, more preferably 80 to 99%. If the degree of saponification is less than 60%, or if it exceeds 99.9%, the water absorbing ability of the resulting water-absorbing resin may decrease.
ポリビュルアルコールの好ましい割合は、 多糖類 1 0 0重量部に対して 0 . 1 〜 2 0 0重量部、 より好ましくは 1〜 1 5 0重量部、 さらに好ましくは 1 0〜 1 2 0重量部である。 ポリビニルアルコールの割合が 0 . 1重量部未満の場合、 得 られる吸水性樹脂の溶解分が多くなるおそれがある。 また、 ポリビュルアルコー ルの割合が 2 0 0重量部を超える場合、 得られる吸水性樹脂の吸水能が低下する おそれがある。  A preferable ratio of the polybutyl alcohol is 0.1 to 200 parts by weight, more preferably 1 to 150 parts by weight, and still more preferably 10 to 120 parts by weight with respect to 100 parts by weight of the polysaccharide. It is. If the proportion of polyvinyl alcohol is less than 0.1 part by weight, the resulting water-absorbent resin may have an increased amount of dissolved components. If the proportion of the polybutyl alcohol exceeds 200 parts by weight, the water absorbing ability of the resulting water-absorbing resin may be reduced.
本発明に用いられる架橋剤としては、 特に限定されないが、 ジアルデヒ ド類、 多価カルボン酸類、 エポキシ化合物等が挙げられる。 中でも、 ジアルデヒド類、 多価カルボン酸類が好ましい。  The cross-linking agent used in the present invention is not particularly limited, and examples include a dialdehyde, a polycarboxylic acid, and an epoxy compound. Among them, dialdehydes and polycarboxylic acids are preferred.
ジアルデヒド類としては、 例えば、 グリオキザール、 グルタルアルデヒド、 テ レフタルアルデヒド等が挙げられる。 中でも、 入手が容易で安価である観点から、 ダリオキザール、 グルタルアルデヒドが好適に用いられる。  Examples of dialdehydes include glioxal, glutaraldehyde, telephthalaldehyde and the like. Among them, darioxizal and glutaraldehyde are preferably used from the viewpoint of easy availability and low cost.
多価カルボン酸類としては、 シユウ酸、 マレイン酸、 コハク酸、 ァスパラギン 酸、 ポリアクリル酸等が挙げられる。 中でも、 安全性が高い観点からコハク酸が 好適に用いられる。  Examples of the polycarboxylic acids include oxalic acid, maleic acid, succinic acid, aspartic acid, polyacrylic acid, and the like. Among them, succinic acid is preferably used from the viewpoint of high safety.
エポキシ化合物としては、 エチレングリコ一ルジグリシジルエーテノレ、 ポリエ チレングリコ一ノレジグリシジルエーテル、 グリセ口一ルポリグリシジノレエーテル、 ジグリセ口一ルジグリシジルエーテル、 ポリグリセ口一ルポリグリシジルエーテ ル、 プロピレングリ コ一ルジグリシジノレエーテノレ、 ポリプロピレングリ コールジ グリシジルエーテル、 グリシドール、 γ—グリシドキシプロピルトリメ トキシシ ラン等が挙げられる。  Epoxy compounds include ethylene glycol diglycidyl ether, polyethylene glycol monoresidic glycidyl ether, glycerol polyglycidinole ether, diglycerol monoglycidyl ether, polyglycerol polyglycidyl ether, and propylene glycol. Monoglycidinoleate ether, polypropylene glycol diglycidyl ether, glycidol, γ-glycidoxypropyltrimethoxysilane and the like.
架橋剤の好ましい使用量は、 多糖類とポリビュルアルコールの合計量 1 0 0重 量部に対して 0 . 0 5〜5 0重量部、 より好ましくは 0 . 1〜2 0重量部、 さら に好ましくは 1〜1 0重量部である。 架橋剤の使用量が 0 . 0 5重量部未満の場 合、 得られる吸水性樹脂の溶解分が増加するおそれがある。 また、 架橋剤の使用 量が 5 0重量部を超える場合、 使用量に見合った効果が得られないばかりか、 得 られる吸水性樹脂の吸水能が低下するおそれがある。 The preferred amount of the crosslinking agent used is 0.05 to 50 parts by weight, more preferably 0.1 to 20 parts by weight, more preferably 0.1 to 20 parts by weight, based on 100 parts by weight of the total amount of the polysaccharide and the polybutyl alcohol. Preferably it is 1 to 10 parts by weight. If the amount of the crosslinking agent used is less than 0.05 part by weight, the amount of the dissolved water-absorbent resin obtained may increase. Use of cross-linking agent When the amount exceeds 50 parts by weight, not only the effect corresponding to the amount used is not obtained, but also the water absorbing ability of the obtained water-absorbing resin may be reduced.
本発明の吸水性樹脂は、 多糖類とポリビュルアルコールと架橋剤とを混合して、 加熱し、 架橋することによって製造することができる。  The water-absorbent resin of the present invention can be produced by mixing a polysaccharide, polybutyl alcohol, and a crosslinking agent, heating and crosslinking.
多糖類とポリビュルアルコールを架橋剤によって架橋させる際には、 均一な架 橋反応が行われるように、 均一にかつ充分に混合することが好ましい。 例えば、 粉体同士で混合する方法、 スラリー状態で混合する方法、 溶液状態で混合する方 法等が挙げられる。 中でも、 より均一にかつ充分に混合することができる観点か ら、 溶液状態で混合する方法が好適に用いられる。  When the polysaccharide and the polybutyl alcohol are cross-linked by a cross-linking agent, they are preferably mixed uniformly and sufficiently so that a uniform cross-linking reaction is performed. For example, there are a method of mixing powders, a method of mixing in a slurry state, a method of mixing in a solution state, and the like. Among them, a method of mixing in a solution state is preferably used from the viewpoint of more uniform and sufficient mixing.
前記混合方法において使用する溶媒は、 例えば、 水またはメチルアルコール、 エチルアルコール、 プロピルアルコール等の低級アルコール等の親水性有機溶媒 等が挙げられる。  Examples of the solvent used in the mixing method include water and hydrophilic organic solvents such as lower alcohols such as methyl alcohol, ethyl alcohol, and propyl alcohol.
多糖類とポリビュルアルコールを溶液とする場合、 その溶液の濃度は 0 . 1〜 2 0重量%であることが好ましく、 より好ましくは 0 . 5〜1 0重量%でぁる。 濃度が、 0 . 1重量%未満の場合、 溶液の量が多くなるとともに、 溶媒を除去す るため長時間の加熱を必要とし、 製造効率が低下するおそれがある。 また、 濃度 が 2 0重量。 /0を超える場合、 水溶液の粘度が高くなり、 多糖類とポリビエルアル コールとを均一にかつ充分に混合することが困難となるおそれがある。 When a polysaccharide and polybutyl alcohol are used as a solution, the concentration of the solution is preferably 0.1 to 20% by weight, more preferably 0.5 to 10% by weight. When the concentration is less than 0.1% by weight, the amount of the solution becomes large, and a long time of heating is required to remove the solvent, which may reduce the production efficiency. The concentration is 20 weight. If the ratio exceeds / 0 , the viscosity of the aqueous solution increases, and it may be difficult to uniformly and sufficiently mix the polysaccharide and polyvier alcohol.
また、 架橋剤を溶液とする場合、 その溶液の濃度は 1重量%〜飽和濃度である ことが好ましく、 より好ましくは 5重量%〜飽和濃度である。 濃度が 1重量%未 満の場合、 溶液の量が多くなるとともに、 溶媒を除去するため長時間の加熱を必 要とし、 製造効率が低下するおそれがある。  When the crosslinking agent is used as a solution, the concentration of the solution is preferably 1% by weight to a saturated concentration, more preferably 5% by weight to a saturated concentration. If the concentration is less than 1% by weight, the amount of the solution increases, and a long heating time is required to remove the solvent, which may lower the production efficiency.
加熱して架橋する際の、 加熱温度は 6 0〜 1 8 0 °Cであることが好ましく、 よ り好ましくは 7 0〜 1 5 0 °Cである。 加熱温度が 6 0 °C未満の場合、 架橋反応が 進行しにくくなるおそれがある。 また、 加熱温度が 1 8 0 °Cを超える場合、 多糖 類が着色したり、 架橋反応が進みすぎて吸水能が低下するおそれがある。 なお、 加熱方法は、 特に限定させるものではないが、 遠赤外線、 マイクロ波等を照射す る方法、 熱風乾燥機、 減圧乾燥機等を用いる方法等が挙げられる。  The heating temperature for crosslinking by heating is preferably from 60 to 180 ° C, and more preferably from 70 to 150 ° C. If the heating temperature is lower than 60 ° C, the crosslinking reaction may not easily proceed. If the heating temperature exceeds 180 ° C., the polysaccharide may be colored or the crosslinking reaction may proceed too much, resulting in a decrease in water absorption capacity. The heating method is not particularly limited, and examples thereof include a method of irradiating far infrared rays, microwaves, and the like, and a method of using a hot air dryer, a reduced pressure dryer, and the like.
加熱時間は、 特に限定されるものではなく、 多糖類、 ポリビニルアルコール、 架橋剤、 および溶媒の種類や組み合わせ、 加熱温度、 所望する吸水性樹脂の物性 に応じて、 適宜設定すればよいが、 通常、 1〜20時間程度である。 . The heating time is not particularly limited, and includes polysaccharides, polyvinyl alcohol, It may be appropriately set according to the type and combination of the crosslinking agent and the solvent, the heating temperature, and the desired physical properties of the water-absorbing resin. .
本発明においては、 必要に応じて架橋反応を円滑に進行させるために触媒を添 加して架橋反応を行ってもよい。 触媒としては、 硫酸、 塩酸、 リン酸、 硝酸等の 酸が好適に用いられる。  In the present invention, if necessary, a catalyst may be added to carry out the crosslinking reaction so that the crosslinking reaction proceeds smoothly. As the catalyst, acids such as sulfuric acid, hydrochloric acid, phosphoric acid, and nitric acid are suitably used.
触媒の使用量は、 架橋剤 100重量部に対して、 1〜200重量部であること が好ましい。 触媒の使用量が 1重量部未満の場合、 反応が進行しにくくなるおそ れがある。 また、 触媒の使用量が 200重量部を超える場合、 使用量に見合う効 果がなく経済的でない。  The amount of the catalyst used is preferably 1 to 200 parts by weight based on 100 parts by weight of the crosslinking agent. If the amount of the catalyst is less than 1 part by weight, the reaction may not easily proceed. If the amount of the catalyst exceeds 200 parts by weight, there is no effect corresponding to the amount of the catalyst, and it is not economical.
本発明の吸水性樹脂の製造方法においては、 例えば、 多糖類、 ポリビュルアル コール、 架橋剤のそれぞれを水溶液とし、 多糖類とポリビエルアルコールの水溶 液を予め混合した後、 架橋剤の水溶液を添加して再度混合する。 得られた水溶液 を加熱して、 架橋反応を進行させながら、 水溶液から水を除去して乾燥させるこ とにより乾燥品が得られる。 得られた乾燥品を粉砕することにより吸水性樹脂を 製造することができる。  In the method for producing a water-absorbent resin of the present invention, for example, an aqueous solution of a polysaccharide, a polyvinyl alcohol, and a crosslinking agent are used, and an aqueous solution of a polysaccharide and a polyvinyl alcohol are mixed in advance, and then an aqueous solution of a crosslinking agent is added. And mix again. The obtained aqueous solution is heated to remove the water from the aqueous solution while the crosslinking reaction proceeds, and then dried to obtain a dried product. A water-absorbent resin can be produced by pulverizing the obtained dried product.
かくして得られた吸水性樹脂は、 その生理食塩水に対する吸水能が 1 0 gZg 以上、 好ましくは 15〜80 gZgである。 吸水能が 10 g Z g未満の場合、 吸 水性樹脂の使用量が増大するため好ましくない。 なお、 本発明における吸水能と は、 吸水性樹脂 1 gを 0. 9重量%食塩水 200 m 1中に入れ、 充分膨潤させ、 次いで、 200メッシュの金網で吸水性樹脂をろ別して得られた吸水性樹脂の重 量 A (g) を測定したときに、 次式によって算出される値である。  The water-absorbing resin thus obtained has a water-absorbing capacity for physiological saline of 10 gZg or more, preferably 15 to 80 gZg. If the water absorption capacity is less than 10 g Z g, the amount of the water-absorbing resin used is undesirably increased. The water-absorbing ability in the present invention refers to a water-absorbent resin obtained by putting 1 g of a water-absorbent resin into 0.9 ml of 0.9% by weight saline solution, sufficiently swelling, and then filtering the water-absorbent resin through a 200-mesh wire net. When the weight A (g) of the water-absorbent resin is measured, the value is calculated by the following equation.
吸水能 (g/g) =A/1  Water absorption capacity (g / g) = A / 1
また、 本発明の吸水性樹脂の生理食塩水に対する溶解分は、 30%以下、 好ま しくは 25 %以下である。 溶解分が 30%を超える場合、 吸水能が低下するため 好ましくない。 なお、 本発明における溶解分とは、 吸水性樹脂 1 gを 0. 9重量 %食塩水 25 Om l中に入れ、 スターラーで 3時間攪拌を行い、 次いで、 200 メッシュの金網で濾過し、 回収した濾液 5 Om 1をあらかじめ乾燥させた重量既 知 A (g) のビーカーに正確に測りとり、 140 °Cで 16時間乾燥した後の重量 B (g) を測定したときに、 次式によって算出される値である。 溶解分 (%) = [ (B— A) /5 0x 2 5 0 - 2 5 0 x0. 0 0 9] x 1 0 0 さらに、 本発明の吸水性樹脂の生分解率は、 1 5%以上、 好ましくは 2 0 %以 上である。 生分解率が 1 5 %未満の場合、 生分解性に劣り、 環境汚染等の問題を 引き起こすおそれがある。 なお、 本発明における生分解率とは、 J I S K 6 951に準拠し、 無水りん酸ニ水素力リウム 8. 5 g、 無水りん酸水素二力リゥ ム 21. 75 g、 りん酸水素ニナトリウム二水和物 33. 4 g、 塩化アンモェゥ ム 0. 5 gを蒸留水に溶解して: L O O Om lにした標準試験培養液 400 m 1に、 吸水性樹脂 80 m gを添加し、 次いで、 標準活个生汚泥を 30 p pmとなるように 添加した培養液をスターラ一で攪拌しながら、 25 °Cで 28日間培養したときに 発生した二酸化炭素の総量 A (mg) を求め、 一方、 吸水性樹脂を添加しない培 養液から発生する二酸化炭素の総量 B (mg) を同様にして求め、 さらに、 吸水 性樹脂が完全に分解した時に発生する二酸化炭素の量の計算値 C (mg) を求め たときに、 次式によって算出される値である。 In addition, the content of the water-absorbent resin of the present invention in physiological saline is 30% or less, and preferably 25% or less. If the dissolved content exceeds 30%, the water absorption capacity is undesirably reduced. In the present invention, the dissolved matter was 1 g of a water-absorbent resin in 25 Oml of 0.9% by weight saline solution, stirred for 3 hours with a stirrer, and then collected by filtration through a 200-mesh wire net. The filtrate (5 Om1) was accurately measured in a previously dried beaker of known weight A (g), and the weight B (g) after drying at 140 ° C for 16 hours was measured. Value. Dissolved content (%) = [(B-A) /50x250-250x0.0.09] x100 Further, the biodegradability of the water-absorbent resin of the present invention is 15% or more. It is preferably at least 20%. If the biodegradation rate is less than 15%, the biodegradability is poor and may cause environmental pollution and other problems. The biodegradation rate in the present invention is based on JIS K 6951, 8.5 g of anhydrous dihydrogen phosphate, 21.75 g of anhydrous hydrogen phosphate, 21.75 g of disodium hydrogen phosphate, Dissolve 33.4 g of the hydrate and 0.5 g of ammonium chloride in distilled water: Add 400 mg of the water-absorbent resin to 400 ml of the standard test culture broth made LOO Oml, and then add The total amount A (mg) of carbon dioxide generated when culturing at 25 ° C for 28 days while stirring the culture solution to which raw sludge was added to 30 ppm with a stirrer was determined. The total amount B (mg) of carbon dioxide generated from the culture solution to which no water was added was calculated in the same manner, and the calculated value C (mg) of carbon dioxide generated when the water-absorbent resin was completely decomposed was calculated. Sometimes it is a value calculated by the following equation.
生分解率 (%) = (A-B) /C 1 0 0  Biodegradation rate (%) = (A-B) / C 100
本発明の吸水性樹脂には、 加工性の改良および品質性能向上のために、 必要に 応じて、 シリカ微粒子等の無機微粒子や、 パルプ繊維等からなる充填剤、 活性炭 や鉄フタロシアニン誘導体、 植物性精油等を吸着させたゼォライト等を主体とす る消臭剤、 芳香剤、 銀や銅、 亜鉛等の金属等を主体とする抗菌剤、 殺菌剤、 防力 ビ剤、 防腐剤、 脱酸素剤 (酸化防止剤) 、 界面活性剤、 発泡剤、 香料等の添加剤 を添加してもよい。 前記添加剤の添加量は、 添加剤の種類により一概に決定され ないが、 吸水性樹脂 1 0 0重量部に対して、 通常、 0. 0 1〜5重量部程度であ る。  The water-absorbent resin of the present invention may contain, as necessary, inorganic fine particles such as silica fine particles, a filler made of pulp fiber, and the like, activated carbon and iron phthalocyanine derivatives, and vegetable properties in order to improve processability and quality performance. Deodorant mainly composed of zeolite etc. to which essential oil is adsorbed, aromatic agent, antibacterial agent mainly composed of metals such as silver, copper, zinc, etc., bactericide, antibacterial agent, preservative, deoxidizer (Antioxidants), additives such as surfactants, foaming agents, and fragrances may be added. The amount of the additive to be added is not generally determined by the type of the additive, but is usually about 0.01 to 5 parts by weight based on 100 parts by weight of the water absorbent resin.
本発明の吸水性樹脂は、 紙ォムッや生理用品等の衛生材料等の衛生分野のみな らず、 外科手術時の体液吸収材、 創傷保護材等の医療分野;シールド工法時のシ ーリング材、 コンクリート養生材、 ゲル水嚢、 結露防止材等の土木 ·建築分野; 肉や魚等のドリップ吸収材ゃ鮮度保持材、 野菜等の鮮度保持材等の食品分野;溶 剤から水を除去する脱水材等の工業分野;緑化等を行う際の土壌保水材ゃ植物栽 培用保水材、 種子コーティング材等の農業、 園芸分野等、 さらには、 油水分離材、 廃液吸収剤、 防振材、 防音材、 家庭用雑貨品、 玩具、 人工雪等の非常に多種多様 な分野に利用することができる。 発明を実施するための最良の形態 The water-absorbent resin of the present invention can be used not only in the field of hygiene such as sanitary materials such as paper mummies and sanitary products, but also in the medical field such as a bodily fluid absorbent at the time of surgery and a wound protecting material; Civil engineering and construction fields such as concrete curing materials, gel blisters, and anti-condensation materials; drip absorbing materials such as meat and fish; food products such as freshness preserving materials and freshness preserving materials such as vegetables; dehydration to remove water from solvents Industrial fields such as lumber; soil water retention materials for greening, etc .; water retention materials for plant cultivation, seed coating materials, etc. in agriculture and horticulture fields; oil / water separation materials, waste liquid absorbents, vibration damping materials, soundproofing A wide variety of materials, household goods, toys, artificial snow, etc. It can be used in various fields. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明を実施例および比較例により詳細に説明するが、 本発明はこれら の実施例にのみ限定されるものではない。  Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples, but the present invention is not limited to only these Examples.
(実施例 1 ) (Example 1)
カルボキシメチルセルロース (アルドリッチ社製、 置換度 0. 7) の 5重量% 水溶液 400 gとポリビュルアルコール (和光純薬工業株式会社製、 分子量 44 000、 ケン化度 88%) の 5重量%水溶液 100 gとを 80 °Cで 5時間攪拌し て混合した。 次いで、 40重量%グリオキザール水溶液 5 gと濃硫酸 0. 25 g とを加え、 さらに充分に攪拌して混合した。 得られた混合液を 100°Cに設定し た熱風乾燥機内に 7時間静置して、 架橋反応を進行させながら、 混合液から水を 除去して乾燥させた。 得られた乾燥物をミキサーを用いて粉砕し、 吸水性樹脂 2 4. 5 gを得た。 .  400 g of a 5% by weight aqueous solution of carboxymethyl cellulose (Aldrich, substitution degree 0.7) and 100 g of a 5% by weight aqueous solution of polybutyl alcohol (Wako Pure Chemical Industries, Ltd., molecular weight 44 000, saponification degree 88%) And stirred at 80 ° C for 5 hours to mix. Next, 5 g of a 40% by weight aqueous glyoxal solution and 0.25 g of concentrated sulfuric acid were added, and the mixture was further sufficiently stirred and mixed. The obtained liquid mixture was allowed to stand in a hot-air dryer set at 100 ° C. for 7 hours, and water was removed from the liquid mixture and dried while the crosslinking reaction proceeded. The obtained dried product was pulverized using a mixer to obtain 24.5 g of a water absorbent resin. .
(実施例 2) (Example 2)
実施例 1において、 熱風乾燥機内の静置時間を 7時間から 10時間に変更した 以外は実施例 1と同様にして吸水性樹脂 23. 8 gを得た。  In Example 1, 23.8 g of a water-absorbent resin was obtained in the same manner as in Example 1, except that the standing time in the hot air dryer was changed from 7 hours to 10 hours.
(実施例 3 ) (Example 3)
実施例 1において、 熱風乾燥機の設定温度を 100°Cから 140°Cに変更した 以外は実施例 1と同様にして吸水性樹脂 23. 4 gを得た。 (実施例 4)  In Example 1, 23.4 g of a water-absorbent resin was obtained in the same manner as in Example 1, except that the set temperature of the hot air dryer was changed from 100 ° C to 140 ° C. (Example 4)
実施例 1において、 グリォキザールをダルタルアルデヒドに変更した以外は実 施例 1と同様にして吸水性樹脂 24. 4 gを得た。  In Example 1, 24.4 g of a water-absorbent resin was obtained in the same manner as in Example 1, except that glyoxal was changed to dartalaldehyde.
(実施例 5) 実施例 1において、 ダリオキザールをコハク酸に変更した以外、 実施例 1と同 様にして吸水性樹脂 24. 4 gを得た。 (Example 5) In Example 1, 24.4 g of a water-absorbent resin was obtained in the same manner as in Example 1, except that succinic acid was used instead of dalioxal.
(実施例 6 ) (Example 6)
実施例 1において、 カルボキシメチルセルロースの 5重量0 /0水溶液およびポリ ビエルアルコールの 5重量%水溶液の量を、 それぞれ 250 gに変更した以外は 実施例 1と同様にして吸水性樹脂 24. 2 gを得た。 In Example 1, the amount of 5 wt% aqueous solution of 5 weight 0/0 aqueous solution and poly Biel alcohol carboxymethylcellulose, except for changing each 250 g of Example 1 a water-absorbent resin 24. 2 g in the same manner Obtained.
(比較例 1 ) (Comparative Example 1)
カルボキシメチルセルロース (アルドリッチ社製、 置換度 0. 7) の 5重量% 水溶液 500 g、 40重量%グリォキザール水溶液 5 g、 濃硫酸 0. 25 gを攪 拌して混合した。 得られた混合液を 100°Cに設定した熱風乾燥機内に 7時間静 置して、 架橋反応を進行させながら、 混合液から水を除去して乾燥させた。 得ら れた乾燥物をミキサーを用いて粉砕し、 吸水性樹脂 24. 3 gを得た。  500 g of a 5% by weight aqueous solution of carboxymethyl cellulose (manufactured by Aldrich, substitution degree 0.7), 5 g of a 40% by weight aqueous glyoxal solution, and 0.25 g of concentrated sulfuric acid were stirred and mixed. The obtained mixture was allowed to stand in a hot-air dryer set at 100 ° C. for 7 hours, and water was removed from the mixture and dried while the crosslinking reaction was proceeding. The obtained dried product was pulverized using a mixer to obtain 24.3 g of a water absorbent resin.
(比較例 2) (Comparative Example 2)
ポリビュルアルコール (和光純薬工業株式会社製、 分子量 44000、 ケン化 度 88 %) の 5重量%水溶液 500 g、 40重量%グリォキザール水溶液 5 g、 濃硫酸 0. 25 gを攪拌して混合した。 得られた混合液を 100°Cに設定した熱 風乾燥機内に 7時間静置して、 架橋反応を進行させながら、 混合液から水を除去 して乾燥させた。 得られた乾燥物をミキサーを用いて粉砕し、 吸水性樹脂 24. 1 gを得た。  500 g of a 5% by weight aqueous solution of polybutyl alcohol (manufactured by Wako Pure Chemical Industries, Ltd., molecular weight: 44,000, saponification degree: 88%), 5 g of a 40% by weight aqueous glyoxal solution, and 0.25 g of concentrated sulfuric acid were mixed by stirring. The obtained mixed solution was allowed to stand in a hot-air dryer set at 100 ° C. for 7 hours, and water was removed from the mixed solution and dried while the crosslinking reaction proceeded. The obtained dried product was pulverized using a mixer to obtain 24.1 g of a water absorbent resin.
各実施例および比較例において得られた吸水性樹脂の物性値は以下に示す方法 により測定した。 結果を表 1に示した。  The physical properties of the water-absorbent resin obtained in each of the examples and comparative examples were measured by the following methods. The results are shown in Table 1.
(1) 吸水能 (g/g) (1) Water absorption capacity (g / g)
吸水性樹脂 1 gを 0. 9重量%食塩水 200 m 1中に入れ、 充分膨潤させた。 次いで、 200メッシュの金網で吸水性樹脂をろ別した。 得られた吸水性樹脂の 重量 A (g) を測定し、 次式によって吸水能 (g/g) を算出した。 吸水能 (g/g) = /\ 1 g of the water-absorbing resin was placed in 200 ml of 0.9% by weight saline solution to sufficiently swell. Next, the water-absorbent resin was filtered off with a 200-mesh wire net. The weight A (g) of the obtained water-absorbent resin was measured, and the water absorption capacity (g / g) was calculated by the following equation. Water absorption capacity (g / g) = / \
(2) 溶解分 (2) dissolved components
吸水性樹脂 1 gを 0. 9重量%食塩水 250 m 1中に入れ、 スターラーで 3時 間攪拌を行った。 次いで、 200メッシュの金網で濾過し、 濾液を回収した。 回 収した濾液 5 Om 1をあらかじめ乾燥させた重量既知 A (g) のビーカーに正確 に測りとり、 140°Cで 16時間乾燥した後の重量 B (g) を測定し、 次式によ つて、 溶解分を算出した。  1 g of the water-absorbent resin was placed in 250 ml of 0.9% by weight saline solution, and stirred for 3 hours with a stirrer. Then, the mixture was filtered through a 200-mesh wire net, and the filtrate was recovered. The collected filtrate (5 Om1) is accurately measured in a previously dried beaker of known weight A (g), and the weight B (g) after drying at 140 ° C for 16 hours is measured. The dissolved content was calculated.
溶解分 (%) = [ (B-A) /50x250- 250xO. 009] xl O O  Dissolution (%) = [(B-A) / 50x250- 250xO. 009] xl O O
(3) 生分解率 (3) Biodegradation rate
J I S K 6951に準拠し、 無水りん酸二水素カリウム 8. 5 g、 無水り ん酸水素二カリウム 21. 75 g、 りん酸水素ニナトリウム二水和物 33. 4 g、 塩化ァンモニゥム 0. 5 gを蒸留水に溶解して 1000 m 1にした標準試験培養 液 400m lに、 吸水性樹脂 8 Omgを添加し、 次いで、 標準活性汚泥 ( (財) 化学物質評価研究機構製) が 30 p pmとなるように添加した。 この培養液をス ターラーで攪拌しながら、 25°Cで 28日間培養した。 前記期間中に発生した二 酸化炭素の量を定期的に測定し、 発生した二酸化炭素の総量 A (mg) を求めた。 また、 吸水性樹脂を添加しない培養液から発生する二酸化炭素の総量 B (mg) を同様に求めた。 さらに、 吸水性樹脂が完全に分解した時に発生する二酸化炭素 の量の計算値 C (mg) とから、 次式によって生分解率 (%) を算出した。 生分解率 (%) = (A-B) /Cxi 00 吸水能 溶解分 生 率 Based on JISK 6951, 8.5 g of anhydrous potassium dihydrogen phosphate, 21.75 g of dipotassium hydrogen phosphate, 33.4 g of disodium hydrogen phosphate dihydrate, 0.5 g of ammonium chloride 8 Omg of water-absorbent resin is added to 400 ml of the standard test culture solution that has been dissolved in distilled water to 1000 ml, and then the standard activated sludge (manufactured by Japan Chemicals Evaluation and Research Institute) becomes 30 ppm. Was added as follows. This culture solution was cultured at 25 ° C for 28 days while stirring with a stirrer. The amount of carbon dioxide generated during the above period was measured periodically, and the total amount of generated carbon dioxide A (mg) was determined. In addition, the total amount B (mg) of carbon dioxide generated from the culture solution to which no water absorbent resin was added was similarly determined. Furthermore, the biodegradation rate (%) was calculated from the calculated value C (mg) of the amount of carbon dioxide generated when the water-absorbent resin was completely decomposed by the following formula. Biodegradation rate (%) = (AB) / Cxi 00 Water absorption capacity
(g/g) (%) (%)  (g / g) (%) (%)
実施例 1 25 17 45  Example 1 25 17 45
実施例 2 19 18 27  Example 2 19 18 27
実施例 3 16 16 22  Example 3 16 16 22
実施例 4 23 24 33  Example 4 23 24 33
実施例 5 22 25 35  Example 5 22 25 35
実細 β 20 18 50  Real fine β 20 18 50
比較例 1 16 33 20  Comparative Example 1 16 33 20
比較例 2 7 10 12 表 1より、 実施例 1〜実施例 6の吸水性樹脂は、 吸水能および生分解性に優れ、 しかも溶解分が少ないことがわかる。 それに対して、 多糖類のみを架橋させた比 較例 1の吸水性樹脂は、 吸水能および生分解率に優れているものの、 溶解分が多 いことがわかる。 また、 ポリビエルアルコールのみを架橋させた比較例 2の吸水 性樹脂は、 溶解分が少ないものの、 吸水能および生分解率が低いことがわかる。 産業上の利用可能性  Comparative Example 2 7 10 12 From Table 1, it can be seen that the water-absorbing resins of Examples 1 to 6 have excellent water-absorbing ability and biodegradability, and have a small amount of dissolved components. In contrast, the water-absorbent resin of Comparative Example 1, in which only the polysaccharide was crosslinked, was excellent in the water-absorbing ability and the biodegradation rate, but had a large amount of dissolved components. In addition, it can be seen that the water-absorbent resin of Comparative Example 2 in which only Polyvier alcohol was crosslinked had low solubility, but low water-absorbing ability and biodegradability. Industrial applicability
本発明によると、 吸水能および生分解性に優れ、 しかも溶解分が少ない吸水性 樹脂およびその製造方法を提供することができる。  According to the present invention, it is possible to provide a water-absorbing resin which is excellent in water-absorbing ability and biodegradability and has a small amount of dissolved components, and a method for producing the same.

Claims

請求の範囲 The scope of the claims
1. 多糖類とポリビニルアルコールを架橋剤によって架橋させて得られる吸水 性樹脂。 1. A water-absorbent resin obtained by crosslinking a polysaccharide and polyvinyl alcohol with a crosslinking agent.
2. 生理食塩水に対する吸水能が 10 g/g以上、 生理食塩水に対する溶解分 が 30%以下であり、 かつ、 生分解率が 1 5%以上である請求の範囲第 1項に記 載の吸水性樹脂。 2. The method according to claim 1, wherein the water absorption capacity in physiological saline is 10 g / g or more, the dissolved content in physiological saline is 30% or less, and the biodegradation rate is 15% or more. Water absorbent resin.
3. ポリビュルアルコールの割合が、 多糖類 100重量部に対して、 0. 1〜 200重量部である請求の範囲第 1または 2項に記載の吸水性樹脂。 3. The water-absorbent resin according to claim 1 or 2, wherein the ratio of the polybutyl alcohol is 0.1 to 200 parts by weight based on 100 parts by weight of the polysaccharide.
4. 架橋剤の使用量が、 多糖類とポリビュルアルコールの合計量 100重量部 に対して、 0. 05〜 50重量部である請求の範囲第 1ないし 3項いずれか 1項 に記載の吸水性樹脂。 4. The water absorption according to any one of claims 1 to 3, wherein the amount of the crosslinking agent used is 0.05 to 50 parts by weight based on 100 parts by weight of the total amount of the polysaccharide and the polybutyl alcohol. Resin.
5. 架橋剤が、 ジアルデヒド類又は多価カルボン酸類である請求の範囲第 1な いし 4項いずれか 1項に記載の吸水性樹脂。 5. The water-absorbing resin according to any one of claims 1 to 4, wherein the crosslinking agent is a dialdehyde or a polycarboxylic acid.
6. 多糖類が、 カルボキシメチルセルロースである請求の範囲第 1ないし 5項 いずれか 1項に記載の吸水性樹脂。 6. The water absorbent resin according to any one of claims 1 to 5, wherein the polysaccharide is carboxymethyl cellulose.
7. 多糖類とポリビニルアルコールと架橋剤とを混合して、 加熱することを特 徴とする吸水性樹脂の製造方法。 7. A method for producing a water-absorbent resin, which comprises mixing a polysaccharide, polyvinyl alcohol, and a crosslinking agent and heating the mixture.
PCT/JP2003/006979 2002-06-03 2003-06-03 Water-absorbent resin and process for producing the same WO2003106551A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002161917A JP4132993B2 (en) 2002-06-03 2002-06-03 Water absorbent resin and method for producing the same
JP2002-161917 2002-06-03

Publications (1)

Publication Number Publication Date
WO2003106551A1 true WO2003106551A1 (en) 2003-12-24

Family

ID=29727541

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/006979 WO2003106551A1 (en) 2002-06-03 2003-06-03 Water-absorbent resin and process for producing the same

Country Status (3)

Country Link
JP (1) JP4132993B2 (en)
TW (1) TW200307721A (en)
WO (1) WO2003106551A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110845635A (en) * 2019-11-29 2020-02-28 江苏哈齐诺生物环保科技有限公司 Preparation method of amphoteric polysaccharide water-absorbing material

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4655505B2 (en) * 2004-04-28 2011-03-23 東レ株式会社 Crosslinked biodegradable particles and method for producing the same
WO2009022358A1 (en) 2007-08-10 2009-02-19 Luigi Ambrosio Superabsorbent polymer hydro gels and a method of preparing thereof
JP5188824B2 (en) * 2008-02-07 2013-04-24 サンダイヤポリマー株式会社 Absorbent resin particles and method for producing the same
JP5430091B2 (en) * 2008-07-09 2014-02-26 旭化成せんい株式会社 Superabsorbent resin and method for producing the same
WO2011024021A1 (en) * 2009-08-31 2011-03-03 Ovc Intellectual Capital, Llc Sizing composition containing a biodegradable polymer
BR112013031209B1 (en) 2011-06-07 2020-11-24 Gelesis Llc METHOD TO PRODUCE HYDROGEN
WO2015196054A1 (en) 2014-06-20 2015-12-23 Gelesis, Llc Methods for treating overweight or obesity
US10179824B2 (en) 2015-01-29 2019-01-15 Gelesis Llc Method for producing hydrogels coupling high elastic modulus and absorbance
WO2017189422A1 (en) 2016-04-25 2017-11-02 Gelesis, Llc. Method for treating constipation

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5736595A (en) * 1993-05-03 1998-04-07 Chemische Fabrik Stockhausen Gmbh Polymer composition, absorbent material composition, their production and their use
JPH10279693A (en) * 1997-04-03 1998-10-20 Fuji Xerox Co Ltd Production of water-absorbing gel particle
WO1999025393A2 (en) * 1997-11-19 1999-05-27 Amcol International Corporation Multicomponent superabsorbent gel particles
JP2001011294A (en) * 1999-07-02 2001-01-16 Miyoshi Oil & Fat Co Ltd Aqueous dispersion of biodegradable resin and biodegradable composite material
JP2001114803A (en) * 1999-10-18 2001-04-24 Unitika Ltd Water-absorbing agent and its production
US6358580B1 (en) * 1998-01-09 2002-03-19 Thomas Mang Sealing material which swells when treated with water

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5736595A (en) * 1993-05-03 1998-04-07 Chemische Fabrik Stockhausen Gmbh Polymer composition, absorbent material composition, their production and their use
JPH10279693A (en) * 1997-04-03 1998-10-20 Fuji Xerox Co Ltd Production of water-absorbing gel particle
WO1999025393A2 (en) * 1997-11-19 1999-05-27 Amcol International Corporation Multicomponent superabsorbent gel particles
US6358580B1 (en) * 1998-01-09 2002-03-19 Thomas Mang Sealing material which swells when treated with water
JP2001011294A (en) * 1999-07-02 2001-01-16 Miyoshi Oil & Fat Co Ltd Aqueous dispersion of biodegradable resin and biodegradable composite material
JP2001114803A (en) * 1999-10-18 2001-04-24 Unitika Ltd Water-absorbing agent and its production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110845635A (en) * 2019-11-29 2020-02-28 江苏哈齐诺生物环保科技有限公司 Preparation method of amphoteric polysaccharide water-absorbing material

Also Published As

Publication number Publication date
TW200307721A (en) 2003-12-16
JP2004010634A (en) 2004-01-15
JP4132993B2 (en) 2008-08-13

Similar Documents

Publication Publication Date Title
Ma et al. Advances in cellulose-based superabsorbent hydrogels
EP2838939B1 (en) Compounded surface treated carboxyalkylated starch polyacrylate composites
JP2013540164A (en) Degradable superabsorbent polymer
Lv et al. Progress in preparation and properties of chitosan-based hydrogels
JPH0782301A (en) Preparation of water absorbent
JPH0889796A (en) Water-absorbing resin, its production and water-absorbing product
WO2003106551A1 (en) Water-absorbent resin and process for producing the same
Relleve et al. Radiation-synthesized polysaccharides/polyacrylate super water absorbents and their biodegradabilities
Liu et al. One‐step synthesis of corn starch urea based acrylate superabsorbents
JP2006328346A (en) Biodegradable water-absorbing material, its production method, and composting aid comprising the material
JP5024921B2 (en) Method for controlling gelation of biodegradable gel by temperature control and molded article
JP2006262847A (en) Soil water-retaining material for horticulture
Dong et al. Preparation and properties of multifunctional eco-friendly slow-release urea fertilizer encapsulated by diatomite filter aid waste-based superabsorbent
US20210061960A1 (en) Polymer gels, method of preparation and uses thereof
JP2001224959A (en) Method for manufacturing water-absorbent
JPH026689A (en) Novel composite sheet and production thereof
Li et al. Recent progress in the utilization of chitin/chitosan for chemicals and materials
JP5937066B2 (en) Water-absorbing and liquid-absorbing polymers
Zhang et al. A novel process for food waste recycling: A hydrophobic liquid mulching film preparation
JP2008179667A (en) Modified polysaccharide and its manufacturing method
JP2008280429A (en) Highly water-absorptive resin and its preparation method
JP2004018565A (en) Water absorbing resin
JP4613155B2 (en) Water absorbent resin and method for producing water absorbent resin
Laftah et al. Synthesis, optimization, characterization and agricultural field evaluation of polymer hydrogel composites based on poly acrylic acid and micro-fiber of oil palm empty fruit bunch
JP2001114803A (en) Water-absorbing agent and its production

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR CN KR SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase