JP2008050266A - Phenol derivative and core crosslinking type star polysulfide obtained from the same - Google Patents

Phenol derivative and core crosslinking type star polysulfide obtained from the same Download PDF

Info

Publication number
JP2008050266A
JP2008050266A JP2006221427A JP2006221427A JP2008050266A JP 2008050266 A JP2008050266 A JP 2008050266A JP 2006221427 A JP2006221427 A JP 2006221427A JP 2006221427 A JP2006221427 A JP 2006221427A JP 2008050266 A JP2008050266 A JP 2008050266A
Authority
JP
Japan
Prior art keywords
carbon atoms
formula
phenol derivative
group
substituted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006221427A
Other languages
Japanese (ja)
Inventor
Masami Ochiai
雅美 落合
Atsushi Takahashi
敦之 高橋
Tatatomi Nishikubo
忠臣 西久保
Hiroto Kudo
宏人 工藤
Hajime Inoue
元 井上
Tetsuo Anada
哲夫 穴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanagawa University
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Kanagawa University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Kanagawa University filed Critical Hitachi Chemical Co Ltd
Priority to JP2006221427A priority Critical patent/JP2008050266A/en
Publication of JP2008050266A publication Critical patent/JP2008050266A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a core crosslinking type star polysulfide having a high refractive index and to provide a method for producing the same. <P>SOLUTION: The phenol derivative is represented by formula (1) (R<SB>1</SB>is a substituted or nonsubstituted 1-20C monofunctional aromatic group; R<SB>2</SB>is a 1-20C bifunctional organic group; R<SB>3</SB>is a substituted or nonsubstituted 1-20C monofunctional aromatic group). <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、フェノール誘導体及びそれから得られるコア架橋型スターポリスルフィドに関する。   The present invention relates to a phenol derivative and a core cross-linked star polysulfide obtained therefrom.

プラスチック系光学材料は無機系材料と比較し機械的特性に優れ、光学特性の制御が可能である。さらにこれらの利点に加え、成形加工が容易であり、低コストで大量生産が可能となることから、レンズ、眼鏡レンズ、コンタクトレンズ、光ディスク、光学繊維等様々な分野に応用されている。   Plastic optical materials are superior in mechanical properties to inorganic materials and can control optical properties. Further, in addition to these advantages, the molding process is easy, and mass production is possible at low cost. Therefore, it is applied to various fields such as lenses, spectacle lenses, contact lenses, optical disks, optical fibers and the like.

光学用樹脂の重要な特性のひとつに屈折率がある。屈折率を精密に制御することは、光学レンズ、光導波路等に応用する際、必要不可欠である。屈折率の制御には、樹脂中に様々な置換基を導入する手法が広く用いられている。屈折率は主として分子屈折、つまり分極率に支配される。   One of the important properties of optical resins is the refractive index. Precise control of the refractive index is indispensable when applied to optical lenses, optical waveguides, and the like. In order to control the refractive index, a technique of introducing various substituents into the resin is widely used. The refractive index is mainly governed by molecular refraction, that is, polarizability.

フッ素以外のハロゲン基である塩素、沃素等は分子屈折、分子容ともに増加することから屈折率は高くなる。しかし、これらの化合物は高屈折率であるがアッベ数が下がる傾向にあり、色収差の問題が生じる。このため、アッベ数を大きく低下させることなく高屈折率化を図る手段として硫黄原子を導入する方法がある。   Chlorine and iodine, which are halogen groups other than fluorine, increase both the molecular refraction and the molecular volume, so that the refractive index becomes high. However, although these compounds have a high refractive index, the Abbe number tends to decrease, resulting in a problem of chromatic aberration. For this reason, there is a method of introducing sulfur atoms as means for increasing the refractive index without greatly reducing the Abbe number.

一方、近年、星型高分子、多分岐高分子、環状高分子等形状特異性高分子が合成され、その性質も徐々に明らかにされている。形状特異性高分子中でもスターポリマーは、最も基本的な構造をとるため、分岐ポリマーのモデルとして古くから研究が行われている。スターポリマーは、鎖状ポリマーが中心(コア)に結合した構造を有しており、古くから分岐ポリマーのモデルとしての研究が盛んに行われ、これまで多数の合成法が報告されている。   On the other hand, in recent years, shape-specific polymers such as star polymers, hyperbranched polymers, and cyclic polymers have been synthesized, and their properties have been gradually revealed. Since star polymers have the most basic structure among shape-specific polymers, they have been studied for a long time as a model of branched polymers. The star polymer has a structure in which a chain polymer is bonded to the center (core), and has been actively studied as a model of a branched polymer for a long time, and many synthetic methods have been reported so far.

スターポリマーの合成法には、大きく分けて2種類の合成法がある。1つはcore−first法であり、コアとなる多官能性開始剤の合成が困難である等の欠点を有している。もう1つはarm−first法であり、腕分子となる鎖状ポリマーを重合した後、コアとなる試薬と反応させる方法である。この合成法の場合においても、コアとなる試薬と腕分子との高分子反応により合成することから、目的とする腕数のスターポリマーを合成するのが困難であるという欠点がある。   There are roughly two types of star polymer synthesis methods. One is a core-first method, which has drawbacks such as difficulty in synthesizing a core multifunctional initiator. The other is an arm-first method, in which a chain polymer that becomes an arm molecule is polymerized and then reacted with a reagent that becomes a core. Even in this synthesis method, since the synthesis is performed by a polymer reaction between the core reagent and the arm molecule, it is difficult to synthesize a star polymer having the desired number of arms.

このように従来の合成法では多くの腕を有するスターポリマーの合成は困難であった。しかし、最近では、リビングラジカルやリビングカチオン重合により腕分子を合成した後、ジビニル化合物を添加することにより、コアに架橋構造を有するスターポリマーの合成法が報告されている。この合成法によれば、簡便に腕の長さを制御できる多数の腕を有するスターポリマーの合成が可能である(非特許文献1)。また、これらスターポリマー類の基本一次構造は、同じ線状高分子と比較すると、高分子鎖同士のからみ合いが少ないため、流動性に優れる等の特徴も報告されている。しかし、スターポリマー類の熱的性質や流動特性については数多く報告されているにもかかわらず、その光学特性に関する報告はこれまでほとんど報告されていない。   Thus, it has been difficult to synthesize star polymers having many arms by conventional synthesis methods. However, recently, a method for synthesizing a star polymer having a cross-linked structure in a core by adding a divinyl compound after synthesizing an arm molecule by living radical or living cation polymerization has been reported. According to this synthesis method, it is possible to synthesize a star polymer having a large number of arms whose arm length can be easily controlled (Non-patent Document 1). In addition, the basic primary structures of these star polymers have been reported to have excellent fluidity because they have less entanglement between polymer chains than the same linear polymer. However, despite many reports on the thermal properties and flow characteristics of star polymers, there have been few reports on their optical properties.

以前、本発明者らはcore−first法による、コアにカリックスアレーン骨格を有する種々のスターポリスルフィドの合成を行い、この屈折率特性についての検討を行った。その結果、硫黄含有量の上昇、及びスターポリマーの特異的な構造に起因する密度の高さにより、対応する鎖状ポリマーと比較すると、高い屈折率を示すことが判明した(特許文献1、特許文献2)。
特開2005−225799号公報 特開2006−16342号公報 S.Kanaoka, J.Ueda, M.Sawamoto, T.Higashimura, Macromolecules, 26,254 (1993)
Previously, the present inventors synthesized various star polysulfides having a calixarene skeleton in the core by the core-first method, and examined the refractive index characteristics. As a result, it was found that the refractive index was higher than that of the corresponding chain polymer due to the increased sulfur content and the high density due to the specific structure of the star polymer (Patent Document 1, Patent). Reference 2).
JP 2005-225799 A JP 2006-16342 A S. Kanaoka, J.A. Ueda, M .; Sawamoto, T .; Higashimura, Macromolecules, 26, 254 (1993)

本発明の目的は、新規なフェノール誘導体及びその製造方法を提供することである。
本発明の目的は、高屈折率を有するコア架橋型スターポリスルフィド及びその製造方法を提供することである。
The objective of this invention is providing a novel phenol derivative and its manufacturing method.
An object of the present invention is to provide a core cross-linked star polysulfide having a high refractive index and a method for producing the same.

本発明者らは、フェノール誘導体を出発原料にしてポリチオエーテル鎖を伸長してマクロ開始剤を合成した後、コア化合物と反応させることにより、高屈折率スターポリマーを見出した。さらに、重合性基を有するマクロ開始剤を合成し、その光架橋反応により高屈折率光硬化性樹脂を見出した。
本発明によれば、以下のフェノール誘導体、コア架橋型スターポリスルフィド等が提供される。
1.下記式(1)で表されるフェノール誘導体。

Figure 2008050266
(式(1)中、Rは置換又は無置換の炭素数1〜20の1価の芳香族基を示し、Rは炭素数1〜20の2価の有機基を示し、Rは置換又は無置換の炭素数1〜20の1価の芳香族基を示す。)
2.下記式(2)で表されるフェノール誘導体。
Figure 2008050266
(式(2)中、nは1〜1000の整数を表し、Rは置換又は無置換の炭素数1〜20の1価の芳香族基を示し、Rは炭素数1〜20の2価の有機基を示し、Rは置換又は無置換の炭素数1〜20の1価の芳香族基を示し、R及びRはそれぞれ水素又は炭素数1〜20の1価の有機基を示し、またRとRは結合してもよい。)
3.下記式(3)で表されるフェノール誘導体。
Figure 2008050266
(式(3)中、nは1〜1000の整数を表し、mは1〜1000の整数を表し、Rは置換又は無置換の炭素数1〜20の1価の芳香族基を示し、Rは炭素数1〜20の2価の有機基を示し、Rは置換又は無置換の炭素数1〜20の1価の芳香族基を示し、R及びRはそれぞれ水素又は炭素数1〜20の1価の有機基を示し、またRとRは結合してもよく、Xは酸素又は硫黄を示し、R及びRはそれぞれ水素又は炭素数1〜20の1価の有機基を示し、またRとRは結合してもよい。)
4.2又は3記載のフェノール誘導体に下記式(4)で表される化合物を反応させることで得られるコア架橋型スターポリスルフィド。
Figure 2008050266
(式(4)中、Rは−O−、−S−、−CH−、−NH−、―SO−、―C(CH−、―CH(CH)−、又は−C(CF−であり、Rはそれぞれ水素原子、ハロゲン原子又は炭素数1〜6のアルキル基を示す。X及びYはそれぞれ硫黄原子又は酸素原子を示す。)
5.1記載のフェノール誘導体に、下記式(5)で表されるチイラン化合物を反応させる2記載のフェノール誘導体の製造方法。
Figure 2008050266
(式中、R及びRは式(2)と同じである。)
6.1記載のフェノール誘導体に、下記式(5)で表されるチイラン化合物と、下記式(6)で表されるエポキシ化合物又はチイラン化合物を反応させる3記載のフェノール誘導体の製造方法。
Figure 2008050266
(式中、R、R及びXは式(3)と同じである。)
7.2又は3記載のフェノール誘導体に下記式(4)で表される化合物を反応させるコア架橋型スターポリスルフィドの製造方法。
Figure 2008050266
(式(4)中、Rは−O−、−S−、−CH−、−NH−、―SO−、―C(CH−、―CH(CH)−、又は−C(CF−であり、Rはそれぞれ水素原子、ハロゲン原子又は炭素数1〜6のアルキル基を示す。X及びYはそれぞれ硫黄原子又は酸素原子を示す。)
8.重合性基を有する2又は3記載のフェノール誘導体。
9.8記載のフェノール誘導体に加熱又は活性エネルギー線照射して得られる3次元硬化物。
10.8記載のフェノール誘導体に加熱又は活性エネルギー線照射する10記載の3次元硬化物の製造方法。 The present inventors discovered a high refractive index star polymer by reacting with a core compound after synthesizing a macroinitiator by extending a polythioether chain using a phenol derivative as a starting material. Furthermore, the macroinitiator which has a polymeric group was synthesize | combined and the high refractive index photocurable resin was discovered by the photocrosslinking reaction.
According to the present invention, the following phenol derivatives, core cross-linked star polysulfides and the like are provided.
1. A phenol derivative represented by the following formula (1).
Figure 2008050266
(In Formula (1), R 1 represents a substituted or unsubstituted monovalent aromatic group having 1 to 20 carbon atoms, R 2 represents a divalent organic group having 1 to 20 carbon atoms, and R 3 represents A substituted or unsubstituted monovalent aromatic group having 1 to 20 carbon atoms is shown.)
2. A phenol derivative represented by the following formula (2).
Figure 2008050266
(In formula (2), n represents an integer of 1 to 1000, R 1 represents a substituted or unsubstituted monovalent aromatic group having 1 to 20 carbon atoms, and R 2 represents 2 having 1 to 20 carbon atoms. R 3 represents a substituted or unsubstituted monovalent aromatic group having 1 to 20 carbon atoms, R 4 and R 5 represent hydrogen or a monovalent organic group having 1 to 20 carbon atoms, respectively. And R 4 and R 5 may be bonded.)
3. A phenol derivative represented by the following formula (3).
Figure 2008050266
(In formula (3), n represents an integer of 1 to 1000, m represents an integer of 1 to 1000, R 1 represents a substituted or unsubstituted monovalent aromatic group having 1 to 20 carbon atoms, R 2 represents a divalent organic group having 1 to 20 carbon atoms, R 3 represents a substituted or unsubstituted monovalent aromatic group having 1 to 20 carbon atoms, and R 4 and R 5 represent hydrogen or carbon, respectively. R 1 represents a monovalent organic group having 1 to 20; R 4 and R 5 may be bonded; X represents oxygen or sulfur; R 6 and R 7 are each hydrogen or 1 having 1 to 20 carbon atoms; A valent organic group, and R 6 and R 7 may be bonded.)
The core bridge | crosslinking type star polysulfide obtained by making the compound represented by following formula (4) react with the phenol derivative of 4.2 or 3.
Figure 2008050266
(In Formula (4), R 8 represents —O—, —S—, —CH 2 —, —NH—, —SO 2 —, —C (CH 3 ) 2 —, —CH (CH 3 ) —, or -C (CF 3) 2 - a and, R 9 are each a hydrogen atom, .X and Y represents a halogen atom or an alkyl group having 1 to 6 carbon atoms denotes a sulfur atom or an oxygen atom).
The manufacturing method of the phenol derivative of 2 with which the thiirane compound represented by following formula (5) is made to react with the phenol derivative of 5.1.
Figure 2008050266
(In the formula, R 4 and R 5 are the same as in formula (2).)
The method for producing a phenol derivative according to 3, wherein the phenol derivative according to 6.1 is reacted with a thiirane compound represented by the following formula (5) and an epoxy compound or a thiirane compound represented by the following formula (6).
Figure 2008050266
(In the formula, R 6 , R 7 and X are the same as in formula (3).)
A method for producing a core cross-linked star polysulfide, comprising reacting the phenol derivative according to 7.2 or 3 with a compound represented by the following formula (4):
Figure 2008050266
(In Formula (4), R 8 represents —O—, —S—, —CH 2 —, —NH—, —SO 2 —, —C (CH 3 ) 2 —, —CH (CH 3 ) —, or -C (CF 3) 2 - a and, R 9 are each a hydrogen atom, .X and Y represents a halogen atom or an alkyl group having 1 to 6 carbon atoms denotes a sulfur atom or an oxygen atom).
8). 4. The phenol derivative according to 2 or 3 having a polymerizable group.
A three-dimensional cured product obtained by heating or irradiating active energy rays to the phenol derivative described in 9.8.
10. The method for producing a three-dimensional cured product according to 10, wherein the phenol derivative according to 10.8 is heated or irradiated with active energy rays.

本発明によれば、新規なフェノール誘導体及びその製造方法が提供できる。
本発明によれば、新規なフェノール誘導体から、光学材料として好適な高屈折率を有するコア架橋型スターポリスルフィドが提供できる。
ADVANTAGE OF THE INVENTION According to this invention, a novel phenol derivative and its manufacturing method can be provided.
According to the present invention, a core-crosslinked star polysulfide having a high refractive index suitable as an optical material can be provided from a novel phenol derivative.

本発明のスターポリマーは、式(1)〜(3)で表されるフェノール誘導体を中間体として製造できる。   The star polymer of this invention can manufacture the phenol derivative represented by Formula (1)-(3) as an intermediate body.

式(1)〜(3)中のRは置換又は無置換の炭素数1〜20の1価の芳香族基であり、例えば芳香族基としては、フェニル基、ナフチル基が挙げられ、フェニル基が好ましい。芳香族基に置換する置換基としてはメチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、t−ブチル基等のアルキル基や、ビニル基、アリル基等のアルケニル基や、シクロヘキシル基、ノルボルネン基等の飽和又は不飽和環状脂肪族炭化水素基や、フェニル基、ナフチル基等の芳香族基や、エーテル類、エステル類、アミノ類、及びこれらが置換された有機基である。好ましくは炭素数1〜6のアルキル基である。 R 1 in the formulas (1) to (3) is a substituted or unsubstituted monovalent aromatic group having 1 to 20 carbon atoms. Examples of the aromatic group include a phenyl group and a naphthyl group. Groups are preferred. Examples of the substituent substituted on the aromatic group include methyl groups, ethyl groups, n-propyl groups, isopropyl groups, n-butyl groups, isobutyl groups, sec-butyl groups, t-butyl groups, and other alkyl groups, vinyl groups, Alkenyl groups such as allyl groups, saturated or unsaturated cyclic aliphatic hydrocarbon groups such as cyclohexyl groups and norbornene groups, aromatic groups such as phenyl groups and naphthyl groups, ethers, esters, aminos, and the like Is a substituted organic group. Preferably it is a C1-C6 alkyl group.

式(1)〜(3)中のRは、炭素数1〜20の2価の有機基であり、例えばメチレン基、エチレン基等のアルキレン基やフェニレン基等の芳香族基及びこれらが置換された有機基であるが、塩素基の反応性の観点から炭素数1〜4のアルキレン基又はジニトロ置換フェニレン基等の電子吸引性基が望ましい。 R 2 in the formulas (1) to (3) is a divalent organic group having 1 to 20 carbon atoms, for example, an alkylene group such as a methylene group or an ethylene group, an aromatic group such as a phenylene group, and these are substituted. The organic group is preferably an electron-withdrawing group such as an alkylene group having 1 to 4 carbon atoms or a dinitro-substituted phenylene group from the viewpoint of the reactivity of the chlorine group.

式(1)〜(3)中のRは置換又は無置換の炭素数1〜20の1価の芳香族基であり、例えば芳香族基としては、フェニル基、ナフチル基が挙げられ、フェニル基が好ましい。芳香族基に置換する置換基としてはメチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、t−ブチル基等のアルキル基や、ビニル基、アリル基等のアルケニル基や、シクロヘキシル基、ノルボルネン基等の飽和又は不飽和環状脂肪族炭化水素基や、フェニル基、ナフチル基等の芳香族基、エーテル類、エステル類、アミノ類、及びこれらが置換された有機基である。好ましくは炭素数1〜4のアルキル基で置換された又は非置換のフェニル基、又はナフチル基である。 R 3 in the formulas (1) to (3) is a substituted or unsubstituted monovalent aromatic group having 1 to 20 carbon atoms. Examples of the aromatic group include a phenyl group and a naphthyl group. Groups are preferred. Examples of the substituent substituted on the aromatic group include methyl groups, ethyl groups, n-propyl groups, isopropyl groups, n-butyl groups, isobutyl groups, sec-butyl groups, t-butyl groups, and other alkyl groups, vinyl groups, Alkenyl groups such as allyl groups, saturated or unsaturated cyclic aliphatic hydrocarbon groups such as cyclohexyl groups and norbornene groups, aromatic groups such as phenyl groups and naphthyl groups, ethers, esters, aminos, and the like A substituted organic group. Preferably, it is a phenyl group substituted or unsubstituted by a C1-C4 alkyl group, or a naphthyl group.

式(2)及び式(3)中のR及びRはそれぞれ水素又は炭素数1〜20の1価の有機基であり、例えば、互いに独立してメチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、t−ブチル基等のアルキル基や、ビニル基、アリル基等のアルケニル基や、シクロヘキシル基、ノルボルネン基等の飽和又は不飽和環状脂肪族炭化水素基や、フェニル基、ナフチル基等の芳香族基や、エーテル類、エステル類、アミノ類、及びこれらが置換された有機基であり、また、RとRが結合して、例えばシクロブタン、シクロペンタン、シクロヘキサン、シクロヘプタン、ノルボルナン環等の環を形成してもよい。好ましくは、Rは水素又は炭素数1〜4のアルキル基であり、Rは炭素数1〜4のアルキル基で置換された又は非置換のフェノキシアルキル(好ましくは炭素数1〜4)基である。 R 4 and R 5 in the formulas (2) and (3) are each hydrogen or a monovalent organic group having 1 to 20 carbon atoms, for example, a methyl group, an ethyl group, or an n-propyl group independently of each other. , Isopropyl, n-butyl, isobutyl, sec-butyl, t-butyl and other alkyl groups, vinyl, allyl and other alkenyl groups, cyclohexyl, norbornene and other saturated or unsaturated cyclic groups An aliphatic hydrocarbon group, an aromatic group such as a phenyl group or a naphthyl group, an ether, an ester, an amino, or an organic group in which these are substituted, and R 4 and R 5 are bonded to each other. For example, a ring such as cyclobutane, cyclopentane, cyclohexane, cycloheptane, norbornane ring may be formed. Preferably, R 4 is hydrogen or an alkyl group having 1 to 4 carbon atoms, and R 5 is a phenoxyalkyl (preferably having 1 to 4 carbon atoms) group substituted or unsubstituted by an alkyl group having 1 to 4 carbon atoms. It is.

式(2)及び式(3)中のnは1〜1000の整数であり、好ましくは1〜100である。
式(2)の数平均分子量は好ましくは1000〜50000である。
N in Formula (2) and Formula (3) is an integer of 1-1000, Preferably it is 1-100.
The number average molecular weight of the formula (2) is preferably 1000 to 50000.

式(3)中のR及びRはそれぞれ水素又は炭素数1〜20の1価の有機基であり、例えば、互いに独立してメチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、t−ブチル基等のアルキル基や、ビニル基、アリル基、アクリロリル基、メタクリロイル基、スチリル基、p−ビニルアリール基、ビニロキシ基等のアルケニル基や、シクロヘキシル基、ノルボルネン基、クロトニル基、アルコキシ基、フェノキシ基等の飽和又は脂肪族炭化水素基や、フェニル基、ナフチル基等の芳香族基や、エーテル類、エステル類、及びこれらが置換された有機基であり、また、RとRが結合して、例えばシクロブタン、シクロペンタン、シクロヘキサン、シクロヘプタン、ノルボルナン等の環を形成してもよい。好ましくは、Rは水素又は炭素数1〜4のアルキル基であり、好ましくは、Rは水素又は炭素数1〜4のアルキル基であり、Rは(メタ)アクリロキシアルキル(好ましくは炭素数1〜4)基である。 R 6 and R 7 in the formula (3) are each hydrogen or a monovalent organic group having 1 to 20 carbon atoms, and for example, independently of each other, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, n Alkyl groups such as butyl group, isobutyl group, sec-butyl group and t-butyl group, alkenyl groups such as vinyl group, allyl group, acrylolyl group, methacryloyl group, styryl group, p-vinylaryl group and vinyloxy group Saturated or aliphatic hydrocarbon groups such as cyclohexyl group, norbornene group, crotonyl group, alkoxy group and phenoxy group, aromatic groups such as phenyl group and naphthyl group, ethers, esters, and these are substituted. An organic group, and R 6 and R 7 are bonded to form, for example, cyclobutane, cyclopentane, cyclohexane, cycloheptane, norbornane, etc. A ring may be formed. Preferably, R 6 is hydrogen or an alkyl group having 1 to 4 carbon atoms, preferably R 6 is hydrogen or an alkyl group having 1 to 4 carbon atoms, and R 7 is a (meth) acryloxyalkyl (preferably A group having 1 to 4 carbon atoms.

式(3)中のmは1〜1000の整数であり、好ましくは1〜100である。
式(3)の数平均分子量は好ましくは1000〜50000である。
M in Formula (3) is an integer of 1-1000, Preferably it is 1-100.
The number average molecular weight of the formula (3) is preferably 1000 to 50000.

式(2)で示されるフェノール誘導体は、式(1)で示される化合物に、下記式で示される対応するチイラン化合物を反応させることによって得ることができる。好ましくは塩触媒存在下で反応を行う。

Figure 2008050266
(式中、R及びRは式(2)と同じである。) The phenol derivative represented by the formula (2) can be obtained by reacting the compound represented by the formula (1) with a corresponding thiirane compound represented by the following formula. The reaction is preferably carried out in the presence of a salt catalyst.
Figure 2008050266
(In the formula, R 4 and R 5 are the same as in formula (2).)

塩触媒としては、テトラブチルアンモニウムブロミドやテトラエチルアンモニウムクロリド等の4級アンモニウム塩や、リチウムクロリド、リチウムブロミド等の金属塩を用いることができる。触媒の添加量は、式(1)で示される化合物の官能基量と等量が好ましい。   As the salt catalyst, quaternary ammonium salts such as tetrabutylammonium bromide and tetraethylammonium chloride, and metal salts such as lithium chloride and lithium bromide can be used. The addition amount of the catalyst is preferably equal to the functional group amount of the compound represented by the formula (1).

反応に用いる溶媒は、エーテル類、ハロゲン系溶媒、炭化水素系溶媒の他に、N,N−ジメチルホルムアミドや1−メチル−2−ピロリドン等の非プロトン性極性溶媒、アセトンやシクロヘキサノン等のケトン系溶媒、酢酸エチル等のエステル類を用いることができる。また、無溶媒でも反応させることができる。   Solvents used in the reaction include ethers, halogen solvents, hydrocarbon solvents, aprotic polar solvents such as N, N-dimethylformamide and 1-methyl-2-pyrrolidone, and ketones such as acetone and cyclohexanone. Solvents and esters such as ethyl acetate can be used. Moreover, it can be made to react even without solvent.

反応温度は、通常、0〜150℃の間で行うが、好ましくは20℃〜100℃、より好ましくは50℃〜100℃である。反応温度が0℃未満だと反応時間が長くなる恐れがあり、また反応温度が150℃を超えると副反応が起こる恐れがある。
反応は、アンプル封管等、水分を除去できる状態で行うのが望ましい。
Although reaction temperature is normally performed between 0-150 degreeC, Preferably it is 20 to 100 degreeC, More preferably, it is 50 to 100 degreeC. If the reaction temperature is less than 0 ° C, the reaction time may be prolonged, and if the reaction temperature exceeds 150 ° C, side reactions may occur.
The reaction is desirably performed in a state where moisture can be removed, such as an ampoule sealed tube.

式(3)で示されるフェノール誘導体は、式(1)で示される化合物に、チイラン化合物(5)と、式(6)で示される対応するチイラン化合物又はエポキシ化合物を反応させることによって得ることができる。また、式(3)で示されるフェノール誘導体は、式(2)で示される化合物に式(6)で示されるチイラン化合物又はエポキシ化合物を反応させることによって得ることができる。好ましくは塩触媒存在下で反応を行う。

Figure 2008050266
(式中、R、R及びXは式(3)と同じである。) The phenol derivative represented by the formula (3) can be obtained by reacting the compound represented by the formula (1) with the thiirane compound (5) and the corresponding thiirane compound or epoxy compound represented by the formula (6). it can. The phenol derivative represented by the formula (3) can be obtained by reacting the compound represented by the formula (2) with the thiirane compound or epoxy compound represented by the formula (6). The reaction is preferably carried out in the presence of a salt catalyst.
Figure 2008050266
(In the formula, R 6 , R 7 and X are the same as in formula (3).)

塩触媒としては、テトラブチルアンモニウムブロミドやテトラエチルアンモニウムクロリド等の4級アンモニウム塩や、リチウムクロリド、リチウムブロミド等の金属塩を用いることができる。触媒の添加量は、出発原料の式(1)又は式(2)で示される化合物の官能基量と等量が好ましい。   As the salt catalyst, quaternary ammonium salts such as tetrabutylammonium bromide and tetraethylammonium chloride, and metal salts such as lithium chloride and lithium bromide can be used. The addition amount of the catalyst is preferably equal to the functional group amount of the compound represented by the formula (1) or (2) of the starting material.

反応に用いる溶媒はエーテル類、ハロゲン系溶媒、炭化水素系溶媒の他に、N,N−ジメチルホルムアミドや1−メチル−2−ピロリドン等の非プロトン性極性溶媒、アセトンやシクロヘキサノン等のケトン系溶媒、酢酸エチル等のエステル類を用いることができる。また、無溶媒でも反応させることができる。   Solvents used in the reaction include ethers, halogen solvents, hydrocarbon solvents, aprotic polar solvents such as N, N-dimethylformamide and 1-methyl-2-pyrrolidone, and ketone solvents such as acetone and cyclohexanone. Esters such as ethyl acetate can be used. Moreover, it can be made to react even without solvent.

反応温度は、通常、0〜150℃の間で行うが、好ましくは20〜100℃、より好ましくは50〜100℃である。反応温度が0℃未満だと反応時間が長くなる恐れがあり、また反応温度が150℃を超えると副反応が起こる恐れがある。
反応はアンプル封管等、水分を除去できる状態で行うのが望ましい。
Although reaction temperature is normally performed between 0-150 degreeC, Preferably it is 20-100 degreeC, More preferably, it is 50-100 degreeC. If the reaction temperature is less than 0 ° C, the reaction time may be prolonged, and if the reaction temperature exceeds 150 ° C, side reactions may occur.
The reaction is desirably performed in a state where moisture can be removed, such as an ampoule sealed tube.

式(2)又は式(3)の化合物に下記式(4)で表される化合物を反応させることでコア架橋型スターポリスルフィドが得られる。好ましくは、塩触媒存在下で反応を行う。

Figure 2008050266
(式(4)中、Rは−O−、−S−、−CH−、−NH−、―SO−、―C(CH−、―CH(CH)−、又は−C(CF−であり、Rはそれぞれ水素原子、ハロゲン原子又は炭素数1〜6のアルキル基を示す。X及びYはそれぞれ硫黄原子、又は酸素原子を示す。) A core-crosslinked star polysulfide is obtained by reacting the compound represented by the following formula (4) with the compound of the formula (2) or the formula (3). Preferably, the reaction is performed in the presence of a salt catalyst.
Figure 2008050266
(In Formula (4), R 8 represents —O—, —S—, —CH 2 —, —NH—, —SO 2 —, —C (CH 3 ) 2 —, —CH (CH 3 ) —, or -C (CF 3) 2 - a and, R 9 are each a hydrogen atom, .X and Y are each sulfur atom a halogen atom or an alkyl group having 1 to 6 carbon atoms, or an oxygen atom).

式(4)中のYはベンゼン環のオルト位、メタ位又はパラ位に置換しており、好ましくはパラ位に置換している。また、RはYが置換した部位以外にそれぞれ1つずつ置換している。 Y in formula (4) is substituted at the ortho, meta, or para position of the benzene ring, preferably at the para position. R 9 is substituted one by one in addition to the portion where Y is substituted.

塩触媒としては、テトラブチルアンモニウムブロミドやテトラエチルアンモニウムクロリド等の4級アンモニウム塩や、リチウムクロリド、リチウムブロミド等の金属塩を用いることができる。触媒の添加量は、式(2)で示される化合物の官能基量と等量が好ましい。   As the salt catalyst, quaternary ammonium salts such as tetrabutylammonium bromide and tetraethylammonium chloride, and metal salts such as lithium chloride and lithium bromide can be used. The addition amount of the catalyst is preferably equal to the functional group amount of the compound represented by the formula (2).

反応に用いる溶媒はエーテル類、ハロゲン系溶媒、炭化水素系溶媒の他に、N,N−ジメチルホルムアミドや1−メチル−2−ピロリドン等の非プロトン性極性溶媒、アセトンやシクロヘキサノン等のケトン系溶媒、酢酸エチル等のエステル類を用いることができる。また、無溶媒でも反応させることができる。   Solvents used in the reaction include ethers, halogen solvents, hydrocarbon solvents, aprotic polar solvents such as N, N-dimethylformamide and 1-methyl-2-pyrrolidone, and ketone solvents such as acetone and cyclohexanone. Esters such as ethyl acetate can be used. Moreover, it can be made to react even without solvent.

反応温度は、通常、0〜150℃の間で行うが、好ましくは20〜100℃、より好ましくは50〜100℃である。反応温度が0℃未満だと反応時間が長くなる恐れがあり、また反応温度が150℃を超えると副反応が起こる恐れがある。
反応はアンプル封管等、水分を除去できる状態で行うのが望ましい。
Although reaction temperature is normally performed between 0-150 degreeC, Preferably it is 20-100 degreeC, More preferably, it is 50-100 degreeC. If the reaction temperature is less than 0 ° C, the reaction time may be prolonged, and if the reaction temperature exceeds 150 ° C, side reactions may occur.
The reaction is desirably performed in a state where moisture can be removed, such as an ampoule sealed tube.

式(2)、式(3)で示される化合物は、2重結合や3重結合をもつ不飽和炭化水素基や、アクリル基やメタクリル基、シクロプロパン基やシクロブタン基等の高歪炭化水素基、ビニルエーテル基、ビニルエステル基、エポキシ基やオキセタン基等の環状エーテル基等、ラジカル重合性やカチオン、アニオン重合性等の重合性基を含むことができる。例えばR,R,R,R,R,R,Rの少なくとも1つが重合性基を含むことができる。 The compounds represented by the formulas (2) and (3) are unsaturated hydrocarbon groups having double bonds or triple bonds, and high strain hydrocarbon groups such as acrylic groups, methacryl groups, cyclopropane groups, and cyclobutane groups. Polymeric groups such as radical polymerizable, cationic, and anionic polymerizable groups such as vinyl ether groups, vinyl ester groups, cyclic ether groups such as epoxy groups and oxetane groups, and the like can be included. For example, at least one of R 1 , R 2 , R 3 , R 4 , R 5 , R 6 and R 7 can contain a polymerizable group.

式(2)及び(3)の化合物が重合性基を含む場合、対応する重合触媒を加え加熱又は光等の活性エネルギー線を照射することによって、3次元硬化物を得ることができる。   When the compounds of formulas (2) and (3) contain a polymerizable group, a three-dimensional cured product can be obtained by adding a corresponding polymerization catalyst and irradiating active energy rays such as heating or light.

このとき、式(2)及び式(3)で示される化合物と他の物質を混合し、共に硬化させてもよい。エポキシ樹脂、アクリル樹脂、ポリスチレン、ポリアミド、ポリイミド、ポリアミドイミド、ポリオレフィン、シロキサンポリマー等の各種ポリマーを任意の割合でブレンドしてもよい。   At this time, the compound represented by the formulas (2) and (3) may be mixed with another substance and cured together. Various polymers such as epoxy resin, acrylic resin, polystyrene, polyamide, polyimide, polyamideimide, polyolefin, and siloxane polymer may be blended at an arbitrary ratio.

さらに、3次元硬化物の特性を高める目的で、シリカや酸化チタン等無機フィラーや有機フィラーを任意の割合で加えてもよい。   Furthermore, for the purpose of enhancing the properties of the three-dimensional cured product, an inorganic filler such as silica or titanium oxide or an organic filler may be added at an arbitrary ratio.

熱ラジカル重合開始剤としては、特に制限されず公知のものが使用できる。代表的なものを例示すると、ベンゾイルパーオキシド、p−クロルベンゾイルパーオキシド、ラウロイルパーオキシド、t−ブチルパーオキシジカーボネート等のパーオキシド、アゾイソブチロニトリル等のアゾ化合物である。熱ラジカル重合開始剤の使用量は、重合条件や開始剤の種類、重合性モノマーの種類や組成によって異なるため一概に限定できないが、重合性基に対して0.01〜10当量%の範囲で用いるのが好適である。重合温度及び重合時間は、重合開始剤の種類と量や重合性モノマーの種類によって大きく変化するので限定できないが、2〜40時間で重合が完結するように条件を選ぶのが好ましい。   The thermal radical polymerization initiator is not particularly limited and known ones can be used. Typical examples are peroxides such as benzoyl peroxide, p-chlorobenzoyl peroxide, lauroyl peroxide, t-butyl peroxydicarbonate, and azo compounds such as azoisobutyronitrile. The amount of thermal radical polymerization initiator used varies depending on the polymerization conditions, the type of initiator, the type and composition of the polymerizable monomer, and cannot be unconditionally limited, but is in the range of 0.01 to 10 equivalent% with respect to the polymerizable group. It is preferred to use. The polymerization temperature and polymerization time are not limited because they vary greatly depending on the type and amount of polymerization initiator and the type of polymerizable monomer, but it is preferable to select conditions so that the polymerization is completed in 2 to 40 hours.

また紫外線、可視光、又は放射線等の活性エネルギー線を用いたラジカル重合の開始剤としては、特に制限されず公知のものが使用できる。代表的なものとして、ベンゾイルメチルエーテル、ベンゾフェノン、アセトフェノン、ベンジルメチルケタール、2−イソプロピルチオキサントン等が用いられる。これらの重合開始剤は、重合性基に対して0.001〜5当量%の範囲で用いるのが一般的である。   The initiator for radical polymerization using active energy rays such as ultraviolet rays, visible light, or radiation is not particularly limited, and known ones can be used. Representative examples include benzoyl methyl ether, benzophenone, acetophenone, benzyl methyl ketal, 2-isopropylthioxanthone and the like. These polymerization initiators are generally used in the range of 0.001 to 5 equivalent% with respect to the polymerizable group.

熱カチオン重合開始剤としては、特に制限されず公知のものが使用できる。代表的なものを例示すると、塩化アルミニウム、4塩化スズ、4塩化チタン等が用いられる。熱カチオン重合開始剤の使用量は、重合条件や開始剤の種類、重合性モノマーの種類や組成によって異なるため一概に限定できないが、重合性基に対して0.01〜10当量%の範囲で用いるのが好適である。重合温度及び重合時間は、重合開始剤の種類と量や重合性モノマーの種類によって大きく変化するので限定できないが、2〜40時間で重合が完結するように条件を選ぶのが好ましい。   The thermal cationic polymerization initiator is not particularly limited, and known ones can be used. As a typical example, aluminum chloride, tin chloride, titanium tetrachloride and the like are used. The amount of the thermal cationic polymerization initiator used varies depending on the polymerization conditions, the type of the initiator, the type and composition of the polymerizable monomer, and cannot be unconditionally limited, but is in the range of 0.01 to 10 equivalent% with respect to the polymerizable group. It is preferred to use. The polymerization temperature and polymerization time are not limited because they vary greatly depending on the type and amount of polymerization initiator and the type of polymerizable monomer, but it is preferable to select conditions so that the polymerization is completed in 2 to 40 hours.

また紫外線、可視光、又は放射線等の活性エネルギー線を用いたカチオン重合の開始剤としては、特に制限されず公知のものが使用できる。代表的なものとして、スルホニウム塩類、ヨードニウム塩類等が用いられる。これらの重合開始剤は、重合性基に対して0.001〜5当量%の範囲で用いるのが一般的である。   The initiator for cationic polymerization using active energy rays such as ultraviolet rays, visible light, or radiation is not particularly limited, and known ones can be used. Typical examples include sulfonium salts and iodonium salts. These polymerization initiators are generally used in the range of 0.001 to 5 equivalent% with respect to the polymerizable group.

アニオン重合開始剤としては、特に制限されず公知のものが使用できる。代表的なものを例示すると、水酸化カリウムや水酸化ナトリウム、金属リチウム等が用いられる。   The anionic polymerization initiator is not particularly limited, and known ones can be used. As typical examples, potassium hydroxide, sodium hydroxide, metallic lithium and the like are used.

以上の触媒に、各種増感剤や助触媒を加えてもよい。また、3次元硬化物の物性を制御するために、酸化防止剤、金属不活性化剤、紫外線吸収剤、難燃剤、安定剤、レベリング剤等の各種添加剤を加えてもよい。   Various sensitizers and promoters may be added to the above catalyst. In order to control the physical properties of the three-dimensional cured product, various additives such as an antioxidant, a metal deactivator, an ultraviolet absorber, a flame retardant, a stabilizer, and a leveling agent may be added.

以下、実施例により本発明について詳細に説明するが、本発明はこれら実施例に限定されない。
実施例1
下記式(7)で表される化合物(以下(7)と略す)を下記の方法で合成した。

Figure 2008050266
500ml三口フラスコに、p−tert−ブチルフェノール3.0g(0.02mol)、ピリジン3.16ml(0.04mol)、THF20mlに溶解させた後、ハミルトンシリンジでクロロアセチルクロリド4.5ml(0.04mol)を0℃に保ちながら、窒素雰囲気下でゆっくり滴下し、3時間攪拌した。反応終了後、反応溶液を酢酸エチルで希釈し5mol%の炭酸水素ナトリウム水溶液をゆっくり加えて3回洗浄を行った。その後、蒸留水で3回洗浄を行い有機層が中性になったのを確認し、有機層を無水硫酸マグネシウムで乾燥させた。乾燥剤をろ過後、酢酸エチルを減圧留去し、褐色粘性液体を得た。
50ml三口フラスコに得られた褐色粘性液体とチオ安息香酸カリウム3.0g(0.04mmol)、さらに触媒としてテトラブチルアンモニウムブロミド0.07g(5mol%)を加え、1−メチル−2−ピロリドン10mlに溶解させた後、室温で5時間攪拌した。反応終了後、反応溶液を酢酸エチルで希釈し、蒸留水で三回洗浄して、酢酸エチル層を無水硫酸マグネシウムで乾燥した。無水硫酸マグネシウムをろ過後、酢酸エチルを減圧留去し、展開溶媒としてクロロホルムを用いてカラムにて単離精製を行った。クロロホルムを減圧留去し、(7)を褐色粘性液体として4.30g(65%)得た。得られた化合物のIR、H−NMRの結果を以下に示す。
IR:2962、1758、1660、1596、1480、1128、755
H−NMR(600MHz、DMSO−d):1.25(s、9H)、4.25(s、4H)、7.07(d、2.0H)、7.41(d、2.0H)、7.56(t、2H)、7.70(t、1H)、7.97(d、2H) EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to these Examples.
Example 1
A compound represented by the following formula (7) (hereinafter abbreviated as (7)) was synthesized by the following method.
Figure 2008050266
In a 500 ml three-necked flask, 3.0 g (0.02 mol) of p-tert-butylphenol, 3.16 ml (0.04 mol) of pyridine and 20 ml of THF were dissolved, and then 4.5 ml (0.04 mol) of chloroacetyl chloride with a Hamilton syringe. Was kept dropwise at 0 ° C. under a nitrogen atmosphere and stirred for 3 hours. After completion of the reaction, the reaction solution was diluted with ethyl acetate, and 5 mol% aqueous sodium hydrogen carbonate solution was slowly added to perform washing three times. Thereafter, it was washed with distilled water three times to confirm that the organic layer became neutral, and the organic layer was dried over anhydrous magnesium sulfate. After filtering the desiccant, ethyl acetate was distilled off under reduced pressure to obtain a brown viscous liquid.
The brown viscous liquid obtained in a 50 ml three-necked flask, 3.0 g (0.04 mmol) of potassium thiobenzoate and 0.07 g (5 mol%) of tetrabutylammonium bromide as a catalyst were added, and 10 ml of 1-methyl-2-pyrrolidone was added. After dissolving, the mixture was stirred at room temperature for 5 hours. After completion of the reaction, the reaction solution was diluted with ethyl acetate, washed three times with distilled water, and the ethyl acetate layer was dried over anhydrous magnesium sulfate. After filtering anhydrous magnesium sulfate, ethyl acetate was distilled off under reduced pressure, and isolation and purification were carried out on a column using chloroform as a developing solvent. Chloroform was distilled off under reduced pressure to obtain 4.30 g (65%) of (7) as a brown viscous liquid. The results of IR and 1 H-NMR of the obtained compound are shown below.
IR: 2962, 1758, 1660, 1596, 1480, 1128, 755
1 H-NMR (600 MHz, DMSO-d 6 ): 1.25 (s, 9H), 4.25 (s, 4H), 7.07 (d, 2.0H), 7.41 (d, 2. 0H), 7.56 (t, 2H), 7.70 (t, 1H), 7.97 (d, 2H)

実施例2
下記式(8)で表される化合物(以下(8)と略す)を下記の方法で合成した。

Figure 2008050266
湿度10%以下のドライバック中において、アンプル管にテトラブチルアンモニウムクロリドを0.003g(0.16mmol)秤り取り、攪拌しながら40℃で5時間減圧乾燥を行った。その後、(7)0.0525g(0.16mmol)とスルフィドA 1.064g(6.4mol)をアンプル管に加え、1−メチル−2−ピロリドンに溶解させた。次に、液体窒素を用いて3回凍結脱気を行い、減圧状態でアンプル管を封管した。試料が凍結したのを確認して、90℃、24時間の条件で反応を行った。反応終了後、メタノールで2回再沈精製を行い、n=40の(8)を1.018g(収率91%)得た。構造確認は、IR、H−NMRにより行った。
得られたポリスルフィドの分子量をサイズ排除クロマトグラフィー(SEC)で測定したところ、数平均分子量7.10×10、分散度1.60であった。
IR:2964、1735、1662、1598、1496、754
H−NMR(500MHz、DMSO−d):1.05(broads s、9H)、3.00〜3.22(m、119.9H)、4.06〜4.12(m、119.9H)、6.83〜7.89(m、207.4H)
スルフィドAの量を変えて同様に反応を行い評価した結果を次の表に示す。 Example 2
A compound represented by the following formula (8) (hereinafter abbreviated as (8)) was synthesized by the following method.
Figure 2008050266
In a dry pack with a humidity of 10% or less, 0.003 g (0.16 mmol) of tetrabutylammonium chloride was weighed in an ampule tube and dried under reduced pressure at 40 ° C. for 5 hours while stirring. Thereafter, 0.057 g (0.16 mmol) of (7) and 1.064 g (6.4 mol) of sulfide A were added to the ampule tube and dissolved in 1-methyl-2-pyrrolidone. Next, freeze deaeration was performed three times using liquid nitrogen, and the ampoule tube was sealed under reduced pressure. After confirming that the sample was frozen, the reaction was performed at 90 ° C. for 24 hours. After completion of the reaction, reprecipitation purification was performed twice with methanol to obtain 1.018 g (yield 91%) of n = 40 (8). The structure was confirmed by IR and 1 H-NMR.
When the molecular weight of the obtained polysulfide was measured by size exclusion chromatography (SEC), the number average molecular weight was 7.10 × 10 3 and the degree of dispersion was 1.60.
IR: 2964, 1735, 1662, 1598, 1496, 754
1 H-NMR (500 MHz, DMSO-d 6 ): 1.05 (roads s, 9H), 3.00 to 3.22 (m, 119.9H), 4.06 to 4.12 (m, 119. 9H), 6.83 to 7.89 (m, 207.4H)
The following table shows the results of a similar reaction conducted with varying amounts of sulfide A.

Figure 2008050266
Figure 2008050266

実施例3
コア架橋型スターポリスルフィドを下記の方法で合成した。

Figure 2008050266
Example 3
The core cross-linked star polysulfide was synthesized by the following method.
Figure 2008050266

湿度10%以下に保ったドライボックス中で、アンプル管にテトラブチルアンモニウムクロリド0.058g(0.2mmol)量り取り、攪拌しながら40℃で5時間減圧乾燥を行った。その後、化合物(7)(以下(7)と略す)0.066g(0.2mmol)、3−フェノキシプロピレンスルフィド(以下スルフィドAという)0.377g(2.0mmol)、1−メチル−2−ピロリドン1mlを加え封管した。アンプル管を90℃で24時間攪拌後、反応溶液をメタノールで2回再沈精製を行い、化合物(8)(以下(8)と略す)を0.30g(62%)得た。尚、得られた(8)の重合度nは、H−NMR(500MHz、DMSO−d)により算出した。 In a dry box kept at a humidity of 10% or less, 0.058 g (0.2 mmol) of tetrabutylammonium chloride was weighed into an ampule tube and dried under reduced pressure at 40 ° C. for 5 hours with stirring. Then, 0.066 g (0.2 mmol) of compound (7) (hereinafter abbreviated as (7)), 0.377 g (2.0 mmol) of 3-phenoxypropylene sulfide (hereinafter referred to as sulfide A), 1-methyl-2-pyrrolidone 1 ml was added and sealed. After stirring the ampule tube at 90 ° C. for 24 hours, the reaction solution was purified by reprecipitation twice with methanol to obtain 0.30 g (62%) of Compound (8) (hereinafter abbreviated as (8)). The polymerization degree n of the obtained (8) was calculated by 1 H-NMR (500 MHz, DMSO-d 6 ).

得られた(8)と化合物(9)(以下(9)と略す)0.078g(0.2mmol)との反応を1−メチル−2−ピロリドン(NMP)中、90℃、48時間の条件で行った。反応終了後、メタノールに2回再沈精製を行い、コア架橋型スターポリスルフィドを黄色固体として0.30g(62%)得た。   The reaction of the obtained (8) and 0.078 g (0.2 mmol) of compound (9) (hereinafter abbreviated as (9)) in 1-methyl-2-pyrrolidone (NMP) at 90 ° C. for 48 hours. I went there. After completion of the reaction, reprecipitation purification was performed twice in methanol to obtain 0.30 g (62%) of the core cross-linked star polysulfide as a yellow solid.

尚、(9)は以下の方法で製造できる。
100ml三口フラスコに、チオ尿素5.48g(0.07mol)と水10lを加え、撹拌して懸濁させ、濃硫酸3.53g(0.035mol)を滴下して加えた。均一溶液になったところで、アイスバスで0℃に保ちながら、ビス(4−(2,3−エポキシプロピルチオ)フェニル)スルフィド10.876g(0.035mol)(住友精化株式会社製)を滴下して加えた。室温で20時間撹拌し、生成した白色沈殿物を回収し、エーテルで洗浄した。その後、減圧乾燥してビス(4−(2,3−エポキシプロピルチオ)フェニル)スルフィドチウロニウム塩酸塩を白色固体として14.0g(収率96%)得た。
得られた化合物のIRの結果を以下に示す。
IR(cm−1):3371、3100、2925、1658、1596、1493、995
In addition, (9) can be manufactured by the following method.
To a 100 ml three-necked flask, 5.48 g (0.07 mol) of thiourea and 10 l of water were added, suspended by stirring, and 3.53 g (0.035 mol) of concentrated sulfuric acid was added dropwise. When it became a homogeneous solution, 10.76 g (0.035 mol) of bis (4- (2,3-epoxypropylthio) phenyl) sulfide (manufactured by Sumitomo Seika Co., Ltd.) was added dropwise while maintaining the temperature at 0 ° C. with an ice bath. And added. The mixture was stirred at room temperature for 20 hours, and the resulting white precipitate was collected and washed with ether. Thereafter, it was dried under reduced pressure to obtain 14.0 g (yield 96%) of bis (4- (2,3-epoxypropylthio) phenyl) sulfide-thiouronium hydrochloride as a white solid.
The IR results of the obtained compound are shown below.
IR (cm −1 ): 3371, 3100, 2925, 1658, 1596, 1493, 995

100ml三口フラスコに、得られたビス(4−(2,3−エポキシプロピルチオ)フェニル)スルフィドチウロニウム塩酸塩14.0g(0.03mol)と水50lを加え、撹拌して懸濁させた。炭酸ナトリウム水溶液(0.03mol)を加え、60℃で2時間撹拌して反応させた。反応溶液の下層をクロロホルムで抽出し、硫酸マグネシウムで乾燥させた後、ろ別し、クロロホルムを減圧留去して白色固体を得た。白色固体をクロロホルム:n−ヘキサン=1:3で再結晶を行い、(9)を無色透明針状結晶として11.2g(収率80%)得た。
得られた化合物の分析結果を以下に示す。
IR(cm−1):3100、2983、995、811
H−NMR(500MHz、CDCl
δ(ppm)2.13(dd、2H)、2.49(dd、2H)、2.81(dd、2H)、3.41(dd、2H)、3.07〜3.12(m、2H)、7.25〜7.36(m、2H)
元素分析(C1818):C:54.7%、H:4.48%
Into a 100 ml three-necked flask, 14.0 g (0.03 mol) of the obtained bis (4- (2,3-epoxypropylthio) phenyl) sulfide thiouronium hydrochloride and 50 l of water were added and suspended by stirring. . An aqueous sodium carbonate solution (0.03 mol) was added, and the mixture was reacted by stirring at 60 ° C. for 2 hours. The lower layer of the reaction solution was extracted with chloroform, dried over magnesium sulfate, filtered, and chloroform was distilled off under reduced pressure to obtain a white solid. The white solid was recrystallized with chloroform: n-hexane = 1: 3 to obtain 11.2 g (yield 80%) of (9) as colorless transparent needle crystals.
The analysis results of the obtained compound are shown below.
IR (cm −1 ): 3100, 2983, 995, 811
1 H-NMR (500 MHz, CDCl 3 )
δ (ppm) 2.13 (dd, 2H), 2.49 (dd, 2H), 2.81 (dd, 2H), 3.41 (dd, 2H), 3.07 to 3.12 (m, 2H), 7.25-7.36 (m, 2H)
Elemental analysis (C 18 H 18 S 5) : C: 54.7%, H: 4.48%

得られたコア架橋型スターポリスルフィドの分子量をサイズ排除クロマトグラフィー(SEC)法で測定したところ、数平均分子量1.35x10、分散度2.14であった。SEC法の測定条件は以下の通りであった。
(a)サイズ排除クロマトグラフィー(SEC):東ソー株式会社製、ゲル浸透クロマトグラフィー(SEC)HLC−8020型
(b)カラム:TSKgelG1000H(東ソー株式会社製)
(c)展開溶媒:テトラヒドロフラン
(d)標準物質:ポリスチレン
得られた化合物のIRの結果を以下に示す。
IR(cm−1):3100、2964、1735、1662、1598、1496、754
When the molecular weight of the obtained core cross-linked star polysulfide was measured by a size exclusion chromatography (SEC) method, it had a number average molecular weight of 1.35 × 10 4 and a dispersity of 2.14. The measurement conditions of the SEC method were as follows.
(A) Size exclusion chromatography (SEC): manufactured by Tosoh Corporation, gel permeation chromatography (SEC) HLC-8020 type (b) column: TSKgel G1000H (made by Tosoh Corporation)
(C) Developing solvent: Tetrahydrofuran (d) Standard material: polystyrene The IR results of the obtained compound are shown below.
IR (cm −1 ): 3100, 2964, 1735, 1662, 1598, 1496, 754

得られたコア架橋型スターポリスルフィドの屈折率を測定したところ、1.651であった。
屈折率の測定方法:ポリマー20mgを、テトラヒドロフラン2mlに溶解し、この溶液0.2mlをシリコンウエハー上に滴下し、スピンコータ(浅沼製作所株式会社製)により塗布した。次いで、この溶液が塗布されたシリコンウエハーを室温で24時間減圧乾燥後、エリプソメータ(ガードナー社製、115B型)により波長632.8nmにおける屈折率測定を5回行い、最大値と最小値を除いた3回の測定値の平均を屈折率とした。
The refractive index of the obtained core cross-linked star polysulfide was measured and found to be 1.651.
Refractive index measurement method: 20 mg of polymer was dissolved in 2 ml of tetrahydrofuran, 0.2 ml of this solution was dropped on a silicon wafer, and applied with a spin coater (manufactured by Asanuma Seisakusho Co., Ltd.). Next, the silicon wafer coated with this solution was dried under reduced pressure at room temperature for 24 hours, and then the refractive index measurement at a wavelength of 632.8 nm was performed 5 times with an ellipsometer (manufactured by Gardner, Inc., model 115B) to remove the maximum and minimum values. The average of three measurements was taken as the refractive index.

さらに、得られたコア架橋型スターポリスルフィドについて下記の方法でTgを測定した。Tgは30.7℃であった。
Tgの測定方法:アルミニウムパンにポリマーを約5mg秤とり、パンを密閉した後、示差走査熱量計(Seiko Instruments EXSTAR 6000/TG/DTA6200)により、窒素雰囲気下、昇温速度10℃/min、昇温設定−50℃〜50℃により測定を行った。
Further, Tg of the obtained core cross-linked star polysulfide was measured by the following method. Tg was 30.7 ° C.
Tg measurement method: About 5 mg of polymer was weighed in an aluminum pan, the pan was sealed, and then the temperature was increased at a rate of 10 ° C./min in a nitrogen atmosphere using a differential scanning calorimeter (Seiko Instruments EXSTAR 6000 / TG / DTA6200). The measurement was performed at a temperature setting of -50 ° C to 50 ° C.

表2に示すように、スルフィドA及び(7)の量を変えて同様の条件で反応を行い、得られたコア架橋型スターポリスルフィドについて評価した。結果を表2に示す。   As shown in Table 2, the reaction was performed under the same conditions while changing the amounts of sulfide A and (7), and the obtained core-crosslinked star polysulfide was evaluated. The results are shown in Table 2.

Figure 2008050266
Figure 2008050266

得られたコア架橋型スターポリスルフィドの屈折率は、スルフィドAの重合度による影響は見られず、全ての場合において約1.650であった。このことは密度がほぼ一定であるためと考えられる。   The refractive index of the obtained core cross-linked star polysulfide was not affected by the degree of polymerization of sulfide A, and was about 1.650 in all cases. This is probably because the density is almost constant.

(7)0.4mmol、スルフィドA 2.0mmolを反応させて得られた生成物は、有機溶媒に対して不溶であった。また、可溶部のGPC測定の結果は2峰性を示したことから、可溶部においてもコア架橋型スターポリスルフィド同士で分子間での架橋反応が進行しているものと考えられる。   (7) The product obtained by reacting 0.4 mmol and 2.0 mmol of sulfide A was insoluble in the organic solvent. Moreover, since the GPC measurement result of the soluble part showed bimodality, it is considered that the cross-linking reaction between the molecules is proceeding between the core-crosslinked star polysulfides in the soluble part.

実施例4
下記式(10)で示される化合物(以下(10)と略す)を下記の方法で合成した。

Figure 2008050266
Example 4
A compound represented by the following formula (10) (hereinafter abbreviated as (10)) was synthesized by the following method.
Figure 2008050266

湿度10%以下に保ったドライボックス中で、アンプル管にテトラブチルアンモニウムクロリド0.0056g(0.02mmol)、スルフィドA 0.1690g(1.0mmol)、3−メタクリロイルオキシプロピレンスルフィド(以下スルフィドBという)0.0312g(0.2mmol)、(7)0.0065g(0.02mmol)、1−メチル−2−ピロリドン1mlを加え封管した。反応溶液を70℃で24時間攪拌後、反応溶液をメタノールで2回に再沈精製を行い、(10)を無色透明固体として0.0497g(収率91%)得た。   Tetrabutylammonium chloride 0.0056 g (0.02 mmol), sulfide A 0.1690 g (1.0 mmol), 3-methacryloyloxypropylene sulfide (hereinafter referred to as sulfide B) in an ampoule tube in a dry box kept at a humidity of 10% or less ) 0.0312 g (0.2 mmol), (7) 0.0065 g (0.02 mmol), and 1 ml of 1-methyl-2-pyrrolidone were added and sealed. After stirring the reaction solution at 70 ° C. for 24 hours, the reaction solution was purified by reprecipitation twice with methanol to obtain 0.0497 g (yield 91%) of (10) as a colorless transparent solid.

得られた化合物の分子量をSEC法で測定したところ、数平均分子量2.0x10、分散度1.40であった。重合度(m,n)はH−NMR(500MHz、DMSO−d)により算出した結果、m=7、n=50であった。Tgは−4℃であった。 When the molecular weight of the obtained compound was measured by the SEC method, the number average molecular weight was 2.0 × 10 3 and the degree of dispersion was 1.40. The degree of polymerization (m, n) was calculated by 1 H-NMR (500 MHz, DMSO-d 6 ). As a result, m = 7 and n = 50. Tg was −4 ° C.

表3に示すように、スルフィドAとスルフィドBの量を変えて同様に反応を行い評価した。結果を表3に示す。   As shown in Table 3, the reaction was conducted in the same manner while changing the amounts of sulfide A and sulfide B, and evaluation was performed. The results are shown in Table 3.

実施例5
3次元硬化物を下記の方法で合成した。
(10)0.1gをテトラヒドロフラン1mlに溶解し、Irgacure907(チバ・スペシャリティ・ケミカルズ社製、0.003g)、2−エチルアントラキノン0.001gを加えた。溶液を臭化カリウム板上に塗布しフィルムを形成した。その後、光源として250W超高圧水銀灯を用いて15分間光照射を行い、3次元硬化物を得た。
Example 5
A three-dimensional cured product was synthesized by the following method.
(10) 0.1 g was dissolved in 1 ml of tetrahydrofuran, and Irgacure 907 (manufactured by Ciba Specialty Chemicals, 0.003 g) and 0.001 g of 2-ethylanthraquinone were added. The solution was applied on a potassium bromide plate to form a film. Thereafter, light irradiation was performed for 15 minutes using a 250 W ultra-high pressure mercury lamp as a light source to obtain a three-dimensional cured product.

スルフィドAとスルフィドBの量を変えて合成した(10)についても、同様に光硬化反応を行い、得られた硬化物のTgを測定した。結果を表3に示す。   For (10) synthesized with varying amounts of sulfide A and sulfide B, the photocuring reaction was performed in the same manner, and the Tg of the resulting cured product was measured. The results are shown in Table 3.

Figure 2008050266
Figure 2008050266

光照射後のTgは上昇することが判明した。生成物は種々の溶媒に不溶であったことから、光照射により側鎖メタクリロイル基が反応し3次元硬化物が得られたことが明らかとなった。   It was found that Tg after light irradiation increased. Since the product was insoluble in various solvents, it was clarified that a side chain methacryloyl group reacted with light irradiation to obtain a three-dimensional cured product.

本発明のコア架橋型スターポリスルフィドは、高耐熱性を有し、屈折率調整可能な、さらに高屈折率を有する樹脂である。この樹脂は、光学レンズ、光学フィルム、光学フィルムを用いた液晶表示装置等に用いることができる。
本発明の硬化物は、光学レンズ、光学フィルム、光学フィルムを用いた液晶表示装置等に用いることができる。

The core cross-linked star polysulfide of the present invention is a resin having high heat resistance, adjustable refractive index, and higher refractive index. This resin can be used for an optical lens, an optical film, a liquid crystal display device using the optical film, and the like.
The cured product of the present invention can be used for an optical lens, an optical film, a liquid crystal display device using the optical film, and the like.

Claims (10)

下記式(1)で表されるフェノール誘導体。
Figure 2008050266
(式(1)中、Rは置換又は無置換の炭素数1〜20の1価の芳香族基を示し、Rは炭素数1〜20の2価の有機基を示し、Rは置換又は無置換の炭素数1〜20の1価の芳香族基を示す。)
A phenol derivative represented by the following formula (1).
Figure 2008050266
(In Formula (1), R 1 represents a substituted or unsubstituted monovalent aromatic group having 1 to 20 carbon atoms, R 2 represents a divalent organic group having 1 to 20 carbon atoms, and R 3 represents A substituted or unsubstituted monovalent aromatic group having 1 to 20 carbon atoms is shown.)
下記式(2)で表されるフェノール誘導体。
Figure 2008050266
(式(2)中、nは1〜1000の整数を表し、Rは置換又は無置換の炭素数1〜20の1価の芳香族基を示し、Rは炭素数1〜20の2価の有機基を示し、Rは置換又は無置換の炭素数1〜20の1価の芳香族基を示し、R及びRはそれぞれ水素又は炭素数1〜20の1価の有機基を示し、またRとRは結合してもよい。)
A phenol derivative represented by the following formula (2).
Figure 2008050266
(In formula (2), n represents an integer of 1 to 1000, R 1 represents a substituted or unsubstituted monovalent aromatic group having 1 to 20 carbon atoms, and R 2 represents 2 having 1 to 20 carbon atoms. R 3 represents a substituted or unsubstituted monovalent aromatic group having 1 to 20 carbon atoms, R 4 and R 5 represent hydrogen or a monovalent organic group having 1 to 20 carbon atoms, respectively. And R 4 and R 5 may be bonded.)
下記式(3)で表されるフェノール誘導体。
Figure 2008050266
(式(3)中、nは1〜1000の整数を表し、mは1〜1000の整数を表し、Rは置換又は無置換の炭素数1〜20の1価の芳香族基を示し、Rは炭素数1〜20の2価の有機基を示し、Rは置換又は無置換の炭素数1〜20の1価の芳香族基を示し、R及びRはそれぞれ水素又は炭素数1〜20の1価の有機基を示し、またRとRは結合してもよく、Xは酸素又は硫黄を示し、R及びRはそれぞれ水素又は炭素数1〜20の1価の有機基を示し、またRとRは結合してもよい。)
A phenol derivative represented by the following formula (3).
Figure 2008050266
(In formula (3), n represents an integer of 1 to 1000, m represents an integer of 1 to 1000, R 1 represents a substituted or unsubstituted monovalent aromatic group having 1 to 20 carbon atoms, R 2 represents a divalent organic group having 1 to 20 carbon atoms, R 3 represents a substituted or unsubstituted monovalent aromatic group having 1 to 20 carbon atoms, and R 4 and R 5 represent hydrogen or carbon, respectively. R 1 represents a monovalent organic group having 1 to 20; R 4 and R 5 may be bonded; X represents oxygen or sulfur; R 6 and R 7 are each hydrogen or 1 having 1 to 20 carbon atoms; A valent organic group, and R 6 and R 7 may be bonded.)
請求項2又は3記載のフェノール誘導体に下記式(4)で表される化合物を反応させることで得られるコア架橋型スターポリスルフィド。
Figure 2008050266
(式(4)中、Rは−O−、−S−、−CH−、−NH−、―SO−、―C(CH−、―CH(CH)−、又は−C(CF−であり、Rはそれぞれ水素原子、ハロゲン原子又は炭素数1〜6のアルキル基を示す。X及びYはそれぞれ硫黄原子又は酸素原子を示す。)
A core cross-linked star polysulfide obtained by reacting the phenol derivative according to claim 2 or 3 with a compound represented by the following formula (4).
Figure 2008050266
(In Formula (4), R 8 represents —O—, —S—, —CH 2 —, —NH—, —SO 2 —, —C (CH 3 ) 2 —, —CH (CH 3 ) —, or -C (CF 3) 2 - a and, R 9 are each a hydrogen atom, .X and Y represents a halogen atom or an alkyl group having 1 to 6 carbon atoms denotes a sulfur atom or an oxygen atom).
請求項1記載のフェノール誘導体に、下記式(5)で表されるチイラン化合物を反応させる請求項2記載のフェノール誘導体の製造方法。
Figure 2008050266
(式中、R及びRは式(2)と同じである。)
The method for producing a phenol derivative according to claim 2, wherein the phenol derivative according to claim 1 is reacted with a thiirane compound represented by the following formula (5).
Figure 2008050266
(In the formula, R 4 and R 5 are the same as in formula (2).)
請求項1記載のフェノール誘導体に、下記式(5)で表されるチイラン化合物と、下記式(6)で表されるエポキシ化合物又はチイラン化合物を反応させる請求項3記載のフェノール誘導体の製造方法。
Figure 2008050266
(式中、R、R及びXは式(3)と同じである。)
The method for producing a phenol derivative according to claim 3, wherein the phenol derivative according to claim 1 is reacted with a thiirane compound represented by the following formula (5) and an epoxy compound or a thiirane compound represented by the following formula (6).
Figure 2008050266
(In the formula, R 6 , R 7 and X are the same as in formula (3).)
請求項2又は3記載のフェノール誘導体に下記式(4)で表される化合物を反応させるコア架橋型スターポリスルフィドの製造方法。
Figure 2008050266
(式(4)中、Rは−O−、−S−、−CH−、−NH−、―SO−、―C(CH−、―CH(CH)−、又は−C(CF−であり、Rはそれぞれ水素原子、ハロゲン原子又は炭素数1〜6のアルキル基を示す。X及びYはそれぞれ硫黄原子又は酸素原子を示す。)
The manufacturing method of the core bridge | crosslinking type star polysulfide which makes the compound represented by following formula (4) react with the phenol derivative of Claim 2 or 3.
Figure 2008050266
(In Formula (4), R 8 represents —O—, —S—, —CH 2 —, —NH—, —SO 2 —, —C (CH 3 ) 2 —, —CH (CH 3 ) —, or -C (CF 3) 2 - a and, R 9 are each a hydrogen atom, .X and Y represents a halogen atom or an alkyl group having 1 to 6 carbon atoms denotes a sulfur atom or an oxygen atom).
重合性基を有する請求項2又は3記載のフェノール誘導体。   The phenol derivative according to claim 2 or 3, which has a polymerizable group. 請求項8記載のフェノール誘導体に加熱又は活性エネルギー線照射して得られる3次元硬化物。   A three-dimensional cured product obtained by heating or irradiating active energy rays to the phenol derivative according to claim 8. 請求項8記載のフェノール誘導体に加熱又は活性エネルギー線照射する請求項10記載の3次元硬化物の製造方法。

The method for producing a three-dimensional cured product according to claim 10, wherein the phenol derivative according to claim 8 is heated or irradiated with active energy rays.

JP2006221427A 2006-07-27 2006-08-15 Phenol derivative and core crosslinking type star polysulfide obtained from the same Pending JP2008050266A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006221427A JP2008050266A (en) 2006-07-27 2006-08-15 Phenol derivative and core crosslinking type star polysulfide obtained from the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006204472 2006-07-27
JP2006221427A JP2008050266A (en) 2006-07-27 2006-08-15 Phenol derivative and core crosslinking type star polysulfide obtained from the same

Publications (1)

Publication Number Publication Date
JP2008050266A true JP2008050266A (en) 2008-03-06

Family

ID=39234644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006221427A Pending JP2008050266A (en) 2006-07-27 2006-08-15 Phenol derivative and core crosslinking type star polysulfide obtained from the same

Country Status (1)

Country Link
JP (1) JP2008050266A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009074037A (en) * 2007-08-24 2009-04-09 Mitsubishi Gas Chem Co Inc Resin composition for optical material

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3636033A (en) * 1969-02-27 1972-01-18 Geigy Chem Corp Addition product of an alpha beta-unsaturated ester and a thiocarboxylic acid
JPS5492937A (en) * 1977-12-29 1979-07-23 Santen Pharmaceutical Co Ltd Hydroxyphenyl alanine derivative
JPH05117263A (en) * 1991-10-28 1993-05-14 Tokuyama Soda Co Ltd Production of 3-amino-2-thiophenecarboxylic acid derivative
WO1993018059A2 (en) * 1992-03-06 1993-09-16 Poli Industria Chimica S.P.A. L-thiazolidine-4-carboxylic acid derivative, processes for the preparation thereof and the use thereof in therapy
JPH08301840A (en) * 1995-03-07 1996-11-19 Santen Pharmaceut Co Ltd New amino acid derivative having n,n-dialkylaminophenyl group
JPH10130225A (en) * 1996-09-05 1998-05-19 Santen Pharmaceut Co Ltd Novel sulfur-containing amino acid derivative
JPH10265456A (en) * 1997-03-27 1998-10-06 Santen Pharmaceut Co Ltd Leukotriene a4 hydrolase inhibitor
JP2002338541A (en) * 2001-05-21 2002-11-27 Sumitomo Seika Chem Co Ltd Dielectric forming substance and dielectric film
JP2005298742A (en) * 2004-04-14 2005-10-27 Mitsubishi Gas Chem Co Inc Resin composition
JP2006169454A (en) * 2004-12-20 2006-06-29 Mitsubishi Gas Chem Co Inc Heat-resistant resin composition
JP2007022991A (en) * 2005-07-20 2007-02-01 Hitachi Chem Co Ltd Phenol derivative and method for producing the same
JP2008031394A (en) * 2006-07-07 2008-02-14 Hitachi Chem Co Ltd Novolac phenolic resin derivative and process for its production

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3636033A (en) * 1969-02-27 1972-01-18 Geigy Chem Corp Addition product of an alpha beta-unsaturated ester and a thiocarboxylic acid
JPS5492937A (en) * 1977-12-29 1979-07-23 Santen Pharmaceutical Co Ltd Hydroxyphenyl alanine derivative
JPH05117263A (en) * 1991-10-28 1993-05-14 Tokuyama Soda Co Ltd Production of 3-amino-2-thiophenecarboxylic acid derivative
WO1993018059A2 (en) * 1992-03-06 1993-09-16 Poli Industria Chimica S.P.A. L-thiazolidine-4-carboxylic acid derivative, processes for the preparation thereof and the use thereof in therapy
JPH08301840A (en) * 1995-03-07 1996-11-19 Santen Pharmaceut Co Ltd New amino acid derivative having n,n-dialkylaminophenyl group
JPH10130225A (en) * 1996-09-05 1998-05-19 Santen Pharmaceut Co Ltd Novel sulfur-containing amino acid derivative
JPH10265456A (en) * 1997-03-27 1998-10-06 Santen Pharmaceut Co Ltd Leukotriene a4 hydrolase inhibitor
JP2002338541A (en) * 2001-05-21 2002-11-27 Sumitomo Seika Chem Co Ltd Dielectric forming substance and dielectric film
JP2005298742A (en) * 2004-04-14 2005-10-27 Mitsubishi Gas Chem Co Inc Resin composition
JP2006169454A (en) * 2004-12-20 2006-06-29 Mitsubishi Gas Chem Co Inc Heat-resistant resin composition
JP2007022991A (en) * 2005-07-20 2007-02-01 Hitachi Chem Co Ltd Phenol derivative and method for producing the same
JP2008031394A (en) * 2006-07-07 2008-02-14 Hitachi Chem Co Ltd Novolac phenolic resin derivative and process for its production

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6012021645; Journal of the Chemical Society, Perkin Transactions 2: Physical Organic Chemistry (1972-1999) No.7, 1994, P.1509-1518 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009074037A (en) * 2007-08-24 2009-04-09 Mitsubishi Gas Chem Co Inc Resin composition for optical material

Similar Documents

Publication Publication Date Title
JP5578512B2 (en) Novel (meth) acrylate compound and method for producing the same
JP4553647B2 (en) Calix resorcinarene derivative and process for producing the same
JPH1112273A (en) Episulfide compound and its compound
JP2007022991A (en) Phenol derivative and method for producing the same
JPH1067736A (en) Thiol compound, sulfur-containing o-(meth)acrylate compound and its use
JP4794930B2 (en) Thiacalixarene derivative and method for producing the same
JP2008050266A (en) Phenol derivative and core crosslinking type star polysulfide obtained from the same
JP4734807B2 (en) Diphenyl sulfide derivatives with oxetane ring
JP4485815B2 (en) Calixarene derivative and method for producing the same
US6528601B1 (en) Polymerizable sulfur-containing (meth) acrylate, polymerizable composition and optical lens
JP2008031134A (en) Phenol derivative and method for producing the same
US7317058B2 (en) (Meth)acrylate polymer and non-linear optical device material composition
JP6069645B2 (en) Comb copolymer of methacrylic acid ester having thiocarbonate and sulfide skeleton, process for producing the same, and UV cured product thereof
JP4905991B2 (en) High refractive index material with high Abbe number
JP2008031394A (en) Novolac phenolic resin derivative and process for its production
JP4235795B2 (en) Sulfur-containing polyene compound and high refractive index cured product
JP2007023233A (en) Graft polymer containing sulfur atom at side chain and method for producing the same
JP7234677B2 (en) Polyfunctional propargyl compound and optical composition containing same
KR100885676B1 (en) Aromatic Allyl Ether Compounds and Photopolymerisable Compositions containing the same
JP2009067978A (en) Inclusion compound
JP2002030082A (en) Polymerizable thio(meth)acrylate compound
JPH04288306A (en) Thiophosphoric ester prepolymer
JP5370892B2 (en) (Meth) acrylate compounds containing sulfur
KR20160117723A (en) Curable compound with high refractive index, adhesive composition for optical member comprising the same and composition for optical sheet comprising the same
JP5892509B2 (en) Polymer containing tricyclo [5.2.1.02,6] decane structure as repeating unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20090729

Free format text: JAPANESE INTERMEDIATE CODE: A621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100720

A977 Report on retrieval

Effective date: 20120229

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20120501

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121204