JP4126918B2 - High refractive index photocurable composition and cured product thereof - Google Patents
High refractive index photocurable composition and cured product thereof Download PDFInfo
- Publication number
- JP4126918B2 JP4126918B2 JP2002030616A JP2002030616A JP4126918B2 JP 4126918 B2 JP4126918 B2 JP 4126918B2 JP 2002030616 A JP2002030616 A JP 2002030616A JP 2002030616 A JP2002030616 A JP 2002030616A JP 4126918 B2 JP4126918 B2 JP 4126918B2
- Authority
- JP
- Japan
- Prior art keywords
- refractive index
- cured product
- photocurable composition
- propane
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 0 CC(C(Sc(cc1)ccc1Sc(cc1)ccc1SC(C(*)=C)=O)=O)=C Chemical compound CC(C(Sc(cc1)ccc1Sc(cc1)ccc1SC(C(*)=C)=O)=O)=C 0.000 description 1
Landscapes
- Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、眼鏡レンズ、プリズム、光ファイバー、情報記録基盤、フィルター等の光学材料、および光学材料用のコーティング剤、接着剤、封止剤等に有用な光硬化性組成物と、該光硬化性組成物から得られる高屈折率硬化物に関するものである。
【0002】
【従来の技術】
光学材料分野においてプラスチック材料は軽量かつ靭性に富むことから、眼鏡レンズ、プリズム、光ファイバー、情報記録基盤、フィルター等の光学材料、および光学材料用のコーティング剤、接着剤等に近年多用されている。特に、眼鏡レンズや光学フィルター等の材料において高屈折率を有する材料が求められている。
【0003】
高屈折率を有する材料としては、ポリチオール化合物とポリイソシアネート化合物との反応により得られるチオウレタン構造を有する樹脂や、ポリエピスルフィド化合物の開環重合反応により得られる樹脂が提案されている。しかし、これらの材料の成形方法は熱硬化によるものであり、成形時間が長いことや、低温での成形が困難であることが問題点として挙げられる。従って短時間成形および低温成形が可能な光硬化性の材料がより求められている。
【0004】
高屈折率を有する光硬化樹脂の1つとしてエン化合物とチオール化合物の組み合わせから成る樹脂(以下、エン-チオール樹脂と呼ぶ)が提案されている。チオール化合物は分子内に原子屈折率の高い硫黄原子を含有することから得られる硬化物は高い屈折率を有し、またチオール基と不飽和基の付加結合により硬化物は高い耐衝撃性を有する。しかし、屈折率を十分に高くするためにチオール化合物の含有量を大きくすると、得られる硬化物はゴム状になり十分な硬さが得られなくなる。高屈折率で高硬度の硬化物を得るために、屈折率が十分に高く、かつ架橋構造を形成しやすい多官能、好ましくは4官能以上のポリチオールが求められていた。
【0005】
また、チオール化合物の相手となるエン化合物に関しても、屈折率だけでなく光硬化性や硬度等のバランスを考慮して適切な化合物を選択する必要がある。
【0006】
【発明が解決しようとする課題】
本発明の課題は上記の問題点を解決することであり、即ち高屈折率で適度な硬度を有する光硬化性組成物、およびそれから得られる高屈折率硬化物を提供することである。
【0007】
【課題を解決するための手段】
本発明者等はこの発明の課題を解決すべく鋭意研究を行った結果、下記式(1)
【化6】
で表される3,3’−チオビス(プロパン−1,2−ジチオール)がエン−チオール樹脂のチオール化合物として有用であることを見出した。該ポリチオール化合物は硫黄含有率が重量割合で65%と高いため高屈折率であり、かつ4官能と架橋性が高いため適度な硬度を有する硬化物を得ることが出来る。また、該ポリチオール化合物の相手となるエン化合物として、下記一般式(6)
【化7】
(式中、R1〜R4はそれぞれ、水素原子または下記構造式(3)
【化8】
または下記構造式(4)
【化9】
(式中、Rは水素原子または炭素数1〜5のアルキル基を表す。)のいずれかを表す。但し、R1〜R4の少なくとも2つ以上は上記構造式(3)のいずれかを表し、かつ、R1とR2、またはR3とR4が同時に上記構造式(4)を表すことはない。)
で表される2官能以上のポリエン化合物、ジビニルベンゼン、下記式(5)
【化10】
で表されるビス(4−メタクロイル−チオフェニル)スルフィド等を組み合わせることにより、屈折率および光硬化性および硬度のバランスのとれた硬化物が得られることを見出し、本発明に至った。
【0008】
【発明の実施の形態】
本発明の光硬化性組成物とは、下記式(1)
【化11】
で表される3,3’−チオビス(プロパン−1,2−ジチオール)および1種以上のポリエン化合物群および1種以上の光ラジカル重合開始剤を含有するものである。
【0009】
該3,3’−チオビス(プロパン−1,2−ジチオール)は硫黄原子含有率が重量割合で65%と高く、屈折率を高める効果が大きい。また、4つのチオール基を有するため架橋性に優れており、適度な硬度を持った硬化物を得ることが出来る。
【0010】
該3,3’−チオビス(プロパン−1,2−ジチオール)は公知の製法やメルカプト化合物の製法により容易に合成できる。例えば、特願2001−209031号明細書に記載された方法で製造することができ、即ち、ビス(β−エピチオプロピル)スルフィドと硫化水素を塩基の存在下で反応させることにより得ることができる。
【0011】
本発明の光硬化性組成物に含有されるエン化合物とは末端に反応性不飽和結合基を有する化合物を意味し、具体的にはビニル化合物類、アリル化合物類、アクリル化合物類、メタクリル化合物類が挙げられる。
【0012】
ビニル化合物類の具体例としては、ビニルエーテル、エチルビニルエーテル、イソブチルビニルエーテル、2−エチルヘキシルビニルエーテル、フェニルビニルエーテル、ベンジルビニルエーテル、2−クロロエチルビニルエーテル、シクロヘキシルビニルエーテル、ビニルグリシジルエーテル、ビニルアルコール、メチルビニルカルビノール、エチレングリコールモノビニルエーテル、エチレングリコールジビニルエーテル、ジエチレングリコールモノビニルエーテル、ジエチレングリコールジビニルエーテル、テトラメチレングリコールモノビニルエーテル、ジビニルスルフィド、ビニルエチルスルフィド、ビニルフェニルスルフィド、メチルビニルケトン、ジビニルジカーボネイト、ビニルジグリコールカーボネイト、ビニレンカーボネイト、酢酸ビニル、クロロ酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、ヘキサン酸ビニル、2−エチルヘキサン酸ビニル、アジピン酸ジビニル、安息香酸ビニル、サリチル酸ビニル、アクリル酸ビニル、メタクリル酸ビニル、ビニルブロマイド、ビニルアイオダイド、ビニルリン酸、ビニル尿素、スチレン、2−メチルスチレン、3−メチルスチレン、4−メチルスチレン、α−メチルスチレン、2,4,6−トリメチルスチレン、4−t−ブチルスチレン、スチルベン、ビニルフェノール、3−ビニルベンジルアルコール、4−ビニルベンジルアルコール、2−(4−ビニルフェニルチオ)エタノール、2−(3−ビニルフェニルチオ)エタノール、2−(4−ビニルベンジルチオ)エタノール、2−(3−ビニルベンジルチオ)エタノール、1,3−ビス(4−ビニルベンジルチオ)−2−プロパノール、1,3−ビス(3−ビニルベンジルチオ)−2−プロパノール、2,3−ビス(4−ビニルベンジルチオ)−1−プロパノール、2,3−ビス(3−ビニルベンジルチオ)−1−プロパノール、シンナミルアルコール、シンナムアルデヒド、1,3−ジビニルベンゼン、1,4−ジビニルベンゼン、トリビニルベンゼン、ジビニルフタレート、2−クロロスチレン、3−クロロスチレン、4−クロロスチレン、3−クロロメチルスチレン、4−クロロメチルスチレン、4−アミノスチレン、3−シアノメチルスチレン、4−シアノメチルスチレン、4−ビニルビフェニル、2,2’−ジビニルビフェニル、4,4’−ジビニルビフェニル、2,2’−ジスチリルエーテル、4,4’−ジスチリルエーテル、2,2’−ジスチリルスルフィド、4,4’−ジスチリルスルフィド、2,2−ビス(4−ビニルフェニル)プロパン、ビス(4−ビニルフェニル)エーテル、2,2−ビス(4−ビニロキシフェニル)プロパン等が挙げられるが、これらに限定されない。
【0013】
アリル化合物類の具体例としては、上記のビニル化合物類で例示した化合物のビニル基の一部もしくは全部がアリル基に置き換わった化合物類が挙げられるが、これらに限定されない。
【0014】
アクリル化合物類の具体例としては、メチルアクリレート、エチルアクリレート、プロピルアクリレート、ブチルアクリレート、シクロヘキシルアクリレート、2−ヒドロキシエチルアクリレート、3−ヒドロキシプロピルアクリレート、2−ヒドロキシプロピルアクリレート、3−フェノキシ−2−ヒドロキシプロピルアクリレート、トリメチロールプロパンモノアクリレート、2−ヒドロキシエチルイソシアヌレートモノアクリレート、2−ヒドロキシエチルイソシアヌレートジアクリレート、2−ヒドロキシエチルシアヌレートモノアクリレート、2−ヒドロキシエチルシアヌレートジアクリレート、エチレングリコールジアクリレート、ジエチレングリコールジアクリレート、1,3−ブチレングリコールジアクリレート、トリエチレングリコールジアクリレート、ポリエチレングリコールジアクリレート、プロピレングリコールジアクリレート、1、3−プロパンジオールジアクリレート、1,3−ブタンジオールジアクリレート、1、4−ブタンジオールジアクリレート、1,6−ヘキサンジオールジアクリレート、ネオペンチルグリコールジアクリレート、ポリプロピレングリコールジアクリレート、2−ヒドロキシ−1,3−ジアクリロキシプロパン、2,2−ビス〔4−(アクリロキシエトキシ)フェニル〕プロパン、2,2−ビス〔4−(アクリロキシエトキシ)シクロヘキシル〕プロパン、2,2−ビス〔4−(2−ヒドロキシ−3−アクリロキシプロポキシ)フェニル〕プロパン、2,2−ビス〔4−(アクリロキシ・ジエトキシ)フェニル〕プロパン、2,2−ビス〔4−(アクリロキシ・ポリエトキシ)フェニル〕プロパン、トリメチロールプロパントリアクリレート、ペンタエリスリトールモノアクリレート、ペンタエリスリトールジアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ビス(2,2,2−トリメチロールエチル)エーテルのペンタアクリレート、ビス(2,2,2−トリメチロールエチル)エーテルのヘキサアクリレート、ビス(4−アクロイル−チオフェニル)スルフィド等が挙げられるが、これらに限定されない。
【0015】
メタクリル化合物類の具体例としては、上記のアクリル化合物類で例示した化合物のアクリル基の一部もしくは全部がメタクリル基に置き換わった化合物類が挙げられるが、これらに限定されない。
【0016】
その他のエン化合物として、下記一般式(6)
【化12】
(式中、R1〜R4はそれぞれ、水素原子または下記構造式(3)
【化13】
または下記構造式(4)
【化14】
(式中、Rは水素原子または炭素数1〜5のアルキル基を表す。)
のいずれかを表す。但し、R1〜R4の少なくとも2つ以上は上記構造式(3)のいずれかを表し、かつR1とR2、またはR3とR4が同時に上記構造式(4)を表すことはない。)
で表される2官能以上のポリエン化合物が挙げられる。
【0017】
以下に一般式(6)で表されるポリエン化合物の代表的な具体例を示すが、これらに限定されない。
【化15】
(式中、Phはフェニル基を表す。)
【0018】
以上、エン化合物の具体例を挙げたが、例示化合物の中で屈折率および硬化性および硬度のバランスを考慮して特に好ましいものは、ジビニルベンゼンおよび下記式(5)
【化16】
で表されるビス(4−メタクロイル−チオフェニル)スルフィドおよび下記式(7)
【化17】
で表される化合物であり、これらの化合物を組み合わせて用いてもよい。また、屈折率、硬化性、硬度等を調整するために上記化合物以外のエン化合物を加えてもよい。
【0019】
前記一般式(6)で表されるポリエン化合物の合成方法は特に限定されないが、例えば下記一般式(8)
【化18】
(式中、R5〜R8はそれぞれ、水素原子または下記構造式(4)
【化19】
(式中、Rは水素原子または炭素数1〜5のアルキル基を表す。)
のいずれかを表す。但し、R1〜R4の少なくとも2つ以上は水素原子を表し、かつ、R1とR2、またはR3とR4が同時に上記構造式(4)を表すことはない。)
で表される2官能以上のポリチオール化合物と下記一般式(9)
【化20】
(式中、R’は下記構造式(3)
【化21】
のいずれかを表す。Xはハロゲン原子を表す。)
で表されるハロゲン誘導体1種以上を塩基存在下で反応させることで製造することができる。ここで塩基は、上記一般式(8)の化合物と共に予め塩形成させた形で存在してもよい。
【0020】
本発明の光硬化性組成物に含まれる3,3’−チオビス(プロパン−1,2−ジチオール)およびエン化合物群の含有量は、(不飽和結合基)/(チオール基)で表される官能基モル比が1.0〜10、好ましくは1.0〜5、より好ましくは1.0〜3となる範囲である。
【0021】
本発明の光硬化性組成物に含有される光ラジカル重合開始剤は特に限定されず、公知のものを用いることができる。また2種以上の光ラジカル重合開始剤を用いても構わない。
【0022】
光ラジカル重合開始剤の代表的な具体例としては、アセトフェノン、トリクロロアセトフェノン、2−ヒドロキシ−2−メチル−プロピオフェノン、1−ヒドロキシシクロヘキシルフェニルケトン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソブチルエーテル、ベンゾインイソプロピルエーテル、2,2−ジエトキンアセトフェノン、2,2−ジメトキシ−2−フェニルアセトフェノン、1−[4−(2−ヒドロキシエトキシ)フェニル]−2−ヒドロキシ−2−メチル−1−プロパン−1−オン、2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)ブタノン−1、2−メチル−1[4−(メチルチオ)フェニル]−2−モルフォリノプロパン−1−オン、ベンジル、メチルベンゾイルホルメート、1−フェニル−1,2−プロパンジオン−2−(o−ベンゾイル)オキシム、2,4,6−トリメチルベンゾイルジフェニルホスフィンオキシド、2,4,6−トリメチルベンゾイルフェニルエトキシホスフィンオキシド、ビス(2,4,6−トリメチルベンゾイル)−フェニルホスフィンオキシド、ベンゾフェノン、o−ベンゾイル安息香酸メチル、[4−(メチルフェニルチオ)フェニル]フェニルメタン、4,4’−ビスジエチルアミノベンゾフェノン、1,4−ジベンゾイルベンゼン、2−ベンゾイルナフタレン、4−ベンゾイルジフェニル、4−ベンゾイルジフェニルエーテル、キサントン、チオキサントン、イソプロピルチオキサントン、2,4−ジメチルチオキサントン、2−クロロチオキサントン、エチルアントラキノン、10−ブチル−2−クロロアクリドン等が挙げられるがこれらに限定されない。
【0023】
本発明の光硬化性組成物における光ラジカル重合開始剤の含有量は、3,3’−チオビス(プロパン−1,2−ジチオール)とエン化合物群の合計量100重量部に対して0.001〜10重量部、好ましくは0.005〜5重量部の割合で用いられる。
【0024】
本発明の硬化性組成物には、本発明の効果が損なわれない範囲で、必要に応じて、増感剤、紫外線吸収剤、熱ラジカル重合開始剤、酸化防止剤、黄変防止剤、ブルーイング剤、顔料、離型剤、密着剤等を添加しても構わない。
【0025】
本発明の高屈折率硬化物は、本発明の光硬化性組成物を重合硬化して得られるものである。硬化方法は公知の光重合により行われるが、必要に応じて公知の熱硬化を併用しても構わない。
【0026】
本発明の光硬化性組成物を光硬化させる際に用いることのできる光源としては、低圧水銀ランプ、高圧水銀ランプ、超高圧水銀ランプ、メタルハライドランプ等が挙げられる。
【0027】
【実施例】
以下、実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、得られた硬化物の屈折率および鉛筆硬度は以下の試験法により評価した。
屈折率:アッベ屈折計を用い、25℃で測定した。
鉛筆硬度:JIS5400に準拠して測定した。
【0028】
合成例1
撹拌機、温度計、窒素導入管を装着したフラスコにビス(β−エピチオプロピル)スルフィド50g、水酸化カリウム3.7g、溶媒としてメタノール1000mlを仕込み、10℃で硫化水素を吹き込み、飽和状態を維持させながら3時間反応させた。反応後、過剰の硫化水素を追い出し、メタノールを留去し、無色液状の生成物55.8gを得た。生成物をシリカゲルカラムクロマトグラフィーで分離精製し、3,3’−チオビス(プロパン−1,2−ジチオール)20.4gと1,2−エピチオ−6,7−ジメルカプト−4−チアヘプタン17.8gを得た。
【0029】
合成例2
攪拌機、温度計、滴下ロートを備えた容量200mlの4つ口のフラスコに20%水酸化ナトリウム水溶液60.0g(0.30モル)を仕込み、30℃以下に保ちながら滴下ロートより3,3’−チオビス(プロパン−1,2−ジチオール)12.3g(0.05モル)を5分かけて滴下した。さらに反応温度を30℃以下に保ち1時間攪拌した。反応温度を0℃まで冷却し、アリルクロライド23.0g(0.30モル)を15分かけて滴下した。滴下終了後さらに同温度で1時間攪拌した。反応生成物をヘキサンで抽出し水洗した後、減圧濃縮し、ヘキサン及び過剰のアリルクロライドを除いた。続いて濃縮液を塩化メチレンとヘキサンの混合溶媒に溶解し、シリカゲルを充填したカラムを通過させた後、再び減圧濃縮することにより、 下記式(10)
【化22】
で表される3,3’−チオビス(1,2−ジ(1-プロペニルチオ)プロパン)19.9gを得た。
【0030】
合成例3
攪拌機、温度計、滴下ロートを備えた容量100mlの4つ口のフラスコに3,3’−チオビス(プロパン−1,2−ジチオール)1.6g(6.5ミリモル)、メタクロイルクロライド3.5g(55ミリモル)、塩化メチレン30mlを仕込み、−10℃に冷却した。反応温度を−8℃以下に保ちながら滴下ロートよりピリジンを1時間かけて滴下した。滴下終了後、反応温度30℃でさらに1時間攪拌した。反応生成物を酸洗、水洗した。メチルハイドロキノンを1000ppm加えた後、減圧濃縮を行った。続いて濃縮液を塩化メチレンとヘキサンの混合溶媒に溶解し、シリカゲルを充填したカラムを通過させた後、再び減圧濃縮することにより、下記式(11)
【化23】
で表される3,3’−チオビス(1,2−ジメタクロイルチオプロパン)を得た。
【0031】
実施例1
合成例1の3,3’−チオビス(プロパン−1,2−ジチオール)35重量部、合成例2の3,3’−チオビス(1,2−ジ(1-プロペニルチオ)プロパン)65重量部、2,2−ジメトキシ−2−フェニルアセトフェノン1重量部をよく混合し、減圧により脱泡することで光硬化性組成物を得た。この光硬化性組成物を2枚のガラス板とゴム製リングから構成される、厚さ3mmのモールドに注入し、100W/cmのメタルハライドランプの光を光源から30cmの距離で30分間照射し硬化させた。室温まで放冷した後、モールドから離型し、硬化物を得た。得られた硬化物の屈折率および鉛筆硬度の測定結果を表1に示した。
【0032】
実施例2
合成例1の3,3’−チオビス(プロパン−1,2−ジチオール)27重量部、合成例2の3,3’−チオビス(1,2−ジ(1-プロペニルチオ)プロパン)50重量部、ビス(4−メタクロイル−チオフェニル)スルフィド23重量部、2,2−ジメトキシ−2−フェニルアセトフェノン1重量部をよく混合し、減圧により脱泡することで光硬化性組成物を得た。この光硬化性組成物から実施例1と同様にして硬化物を得た。得られた硬化物の屈折率および鉛筆硬度の測定結果を表1に示した。
【0033】
実施例3
合成例1の3,3’−チオビス(プロパン−1,2−ジチオール)30重量部、合成例3の3,3’−チオビス(1,2−ジメタクロイルチオプロパン)70重量部、2,2−ジメトキシ−2−フェニルアセトフェノン1重量部をよく混合し、減圧により脱泡することで光硬化性組成物を得た。この光硬化性組成物から実施例1と同様にして硬化物を得た。得られた硬化物の屈折率および鉛筆硬度の測定結果を表1に示した。
【0034】
実施例4
合成例1の3,3’−チオビス(プロパン−1,2−ジチオール)40重量部、ジビニルベンゼン60重量部、2,2−ジメトキシ−2−フェニルアセトフェノン1重量部をよく混合し、減圧により脱泡することで光硬化性組成物を得た。この光硬化性組成物から実施例1と同様にして硬化物を得た。得られた硬化物の屈折率および鉛筆硬度の測定結果を表1に示した。
【0035】
実施例5
合成例1の3,3’−チオビス(プロパン−1,2−ジチオール)27重量部、ジビニルベンゼン50重量部、ビス(4−メタクロイル−チオフェニル)スルフィド23重量部、2,2−ジメトキシ−2−フェニルアセトフェノン1重量部をよく混合し、減圧により脱泡することで光硬化性組成物を得た。この光硬化性組成物から実施例1と同様にして硬化物を得た。得られた硬化物の屈折率および鉛筆硬度の測定結果を表1に示した。
【0036】
実施例6
合成例1の3,3’−チオビス(プロパン−1,2−ジチオール)26重量部、ジビニルベンゼン45重量部、ビス(4−メタクロイル−チオフェニル)スルフィド22重量部、トリメチロールプロパントリメタクリレート7重量部、2,2−ジメトキシ−2−フェニルアセトフェノン1重量部をよく混合し、減圧により脱泡することで光硬化性組成物を得た。この光硬化性組成物から実施例1と同様にして硬化物を得た。得られた硬化物の屈折率および鉛筆硬度の測定結果を表1に示した。
【0037】
比較例1
下記構造式(12)で表される4,8−ビス(メルカプトメチル)−3,6,9−トリチア−1,11−ウンデカンジチオール40重量部、合成例2の3,3’−チオビス(1,2−ジ(1-プロペニルチオ)プロパン)60重量部、2,2−ジメトキシ−2−フェニルアセトフェノン1重量部をよく混合し、減圧により脱泡することで光硬化性組成物を得た。この光硬化性組成物から実施例1と同様にして硬化物を得た。得られた硬化物の屈折率および鉛筆硬度の測定結果を表1に示した。
【化24】
【0038】
比較例2
前記構造式(12)で表される4,8−ビス(メルカプトメチル)−3,6,9−トリチア−1,11−ウンデカンジチオール45重量部、ジビニルベンゼン55重量部、2,2−ジメトキシ−2−フェニルアセトフェノン1重量部をよく混合し、減圧により脱泡することで光硬化性組成物を得た。この光硬化性組成物から実施例1と同様にして硬化物を得た。得られた硬化物の屈折率および鉛筆硬度の測定結果を表1に示した。
【0039】
比較例3
合成例1の3,3’−チオビス(プロパン−1,2−ジチオール)35重量部、トリメチロールプロパントリメタクリレート65重量部、2,2−ジメトキシ−2−フェニルアセトフェノン1重量部をよく混合し、減圧により脱泡することで光硬化性組成物を得た。この光硬化性組成物から実施例1と同様にして硬化物を得た。得られた硬化物の屈折率および鉛筆硬度の測定結果を表1に示した。
【0040】
比較例4
合成例1の3,3’−チオビス(プロパン−1,2−ジチオール)20重量部、下記構造式(13)で表されるビス(β-メタクリロイルオキシエチルチオ)キシリレン80重量部、2,2−ジメトキシ−2−フェニルアセトフェノン1重量部をよく混合し、減圧により脱泡することで光硬化性組成物を得た。この光硬化性組成物から実施例1と同様にして硬化物を得た。得られた硬化物の屈折率および鉛筆硬度の測定結果を表1に示した。
【化25】
【0041】
【表1】
化合物略号
A:3,3’−チオビス(プロパン−1,2−ジチオール)
B:4,8−ビス(メルカプトメチル)−3,6,9−トリチア−1,11−ウンデカンジチオール
P:3,3’−チオビス(1,2−ジ(1-プロペニルチア)プロパン)
Q:3,3’−チオビス(1,2−ジチオメタクリレート)
R:ビス(4−メタクロイル−チオフェニル)スルフィド
S:ジビニルベンゼン
T:トリメチロールプロパントリメタクリレート
U:ビス(β-メタクリロイルオキシエチルチオ)キシリレン
X:2,2−ジメトキシ−2−フェニルアセトフェノン
【0042】
【発明の効果】
本発明の3,3’−チオビス(プロパン−1,2−ジチオール)および1種以上のエン化合物群を含有する組成物は光硬化が可能であり、高屈折率で適度な硬度を有する硬化物を得ることができた。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical material such as a spectacle lens, a prism, an optical fiber, an information recording base, a filter, and a photocurable composition useful for a coating agent, an adhesive, and a sealant for the optical material, and the photocurable composition. The present invention relates to a high refractive index cured product obtained from the composition.
[0002]
[Prior art]
In the field of optical materials, plastic materials are lightweight and rich in toughness, so that they are frequently used in recent years for optical materials such as spectacle lenses, prisms, optical fibers, information recording boards, filters, and coating materials and adhesives for optical materials. In particular, materials having a high refractive index are demanded for materials such as spectacle lenses and optical filters.
[0003]
As a material having a high refractive index, a resin having a thiourethane structure obtained by a reaction between a polythiol compound and a polyisocyanate compound and a resin obtained by a ring-opening polymerization reaction of a polyepisulfide compound have been proposed. However, the molding method of these materials is based on thermosetting, and there are problems such as long molding time and difficulty in molding at low temperature. Accordingly, there is a further demand for a photocurable material that can be molded in a short time and at a low temperature.
[0004]
As one photocurable resin having a high refractive index, a resin composed of a combination of an ene compound and a thiol compound (hereinafter referred to as an ene-thiol resin) has been proposed. The cured product obtained from the thiol compound containing a sulfur atom with a high atomic refractive index in the molecule has a high refractive index, and the cured product has a high impact resistance due to the addition of a thiol group and an unsaturated group. . However, if the content of the thiol compound is increased in order to increase the refractive index sufficiently, the resulting cured product becomes rubbery and sufficient hardness cannot be obtained. In order to obtain a cured product having a high refractive index and a high hardness, polyfunctional, preferably tetrafunctional or higher polythiol having a sufficiently high refractive index and easily forming a crosslinked structure has been demanded.
[0005]
In addition, regarding an ene compound that is a partner of the thiol compound, it is necessary to select an appropriate compound in consideration of not only the refractive index but also the balance of photocurability and hardness.
[0006]
[Problems to be solved by the invention]
An object of the present invention is to solve the above problems, that is, to provide a photocurable composition having a high refractive index and an appropriate hardness, and a high refractive index cured product obtained therefrom.
[0007]
[Means for Solving the Problems]
As a result of intensive studies to solve the problems of the present invention, the present inventors have found that the following formula (1)
[Chemical 6]
It was found that 3,3′-thiobis (propane-1,2-dithiol) represented by the formula is useful as a thiol compound of an ene-thiol resin. The polythiol compound has a high refractive index since the sulfur content is as high as 65% by weight, and a cured product having an appropriate hardness can be obtained because the tetrafunctionality and the crosslinkability are high. Moreover, as an ene compound which becomes a partner of this polythiol compound, following General formula (6)
[Chemical 7]
Wherein R 1 to R 4 are each a hydrogen atom or the following structural formula (3)
[Chemical 8]
Or the following structural formula (4)
[Chemical 9]
(Wherein, R represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms). However, at least two of R 1 to R 4 represent any of the above structural formulas (3), and R 1 and R 2 , or R 3 and R 4 represent the above structural formula (4) at the same time. There is no. )
Bifunctional or higher polyene compound represented by the formula, divinylbenzene, the following formula (5)
[Chemical Formula 10]
It was found that by combining bis (4-methacryloyl-thiophenyl) sulfide represented by the formula, a cured product having a balanced refractive index, photocurability, and hardness was obtained, and the present invention was achieved.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The photocurable composition of the present invention is represented by the following formula (1).
Embedded image
And 3,1′-thiobis (propane-1,2-dithiol), one or more polyene compound groups, and one or more photoradical polymerization initiators.
[0009]
The 3,3′-thiobis (propane-1,2-dithiol) has a high sulfur atom content of 65% by weight, and has a large effect of increasing the refractive index. Moreover, since it has four thiol groups, it is excellent in crosslinkability, and a cured product having an appropriate hardness can be obtained.
[0010]
The 3,3′-thiobis (propane-1,2-dithiol) can be easily synthesized by a known production method or a production method of a mercapto compound. For example, it can be produced by the method described in Japanese Patent Application No. 2001-209031, that is, it can be obtained by reacting bis (β-epithiopropyl) sulfide with hydrogen sulfide in the presence of a base. .
[0011]
The ene compound contained in the photocurable composition of the present invention means a compound having a reactive unsaturated bond group at the terminal, specifically vinyl compounds, allyl compounds, acrylic compounds, methacrylic compounds. Is mentioned.
[0012]
Specific examples of vinyl compounds include vinyl ether, ethyl vinyl ether, isobutyl vinyl ether, 2-ethylhexyl vinyl ether, phenyl vinyl ether, benzyl vinyl ether, 2-chloroethyl vinyl ether, cyclohexyl vinyl ether, vinyl glycidyl ether, vinyl alcohol, methyl vinyl carbinol, ethylene. Glycol monovinyl ether, ethylene glycol divinyl ether, diethylene glycol monovinyl ether, diethylene glycol divinyl ether, tetramethylene glycol monovinyl ether, divinyl sulfide, vinyl ethyl sulfide, vinyl phenyl sulfide, methyl vinyl ketone, divinyl dicarbonate, vinyl diglycol carbonate, vinylene carbonate Ito, vinyl acetate, vinyl chloroacetate, vinyl propionate, vinyl butyrate, vinyl hexanoate, vinyl 2-ethylhexanoate, divinyl adipate, vinyl benzoate, vinyl salicylate, vinyl acrylate, vinyl methacrylate, vinyl bromide, vinyl Iodide, vinyl phosphate, vinyl urea, styrene, 2-methyl styrene, 3-methyl styrene, 4-methyl styrene, α-methyl styrene, 2,4,6-trimethyl styrene, 4-t-butyl styrene, stilbene, vinyl Phenol, 3-vinylbenzyl alcohol, 4-vinylbenzyl alcohol, 2- (4-vinylphenylthio) ethanol, 2- (3-vinylphenylthio) ethanol, 2- (4-vinylbenzylthio) ethanol, 2- ( 3-vinylbenzylthio) eta Nord, 1,3-bis (4-vinylbenzylthio) -2-propanol, 1,3-bis (3-vinylbenzylthio) -2-propanol, 2,3-bis (4-vinylbenzylthio) -1 -Propanol, 2,3-bis (3-vinylbenzylthio) -1-propanol, cinnamyl alcohol, cinnamaldehyde, 1,3-divinylbenzene, 1,4-divinylbenzene, trivinylbenzene, divinylphthalate, 2- Chlorostyrene, 3-chlorostyrene, 4-chlorostyrene, 3-chloromethylstyrene, 4-chloromethylstyrene, 4-aminostyrene, 3-cyanomethylstyrene, 4-cyanomethylstyrene, 4-vinylbiphenyl, 2,2 '-Divinylbiphenyl, 4,4'-divinylbiphenyl, 2,2'-distyryl ether, , 4′-distyryl ether, 2,2′-distyryl sulfide, 4,4′-distyryl sulfide, 2,2-bis (4-vinylphenyl) propane, bis (4-vinylphenyl) ether, 2, Examples thereof include, but are not limited to, 2-bis (4-vinyloxyphenyl) propane.
[0013]
Specific examples of the allyl compounds include, but are not limited to, compounds in which some or all of the vinyl groups of the compounds exemplified above as vinyl compounds are replaced with allyl groups.
[0014]
Specific examples of acrylic compounds include methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, cyclohexyl acrylate, 2-hydroxyethyl acrylate, 3-hydroxypropyl acrylate, 2-hydroxypropyl acrylate, and 3-phenoxy-2-hydroxypropyl. Acrylate, trimethylolpropane monoacrylate, 2-hydroxyethyl isocyanurate monoacrylate, 2-hydroxyethyl isocyanurate diacrylate, 2-hydroxyethyl cyanurate monoacrylate, 2-hydroxyethyl cyanurate diacrylate, ethylene glycol diacrylate, diethylene glycol Diacrylate, 1,3-butylene glycol diacrylate, triethyl Glycol diacrylate, polyethylene glycol diacrylate, propylene glycol diacrylate, 1,3-propanediol diacrylate, 1,3-butanediol diacrylate, 1,4-butanediol diacrylate, 1,6-hexanediol diacrylate , Neopentyl glycol diacrylate, polypropylene glycol diacrylate, 2-hydroxy-1,3-diaacryloxypropane, 2,2-bis [4- (acryloxyethoxy) phenyl] propane, 2,2-bis [4- (Acryloxyethoxy) cyclohexyl] propane, 2,2-bis [4- (2-hydroxy-3-acryloxypropoxy) phenyl] propane, 2,2-bis [4- (acryloxydiethoxy) phenyl] propane, , 2-bis [4- (acryloxy-polyethoxy) phenyl] propane, trimethylolpropane triacrylate, pentaerythritol monoacrylate, pentaerythritol diacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, bis (2,2,2- Examples include, but are not limited to, pentaacrylate of trimethylolethyl) ether, hexaacrylate of bis (2,2,2-trimethylolethyl) ether, bis (4-acryloyl-thiophenyl) sulfide, and the like.
[0015]
Specific examples of the methacrylic compounds include, but are not limited to, compounds in which some or all of the acrylic groups of the compounds exemplified in the above acrylic compounds are replaced with methacrylic groups.
[0016]
As other ene compounds, the following general formula (6)
Embedded image
Wherein R 1 to R 4 are each a hydrogen atom or the following structural formula (3)
Embedded image
Or the following structural formula (4)
Embedded image
(In the formula, R represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.)
Represents one of the following. However, at least two of R 1 to R 4 represent any of the above structural formulas (3), and R 1 and R 2 , or R 3 and R 4 represent the above structural formula (4) at the same time. Absent. )
The polyene compound more than bifunctional represented by these is mentioned.
[0017]
Although the typical example of the polyene compound represented by General formula (6) below is shown, it is not limited to these.
Embedded image
(In the formula, Ph represents a phenyl group.)
[0018]
Specific examples of the ene compound have been described above. Among the exemplified compounds, divinylbenzene and the following formula (5) are particularly preferable in consideration of the balance of refractive index, curability, and hardness.
Embedded image
And bis (4-methacryloyl-thiophenyl) sulfide represented by the following formula (7)
Embedded image
These compounds may be used in combination. In addition, an ene compound other than the above compounds may be added in order to adjust the refractive index, curability, hardness, and the like.
[0019]
Although the synthesis method of the polyene compound represented by the general formula (6) is not particularly limited, for example, the following general formula (8)
Embedded image
(Wherein each of R 5 to R 8 is a hydrogen atom or the following structural formula (4)
Embedded image
(In the formula, R represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.)
Represents one of the following. However, at least two of R 1 to R 4 represent hydrogen atoms, and R 1 and R 2 , or R 3 and R 4 do not simultaneously represent the structural formula (4). )
A bi- or higher functional polythiol compound represented by the following general formula (9)
Embedded image
(Wherein R ′ is the following structural formula (3)
Embedded image
Represents one of the following. X represents a halogen atom. )
It can manufacture by making 1 or more types of halogen derivatives represented by these react in presence of a base. Here, the base may be present in the form of salt formation with the compound of the general formula (8).
[0020]
The contents of 3,3′-thiobis (propane-1,2-dithiol) and ene compound group contained in the photocurable composition of the present invention are represented by (unsaturated bonding group) / (thiol group). The functional group molar ratio is in the range of 1.0 to 10, preferably 1.0 to 5, and more preferably 1.0 to 3.
[0021]
The radical photopolymerization initiator contained in the photocurable composition of the present invention is not particularly limited, and known ones can be used. Two or more kinds of radical photopolymerization initiators may be used.
[0022]
Representative examples of the photo radical polymerization initiator include acetophenone, trichloroacetophenone, 2-hydroxy-2-methyl-propiophenone, 1-hydroxycyclohexyl phenyl ketone, benzoin methyl ether, benzoin ethyl ether, benzoin isobutyl ether, Benzoin isopropyl ether, 2,2-dietoquin acetophenone, 2,2-dimethoxy-2-phenylacetophenone, 1- [4- (2-hydroxyethoxy) phenyl] -2-hydroxy-2-methyl-1-propane-1 -One, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) butanone-1,2-methyl-1 [4- (methylthio) phenyl] -2-morpholinopropan-1-one, benzyl , Methylbenzoylform 1-phenyl-1,2-propanedione-2- (o-benzoyl) oxime, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, 2,4,6-trimethylbenzoylphenylethoxyphosphine oxide, bis ( 2,4,6-trimethylbenzoyl) -phenylphosphine oxide, benzophenone, methyl o-benzoylbenzoate, [4- (methylphenylthio) phenyl] phenylmethane, 4,4′-bisdiethylaminobenzophenone, 1,4-di Benzoylbenzene, 2-benzoylnaphthalene, 4-benzoyldiphenyl, 4-benzoyldiphenyl ether, xanthone, thioxanthone, isopropylthioxanthone, 2,4-dimethylthioxanthone, 2-chlorothioxanthone, ethyl anthraquino But not limited to, 10-butyl-2-chloroacridone and the like.
[0023]
The content of the photo radical polymerization initiator in the photocurable composition of the present invention is 0.001 with respect to 100 parts by weight of the total amount of 3,3′-thiobis (propane-1,2-dithiol) and the ene compound group. -10 parts by weight, preferably 0.005 to 5 parts by weight.
[0024]
In the curable composition of the present invention, a sensitizer, an ultraviolet absorber, a thermal radical polymerization initiator, an antioxidant, an anti-yellowing agent, blue, and the like are added to the curable composition as long as the effects of the present invention are not impaired. Ingredients, pigments, mold release agents, adhesion agents and the like may be added.
[0025]
The high refractive index cured product of the present invention is obtained by polymerizing and curing the photocurable composition of the present invention. The curing method is carried out by known photopolymerization, but known thermal curing may be used in combination as required.
[0026]
Examples of the light source that can be used for photocuring the photocurable composition of the present invention include a low-pressure mercury lamp, a high-pressure mercury lamp, an ultrahigh-pressure mercury lamp, and a metal halide lamp.
[0027]
【Example】
EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In addition, the refractive index and pencil hardness of the obtained cured product were evaluated by the following test methods.
Refractive index: Measured at 25 ° C. using an Abbe refractometer.
Pencil hardness: measured in accordance with JIS 5400.
[0028]
Synthesis example 1
A flask equipped with a stirrer, thermometer, and nitrogen inlet tube was charged with 50 g of bis (β-epithiopropyl) sulfide, 3.7 g of potassium hydroxide, and 1000 ml of methanol as a solvent, and hydrogen sulfide was blown at 10 ° C. The reaction was allowed to proceed for 3 hours while maintaining. After the reaction, excess hydrogen sulfide was driven off and methanol was distilled off to obtain 55.8 g of a colorless liquid product. The product was separated and purified by silica gel column chromatography, and 20.4 g of 3,3′-thiobis (propane-1,2-dithiol) and 17.8 g of 1,2-epithio-6,7-dimercapto-4-thiaheptane were obtained. Obtained.
[0029]
Synthesis example 2
A 200 ml four-necked flask equipped with a stirrer, thermometer, and dropping funnel was charged with 60.0 g (0.30 mol) of a 20% aqueous sodium hydroxide solution and maintained at 30 ° C. or lower from the dropping funnel by 3,3 ′. -12.3 g (0.05 mol) of thiobis (propane-1,2-dithiol) was added dropwise over 5 minutes. Further, the reaction temperature was kept at 30 ° C. or lower and stirred for 1 hour. The reaction temperature was cooled to 0 ° C., and 23.0 g (0.30 mol) of allyl chloride was added dropwise over 15 minutes. After completion of dropping, the mixture was further stirred at the same temperature for 1 hour. The reaction product was extracted with hexane, washed with water, and concentrated under reduced pressure to remove hexane and excess allyl chloride. Subsequently, the concentrated solution is dissolved in a mixed solvent of methylene chloride and hexane, passed through a column packed with silica gel, and then concentrated again under reduced pressure, whereby the following formula (10)
Embedded image
Thus, 19.9 g of 3,3′-thiobis (1,2-di (1-propenylthio) propane) represented by the formula:
[0030]
Synthesis example 3
1.6 g (6.5 mmol) of 3,3′-thiobis (propane-1,2-dithiol) and 3.5 g of methacryloyl chloride in a 100 ml four-necked flask equipped with a stirrer, thermometer and dropping funnel (55 mmol) and 30 ml of methylene chloride were charged and cooled to -10 ° C. While maintaining the reaction temperature at −8 ° C. or lower, pyridine was added dropwise from the dropping funnel over 1 hour. After completion of dropping, the mixture was further stirred for 1 hour at a reaction temperature of 30 ° C. The reaction product was pickled and washed with water. After adding 1000 ppm of methylhydroquinone, vacuum concentration was performed. Subsequently, the concentrated solution was dissolved in a mixed solvent of methylene chloride and hexane, passed through a column filled with silica gel, and then concentrated again under reduced pressure to obtain the following formula (11).
Embedded image
3,3′-thiobis (1,2-dimethacryloylthiopropane) represented by the formula:
[0031]
Example 1
35 parts by weight of 3,3′-thiobis (propane-1,2-dithiol) of Synthesis Example 1 and 65 parts by weight of 3,3′-thiobis (1,2-di (1-propenylthio) propane) of Synthesis Example 2 Then, 1 part by weight of 2,2-dimethoxy-2-phenylacetophenone was mixed well and defoamed under reduced pressure to obtain a photocurable composition. This photocurable composition is poured into a 3 mm thick mold composed of two glass plates and a rubber ring, and cured by irradiating light from a 100 W / cm metal halide lamp at a distance of 30 cm from the light source for 30 minutes. I let you. After cooling to room temperature, the mold was released from the mold to obtain a cured product. The measurement results of the refractive index and pencil hardness of the obtained cured product are shown in Table 1.
[0032]
Example 2
27 parts by weight of 3,3′-thiobis (propane-1,2-dithiol) of Synthesis Example 1 and 50 parts by weight of 3,3′-thiobis (1,2-di (1-propenylthio) propane) of Synthesis Example 2 Then, 23 parts by weight of bis (4-methacryloyl-thiophenyl) sulfide and 1 part by weight of 2,2-dimethoxy-2-phenylacetophenone were mixed well and defoamed under reduced pressure to obtain a photocurable composition. A cured product was obtained from this photocurable composition in the same manner as in Example 1. The measurement results of the refractive index and pencil hardness of the obtained cured product are shown in Table 1.
[0033]
Example 3
30 parts by weight of 3,3′-thiobis (propane-1,2-dithiol) of Synthesis Example 1, 70 parts by weight of 3,3′-thiobis (1,2-dimethacryloylthiopropane) of Synthesis Example 3, 1 part by weight of 2-dimethoxy-2-phenylacetophenone was mixed well and defoamed under reduced pressure to obtain a photocurable composition. A cured product was obtained from this photocurable composition in the same manner as in Example 1. The measurement results of the refractive index and pencil hardness of the obtained cured product are shown in Table 1.
[0034]
Example 4
40 parts by weight of 3,3′-thiobis (propane-1,2-dithiol) of Synthesis Example 1, 60 parts by weight of divinylbenzene, and 1 part by weight of 2,2-dimethoxy-2-phenylacetophenone are mixed well and depressurized by decompression. A photocurable composition was obtained by foaming. A cured product was obtained from this photocurable composition in the same manner as in Example 1. The measurement results of the refractive index and pencil hardness of the obtained cured product are shown in Table 1.
[0035]
Example 5
27 parts by weight of 3,3′-thiobis (propane-1,2-dithiol) of Synthesis Example 1, 50 parts by weight of divinylbenzene, 23 parts by weight of bis (4-methacryloyl-thiophenyl) sulfide, 2,2-dimethoxy-2- 1 part by weight of phenylacetophenone was mixed well and defoamed under reduced pressure to obtain a photocurable composition. A cured product was obtained from this photocurable composition in the same manner as in Example 1. The measurement results of the refractive index and pencil hardness of the obtained cured product are shown in Table 1.
[0036]
Example 6
26 parts by weight of 3,3′-thiobis (propane-1,2-dithiol) of Synthesis Example 1, 45 parts by weight of divinylbenzene, 22 parts by weight of bis (4-methacryloyl-thiophenyl) sulfide, 7 parts by weight of trimethylolpropane trimethacrylate Then, 1 part by weight of 2,2-dimethoxy-2-phenylacetophenone was mixed well and defoamed under reduced pressure to obtain a photocurable composition. A cured product was obtained from this photocurable composition in the same manner as in Example 1. The measurement results of the refractive index and pencil hardness of the obtained cured product are shown in Table 1.
[0037]
Comparative Example 1
40 parts by weight of 4,8-bis (mercaptomethyl) -3,6,9-trithia-1,11-undecanedithiol represented by the following structural formula (12), 3,3′-thiobis (1 of Synthesis Example 2) , 2-di (1-propenylthio) propane) and 1 part by weight of 2,2-dimethoxy-2-phenylacetophenone were mixed well and defoamed under reduced pressure to obtain a photocurable composition. A cured product was obtained from this photocurable composition in the same manner as in Example 1. The measurement results of the refractive index and pencil hardness of the obtained cured product are shown in Table 1.
Embedded image
[0038]
Comparative Example 2
4,8-bis (mercaptomethyl) -3,6,9-trithia-1,11-undecanedithiol represented by the structural formula (12) 45 parts by weight, divinylbenzene 55 parts by weight, 2,2-dimethoxy- A photocurable composition was obtained by thoroughly mixing 1 part by weight of 2-phenylacetophenone and defoaming under reduced pressure. A cured product was obtained from this photocurable composition in the same manner as in Example 1. The measurement results of the refractive index and pencil hardness of the obtained cured product are shown in Table 1.
[0039]
Comparative Example 3
35 parts by weight of Synthesis Example 1, 3,3′-thiobis (propane-1,2-dithiol), 65 parts by weight of trimethylolpropane trimethacrylate, and 1 part by weight of 2,2-dimethoxy-2-phenylacetophenone were mixed well. A photocurable composition was obtained by defoaming under reduced pressure. A cured product was obtained from this photocurable composition in the same manner as in Example 1. The measurement results of the refractive index and pencil hardness of the obtained cured product are shown in Table 1.
[0040]
Comparative Example 4
20 parts by weight of 3,3′-thiobis (propane-1,2-dithiol) of Synthesis Example 1, 80 parts by weight of bis (β-methacryloyloxyethylthio) xylylene represented by the following structural formula (13), 2,2 -1 part by weight of dimethoxy-2-phenylacetophenone was mixed well and defoamed under reduced pressure to obtain a photocurable composition. A cured product was obtained from this photocurable composition in the same manner as in Example 1. The measurement results of the refractive index and pencil hardness of the obtained cured product are shown in Table 1.
Embedded image
[0041]
[Table 1]
Compound abbreviation A: 3,3′-thiobis (propane-1,2-dithiol)
B: 4,8-bis (mercaptomethyl) -3,6,9-trithia-1,11-undecanedithiol P: 3,3′-thiobis (1,2-di (1-propenylthia) propane)
Q: 3,3′-thiobis (1,2-dithiomethacrylate)
R: bis (4-methacryloyl-thiophenyl) sulfide S: divinylbenzene T: trimethylolpropane trimethacrylate U: bis (β-methacryloyloxyethylthio) xylylene X: 2,2-dimethoxy-2-phenylacetophenone
【The invention's effect】
The composition containing 3,3′-thiobis (propane-1,2-dithiol) and one or more ene compound groups according to the present invention can be photocured, has a high refractive index and an appropriate hardness. Could get.
Claims (1)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002030616A JP4126918B2 (en) | 2002-02-07 | 2002-02-07 | High refractive index photocurable composition and cured product thereof |
US10/359,271 US6872333B2 (en) | 2002-02-07 | 2003-02-06 | Enic compounds, sulfur-containing polyenic compound, sulfur-containing polythiol compound, high refractive index photocurable composition and cured product thereof |
US11/000,997 US7026372B2 (en) | 2002-02-07 | 2004-12-02 | Enic compounds, sulfur-containing polyenic compound, sulfur-containing polythiol compound, high refractive index photocurable composition and cured product thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002030616A JP4126918B2 (en) | 2002-02-07 | 2002-02-07 | High refractive index photocurable composition and cured product thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003226718A JP2003226718A (en) | 2003-08-12 |
JP4126918B2 true JP4126918B2 (en) | 2008-07-30 |
Family
ID=27750381
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002030616A Expired - Lifetime JP4126918B2 (en) | 2002-02-07 | 2002-02-07 | High refractive index photocurable composition and cured product thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4126918B2 (en) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4431856B2 (en) * | 2003-05-28 | 2010-03-17 | 三菱瓦斯化学株式会社 | New polythiol compounds |
JP4822495B2 (en) * | 2004-11-05 | 2011-11-24 | 三井化学株式会社 | Method for producing polythiol |
ATE554126T1 (en) | 2006-01-26 | 2012-05-15 | Showa Denko Kk | CURABLE COMPOSITION CONTAINING A THIOLEN COMPOUND |
JP5234632B2 (en) | 2006-06-13 | 2013-07-10 | 昭和電工株式会社 | Polymerization accelerator, curable composition, cured product, and method for producing thiol compound |
KR100960463B1 (en) * | 2007-08-09 | 2010-05-28 | 주식회사 하이닉스반도체 | Anti-reflective polymer, anti-reflective composition containing it and pattern forming method using the same |
JP5157737B2 (en) * | 2008-08-11 | 2013-03-06 | 三菱瓦斯化学株式会社 | New metal-containing compounds |
JP2011170334A (en) * | 2010-01-20 | 2011-09-01 | Fujifilm Corp | Black curable composition for wafer-level lens, and wafer-level lens |
TWI593755B (en) | 2012-10-18 | 2017-08-01 | Mitsubishi Gas Chemical Co | Polymerizable composition and hardened | cured material |
JPWO2014119717A1 (en) * | 2013-02-04 | 2017-01-26 | 積水化学工業株式会社 | Curable resin composition, resin protective film, organic optical device, and barrier film |
CN103901725B (en) * | 2014-04-19 | 2017-07-28 | 长兴电子(苏州)有限公司 | A kind of light curing resin composition |
WO2016063825A1 (en) * | 2014-10-24 | 2016-04-28 | 積水化学工業株式会社 | Sealing agent for display elements and cured product of sealing agent for display elements |
KR101815951B1 (en) | 2015-03-24 | 2018-01-08 | 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 | Novel sulfur compound and composition for optical materials containing same |
TWI632141B (en) * | 2015-03-31 | 2018-08-11 | 日商三菱瓦斯化學股份有限公司 | Novel episulfide compound and composition for optical material containing the same |
KR101827334B1 (en) * | 2015-03-31 | 2018-02-08 | 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 | Novel episulfide compound and optical material composition including same |
JP6595848B2 (en) * | 2015-08-28 | 2019-10-23 | 積水化学工業株式会社 | Sealant for display element |
WO2023162777A1 (en) * | 2022-02-25 | 2023-08-31 | 富士フイルム株式会社 | Compound, curable resin composition, cured product, diffraction optical element, and augmented reality glasses |
-
2002
- 2002-02-07 JP JP2002030616A patent/JP4126918B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2003226718A (en) | 2003-08-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4126918B2 (en) | High refractive index photocurable composition and cured product thereof | |
WO2019216008A1 (en) | Optical resin composition and optical lens | |
KR100453344B1 (en) | Acrylic ester compound and usage thereof | |
JP3807759B2 (en) | Novel thiol derivative and method for producing the same | |
JPH1112273A (en) | Episulfide compound and its compound | |
US20100280208A1 (en) | Thietane compound, polymerizable composition comprising the compound, and use of the composition | |
JP2011168526A (en) | Novel (meth)acrylate compound and manufacturing method of the same | |
JPH01128966A (en) | Sulfur-containing aliphatic acrylic compound | |
JPS6172748A (en) | Sulfur-containing acrylic compound | |
JP4235795B2 (en) | Sulfur-containing polyene compound and high refractive index cured product | |
AU764146B2 (en) | Polymerizable sulfur-containing (meth)acrylate, polymerizable composition and optical lens | |
EP3940005B1 (en) | Curable resin composition and cured product thereof | |
KR101057734B1 (en) | Acrylate having high refractive index and manufacturing method thereof | |
JP2012021080A (en) | Curable composition and optical material | |
JP4905991B2 (en) | High refractive index material with high Abbe number | |
CN117603108B (en) | High refraction curable monomer | |
JP2002030082A (en) | Polymerizable thio(meth)acrylate compound | |
JP3511770B2 (en) | Thiol (meth) acrylate resin | |
JP2010254585A (en) | Anthracene-9,10-diether compound, method for producing the same and polymer thereof | |
JP2011046820A (en) | Sulfur-containing compound and manufacturing method for the same | |
JP3820183B2 (en) | Acrylic ester compounds and uses thereof | |
JP5213100B2 (en) | Novel sulfur-containing ethylenically unsaturated group-containing compound and polymer thereof | |
JPH01180854A (en) | Acrylic acid ester for optical use | |
JP3981602B2 (en) | Radical polymerizable sulfur-containing adamantane compound and cured product | |
JPH10204056A (en) | Optical resin and composition therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050204 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070615 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070814 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071011 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080422 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080505 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110523 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4126918 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110523 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130523 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130523 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140523 Year of fee payment: 6 |
|
EXPY | Cancellation because of completion of term |