JP4127384B2 - Multi-train detection system for railroad crossings - Google Patents

Multi-train detection system for railroad crossings Download PDF

Info

Publication number
JP4127384B2
JP4127384B2 JP2003016824A JP2003016824A JP4127384B2 JP 4127384 B2 JP4127384 B2 JP 4127384B2 JP 2003016824 A JP2003016824 A JP 2003016824A JP 2003016824 A JP2003016824 A JP 2003016824A JP 4127384 B2 JP4127384 B2 JP 4127384B2
Authority
JP
Japan
Prior art keywords
train detection
railroad crossing
transmission block
transmission
train
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003016824A
Other languages
Japanese (ja)
Other versions
JP2004224281A (en
Inventor
正和 宮地
正士 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyosan Electric Manufacturing Co Ltd
East Japan Railway Co
Original Assignee
Kyosan Electric Manufacturing Co Ltd
East Japan Railway Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyosan Electric Manufacturing Co Ltd, East Japan Railway Co filed Critical Kyosan Electric Manufacturing Co Ltd
Priority to JP2003016824A priority Critical patent/JP4127384B2/en
Publication of JP2004224281A publication Critical patent/JP2004224281A/en
Application granted granted Critical
Publication of JP4127384B2 publication Critical patent/JP4127384B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Train Traffic Observation, Control, And Security (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、軌道の踏切に設けた警報機や遮断機等の踏切装置を制御する踏切用多重系列車検知装置、特に新規ケーブルを敷設することなしに踏切警報始動点における列車検知の多重系化に関するものである。
【0002】
【従来の技術】
【特許文献1】
特開2002−104192号公報
【特許文献2】
特開2002−274375号公報
鉄道保安装置の踏切警報装置は、軌道上を走行する列車が踏切道を通過する一定時間前に踏切警報を開始し、踏切道の通行を遮断して列車の安全運転と踏切道を通行する自動車や人の安全を図り、列車が踏切道を通過した後は速やかに通行遮断を解除して円滑な道路通行を図るようにしている。
【0003】
この踏切の警報制御を行うため軌道の踏切に設けられた踏切警報装置は、図6の踏切保安装置の配置図に示すように、踏切道3より適当な距離、例えば千数百mだけ手前の軌道2の警報開始点に閉電路式の踏切制御子4を設け、踏切道3の後方の警報終了点には開電路式の踏切制御子8を設けて踏切警報区間を構成している。この踏切制御子4と踏切道3の近傍に設けた踏切制御装置9との間を、警報開始点と踏切道3の間に敷設された伝送ケーブル11を介して接続し、踏切制御装置9から踏切制御子4に停電防護された電源電圧を供給し、踏切制御子4から踏切制御装置9に列車検知信号を伝達する。そして列車1が踏切制御子4の制御区間内に進入すると踏切警報機14の警報を開始して所定時間後に踏切道3を閉扉し、列車1が踏切制御子8の制御区間外に進出すると踏切警報機14の警報を解除して開扉して、踏切道3を通行する人や車の安全を図っている。
【0004】
この踏切道3より千数百mだけ離れた警報開始点に設けた踏切制御子4と踏切制御装置9との間に設けられた伝送ケーブル11は、電源供給用の2芯ケーブル11aと検知信号伝達用の2芯ケーブル11bをそれぞれ独立して有する。
【0005】
近年、道路交通量の増大に伴い踏切道を通過する自動車も増大している。この踏切道を自動車が通過するとき、自動車と列車の衝突事故が発生することを防止するため、自動車は踏切の直前で一旦停止することが義務付けられ、踏切で交通の流れを阻害して渋滞が頻発している。この渋滞緩和のひとつとして踏切に交通信号機を設け、交通信号機が青信号を点灯しているときに一旦停止義務を省いて自動車の流れを円滑にすることが図られている。
【0006】
このように踏切に交通信号機を設ける場合、従来にもましてより確実な踏切警報が要求される。このため特許文献1に示すように、警報開始点に踏切制御子とATS信号を列車検知に使用する地上子等を設け、列車検知を2重系の冗長構成として、列車検知の確実性と装置故障時の信頼性向上を図っている。
【0007】
【発明が解決しようとする課題】
しかしながら警報開始点における列車検知を2重系以上の冗長構成にするために、踏切制御子とは別に地上子等を追加するときに、追加する地上子等に電源電圧を供給するケーブルと、地上子等からの検知信号伝達用のケーブルを警報開始点から踏切道まで追加敷設する必要があり、多大な費用がかかるという短所がある。
【0008】
この短所を解消するため、特許文献2に示すように、2組の列車検知装置の信号を周波数分割する方法や時分割する方法によりケーブル数を減らすこともできるが、装置が複雑になり、低コストで実現するには大きな困難を伴う。また、各列車検知装置にそれぞれ供給する電源電圧を周波数分割したり時分割する方法で実現することは事実上不可能である。
【0009】
この発明はこのような短所を改善し、警報開始点における列車検知装置の冗長構成を簡単な構成で低コストに実現することができる踏切用多重系列車検知装置を提供することを目的とするものである。
【0010】
【課題を解決するための手段】
この発明の踏切用多重系列車検知装置は、警報開始点には、電源電圧として交流電圧を入力し、直流電圧の列車検知信号を出力する列車検知装置と、電源電圧として直流電圧を入力し、交流電圧の列車検知信号を出力する列車検知装置とを設け、各列車検知装置に踏切道側から電源電圧を供給し、各列車検知装置から出力する列車検知信号を踏切道側に伝送する踏切用多重系列車検知装置において、踏切道側に設けた伝送ブロックと、警報開始点側に設けた伝送ブロックと、踏切道側に設けた伝送ブロックと警報開始点側に設けた伝送ブロックとを接続する伝送ケーブルを有し、前記各伝送ブロックは、重畳ユニットと分離ユニットを有し、重畳ユニットと分離ユニットは、3個の巻線L1,L2,L3を有する変圧器とキャパシタンス ( コンデンサ ) で構成し、変圧器の第1の巻線L1は独立して、交流の入出力を接続する交流端子を構成し、第2の巻線L2と第3の巻線L3はコンデンサCを介して加極性になるように直列に接続され、コンデンサCの両端の端子は直流の入出力を接続する直流端子を構成し、第2の巻線L2と第3の巻線L3の両端の端子は伝送ケーブルの1対のケーブルを接続するケーブル端子を構成し、踏切道側に設けた伝送ブロックの重畳ユニットは前記各列車検知装置に供給する直流と交流の電源電圧を重畳して伝送ケーブルの1対のケーブルを介して警報開始点側に設けた伝送ブロックの分離ユニットに伝送し、警報開始点側に設けた伝送ブロックの分離ユニットは伝送された電源電圧を直流と交流に分離して前記各列車検知装置に供給し、警報開始点側に設けた伝送ブロックの重畳ユニットは前記各列車検知装置から出力する直流と交流の列車検知信号を重畳して伝送ケーブルの他の1対のケーブルを介して踏切道側に設けた伝送ブロックの分離ユニットに伝送し、踏切道側に設けた伝送ブロックの分離ユニットは伝送された列車検知信号を直流と交流に分離して出力することを特徴とする。
【0012】
【発明の実施の形態】
図1はこの発明の踏切保安装置の構成を示す配置図である。図に示すように、列車1が走行する軌道2の踏切道3より例えば数百mから千数百mだけ手前の警報開始点には、列車1を検知する閉電路式の踏切制御子4と軌道2に沿って軌間内に設けられたループコイル5を有し、警報開始点の近傍にはループコイル5に接続した検知器6と、踏切制御子4と検知器6に接続した伝送ブロック7を有する。踏切道3の後方の警報終了点には列車1を検知する開電路式の踏切制御子8を有し、踏切道3の近傍には踏切制御装置9と、踏切制御装置9に接続された1対の伝送ブロック10a,10bを有する。伝送ブロック7と一方の伝送ブロック10aは、2芯のケーブル11aと2芯のケーブル11bを有する伝送ケーブル11で接続されている。
【0013】
踏切制御子4と検知器6は、踏切制御装置9から伝送ブロック10aと伝送ケーブル11及び伝送ブロック7を介して電源電圧が供給されるとともに、検知信号を伝送ブロック7と伝送ケーブル11及び伝送ブロック10aを介して踏切制御装置9に伝達する。この踏切制御子4には電源電圧として交流電圧を供給し、検知器6には電源電圧として直流電圧を供給し、踏切制御子4は検知信号として直流電圧信号を出力し、検知器6は検知信号として交流電圧信号を出力する。
【0014】
伝送ブロック7,10は,図2の伝送系のブロック図に示すように、重畳ユニット12と分離ユニット13を有する。踏切道3の近傍に設けられた伝送ブロック10aの重畳ユニット12aと警報開始点の近傍に設けられた伝送ブロック7の分離ユニット13bは、伝送ケーブル11の2芯のケーブル11aで接続され、伝送ブロック7の重畳ユニット12bと伝送ブロック10aの分離ユニット13aは、伝送ケーブル11の2芯のケーブル11bで接続されている。重畳ユニット12と分離ユニット13は、図3の回路図に示すように、3個の巻線L1,L2,L3を有する変圧器Tとキャパシタンス(コンデンサ)Cで構成している。変圧器Tの巻線L1は独立して、交流の入出力を接続する交流端子A+,A−を構成し、巻線L2と巻線L3はコンデンサCを介して加極性になるように直列に接続され、コンデンサCの両端の端子は直流の入出力を接続する直流端子D+,D−を構成し、巻線L2,L3の両端の端子は伝送ケーブル11を接続するケーブル端子C+,C−を構成している。
【0015】
踏切制御装置9に接続された伝送ブロック10aに設けられた重畳ユニット12aの巻線L1の交流端子A+,A−には、踏切制御装置9に設けられた踏切電源14で充電するバッテリ15から供給する直流電圧をDC/AC変換器16で例えばAC200Vで400Hzの矩形波に変換した交流電圧が印加され、コンデンサC両端の直流端子D+,D−には、バッテリ15から供給する直流電圧をDC/DC変換器17で例えばDC24V〜DC28Vに変換した直流電圧が印加され、巻線L2,L3の両端のケーブル端子C+,C−には伝送ケーブル11の2芯のケーブル11aが接続されている。このケーブル11aの他端は、警報開始点側の伝送ブロック7に設けられた分離ユニット13bの巻線L2,L3の両端のケーブル端子C+,C−に接続されている。分離ユニット13bの巻線L1の交流端子A+,A−は踏切制御子4の電源端子に接続され、コンデンサC両端の直流端子D+,D−は検出器6のDC/DC変換器18に接続されている。伝送ブロック7に設けられた重畳ユニット12bの巻線L1の交流端子A+,A−は、検出器6の送信部(TX)19の信号出力端子に接続され、コンデンサC両端の直流端子D+,D−は踏切制御子4の信号出力端子に接続され、巻線L2,L3の両端のケーブル端子C+,C−には伝送ケーブル11の2芯のケーブル11bが接続されている。このケーブル11bの他端は、踏切制御装置9に接続された伝送ブロック10aに設けられた分離ユニット13aの巻線L2,L3の両端のケーブル端子C+,C−に接続されている。分離ユニット13aの巻線L1の交流端子A+,A−は、踏切制御装置9に設けた受信部(RX)20の入力端子に接続され、コンデンサC両端の直流端子D+,D−は、踏切制御装置9に設けた列車検知リレーADCRに接続されている。
【0016】
この踏切保安装置において、踏切制御装置9のDC/AC変換器16で変換された交流電圧は重畳ユニット12aの変圧器Tの巻線L1の交流端子A+,A−に印加され、DC/DC変換器17で変換された直流電圧はコンデンサC両端の直流端子D+,D−に印加される。この直流端子D+,D−に印加された直流電圧はコンデンサCでリプル分が取り除かれ、巻線L2と巻線L3を通ってケーブル端子C+,C−へ出力される。この巻線L2,L3には直流電流が流れるが、直流であるため巻線L1側に影響しないですむ。一方、交流端子A+,A−に印加された交流電圧は、変圧器Tの巻線L1から巻線L2,L3へ電磁結合によって伝達される。ここでコンデンサCは交流に対しては小さなリアクタンス(抵抗分)として働くため、交流に対して巻線L2と巻線L3は直列に接続されているのと等価になり、巻線L1と巻線L2,L3の巻線比に応じた2次電圧が直流電圧に重畳してケーブル端子C+・C−間に現れる。この重畳した電圧をケーブル11aを通して伝送ブロック7の分離ユニット13bに送電する。
【0017】
この送電により分離ユニット13bのケーブル端子C+,C−に交流電圧と直流電圧が重畳した電圧が供給される。このケーブル端子C+,C−に供給された直流電圧はコンデンサC両端の直流端子D+,D−から検出器6のDC/DC変換器18に直流電源電圧として供給される。このとき巻線L2,L3間に接続されたコンデンサCは平滑コンデンサとして動作する。また、ケーブル端子C+,C−に供給された交流電圧は巻線L2,L3を励磁し、巻線L1に2次電圧を誘起する。この誘起した2次電圧を交流端子A+,A−から踏切制御子4に電源電圧として供給する。
【0018】
このように踏切制御装置9に接続された伝送ブロック10aの重畳ユニット12aで交流電圧と直流電圧を重畳し、重畳した電圧を2芯のケーブル11aを通して伝送ブロック7の分離ユニット13bに送電し、分離ユニット13bで交流電圧と直流電圧に分離するから、踏切開始点に踏切制御子4とループコイル5を設けて、列車検知を2重系にしても、2芯のケーブル11aを使用して異なる電源電圧を供給することができる。
【0019】
また、ループコイル5に接続された検出器6の送信部(TX)19から出力する交流信号の列車検知信号は、伝送ブロック7の重畳ユニット12bの変圧器Tの巻線L1の交流端子A+,A−に印加され、踏切制御子4の直流信号の列車検知信号はコンデンサC両端の直流端子D+,D−に印加される。この直流端子D+,D−に印加された直流電圧はコンデンサCでリプル分が取り除かれ、巻線L2と巻線L3を通ってケーブル端子C+,C−へ出力される。一方、交流端子A+,A−から巻線L1から巻線L2,L3へ電磁結合によって伝達され、2次電圧が直流電圧に重畳してケーブル端子C+・C−間に現れる。この重畳した電圧をケーブル11bを通して踏切制御装置9に接続された伝送ブロック10aの分離ユニット13aに送電する。
【0020】
この送電により分離ユニット13aのケーブル端子C+,C−に交流と直流を重畳した列車検知信号が送られる。このケーブル端子C+,C−に送られた直流の列車検知信号はコンデンサC両端の直流端子D+,D−から踏切制御装置9の列車検知リレーADCRに送られる。また、ケーブル端子C+,C−に送られた交流の列車検知信号により巻線L2,L3を励磁し、巻線L1に2次電圧を誘起する。この誘起した2次電圧による列車検知信号が踏切制御装置9の受信部(RX)20を介して処理器21に送られ、列車検知リレーADCR1の動作を制御する。
【0021】
このように踏切開始点に設けた踏切制御子4とループコイル5からそれぞれ出力する直流と交流の列車検知信号を重畳ブロック12bで重畳して送り出すから、2芯のケーブル11bを使用して直流と交流の列車検知信号を踏切制御装置9に接続された伝送ブロック10aの分離ユニット13aに送ることができる。また送られた直流と交流の列車検知信号を分離ユニット13aで分離することにより、列車検知リレーADCRと列車検知リレーADCR1の動作を並行して制御することができる。
【0022】
この踏切保安装置において、検知対象の列車1が警報開始点に到達して踏切制御子4で列車1を検知すると、踏切制御子4の直流出力が0Vとなり、この列車検知信号が踏切制御装置9に送られ列車検知リレーADCRを復旧させて接点を開放状態とし列車有りを出力する。また、ループコイル5で列車1を検知すると、送信部(TX)19から出力している交流信号の周波数が変化し、この変化を処理器21で計測して列車検知リレーADCR1を復旧させて列車有りを出力する。この踏切制御子4とループコイル5で出力する列車有りの信号が一致したとき、踏切制御装置9は、踏切警報機14の警報を開始して所定時間後に踏切道3を閉扉し、列車1が踏切制御子8の制御区間外に進出すると踏切警報機14の警報を解除して開扉して、踏切道3を通行する人や車の安全を図る。
【0023】
前記説明では、警報開始点に列車1を検知する踏切制御子4とループコイル5を設けた場合について説明したが、図5の配置図に示すように、警報開始点に踏切制御子4とループコイル5とATS信号を受信するための地上子15を設け、警報開始点の近傍にバックアップ列車検知器(閉電路形)16を設けても良い。このバックアップ列車検知器(閉電路形)16は電源として交流電源を有し、列車検知出力として出力リレーBURを駆動する直流電圧を出力する。このバックアップ列車検知器(閉電路形)16の交流電源は消費電力が小さいため、分離ユニット13bの巻線L1から踏切制御子4に供給する交流電圧の一部を流用することができる。
【0024】
このように警報開始点に3種類の列車検知装置を設けた場合、列車1が警報開始点に到達して踏切制御子4で列車1を検知すると、踏切制御子4の直流出力が0Vとなり、この列車検知信号が踏切制御装置9に送られ列車検知リレーADCRを復旧させて接点を開放状態とし列車有りを出力する。また、地上子15で列車1を検知すると、バックアップ検知器(閉電路形)16は出力リレーBURを復旧させて接点を開放状態とし、踏切制御子4から出力する列車検知信号により動作する列車検知リレーADCRを復旧させて列車有りとする。さらに、ループコイル5で列車1を検知すると、送信部19から出力している交流信号の周波数が変化し、この変化を処理器21で計測して列車検知リレーADCR1を復旧させて列車有りを出力する。
【0025】
このように警報開始点に地上子15を設け、バックアップ列車検知器(閉電路形)16の出力信号により踏切制御子4から出力する列車検知信号をバックアップすることにより、例えばレール踏面の落ち葉等で踏切制御子4が列車を検知できない場合でも、地上子15で列車1からのATS信号を受信するとバックアップ列車検知器(閉電路形)16が列車検知信号を出力するから、列車1が警報開始点に達したことを確実に検知することができる。
【0026】
前記説明では直流と交流の電源電圧を重畳して2芯のケーブル11aを使用して伝送し、直流と交流の列車検知信号を重畳して2芯のケーブル11bで伝送する場合について説明したが、これらの組み合わせは、電源の容量や周波数の高低などに応じて任意に、かつ適切に組み合わせることができる。また、前記説明では踏切警報始動点についてだけ説明したが踏切警報終止点を多重系構成する場合にも同様に適用することができる。
【0027】
【発明の効果】
この発明は以上説明したように、警報開始点に設けた複数の列車検知装置に電源電圧として供給する直流と交流の電圧を、踏切道側に設けた伝送ブロックで重畳して伝送ケーブルの1対のケーブルを介して警報開始点側に設けた伝送ブロックに伝送し、各列車検知装置から出力する直流と交流の列車検知信号を警報開始点側に設けた伝送ブロックで重畳して伝送ケーブルの他の1対のケーブルを介して踏切道側に設けた伝送ブロックに伝送するようにしたので、踏切道と警報開始点の間に敷設する伝送ケーブルの数を低減することができる。
【0028】
また、警報開始点に複数の列車検知装置を設けても既設の伝送ケーブルを利用することができ、警報開始点に複数の列車検知装置を設ける場合に伝送ケーブルを追加敷設する必要がなく、施工費用を大幅に低減することができる。
【0029】
さらに、各伝送ブロックに重畳ユニットと分離ユニットを有し、重畳ユニットと分離ユニットは、3個の巻線L1,L2,L3を有する変圧器とキャパシタンス(コンデンサ)で構成し、変圧器の巻線L1は独立して、交流の入出力を接続する交流端子を構成し、巻線L2と巻線L3はコンデンサCを介して加極性になるように直列に接続され、コンデンサCの両端の端子は直流の入出力を接続する直流端子を構成し、巻線L2,L3の両端の端子は伝送ケーブルの1対のケーブルを接続するケーブル端子を構成し、踏切道側に設けた伝送ブロックの重畳ユニットで各列車検知装置に供給する電源電圧として供給する直流と交流の電圧を重畳し、警報開始点側に設けた伝送ブロックの分離ユニットで重畳した電圧を分離し、各列車検知装置に供給し、各列車検知装置から出力する直流と交流の列車検知信号を警報開始点側に設けた伝送ブロックの重畳ユニットで重畳し、踏切道側に設けた伝送ブロックの分離ユニットで重畳した列車検知信号を分離することにより、簡単な構成で直流と交流を重畳して伝送し、重畳した直流と交流を分離することができる。
【図面の簡単な説明】
【図1】この発明の踏切保安装置の構成を示す配置図である。
【図2】伝送系の構成を示すブロック図である。
【図3】重畳ユニットと分離ユニットの構成を示す回路図である。
【図4】この発明の他の踏切保安装置の構成を示す配置図である。
【図5】他の伝送系の構成を示すブロック図である。
【図6】従来の踏切保安装置の構成を示す配置図である。
【符号の説明】
1;列車、2;軌道、3;踏切道、4;踏切制御子、5;ループコイル、
6;検知器、7;伝送ブロック、8;踏切制御子、9;踏切制御装置、
10;伝送ブロック、11;伝送ケーブル、12;重畳ユニット、
13;分離ユニット、14;踏切警報機、15;地上子、
16;バックアップ列車検知器(閉電路形)、T;変圧器、
L1,L2,L3;巻線、C;コンデンサ。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a multiple train detection system for a railroad crossing that controls a railroad crossing device such as an alarm or a breaker provided at a railroad crossing, and more particularly, a train detection multiple system at a railroad crossing alarm starting point without laying a new cable. It is about.
[0002]
[Prior art]
[Patent Document 1]
JP 2002-104192 A [Patent Document 2]
JP, 2002-274375, A Railroad crossing warning device of a railroad safety device starts a railroad crossing warning a certain time before a train traveling on a track passes through a railroad crossing, shuts off traffic on the railroad crossing, and operates the train safely. In order to ensure the safety of cars and people passing through the railroad crossing, after the train crosses the railroad crossing, the road block is quickly released to ensure smooth road traffic.
[0003]
As shown in the layout diagram of the railroad crossing safety device in FIG. 6, the railroad crossing warning device provided at the railroad crossing for performing the railroad crossing warning control is an appropriate distance from the railroad crossing road 3, for example, a few hundreds of meters. A railroad crossing controller 4 is provided at the alarm start point of the track 2, and an open circuit railroad crossing controller 8 is provided at the alarm end point behind the railroad crossing 3 to constitute a railroad crossing alarm section. The railroad crossing controller 4 and the railroad crossing control device 9 provided in the vicinity of the railroad crossing 3 are connected via a transmission cable 11 laid between the alarm start point and the railroad crossing road 3. The railroad crossing controller 4 is supplied with a power supply voltage that is protected from power failure, and a train detection signal is transmitted from the crossing controller 4 to the crossing controller 9. When the train 1 enters the control section of the level crossing controller 4, the level crossing alarm 14 is started and the level crossing 3 is closed after a predetermined time, and when the train 1 moves outside the control section of the level crossing controller 8. The alarm of the alarm device 14 is released and the door is opened to ensure the safety of people and vehicles passing through the railroad crossing 3.
[0004]
The transmission cable 11 provided between the level crossing controller 4 and the level crossing control device 9 provided at the alarm start point separated from the level crossing 3 by a few hundreds of meters is a two-core cable 11a for power supply and a detection signal. Each has a two-core cable 11b for transmission.
[0005]
In recent years, the number of automobiles passing through a railroad crossing is increasing with an increase in road traffic. When a car passes through this level crossing, in order to prevent a collision accident between the car and the train, the car is required to stop immediately before the level crossing. It occurs frequently. As one of the alleviation of traffic congestion, a traffic signal is provided at the railroad crossing, and when the traffic signal lights a green light, the duty of stopping is temporarily omitted to smooth the flow of automobiles.
[0006]
Thus, when a traffic signal is provided at a level crossing, a more reliable level crossing warning is required than before. For this reason, as shown in Patent Document 1, a train crossing controller and an ATS signal used for train detection are provided at the alarm start point, and train detection is made redundant with a redundant system, and train detection reliability and equipment We are trying to improve the reliability in case of failure.
[0007]
[Problems to be solved by the invention]
However, in order to make the train detection at the alarm start point redundant structure more than double system, when adding a ground element etc. separately from the level crossing controller, a cable for supplying power voltage to the added ground element, etc. It is necessary to additionally lay a cable for transmitting a detection signal from a child or the like from the alarm start point to the railroad crossing, and there is a disadvantage that it is very expensive.
[0008]
In order to eliminate this disadvantage, as shown in Patent Document 2, the number of cables can be reduced by a frequency division method or a time division method for signals of two sets of train detection devices. It is very difficult to realize at cost. In addition, it is practically impossible to realize the power supply voltage supplied to each train detection device by frequency division or time division.
[0009]
An object of the present invention is to provide a multi-train detection system for railroad crossings that can improve such disadvantages and can realize a redundant configuration of a train detection device at a warning start point with a simple configuration at low cost. It is.
[0010]
[Means for Solving the Problems]
The multi-train vehicle detection device for a railroad crossing according to the present invention has a train detection device that inputs an AC voltage as a power supply voltage and outputs a train detection signal of a DC voltage, and a DC voltage as a power supply voltage. A train detection device that outputs a train detection signal of AC voltage, for supplying power to the train detection device from the railroad crossing side, and for transmitting the train detection signal output from each train detection device to the railroad crossing side In the multi-series vehicle detection device, a transmission block provided on the railroad crossing side, a transmission block provided on the alarm start point side, a transmission block provided on the railroad crossing side, and a transmission block provided on the alarm start point side are connected. a transmission cable, wherein each transmission block has a a superimposing unit separation unit superimposing unit and the separation unit, a transformer and capacitance (Con having three windings L1, L2, L3 Constituted by capacitor), the transformer first winding L1 of independently configure the AC terminals for connecting the input and output of the AC, and the second winding L2 third winding L3 is a capacitor C The terminals of both ends of the capacitor C constitute a DC terminal for connecting DC input / output, and terminals of both ends of the second winding L2 and the third winding L3. Constitutes a cable terminal for connecting a pair of transmission cables, and the transmission block superimposing unit provided on the railroad crossing side superimposes the DC and AC power supply voltages to be supplied to the respective train detection devices. The data is transmitted to a transmission block separation unit provided on the alarm start point side via a pair of cables, and the transmission block separation unit provided on the alarm start point side separates the transmitted power supply voltage into direct current and alternating current, and Supply to each train detection device, alarm start point The transmission block superimposing unit provided on the side superimposes the DC and AC train detection signals output from the respective train detection devices and transmits the transmission block provided on the railroad crossing side via another pair of cables. The transmission unit is transmitted to the separation unit and the separation unit of the transmission block provided on the railroad crossing side separates the transmitted train detection signal into a direct current and an alternating current and outputs the separated train detection signal.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a layout view showing the structure of a railroad crossing safety device according to the present invention. As shown in the figure, a closed-circuit type railroad crossing controller 4 for detecting the train 1 is provided at an alarm start point just before the railroad crossing 3 of the track 2 on which the train 1 travels, for example, several hundred m to several thousand m. A loop coil 5 provided in the gap along the track 2 is provided. In the vicinity of the alarm start point, a detector 6 connected to the loop coil 5 and a crossing controller 4 and a transmission block 7 connected to the detector 6 Have At the alarm end point behind the railroad crossing 3, there is an open-circuit type railroad crossing controller 8 that detects the train 1, and in the vicinity of the railroad crossing 3, a railroad crossing control device 9 and 1 connected to the railroad crossing control device 9 It has a pair of transmission blocks 10a and 10b. The transmission block 7 and one transmission block 10a are connected by a transmission cable 11 having a two-core cable 11a and a two-core cable 11b.
[0013]
The crossing controller 4 and the detector 6 are supplied with a power supply voltage from the crossing control device 9 via the transmission block 10a, the transmission cable 11 and the transmission block 7, and transmit the detection signal to the transmission block 7, the transmission cable 11 and the transmission block. This is transmitted to the crossing control device 9 via 10a. The crossing controller 4 is supplied with an AC voltage as a power supply voltage, the detector 6 is supplied with a DC voltage as a power supply voltage, the level crossing controller 4 outputs a DC voltage signal as a detection signal, and the detector 6 is detected. An AC voltage signal is output as a signal.
[0014]
The transmission blocks 7 and 10 have a superposition unit 12 and a separation unit 13 as shown in the block diagram of the transmission system in FIG. The superposition unit 12a of the transmission block 10a provided in the vicinity of the railroad crossing 3 and the separation unit 13b of the transmission block 7 provided in the vicinity of the alarm start point are connected by a two-core cable 11a of the transmission cable 11, and the transmission block 7 and the separation unit 13 a of the transmission block 10 a are connected by a two-core cable 11 b of the transmission cable 11. As shown in the circuit diagram of FIG. 3, the superposition unit 12 and the separation unit 13 include a transformer T having three windings L1, L2, and L3 and a capacitance (capacitor) C. The winding L1 of the transformer T independently constitutes AC terminals A + and A− for connecting AC input and output, and the winding L2 and the winding L3 are serially connected to each other through a capacitor C so as to have an additional polarity. The terminals at both ends of the capacitor C constitute DC terminals D + and D− for connecting DC input / output, and the terminals at both ends of the windings L2 and L3 are cable terminals C + and C− for connecting the transmission cable 11. It is composed.
[0015]
The AC terminals A + and A− of the winding L1 of the superposition unit 12a provided in the transmission block 10a connected to the level crossing control device 9 are supplied from the battery 15 charged by the level crossing power source 14 provided in the level crossing control device 9. An AC voltage obtained by converting the DC voltage to be converted into a rectangular wave of 400 Hz at, for example, AC 200 V by the DC / AC converter 16 is applied, and the DC voltage supplied from the battery 15 is supplied to the DC terminals D + and D− at both ends of the capacitor C. A DC voltage converted into, for example, DC24V to DC28V by the DC converter 17 is applied, and a two-core cable 11a of the transmission cable 11 is connected to the cable terminals C + and C− at both ends of the windings L2 and L3. The other end of the cable 11a is connected to the cable terminals C + and C− at both ends of the windings L2 and L3 of the separation unit 13b provided in the transmission block 7 on the alarm start point side. The AC terminals A + and A− of the winding L1 of the separation unit 13b are connected to the power supply terminal of the railroad crossing controller 4, and the DC terminals D + and D− at both ends of the capacitor C are connected to the DC / DC converter 18 of the detector 6. ing. The AC terminals A + and A− of the winding L1 of the superposition unit 12b provided in the transmission block 7 are connected to the signal output terminals of the transmission unit (TX) 19 of the detector 6 and DC terminals D + and D at both ends of the capacitor C. -Is connected to the signal output terminal of the railroad crossing controller 4, and the two-core cable 11b of the transmission cable 11 is connected to the cable terminals C +, C- at both ends of the windings L2, L3. The other end of the cable 11b is connected to cable terminals C + and C− at both ends of the windings L2 and L3 of the separation unit 13a provided in the transmission block 10a connected to the railroad crossing control device 9. The AC terminals A + and A− of the winding L1 of the separation unit 13a are connected to the input terminal of the receiving unit (RX) 20 provided in the crossing control device 9, and the DC terminals D + and D− at both ends of the capacitor C are crossing control. It is connected to a train detection relay ADCR provided in the device 9.
[0016]
In this level crossing safety device, the AC voltage converted by the DC / AC converter 16 of the level crossing control device 9 is applied to the AC terminals A + and A− of the winding L1 of the transformer T of the superimposing unit 12a, and DC / DC conversion is performed. The DC voltage converted by the device 17 is applied to DC terminals D + and D− at both ends of the capacitor C. The DC voltage applied to the DC terminals D + and D− is removed by the capacitor C, and is output to the cable terminals C + and C− through the winding L2 and the winding L3. A direct current flows through the windings L2 and L3. However, since the direct current is direct current, the winding L1 side is not affected. On the other hand, the AC voltage applied to the AC terminals A + and A− is transmitted from the winding L1 of the transformer T to the windings L2 and L3 by electromagnetic coupling. Here, since the capacitor C acts as a small reactance (resistance component) with respect to the alternating current, the winding L2 and the winding L3 are equivalent to being connected in series with respect to the alternating current, and the winding L1 and the winding A secondary voltage corresponding to the winding ratio of L2 and L3 is superimposed on the DC voltage and appears between the cable terminals C + and C−. The superimposed voltage is transmitted to the separation unit 13b of the transmission block 7 through the cable 11a.
[0017]
By this power transmission, a voltage in which an AC voltage and a DC voltage are superimposed is supplied to the cable terminals C + and C− of the separation unit 13b. The DC voltage supplied to the cable terminals C + and C− is supplied as a DC power supply voltage from the DC terminals D + and D− at both ends of the capacitor C to the DC / DC converter 18 of the detector 6. At this time, the capacitor C connected between the windings L2 and L3 operates as a smoothing capacitor. The AC voltage supplied to the cable terminals C + and C− excites the windings L2 and L3, and induces a secondary voltage in the winding L1. The induced secondary voltage is supplied as a power supply voltage from the AC terminals A + and A− to the crossing controller 4.
[0018]
Thus, the superposition unit 12a of the transmission block 10a connected to the railroad crossing control device 9 superimposes the AC voltage and the DC voltage, and transmits the superposed voltage to the separation unit 13b of the transmission block 7 through the two-core cable 11a. Since the unit 13b separates the AC voltage and the DC voltage, even if the railroad crossing controller 4 and the loop coil 5 are provided at the railroad crossing start point and the train detection is a double system, different power sources are used by using the two-core cable 11a. A voltage can be supplied.
[0019]
The train detection signal of the AC signal output from the transmission unit (TX) 19 of the detector 6 connected to the loop coil 5 is the AC terminal A + of the winding L1 of the transformer T of the superposition unit 12b of the transmission block 7. The train detection signal of the DC signal of the level crossing controller 4 is applied to A− and applied to the DC terminals D + and D− at both ends of the capacitor C. The DC voltage applied to the DC terminals D + and D− is removed by the capacitor C, and is output to the cable terminals C + and C− through the winding L2 and the winding L3. On the other hand, the AC terminals A + and A− are transmitted by electromagnetic coupling from the winding L1 to the windings L2 and L3, and the secondary voltage is superimposed on the DC voltage and appears between the cable terminals C + and C−. This superimposed voltage is transmitted to the separation unit 13a of the transmission block 10a connected to the railroad crossing control device 9 through the cable 11b.
[0020]
By this power transmission, a train detection signal in which alternating current and direct current are superimposed is sent to the cable terminals C + and C− of the separation unit 13a. The DC train detection signals sent to the cable terminals C + and C− are sent from the DC terminals D + and D− at both ends of the capacitor C to the train detection relay ADCR of the crossing control device 9. Further, the windings L2 and L3 are excited by an AC train detection signal sent to the cable terminals C + and C−, and a secondary voltage is induced in the winding L1. A train detection signal based on the induced secondary voltage is sent to the processor 21 via the receiving unit (RX) 20 of the crossing control device 9 to control the operation of the train detection relay ADCR1.
[0021]
In this way, since the DC and AC train detection signals output from the railroad crossing controller 4 and the loop coil 5 provided at the railroad crossing start point are superposed and sent out by the superposition block 12b, the two-core cable 11b is used to generate the direct current. An AC train detection signal can be sent to the separation unit 13a of the transmission block 10a connected to the railroad crossing control device 9. Moreover, the operation | movement of the train detection relay ADCR and the train detection relay ADCR1 can be controlled in parallel by isolate | separating the sent DC and AC train detection signal with the separation unit 13a.
[0022]
In this level crossing safety device, when the train 1 to be detected reaches the alarm start point and the train 1 is detected by the level crossing controller 4, the DC output of the level crossing controller 4 becomes 0V, and this train detection signal becomes the level crossing control device 9. The train detection relay ADCR is restored, the contact is opened, and a train is output. In addition, when the train 1 is detected by the loop coil 5, the frequency of the AC signal output from the transmission unit (TX) 19 changes, and this change is measured by the processor 21 to restore the train detection relay ADCR1. Outputs yes. When the train presence signal output by the level crossing controller 4 and the loop coil 5 coincides, the level crossing control device 9 starts the alarm of the level crossing alarm device 14 and closes the level crossing road 3 after a predetermined time. When the railroad crossing controller 8 moves outside the control section, the warning of the railroad crossing alarm 14 is released and the door is opened, so that the safety of people and vehicles passing through the railroad crossing 3 is ensured.
[0023]
In the above description, the case where the railroad crossing controller 4 for detecting the train 1 and the loop coil 5 are provided at the alarm start point has been described. However, as shown in the layout diagram of FIG. A ground element 15 for receiving the coil 5 and the ATS signal may be provided, and a backup train detector (closed circuit type) 16 may be provided in the vicinity of the alarm start point. This backup train detector (closed circuit type) 16 has an AC power source as a power source, and outputs a DC voltage for driving the output relay BUR as a train detection output. Since the AC power supply of this backup train detector (closed circuit type) 16 has low power consumption, a part of the AC voltage supplied from the winding L1 of the separation unit 13b to the railroad crossing controller 4 can be used.
[0024]
Thus, when three types of train detection devices are provided at the alarm start point, when the train 1 reaches the alarm start point and the train 1 is detected by the level crossing controller 4, the DC output of the level crossing controller 4 becomes 0V. This train detection signal is sent to the railroad crossing control device 9, the train detection relay ADCR is restored, the contact is opened, and a train is output. When the ground element 15 detects the train 1, the backup detector (closed circuit type) 16 restores the output relay BUR, opens the contact, and detects the train operated by the train detection signal output from the level crossing controller 4. The relay ADCR is restored and there is a train. Further, when the train 1 is detected by the loop coil 5, the frequency of the AC signal output from the transmitter 19 changes, and this change is measured by the processor 21 and the train detection relay ADCR1 is restored to output that there is a train. To do.
[0025]
Thus, by providing the ground element 15 at the alarm start point and backing up the train detection signal output from the level crossing controller 4 by the output signal of the backup train detector (closed circuit type) 16, for example, in the fallen leaves of the rail tread Even if the railroad crossing controller 4 cannot detect the train, when the ground unit 15 receives the ATS signal from the train 1, the backup train detector (closed circuit type) 16 outputs the train detection signal. Can be reliably detected.
[0026]
In the above description, the DC and AC power supply voltages are superimposed and transmitted using the two-core cable 11a, and the DC and AC train detection signals are superimposed and transmitted using the two-core cable 11b. These combinations can be combined arbitrarily and appropriately depending on the capacity of the power supply, the frequency level, and the like. In the above description, only the railroad crossing alarm start point has been described, but the present invention can be similarly applied to a case where a railroad crossing alarm end point is configured as a multiple system.
[0027]
【The invention's effect】
As described above, according to the present invention, a pair of transmission cables is configured by superimposing DC and AC voltages supplied as power supply voltages to a plurality of train detection devices provided at an alarm start point in a transmission block provided on a railroad crossing side. To the transmission block provided on the alarm start point side, and the DC and AC train detection signals output from each train detection device are superimposed on the transmission block provided on the alarm start point side. Since the transmission is made to the transmission block provided on the railroad crossing side through the pair of cables, the number of transmission cables laid between the railroad crossing and the alarm start point can be reduced.
[0028]
In addition, even if multiple train detection devices are installed at the alarm start point, the existing transmission cable can be used, and when multiple train detection devices are installed at the alarm start point, there is no need to install additional transmission cables. Costs can be greatly reduced.
[0029]
Furthermore, each transmission block has a superimposing unit and a separating unit. The superposing unit and the separating unit are composed of a transformer having three windings L1, L2, and L3 and a capacitance (capacitor), and the winding of the transformer. L1 independently constitutes an AC terminal for connecting AC input and output. The winding L2 and the winding L3 are connected in series through the capacitor C so as to be polar, and terminals at both ends of the capacitor C are connected to each other. A DC terminal for connecting DC input / output, and terminals at both ends of the windings L2, L3 constitute a cable terminal for connecting a pair of cables of the transmission cable, and a transmission block overlapping unit provided on the railroad crossing side The DC and AC voltages supplied as power supply voltages to each train detection device are superimposed on each other, and the superimposed voltage is separated by the transmission block separation unit provided on the alarm start point side, and supplied to each train detection device. Train detection signals that are superimposed on the transmission block superimposing unit provided on the alarm start point side and superimposed on the transmission block separating unit provided on the railroad crossing side. By separating the direct current and the alternating current, the direct current and the alternating current can be transmitted with a simple configuration, and the superimposed direct current and the alternating current can be separated.
[Brief description of the drawings]
FIG. 1 is a layout view showing a configuration of a railroad crossing safety device according to the present invention.
FIG. 2 is a block diagram showing a configuration of a transmission system.
FIG. 3 is a circuit diagram showing a configuration of a superposition unit and a separation unit.
FIG. 4 is a layout view showing the configuration of another level crossing safety device of the present invention.
FIG. 5 is a block diagram showing the configuration of another transmission system.
FIG. 6 is a layout view showing a configuration of a conventional railroad crossing safety device.
[Explanation of symbols]
1; train, 2; track, 3; railroad crossing, 4; railroad crossing controller, 5; loop coil,
6; Detector, 7; Transmission block, 8; Railroad crossing controller, 9; Railroad crossing control device,
10: Transmission block, 11: Transmission cable, 12: Superposition unit,
13; Separation unit, 14; Railroad crossing alarm, 15;
16: Backup train detector (closed circuit type), T: Transformer,
L1, L2, L3; Winding, C: Capacitor.

Claims (1)

警報開始点には、電源電圧として交流電圧を入力し、直流電圧の列車検知信号を出力する列車検知装置と、電源電圧として直流電圧を入力し、交流電圧の列車検知信号を出力する列車検知装置とを設け、各列車検知装置に踏切道側から電源電圧を供給し、各列車検知装置から出力する列車検知信号を踏切道側に伝送する踏切用多重系列車検知装置において、
踏切道側に設けた伝送ブロックと、警報開始点側に設けた伝送ブロックと、踏切道側に設けた伝送ブロックと警報開始点側に設けた伝送ブロックとを接続する伝送ケーブルを有し、
前記各伝送ブロックは、重畳ユニットと分離ユニットを有し、重畳ユニットと分離ユニットは、3個の巻線L1,L2,L3を有する変圧器とキャパシタンス ( コンデンサ ) で構成し、変圧器の第1の巻線L1は独立して、交流の入出力を接続する交流端子を構成し、第2の巻線L2と第3の巻線L3はコンデンサCを介して加極性になるように直列に接続され、コンデンサCの両端の端子は直流の入出力を接続する直流端子を構成し、第2の巻線L2と第3の巻線L3の両端の端子は伝送ケーブルの1対のケーブルを接続するケーブル端子を構成し、
踏切道側に設けた伝送ブロックの重畳ユニットは前記各列車検知装置に供給する直流と交流の電源電圧を重畳して伝送ケーブルの1対のケーブルを介して警報開始点側に設けた伝送ブロックの分離ユニットに伝送し、警報開始点側に設けた伝送ブロックの分離ユニットは伝送された電源電圧を直流と交流に分離して前記各列車検知装置に供給し、
警報開始点側に設けた伝送ブロックの重畳ユニットは前記各列車検知装置から出力する直流と交流の列車検知信号を重畳して伝送ケーブルの他の1対のケーブルを介して踏切道側に設けた伝送ブロックの分離ユニットに伝送し、踏切道側に設けた伝送ブロックの分離ユニットは伝送された列車検知信号を直流と交流に分離して出力することを特徴とする踏切用多重系列車検知装置。
At the alarm start point, a train detection device that inputs an AC voltage as a power supply voltage and outputs a DC voltage train detection signal, and a train detection device that inputs a DC voltage as a power supply voltage and outputs an AC voltage train detection signal In the multi-series vehicle detection device for railroad crossings that supplies a power supply voltage from the railroad crossing side to each train detection device and transmits a train detection signal output from each train detection device to the railroad crossing side,
It has a transmission cable connecting the transmission block provided on the railroad crossing side, the transmission block provided on the alarm starting point side, the transmission block provided on the railroad crossing side and the transmission block provided on the alarm starting point side,
Each of the transmission blocks includes a superimposing unit and a separating unit, and the superposing unit and the separating unit include a transformer having three windings L1, L2, and L3 and a capacitance ( capacitor ) . Winding L1 independently constitutes an AC terminal for connecting AC input / output, and the second winding L2 and the third winding L3 are connected in series via the capacitor C so as to be of a positive polarity. The terminals at both ends of the capacitor C constitute a DC terminal for connecting DC input / output, and the terminals at both ends of the second winding L2 and the third winding L3 connect a pair of cables of the transmission cable. Configure cable terminals,
The superimposing unit of the transmission block provided on the railroad crossing side superimposes the DC and AC power supply voltages supplied to each train detection device, and transmits the transmission block provided on the alarm starting point side through a pair of transmission cables. Transmit to the separation unit, the separation unit of the transmission block provided on the alarm start point side separates the transmitted power supply voltage into direct current and alternating current and supplies each train detection device,
The transmission block superimposing unit provided on the alarm start point side superimposes the DC and AC train detection signals output from each train detection device and is provided on the railroad crossing side via another pair of cables of the transmission cable. A multi-series vehicle detection device for level crossings, which transmits to a separation unit of a transmission block, and the transmission block separation unit provided on the side of the railroad crossing outputs the train detection signal separated into direct current and alternating current.
JP2003016824A 2003-01-27 2003-01-27 Multi-train detection system for railroad crossings Expired - Fee Related JP4127384B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003016824A JP4127384B2 (en) 2003-01-27 2003-01-27 Multi-train detection system for railroad crossings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003016824A JP4127384B2 (en) 2003-01-27 2003-01-27 Multi-train detection system for railroad crossings

Publications (2)

Publication Number Publication Date
JP2004224281A JP2004224281A (en) 2004-08-12
JP4127384B2 true JP4127384B2 (en) 2008-07-30

Family

ID=32904145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003016824A Expired - Fee Related JP4127384B2 (en) 2003-01-27 2003-01-27 Multi-train detection system for railroad crossings

Country Status (1)

Country Link
JP (1) JP4127384B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0932374A (en) * 1995-07-25 1997-02-04 Sanpou Lock Co Ltd Three-point type lock mechanism

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4658575B2 (en) * 2004-12-06 2011-03-23 東海旅客鉄道株式会社 High frequency induction preventing apparatus and method for railroad crossing controller
JP4863358B2 (en) * 2006-02-23 2012-01-25 北海道旅客鉄道株式会社 Train detection device and train detection system
DE102015211141A1 (en) * 2015-06-17 2016-12-22 Siemens Aktiengesellschaft Level crossing protection system and method for controlling a level crossing protection system
JP7329377B2 (en) * 2019-07-09 2023-08-18 東日本旅客鉄道株式会社 Railroad crossing controller relay output voltage regulator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0932374A (en) * 1995-07-25 1997-02-04 Sanpou Lock Co Ltd Three-point type lock mechanism

Also Published As

Publication number Publication date
JP2004224281A (en) 2004-08-12

Similar Documents

Publication Publication Date Title
US4886226A (en) Broken rail and/or broken rail joint bar detection
KR101360951B1 (en) Apparatus for detecting impair of rails and method using the same
JP3184217B2 (en) Regenerative braking protection system for railway vehicles by electric propulsion
CN107351730A (en) A kind of electric railway train does not power off automatic neutral-section passing system and its operation method
CN111845471A (en) Power-concentrated motor train unit
CN101910852A (en) Detection is at electrical contact and be installed in the assembly that the electricity between the conducting element in the testing circuit interrupts
JP4127384B2 (en) Multi-train detection system for railroad crossings
CN107110904A (en) Vehicle ground detection device
CN102777098B (en) A kind of door control system
JP4863358B2 (en) Train detection device and train detection system
US10086719B2 (en) Power supply system for an overhead contact line
KR101593559B1 (en) Wheel detection system and the control method
CN112904165A (en) Train insulation detection system and direct current power supply train
CN208306400U (en) A kind of system of vehicle-mounted automatic passing over of neutral section under cophase supply mode
RU2668007C1 (en) Device for control of the state of insulating joints in tonal rail circuits
KR100363867B1 (en) a mobile railroad warning device
US20220024496A1 (en) Traction assembly including a locomotive and a tender and associated method
KR101792931B1 (en) Tram operation system and method thereof
CN108859868B (en) Method and system for vehicle-mounted automatic passing neutral section in-phase power supply mode
CN114715225A (en) Unmanned system of maglev train
JP2972999B1 (en) Failure detection device for train detection device
CN218632478U (en) Grounding system capable of meeting track circuit test and intelligent train operation protection
RU2098302C1 (en) Traffic control device
RU2775907C1 (en) System for interval regulation of train traffic with control of operation algorithm change
KR101517059B1 (en) Automatic AC/DC switching system of electric train

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080507

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140523

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees