JP4127639B2 - 非線形補償器 - Google Patents

非線形補償器 Download PDF

Info

Publication number
JP4127639B2
JP4127639B2 JP2002270497A JP2002270497A JP4127639B2 JP 4127639 B2 JP4127639 B2 JP 4127639B2 JP 2002270497 A JP2002270497 A JP 2002270497A JP 2002270497 A JP2002270497 A JP 2002270497A JP 4127639 B2 JP4127639 B2 JP 4127639B2
Authority
JP
Japan
Prior art keywords
distortion
signal
phase
output
nonlinear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002270497A
Other languages
English (en)
Other versions
JP2004112218A (ja
Inventor
卓 須賀
清治 磯部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2002270497A priority Critical patent/JP4127639B2/ja
Publication of JP2004112218A publication Critical patent/JP2004112218A/ja
Application granted granted Critical
Publication of JP4127639B2 publication Critical patent/JP4127639B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Amplifiers (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば中波、短波、地上波・衛星・ケーブルテレビ等の伝送装置に用いられ、例えば送信装置の増幅器で生じる非線形特性を補償する非線形補償器に関する。
【0002】
【従来の技術】
現在、アナログ方式のテレビジョン放送では、増幅器で生じる非線形特性と逆の特性を持たせた前置補償器で非線形補償を行っている。特に、増幅器の動作温度等により増幅器の非線形特性が変化するので、増幅器の動作条件によって補償特性を切り替えて対応している。
【0003】
ところで、アナログ方式のテレビジョン放送の場合、信号ピーク値は同期尖頭値で規定されるため、ほとんど一定である。また、クリップ値近傍は同期であるため、クリップレベル近傍で発生する位相ひずみを考慮する必要はなく、同期長が同じになるよう同期振幅のみ補正すればよい。また、ピークファクタ(ピーク値/平均値)が比較的小さいため、低レベル信号領域の線形性もそれほど要求されてはいない。
【0004】
一方、次世代のデジタル方式によるテレビジョン放送にあっては、OFDM(直交周波数分割多重)方式の採用が決定され、その実用化に向けて種々の開発がなされている。ここにおいて、OFDM方式では、OFDM信号の性質上、ピークファクタがアナログ方式に比較して極めて大きいため、低レベルから高レベルまでの線形性が要求される。しかも、各キャリアの位相が情報伝達のポイントとなるため、位相回転のわずかな乱れも特性劣化につながる。このため、非線形特性、位相回転について正確な補償が求められる。
【0005】
以上の要求に基づいて、従来では、送信信号の平均電力が変動する場合には、増幅器の動作点が変動して非線形特性が変化することに着目し、非線形特性の逐次更新によってこの時間方向の非線形特性の変化に対応するようにした非線形増幅器の提案がなされている(例えば特許文献1参照。)。
【0006】
この非線形増幅器では、送信信号の平均電力が比較的緩やかに変化する環境においては、十分な性能を発揮できる。しかしながら、平均電力の時間軸方向のレベル変化量が大きくなるにつれて、逐次更新による非線形補償の追従が間に合わなくなり、最適な補償が行えなくなってしまう。
【0007】
【特許文献1】
特開2001−168774号公報。
【0008】
【発明が解決しようとする課題】
以上述べたように、OFDM方式をはじめとしたデジタル信号伝送にあっては、非線形特性の正確な補償が求められるが、従来の非線形補償器では、被補償電子装置における出力平均電力の時間軸方向のレベル変化量が大きくなるにつれて、逐次更新による非線形補償の追従が間に合わなくなり、最適な補償が行えなくなってしまうという問題があった。
本発明は、上記の事情を考慮してなされたもので、被補償電子装置における出力平均電力の時間軸方向のレベル変化量が大きくなっても非線形特性を適応補償することのできる非線形補償器を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記目的を達成するために本発明に係る非線形補償器は、以下のような特徴的構成を有する。
(1)伝送信号を扱う被補償電子装置の非線形特性を補償する非線形補償器おいて、
前記被補償電子装置の入力信号及び出力信号を取り込み、適宜復調処理して同じ信号形式に合わせた後、両信号間の相関をとることで両信号間の時間差及び位相差を検出し、検出した時間差及び位相差に基づいて両信号の同期及び位相あわせを行う信号処理部と、この信号処理部により同期及び位相が合わせられた被補償電子装置の入力信号及び出力信号の振幅誤差及び位相誤差を歪み成分として検出する歪み検出部と、前記被補償電子装置の入力信号及び出力信号を比較して当該被補償電子装置の過渡特性を検出する過渡特性検出部と、この過渡特性検出部で検出された過渡特性の逆特性を前記被補償電子装置の入力信号に与える適応フィルタと、予め前記歪み検出部で検出される歪み成分とこの歪み成分を補償するための非線形歪み補償量とを対応付けて歪み成分の大きさ別に複数のメモリバンクに格納し、前記適応フィルタの出力レベルに応じて前記メモリバンクを選択的に切り替えて、選択メモリバンクに格納される歪み補償量を読み出し、その歪み補償量で前記被補償電子装置の入力信号を補償する歪み補正部とを具備することを特徴とする。
【0010】
(2)伝送信号を扱う被補償電子装置の非線形特性を補償する非線形補償器おいて、前記被補償電子装置の入力信号及び出力信号を取り込み、適宜復調処理して同じ信号形式に合わせた後、両信号間の相関をとることで両信号間の時間差及び位相差を検出し、検出した時間差及び位相差に基づいて両信号の同期及び位相あわせを行う信号処理部と、この信号処理部により同期及び位相が合わせられた被補償電子装置の入力信号及び出力信号の振幅誤差及び位相誤差を歪み成分として検出する歪み検出部と、前記被補償電子装置の入力信号の平均電力を求める平均電力検出部と、予め前記歪み検出部で検出される歪み成分とこの歪み成分を補償するための非線形歪み補償量とが対応付けられて平均電力別に複数のメモリバンクに格納され、前記平均電力検出部の検出レベルに応じて前記メモリバンクを選択的に切り替えて、選択メモリバンクに格納される歪み補償量を読み出し、その歪み補償量で前記被補償電子装置の入力信号を補償する歪み補正部とを具備することを特徴とする。
【0011】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態を詳細に説明する。
図1は本発明が適用されるOFDM送信装置の構成を示すもので、変調器1でRFのOFDM信号を出力し、本発明に係る非線形補償器2を介して、RF増幅器3にて電力増幅し、送信信号として出力する。RF増幅器3の出力は分配器(方向性結合器)4により一部分配されて非線形補償器2に供給される。
【0012】
(第1の実施形態)
図2は上記非線形補償器2に本発明を適用した場合の第1の実施形態の構成を示すブロック図である。図2において、アナログRF入力端子11には、上記変調器1からのRF信号が供給される。この端子11に供給されたRF信号は、第1ダウンコンバータ(D/C1)12により局部発振器13からのローカル信号に基づいてIF信号に変換され、AGC(自動利得制御)回路14によって所定の振幅レベルに安定化される。このAGC回路14の出力は、スケルチ(SQ)回路15により信号の有無が判別され、第1アナログ・デジタルコンバータ(ADC1)16によりデジタルIF信号に変換された後、第1直交復調回路(Q−DEM1)17で直交復調され、複素形式のデジタルベースバンド信号I1、Q1となる。ここで得られたI1、Q1信号は、必要に応じてFIRフィルタ(またはLPF)18、19によりダウンサンプリングされる。以上により、入力復調部Aが構成される。
【0013】
一方、アナログPA入力端子21には、RF増幅器3から出力されるRF信号が供給される。この端子21に供給されたRF信号は、第2ダウンコンバータ(D/C2)22により移相器23で位相調整されたローカル信号に基づいてIF信号に変換される。このIF信号は、AGC回路24によって所定の振幅レベルに安定化される。このAGC回路24の出力は、スケルチ(SQ)回路25により信号の有無が判別され、第2アナログ・デジタルコンバータ(ADC2)26によりデジタルIF信号に変換された後、第2直交復調回路(Q−DEM2)27で直交復調され、複素形式のデジタルベースバンド信号I2、Q2となる。ここで得られたI2、Q2信号は、必要に応じてFIRフィルタ(またはLPF)28、29によりダウンサンプリングされる。以上により、出力復調部Bが形成される。
【0014】
上記入力復調部Aから出力されるデジタルベースバンド信号I1、Q1は、遅延調整部C及び歪み補正部Dに供給される。ここで、上記遅延調整部Cは、入力復調部Aからのデジタルベースバンド信号I1、Q1をそれぞれ所定時間遅延するRAM遅延器31、32を備える。RAM遅延器31、32で遅延されたデジタルベースバンド信号I3、Q3は、上記出力復調部Bから出力されるデジタルベースバンド信号I2、Q2と共に、遅延検出部E及び歪み検出部Fに供給される。
【0015】
上記遅延検出部Eにおいて、遅延調整部Cからのベースバンド信号I3、Q3と出力復調部Bからのベースバンド信号I2、Q2は複素乗算器41に供給される。この複素乗算器41は、両入力信号を複素乗算することで、両者の複素相関をとってREAL(実部)信号とIMAG(虚部)信号を求めるものである。ここで得られたREAL信号及びIMAG信号は、それぞれREAL積分器42及びIMAG積分器43に供給される。
【0016】
これらの積分器42、43は、例えば累積値/累積時間を求める区間積分を行うことでノイズ等の影響を除去するものである。積分器42、43の出力はピタゴラス変換器44に供給され、デカルト座標から極座標に変換される。ピタゴラス変換器44の出力うち、振幅値は相関ピーク検出器45に供給される。この相関ピーク検出器45は、2つの入力信号の相関出力におけるピーク位置を求めるものである。この相関ピーク検出器45で検出されたピーク位置情報はピタゴラス変換器44から出力される角度値(位相値)と共に遅延/角度検出器46に供給される。
【0017】
この遅延/角度検出器46は、ピークの位置情報から増幅器入力側のデジタルベースバンド信号I3、Q3と増幅器出力側のデジタルベースバンド信号I2、Q2との時間差及び位相差(角度)を求めるもので、ここで得られた時間差は遅延制御器47に供給され、位相差は位相制御器48に供給される。遅延制御器47は、与えられた時間差に応じて遅延調整部CのRAM遅延器31、32の遅延量を設定して粗同期を行い、さらに出力復調部BのFIRフィルタ28、29の係数値を制御して精密同期させるものである。これにより増幅器入力側のデジタルベースバンド信号I3、Q3と増幅器出力側のデジタルベースバンド信号I2、Q2との同期がとられる。また、位相制御器48は、与えられた位相差に応じて、出力復調部Bの移相器23の移相量を調整する。これにより増幅器入力側と増幅器出力側の位相合わせがなされる。
【0018】
尚、上記遅延制御器47及び位相制御器48は、いずれもデジタルベースバンド信号に信号成分が含まれていない場合には時間差及び位相差が得られないため、制御不能となり、誤動作するおそれがある。そこで、入力復調部A及び出力復調部Bに設けられたスケルチ回路15、25の出力から信号成分の有無を判別し、信号成分があるときのみ制御を行うものとする。
【0019】
上記歪み検出部Fは、遅延調整部Cからのデジタルベースバンド信号I3、Q3と出力復調部Bからのデジタルベースバンド信号I2、Q2をそれぞれピタゴラス変換器51、52によってデカルト座標(I3、Q3)、(I2、Q2)から極座標(R3、θ3)、(R2、θ2)に変換した後、誤差演算器53にて両者の振幅誤差ΔR及び位相誤差Δθを求める。
ΔR=R3−R2
Δθ=θ3−θ2
ここで得られた振幅誤差ΔR及び位相誤差Δθは歪み補正部Dに供給される。
【0020】
上記歪み補正部Dは、歪み検出部Fからの振幅誤差ΔR及び位相誤差Δθをそれぞれ積分器61で区間積分し、その積分結果を歪み補償量として、RAMテーブル62に登録しておく。一方、入力復調部Aからのデジタルベースバンド信号I1、Q1をピタゴラス変換器63によりデカルト座標(I1、Q1)から極座標(R1、θ1)に変換した後、R1の値に応じた歪み補償量(ΔR、Δθ)をRAMテーブル62から読み出して、その補償量を歪み補償量加算部64で加算し、逆ピタゴラス変換器65で元のデカルト座標(I1′、Q1′)に戻して出力する。
【0021】
この歪み補正部Dから出力されるデジタルベースバンド信号は出力変換部Gに供給される。この出力変換部Gは入力デジタルベースバンド信号をFIRフィルタ(またはLPF)71、72によって元のビットレートに戻し(オーバーサンプリング)、直交変調(Q−MOD)回路73で直交変調してIF信号とし、デジタル・アナログコンバータ(DAC)74でアナログ信号に変換した後、アップコンバータ(U/C)75で局部発振器13からのローカル信号に基づいてRF信号に変換し、RF出力端子76から歪み補償された信号として出力する。
【0022】
上記構成による非線形補償器において、本発明に係る第1の実施形態の特徴とする点は以下の構成にある。
【0023】
図1において、過渡特性検出部Hは、上記遅延調整部Cからのデジタルベースバンド信号(RF増幅器3の入力)I3,Q3と出力復調部Bからのデジタルベースバンド信号(RF増幅器3の出力)I2,Q2とを比較することで、RF増幅器3の過渡特性を検出するもので、その検出結果は係数として歪み補正部D内に設けられる適応フィルタIに供給される。
【0024】
一方、上記歪み補正部Dに設けられるRAMテーブル62は、図3に示すように、積分器61からの振幅誤差ΔR及び位相誤差Δθのそれぞれの積分出力レベル別の歪み補償量を格納するn個のバンクメモリM1〜Mnと、バンクメモリM1〜Mnの読み出し出力を選択的に導出するセレクタSELとを備える。各バンクメモリM1〜Mnは、ピタゴラス変換器63から出力される振幅値R1によってアドレス制御される。この結果、R1の振幅値に対応する歪み補償量が各バンクメモリM1〜Mnから読み出し出力され、セレクタSELによって選択的に導出される。セレクタSELは、適応フィルタIの出力レベルによってバンクメモリM1〜Mnの読み出し出力を選択的に導出する。
【0025】
上記適応フィルタIは、上記ピタゴラス変換器63から出力される振幅値R1に上記過渡特性検出部Hで得られた過渡特性とは逆の特性を与える。具体的には、過渡特性を示す係数の逆数を振幅値R1に乗算出力する。したがって、RF増幅器3の過渡特性が急峻になるに従って、適応フィルタIから出力される振幅値R1のレベル変化は緩やかとなり、セレクタSELの切替速度が遅くなる。逆に、RF増幅器4の過渡特性が緩やかになるに従って、適応フィルタIから出力される振幅値R1のレベル変化は速くなる。
これにより、RF増幅器3の動作点が変動しその非線形特性が変化しても、この時間方向の非線形特性の変化に追従して非線形補償特性が逐次更新されるようになる。
【0026】
(第2の実施形態)
図4は上記非線形補償器2に本発明を適用した場合の第2の実施形態の構成を示すブロック図である。尚、図4において、図2と同一部分には同一符号を付して示し、ここでは異なる部分について詳述する。
【0027】
すなわち、本発明に係る第2の実施形態の特徴とする点は以下の構成にある。
図4において、平均電力検出部Kは、歪み補正部Dのピタゴラス変換器63から出力される振幅値R1を入力し、非巡回型ディジタルフィルタ(IIR)による積分処理によって平均電力を求めるものである。また、RAMテーブル62は、前述の適応フィルタIを除き、図3に示した構成であり、バンクメモリM1〜MnとセレクタSELを備える。但し、本実施形態の場合は、平均電力検出部Kの検出結果に基づいてバンクメモリM1〜Mnの読み出し出力を切替制御するようにしている。
【0028】
上記構成よれば、第1の実施形態と比べると精度が落ちるが、簡易な構成で実現することが可能であり、RF増幅器3の動作点の変動が平均電力の変化に追従しているとみなせる場合には十分その機能を発揮することができるので、コストパフォーマンスに優れていると言える。
【0029】
以上のように、本実施形態の非線形補償器2では、入力復調部Aと出力復調部BとでRF増幅器3のRF入力及びRF出力のデジタルベースバンド信号を抽出し、両信号の時間差、位相差を遅延検出部Eで相関演算により検出して、遅延調整部Cにより両信号の同期合わせを行う。また、移相器23にて両信号の位相合わせを行う。この状態で、歪み検出部Fにて両信号の振幅誤差及び位相誤差を求め、歪み成分として歪み補正部Dに入力する。歪み補正部Dにて、振幅値に対応する補償量を前記手段で登録された補償量の中から順次選び出し、この補償量を入力復調部Aで得られたデジタルベースバンド信号に加算することで歪み成分を補償し、出力変換部Gにて元の信号フォーマットに変換してRF増幅器3へ出力する。これにより、RF増幅器3の持つ非線形特性と逆の特性を持たせてRF信号をRF増幅器3に入力することができ、そのRF出力の非線形特性による歪み成分を補償することができる。
【0030】
ここで、第1の実施形態では、RF増幅器3の過渡特性を求め、歪み補正部Dにて、その逆特性を入力振幅値に与えて補償テーブルのバンク切替を行うようにしているので、送信平均電力のレベル変化量が大きくなって、RF増幅器3の動作点が変動しその非線形特性が変化しても、この時間方向の非線形特性の変化に追従して非線形補償特性を逐次更新することができる。
【0031】
また、第2の実施形態では、歪み補正部Dの入力振幅値から平均電力を求め、その結果に基づいて補償テーブルのバンク切替を行うようにしているので、RF増幅器3の動作点が変動しその非線形特性が変化しても、簡易な構成で送信平均電力の時間方向の非線形特性の変化に追従して非線形補償特性を逐次更新することができる。
【0032】
尚、本発明は上記実施形態に限定されるものではない。
例えば、上記実施形態では、出力復調部BのFIRフィルタ28、29の係数値を制御して精密同期をとるようにしているが、入力復調部AのFIRフィルタ18、19の係数値を制御して精密同期をとることも同様に可能である。
【0033】
また、上記実施形態では、出力復調部Bの移相器23の移相量を調整することによって位相合わせを行うようにしているが、入力復調部Aのダウンコンバータ12に供給されるローカル信号の位相を移相器によって調整するようにしても、同様に位相合わせを行うことができる。
【0034】
さらに、上記実施形態では、変調器1からアナログRF信号を入力する場合について説明したが、変調器1がデジタルベースバンド信号を直接出力する場合には、このデジタルベースバンド信号を入力して、入力復調部Aの出力に代わって遅延調整部C及び歪み補正部Dに直接供給するようにすれば、上記実施形態と同様の効果を得ることができる。
【0035】
また、上記実施形態はOFDM送信装置に適用した場合であるが、本発明はこれに限定されるものではなく、他のアナログ通信系、デジタル通信系の電子回路、例えばNTSC方式によるアナログテレビジョン信号の送信装置、ATSC方式によるデジタルテレビジョン信号の送信装置等における非線形特性及び位相回転の補償についても適用可能である。 また、上記実施形態では、歪み補正を極座標(R,θ)の加算により行うものとしたが、デカルト座標(I,Q)での乗算により行うことも可能である。
【0036】
さらに、上記実施形態では、全てループ構成とすることにより自動調整、自動制御で非線形特性や位相回転を適応補償するようにしているが、それぞれの検出部の検出結果を適宜表示し、この表示内容を見ながら手動で調整、補正を行うようにしてもよいことは勿論である。
また、上記実施形態では、RF増幅器の非線形特性を補償する場合について説明したが、非線形特性の補償が要求される他の電子装置に対しても同様に実施可能である。
【0037】
【発明の効果】
以上説明したように本発明によれば、送信平均電力の時間軸方向のレベル変化量が大きくなっても非線形特性を適応補償することのできる非線形補償器を提供することができる。
【図面の簡単な説明】
【図1】 本発明が適用されるOFDM送信装置の構成を示すブロック図。
【図2】 本発明の第1の実施形態として、図1のRF増幅器の非線形特性を補償する非線形補償器の構成を示すブロック図。
【図3】 図2に示す実施形態の歪み補正部の具体的な構成を示すブロック図。
【図4】 本発明に係る非線形補償器の第2の実施形態の構成を示すブロック図。
【符号の説明】
1…変調器
2…非線形補償器
3…RF増幅器
4…分配器
A…入力復調部
B…出力復調部
C…遅延制御部
D…歪み補正部
E…遅延検出部
F…歪み検出部
G…出力変換部
H…過渡特性検出部
I…適応フィルタ
K…平均電力検出部
M1〜Mn…バンクメモリ
SEL…セレクタ
11…アナログRF入力端子
12…第1ダウンコンバータ(D/C1)
13…局部発振器
14…AGC回路
15…スケルチ回路(SQ)
16…第1アナログ・デジタルコンバータ(ADC1)
17…第1直交復調回路(Q−DEM1)
18、19…FIRフィルタ
21…アナログPA入力端子
22…第2ダウンコンバータ(D/C2)
23…移相器
24…AGC回路
25…スケルチ回路(SQ)
26…第2アナログ・デジタルコンバータ(ADC2)
27…第2直交復調回路(Q−DEM2)
28、29…FIRフィルタ
30…局部発振器
31、32…RAM遅延器
41…複素乗算器
42…REAL積分器
43…IMAG積分器
44…ピタゴラス変換器
45…自己相関ピーク検出器
46…遅延/角度検出器
47…遅延制御器
48…位相制御器
49…キャリア同期回路
491…微分器
492…ループフィルタ
493…加算器
494…ループフィルタ
51、52…ピタゴラス変換器
53…誤差演算器
61…積分器
62…RAMテーブル
621…現用領域
622…予備領域
623…アドレスタイミング制御部
63…ピタゴラス変換器
64…歪み加算部
65…逆ピタゴラス変換器
71、72…FIRフィルタ
73…直交変調回路(Q−MOD)
74…デジタル・アナログコンバータ(ADC)
75…アップコンバータ(U/C)
76…RF出力端子
77…局部発振器

Claims (1)

  1. 伝送信号を扱う被補償電子装置の非線形特性を補償する非線形補償器おいて、
    前記被補償電子装置の入力信号及び出力信号を取り込み、適宜復調処理して同じ信号形式に合わせた後、両信号間の相関をとることで両信号間の時間差及び位相差を検出し、検出した時間差及び位相差に基づいて両信号の同期及び位相わせを行う信号処理部と、
    この信号処理部により同期及び位相が合わせられた被補償電子装置の入力信号及び出力信号の振幅誤差及び位相誤差を検出する歪み検出部と、
    前記入力信号の振幅値から平均電力を検出する平均電力検出部と、
    前記歪み検出部で検出される振幅誤差及び位相誤差から歪み成分を補償するためのそれぞれの非線形歪み補償量を求めて前記平均電力検出部の検出範囲別に前記入力信号の振幅値に対応付けて複数のメモリバンクに格納し、前記平均電力検出部の検出結果に基づいて前記複数のメモリバンクから該当するメモリバンクを選択し前記入力信号の振幅値に応じて前記選択されたメモリバンクから対応する歪み補償量を読み出し、その歪み補償量で前記被補償電子装置の入力信号を補償する歪み補正部とを具備することを特徴とする非線形補償器。
JP2002270497A 2002-09-17 2002-09-17 非線形補償器 Expired - Fee Related JP4127639B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002270497A JP4127639B2 (ja) 2002-09-17 2002-09-17 非線形補償器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002270497A JP4127639B2 (ja) 2002-09-17 2002-09-17 非線形補償器

Publications (2)

Publication Number Publication Date
JP2004112218A JP2004112218A (ja) 2004-04-08
JP4127639B2 true JP4127639B2 (ja) 2008-07-30

Family

ID=32268111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002270497A Expired - Fee Related JP4127639B2 (ja) 2002-09-17 2002-09-17 非線形補償器

Country Status (1)

Country Link
JP (1) JP4127639B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010016423A (ja) * 2008-06-30 2010-01-21 Sumitomo Electric Ind Ltd 歪補償回路
JP6015386B2 (ja) 2012-11-29 2016-10-26 富士通株式会社 歪補償装置及び歪補償方法
EP3811513A1 (en) * 2018-06-19 2021-04-28 Nokia Technologies Oy Gain transient response compensation

Also Published As

Publication number Publication date
JP2004112218A (ja) 2004-04-08

Similar Documents

Publication Publication Date Title
US8023587B2 (en) Device and method for pre-distorting a base-band digital signal
US8224266B2 (en) Power amplifier predistortion methods and apparatus using envelope and phase detector
US6993091B2 (en) Correction of DC-offset of I/Q modulator
US7310387B2 (en) Apparatus for compensating DC offsets, gain and phase imbalances between I-channel and Q-channel in quadrature transceiving system
EP1860770B1 (en) Distortion compensating apparatus and method
EP1258080B1 (en) System for reducing adjacent-channel interference by pre-linearization and pre-distortion
US20020015450A1 (en) Correction of phase and amplitude imbalance of I/Q modulator
JP4256057B2 (ja) 非線形補償器
US8442157B2 (en) Wireless apparatus and signal processing method
EP1089428B1 (en) Nonlinear compensator
US20090156143A1 (en) Power control loop, transmitter with the power control loop and method for controlling output power of a transmitter device
US20050078776A1 (en) Apparatus and method for compensating I/Q imbalance based on gain-controlled reference channel in orthogonal frequency division multiplex
JP2008172544A (ja) ダイオードリニアライザを用いた歪補償回路
US20050078768A1 (en) Adaptive phase controller, method of controlling a phase and transmitter employing the same
JP4127639B2 (ja) 非線形補償器
WO2014103174A1 (ja) 歪み補償装置及び歪み補償方法
KR100535774B1 (ko) 직류 오차/이득 불일치/위상 불일치 보상 장치 및 그를이용한 보상 시스템
JP3742257B2 (ja) 復調装置
JP2004165900A (ja) 通信装置
JPH0983417A (ja) 無線機
JP2002359655A (ja) 歪補償回路および歪補償方法
JP3954362B2 (ja) 非線形補償器と非線形補償方法
JP2008205759A (ja) 歪補償装置
JP2001211218A (ja) 受信装置およびその方法
JP4361704B2 (ja) 非線形歪み補償方法及び非線形歪み補償回路

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080509

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees