JP4553647B2 - Calix resorcinarene derivative and process for producing the same - Google Patents

Calix resorcinarene derivative and process for producing the same Download PDF

Info

Publication number
JP4553647B2
JP4553647B2 JP2004196329A JP2004196329A JP4553647B2 JP 4553647 B2 JP4553647 B2 JP 4553647B2 JP 2004196329 A JP2004196329 A JP 2004196329A JP 2004196329 A JP2004196329 A JP 2004196329A JP 4553647 B2 JP4553647 B2 JP 4553647B2
Authority
JP
Japan
Prior art keywords
group
formula
carbon atoms
derivative
represented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004196329A
Other languages
Japanese (ja)
Other versions
JP2006016342A (en
Inventor
俊彦 高崎
敦之 高橋
智章 柴田
忠臣 西久保
宏人 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanagawa University
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Kanagawa University
Showa Denko Materials Co Ltd
Resonac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Kanagawa University, Showa Denko Materials Co Ltd, Resonac Corp filed Critical Hitachi Chemical Co Ltd
Priority to JP2004196329A priority Critical patent/JP4553647B2/en
Publication of JP2006016342A publication Critical patent/JP2006016342A/en
Application granted granted Critical
Publication of JP4553647B2 publication Critical patent/JP4553647B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Polyethers (AREA)

Description

本発明は、新規なカリックスレゾルシンアレーン誘導体及びその製造方法に関する。   The present invention relates to a novel calixresorcinarene derivative and a method for producing the same.

カリックスレゾルシンアレーンはレゾルシノールとアルデヒド類が脱水縮合した大環状化合物であり、分子内水素結合により、主にレゾルシン環が4のものが生成する。カリックスレゾルシンアレーンは、比較的安価に製造することが可能で、また比較的容易に官能基を導入することが可能である。例えば特許文献1では、レゾルシン水酸基をオキセタン官能基を有する化合物で修飾し各種機能性材料への応用について報告されている。また、カリックスレゾルシンアレーンは、高耐熱性と分子サイズが小さいという観点から、半導体デバイス用レジストへの応用例も報告されている(特許文献2参照)。   The calix resorcinarene is a macrocyclic compound obtained by dehydration condensation of resorcinol and aldehydes, and those having 4 resorcin rings are mainly generated by intramolecular hydrogen bonding. The calix resorcinarene can be produced at a relatively low cost, and a functional group can be introduced relatively easily. For example, Patent Document 1 reports the application to various functional materials by modifying the resorcin hydroxyl group with a compound having an oxetane functional group. In addition, calixresorcinarene has been reported to be applied to resists for semiconductor devices from the viewpoint of high heat resistance and small molecular size (see Patent Document 2).

一方、カリックスレゾルシンアレーンは、芳香族環を多数有しかつ環状物であることから、高屈折率透明耐熱樹脂としても応用が可能である。代表的な高耐熱透明樹脂として例えばポリカーボネート類があるが、屈折率調整が難しくかつ線状高分子であるため複屈折が大きいという欠点を有している。また、ポリアクリレート類は透明性が高くかつ屈折率調整が比較的容易であるが、耐熱性に劣ることが知られている。
特開平11−246540公報 特開平2003−321423号公報
On the other hand, calix resorcinarene has a large number of aromatic rings and is a cyclic product, and therefore can be applied as a high refractive index transparent heat resistant resin. Polycarbonates, for example, are typical high heat resistant transparent resins, but they have the disadvantage that the birefringence is large because the refractive index is difficult to adjust and is a linear polymer. Polyacrylates are known to have high transparency and relatively easy refractive index adjustment, but poor heat resistance.
JP-A-11-246540 Japanese Patent Laid-Open No. 2003-321423

本発明の目的は、高屈折率を有するカリックスレゾルシンアレーン誘導体及びその製造方法を提供することにある。   An object of the present invention is to provide a calixresorcinarene derivative having a high refractive index and a method for producing the same.

本発明によれば、以下のカリックスレゾルシンアレーン誘導体及びその製造方法等を提供できる。
1.式(1)で表されるカリックスレゾルシンアレーン誘導体。

Figure 0004553647
(式(1)中、Rは炭素数1〜20の2価の有機基を示し、Rは1価の有機基を示す)
2.式(2)で表されるカリックスレゾルシンアレーン誘導体。
Figure 0004553647
(式(2)中、Rは炭素数1〜20の2価の有機基を示し、Rは1価の有機基を示し、Rは炭素数1〜20の1価の有機基を示す)
3.式(3)で表されるカリックスレゾルシンアレーン誘導体。
Figure 0004553647
(式(3)中、nは1〜1000の整数を表し、Rは炭素数1〜20の2価の有機基を示し、Rは1価の有機基を示し、Rは炭素数1〜20の1価の有機基を示し、R及びRはそれぞれ水素、又は炭素数1〜20の1価の有機基を示し、また、RとRは結合して環を形成してもよい)
4.式(4)で表されるカリックスレゾルシンアレーン誘導体。
Figure 0004553647
(式(4)中、nは1〜1000の整数を表しmは1〜1000の整数を表し、Rは炭素数1〜20の2価の有機基を示し、Rは1価の有機基を示し、Rは炭素数1〜20の1価の有機基を示し、R及びRはそれぞれ水素、又は炭素数1〜20の1価の有機基を示し、また、RとRは結合して環を形成してもよく、R及びRはそれぞれ水素、又は炭素数1〜20の1価の有機基を示し、また、RとRは結合して環を形成してもよく、Xは酸素又はイオウを示す)
5.Xが酸素で、mが1である4に記載のカリックスレゾルシンアレーン誘導体。
6.3〜5のいずれか一に記載のカリックスレゾルシンアレーン誘導体を含む化合物を硬化させて得られる3次元硬化物。
7.下記式に示されるレゾルシノール誘導体にアセチルクロリド誘導体を反応させる1に記載のカリクスレゾルシンアレーン誘導体の製造方法。
Figure 0004553647
(式中、Rは1価の有機基を示す)
8.1に記載の誘導体に、チオエステル誘導体のカリウム塩を反応させる2に記載のカリックスレゾルシンアレーン誘導体の製造方法。
9.2に記載の誘導体に、チイラン誘導体を反応させる3に記載のカリックスレゾルシンアレーン誘導体の製造方法。
10.3に記載の誘導体に、エポキシ化合物又はチイラン化合物を反応させる4又は5に記載のカリックスレゾルシンアレーン誘導体の製造方法。
11.3〜5のいずれか一項に記載のカリックスレゾルシンアレーン誘導体を、加熱又は活性エネルギー線照射を行うことによって硬化させる6に記載の3次元硬化物の製造方法。 According to the present invention, the following calixresorcinarene derivatives and methods for producing the same can be provided.
1. A calix resorcinarene derivative represented by the formula (1).
Figure 0004553647
(In formula (1), R 1 represents a divalent organic group having 1 to 20 carbon atoms, and R 2 represents a monovalent organic group)
2. A calix resorcinarene derivative represented by the formula (2).
Figure 0004553647
(In the formula (2), R 1 represents a divalent organic group having 1 to 20 carbon atoms, R 2 represents a monovalent organic group, and R 3 represents a monovalent organic group having 1 to 20 carbon atoms. Show)
3. A calix resorcinarene derivative represented by the formula (3).
Figure 0004553647
(In formula (3), n represents an integer of 1 to 1000, R 1 represents a divalent organic group having 1 to 20 carbon atoms, R 2 represents a monovalent organic group, and R 3 represents carbon number. 1 to 20 monovalent organic groups, R 4 and R 5 each represent hydrogen or a monovalent organic group having 1 to 20 carbon atoms, and R 4 and R 5 are bonded to form a ring. You may)
4). A calix resorcinarene derivative represented by the formula (4).
Figure 0004553647
(In Formula (4), n represents an integer of 1 to 1000, m represents an integer of 1 to 1000, R 1 represents a divalent organic group having 1 to 20 carbon atoms, and R 2 represents a monovalent organic group. R 3 represents a monovalent organic group having 1 to 20 carbon atoms, R 4 and R 5 each represent hydrogen or a monovalent organic group having 1 to 20 carbon atoms, and R 4 and R 5 may combine to form a ring, R 6 and R 7 each represent hydrogen or a monovalent organic group having 1 to 20 carbon atoms, and R 6 and R 7 combine to form a ring. And X represents oxygen or sulfur)
5). 5. The calix resorcinarene derivative according to 4, wherein X is oxygen and m is 1.
A three-dimensional cured product obtained by curing a compound containing the calix resorcinarene derivative according to any one of 6.3 to 5.
7). 2. The method for producing a calix resorcinarene derivative according to 1, wherein a resorcinol derivative represented by the following formula is reacted with an acetyl chloride derivative.
Figure 0004553647
(Wherein R 2 represents a monovalent organic group)
8. The method for producing a calixresorcinarene derivative according to 2, wherein the derivative according to 8.1 is reacted with a potassium salt of a thioester derivative.
The method for producing a calixresorcinarene derivative according to 3, wherein the derivative according to 9.2 is reacted with a thiirane derivative.
10. A method for producing a calixresorcinarene derivative according to 4 or 5, wherein the derivative described in 10.3 is reacted with an epoxy compound or a thiirane compound.
6. The method for producing a three-dimensional cured product according to 6, wherein the calix resorcinarene derivative according to any one of 11.3 to 5 is cured by heating or irradiation with active energy rays.

本発明によれば、高屈折率を有するカリックスアレーン誘導体及びその製造方法を提供できる。   According to the present invention, a calixarene derivative having a high refractive index and a method for producing the same can be provided.

本発明者らは、カリックスレゾルシンアレーンのレゾルシン水酸基について化学修飾の検討を詳細に行い、塩素基を有する誘導体を出発原料にしてポリチオエーテル鎖を伸長することにより、高屈折率樹脂を見出すことができた。   The present inventors have studied in detail the chemical modification of the resorcin hydroxyl group of calix resorcin arene and can find a high refractive index resin by extending the polythioether chain using a derivative having a chlorine group as a starting material. It was.

本発明の原材料であるカリックスレゾルシンアレーンは、レゾルシノール化合物とアルデヒド類から合成するが、レゾルシン基の水酸基の分子内水素結合により主にレゾルシン基4つのものが生成する。   The calix resorcinarene, which is a raw material of the present invention, is synthesized from a resorcinol compound and an aldehyde, and mainly four resorcin groups are generated by intramolecular hydrogen bonding of the hydroxyl group of the resorcin group.

式(1)〜(4)中のRは、1〜20の2価の有機基であり、例えばメチレン基やエチレン基等のアルキレン基やフェニレン基などの芳香族基及びそれらの置換化合物であるが、塩素基の反応性の観点からメチレン基等の炭素数1〜3のアルキレン基又はジニトロ置換フェニレン基等の電子吸引性基が望ましい。 R 1 in the formulas (1) to (4) is a divalent organic group of 1 to 20, for example, an alkylene group such as a methylene group or an ethylene group, an aromatic group such as a phenylene group, or a substituted compound thereof. However, from the viewpoint of the reactivity of the chlorine group, an alkylene group having 1 to 3 carbon atoms such as a methylene group or an electron withdrawing group such as a dinitro-substituted phenylene group is desirable.

式(2)〜(4)中のRは、炭素数1〜20の1価の有機基であり、例えばメチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、t−ブチル基等の飽和アルキル基や、ビニル基、アリル基等の不飽和アルキル基や、シクロヘキシル基、ノルボルネン基等の飽和又は不飽和環状アルキル基や、フェニル基、ナフチル基等の芳香族基や、エーテル類、エステル類、及びそれらの置換化合物である。好ましくは、メチル基、エチル基、フェニル基である。 R 3 in the formulas (2) to (4) is a monovalent organic group having 1 to 20 carbon atoms, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group. Saturated alkyl groups such as sec-butyl group and t-butyl group, unsaturated alkyl groups such as vinyl group and allyl group, saturated or unsaturated cyclic alkyl groups such as cyclohexyl group and norbornene group, phenyl group and naphthyl group Aromatic groups such as groups, ethers, esters, and substituted compounds thereof. Preferably, they are a methyl group, an ethyl group, and a phenyl group.

式(3)、(4)中のR及びRはそれぞれ水素、又は炭素数1〜20の1価の有機基であり、例えば、互いに独立してメチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、t−ブチル基等の飽和アルキル基や、ビニル基、アリル基等の不飽和アルキル基や、シクロヘキシル基、ノルボルネン基等の飽和又は不飽和環状アルキル基や、フェニル基、ナフチル基等の芳香族基や、エーテル類、エステル類、及びそれらの置換化合物である。また、RとRが結合して環を形成してもよく、例えばシクロブタン、シクロペンタン、シクロヘキサン、シクロヘプタン、ノルボルナン環である。好ましくは、水素、メチル基、フェニルオキシアルキレン基である。
式(3)の誘導体の好適な分子量は、3000〜200000である。
R 4 and R 5 in the formulas (3) and (4) are each hydrogen or a monovalent organic group having 1 to 20 carbon atoms, for example, a methyl group, an ethyl group, or an n-propyl group independently of each other. Saturated alkyl groups such as isopropyl group, n-butyl group, isobutyl group, sec-butyl group and t-butyl group, unsaturated alkyl groups such as vinyl group and allyl group, saturated cyclohexyl group and norbornene group, etc. An unsaturated cyclic alkyl group, an aromatic group such as a phenyl group and a naphthyl group, ethers, esters, and substituted compounds thereof. R 4 and R 5 may combine to form a ring, such as a cyclobutane, cyclopentane, cyclohexane, cycloheptane, or norbornane ring. Preferably, they are hydrogen, a methyl group, and a phenyloxyalkylene group.
The preferred molecular weight of the derivative of formula (3) is 3000-200000.

式(4)中のR及びRはそれぞれ水素、又は炭素数1〜20の1価の有機基であり、例えば、互いに独立してメチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、t−ブチル基等の飽和アルキル基や、ビニル基、アリル基等の不飽和アルキル基や、シクロヘキシル基、ノルボルネン基等の飽和又は不飽和環状アルキル基や、フェニル基、ナフチル基等の芳香族基や、エーテル類、エステル類、及びそれらの置換化合物である。また、RとRが結合して環を形成してもよく、例えばシクロブタン、シクロペンタン、シクロヘキサン、シクロヘプタン、ノルボルナン環である。好ましくは、R又はRは重合性基を有し、例えば、(メタ)アクリロイルオキシアルキル基等である。
式(4)の誘導体の好適な分子量は、3000〜200000である。
R 6 and R 7 in formula (4) are each hydrogen or a monovalent organic group having 1 to 20 carbon atoms, for example, independently of each other, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, Saturated alkyl groups such as n-butyl group, isobutyl group, sec-butyl group and t-butyl group, unsaturated alkyl groups such as vinyl group and allyl group, saturated or unsaturated cyclic alkyl groups such as cyclohexyl group and norbornene group Groups, aromatic groups such as phenyl and naphthyl groups, ethers, esters, and substituted compounds thereof. R 6 and R 7 may combine to form a ring, such as a cyclobutane, cyclopentane, cyclohexane, cycloheptane, or norbornane ring. Preferably, R 6 or R 7 has a polymerizable group, such as a (meth) acryloyloxyalkyl group.
The preferred molecular weight of the derivative of formula (4) is 3000-200000.

また式(1)〜(4)中のRは、炭素数1〜20の1価の有機基であり、例えばメチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、t−ブチル基等の飽和アルキル基や、ビニル基、アリル基等の不飽和アルキル基や、シクロヘキシル基、ノルボルネン基等の飽和又は不飽和環状アルキル基や、フェニル基、ナフチル基等の芳香族基や、エーテル類、エステル類、及びそれらの置換化合物である。また、出発原料を合成する際、アルデヒド類にp−ヒドロキシベンズアルデヒドを用いれば、Rのベンゼン環のパラ位に、式(1)中のレゾルシン水酸基付加体と同様のものを導入することができる。
具体的には、式(1)中のRは好ましくは炭素数1〜3のアルキル基又は下記式で表される有機基である。

Figure 0004553647
また、式(2)中のRは、好ましくは下記式で表される有機基である。
Figure 0004553647
また、式(3)中のRは、好ましくは下記式で表される有機基である。
Figure 0004553647
また、式(4)中のRは、好ましくは下記式で表される有機基である。
Figure 0004553647
なお、上記式中のR、R、R、R、R、R、m、n及びXは、上述のR、R、R、R、R、R、m、n及びXと同じである。 R 2 in the formulas (1) to (4) is a monovalent organic group having 1 to 20 carbon atoms, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl. Group, sec-butyl group, saturated alkyl group such as t-butyl group, unsaturated alkyl group such as vinyl group, allyl group, saturated or unsaturated cyclic alkyl group such as cyclohexyl group, norbornene group, phenyl group, An aromatic group such as a naphthyl group, ethers, esters, and substituted compounds thereof. Further, when p-hydroxybenzaldehyde is used as the aldehyde when synthesizing the starting material, the same one as the resorcin hydroxyl group adduct in the formula (1) can be introduced at the para position of the benzene ring of R 2. .
Specifically, R 2 in formula (1) is preferably an alkyl group having 1 to 3 carbon atoms or an organic group represented by the following formula.
Figure 0004553647
R 2 in formula (2) is preferably an organic group represented by the following formula.
Figure 0004553647
R 2 in formula (3) is preferably an organic group represented by the following formula.
Figure 0004553647
In addition, R 2 in the formula (4) is preferably an organic group represented by the following formula.
Figure 0004553647
In the above formula, R 1 , R 3 , R 4 , R 5 , R 6 , R 7 , m, n, and X are the above-mentioned R 1 , R 3 , R 4 , R 5 , R 6 , R 7. , M, n and X are the same.

式(1)で示されるカリックスレゾルシンアレーン誘導体は、対応するレゾルシン水酸基に対応するアセチルクロリド誘導体を塩基存在下で反応させることにより得ることができる。用いる塩基としては、ピリジン、トリエチルアミン等のアミン化合物、水酸化ナトリウムや水酸化カリウム等の金属水酸化物等がある。塩基の量はフェノール水酸基に対し1〜10倍量用いる。反応に用いる溶剤は、ジエチルエーテルやテトラヒドロフラン等のエーテル類、ジクロロメタンやクロロホルム等のハロゲン系溶媒、ヘキサンやトルエン等の炭化水素系溶媒である。また、無溶媒でも反応させることができる。反応温度は−78℃〜100℃の間で行うが好ましくは−50℃〜50℃、さらに好ましくは−50℃〜20℃である。反応温度が低いと反応時間が長くなり、また反応温度が高すぎると副反応が起こりやすくなる。   The calix resorcinarene derivative represented by the formula (1) can be obtained by reacting an acetyl chloride derivative corresponding to the corresponding resorcin hydroxyl group in the presence of a base. Examples of the base used include amine compounds such as pyridine and triethylamine, and metal hydroxides such as sodium hydroxide and potassium hydroxide. The amount of the base is 1 to 10 times the phenol hydroxyl group. Solvents used for the reaction are ethers such as diethyl ether and tetrahydrofuran, halogen solvents such as dichloromethane and chloroform, and hydrocarbon solvents such as hexane and toluene. Moreover, it can be made to react even without solvent. The reaction temperature is −78 ° C. to 100 ° C., preferably −50 ° C. to 50 ° C., more preferably −50 ° C. to 20 ° C. If the reaction temperature is low, the reaction time becomes long, and if the reaction temperature is too high, side reactions tend to occur.

式(2)で示されるカリックスレゾルシンアレーン誘導体は、式(1)で示される化合物に、チオエステル誘導体のカリウム塩を塩触媒存在下反応させることにより得ることができる。塩触媒としては、テトラブチルアンモニウムブロミドやテトラエチルアンモニウムクロリド等の4級アンモニウム塩や、リチウムクロリド、リチウムブロミド等の金属塩が用いられる。触媒量は、式(1)で示される化合物100部に対し1〜10部である。チオエステル誘導体のカリウム塩は式(1)で示される化合物に対し大過剰加え、反応途中でさらに追加してもよい。反応に用いる溶媒はエーテル類、ハロゲン系溶媒、炭化水素系溶媒の他に、N,N−ジメチルホルムアミドやN−メチルピロリドン等のアミド系溶媒、アセトンやシクロヘキサノン等のケトン系溶媒、酢酸エチル等のエステル類を用いることができる。反応温度は−78℃〜100℃の間で行うが、好ましくは−50℃〜80℃、さらに好ましくは−50℃〜50℃である。反応温度が低いと反応時間が長くなり、また反応温度が高すぎると副反応が起こりやすくなる。   The calixresorcinarene derivative represented by the formula (2) can be obtained by reacting the compound represented by the formula (1) with a potassium salt of a thioester derivative in the presence of a salt catalyst. As the salt catalyst, quaternary ammonium salts such as tetrabutylammonium bromide and tetraethylammonium chloride, and metal salts such as lithium chloride and lithium bromide are used. The amount of the catalyst is 1 to 10 parts with respect to 100 parts of the compound represented by the formula (1). The potassium salt of the thioester derivative may be added in a large excess relative to the compound represented by the formula (1), and may be further added during the reaction. Solvents used in the reaction include ethers, halogen solvents, hydrocarbon solvents, amide solvents such as N, N-dimethylformamide and N-methylpyrrolidone, ketone solvents such as acetone and cyclohexanone, and ethyl acetate. Esters can be used. The reaction temperature is between −78 ° C. and 100 ° C., preferably −50 ° C. to 80 ° C., more preferably −50 ° C. to 50 ° C. If the reaction temperature is low, the reaction time becomes long, and if the reaction temperature is too high, side reactions tend to occur.

式(3)で示されるカリックスレゾルシンアレーン誘導体は、式(2)で示される化合物に、対応するチイラン化合物を塩触媒存在下反応させることによって得ることができる。塩触媒としては、テトラブチルアンモニウムブロミドやテトラエチルアンモニウムクロリド等の4級アンモニウム塩や、リチウムクロリド、リチウムブロミド等の金属塩が用いられる。触媒量は、式(1)で示される化合物の官能基量と等量が好ましい。反応に用いる溶媒はエーテル類、ハロゲン系溶媒、炭化水素系溶媒の他に、N,N−ジメチルホルムアミドやN−メチルピロリドン等のアミド系溶媒、アセトンやシクロヘキサノン等のケトン系溶媒、酢酸エチル等のエステル類を用いることができる。また、無溶媒でも反応させることができる。反応温度は0〜150℃の間で行うが、好ましくは20℃〜100℃、さらに好ましくは50℃〜100℃である。反応温度が低いと反応時間が長くなり、また反応温度が高すぎると副反応が起こりやすくなる。反応は、アンプル封管等、水分を除去できる状態で行うのが望ましい。   The calixresorcinarene derivative represented by the formula (3) can be obtained by reacting the compound represented by the formula (2) with the corresponding thiirane compound in the presence of a salt catalyst. As the salt catalyst, quaternary ammonium salts such as tetrabutylammonium bromide and tetraethylammonium chloride, and metal salts such as lithium chloride and lithium bromide are used. The amount of the catalyst is preferably equal to the amount of the functional group of the compound represented by the formula (1). Solvents used in the reaction include ethers, halogen solvents, hydrocarbon solvents, amide solvents such as N, N-dimethylformamide and N-methylpyrrolidone, ketone solvents such as acetone and cyclohexanone, and ethyl acetate. Esters can be used. Moreover, it can be made to react even without solvent. Although reaction temperature is performed between 0-150 degreeC, Preferably it is 20 to 100 degreeC, More preferably, it is 50 to 100 degreeC. If the reaction temperature is low, the reaction time becomes long, and if the reaction temperature is too high, side reactions tend to occur. The reaction is desirably performed in a state where moisture can be removed, such as an ampoule sealed tube.

式(4)で示されるカリックスレゾルシンアレーン誘導体は、式(3)で示される化合物に、対応するチイラン化合物又はエポキシ化合物を塩触媒存在下反応させることによって得ることができる。塩触媒としては、テトラブチルアンモニウムブロミドやテトラエチルアンモニウムクロリド等の4級アンモニウム塩や、リチウムクロリド、リチウムブロミド等の金属塩が用いられる。触媒量は、式(3)で示される化合物の官能基量と等量が好ましい。反応に用いる溶媒はエーテル類、ハロゲン系溶媒、炭化水素系溶媒の他に、N,N−ジメチルホルムアミドやN−メチルピロリドン等のアミド系溶媒、アセトンやシクロヘキサノン等のケトン系溶媒、酢酸エチル等のエステル類を用いることができる。また、無溶媒でも反応させることができる。反応温度は0〜150℃の間で行うが、好ましくは20℃〜100℃、さらに好ましくは50℃〜100℃である。反応温度が低いと反応時間が長くなり、また反応温度が高すぎると副反応が起こりやすくなる。反応は、アンプル封管等、水分を除去できる状態で行うのが望ましい。   The calixresorcinarene derivative represented by the formula (4) can be obtained by reacting the compound represented by the formula (3) with the corresponding thiirane compound or epoxy compound in the presence of a salt catalyst. As the salt catalyst, quaternary ammonium salts such as tetrabutylammonium bromide and tetraethylammonium chloride, and metal salts such as lithium chloride and lithium bromide are used. The amount of the catalyst is preferably equal to the amount of the functional group of the compound represented by the formula (3). Solvents used in the reaction include ethers, halogen solvents, hydrocarbon solvents, amide solvents such as N, N-dimethylformamide and N-methylpyrrolidone, ketone solvents such as acetone and cyclohexanone, and ethyl acetate. Esters can be used. Moreover, it can be made to react even without solvent. Although reaction temperature is performed between 0-150 degreeC, Preferably it is 20 to 100 degreeC, More preferably, it is 50 to 100 degreeC. If the reaction temperature is low, the reaction time becomes long, and if the reaction temperature is too high, side reactions tend to occur. The reaction is desirably performed in a state where moisture can be removed, such as an ampoule sealed tube.

式(3)及び式(4)で示される化合物中に、2重結合や3重結合をもつ不飽和炭化水素基や、アクリル基やメタクリル基、シクロプロパン基やシクロブタン基等の高歪炭化水素基、ビニルエーテル基、ビニルエステル基、エポキシ基やオキセタン基等の環状エーテル基などラジカル重合性やカチオン、アニオン重合性を有する基を含む場合、対応する重合触媒を加え加熱又は光等の活性エネルギー線を照射することによって、3次元硬化物を得ることができる。   High strain hydrocarbon such as unsaturated hydrocarbon group having double bond or triple bond, acrylic group, methacryl group, cyclopropane group or cyclobutane group in the compound represented by formula (3) or formula (4) Group, vinyl ether group, vinyl ester group, cyclic ether group such as epoxy group and oxetane group, etc. Can be obtained to obtain a three-dimensional cured product.

熱ラジカル重合開始剤としては、特に制限されず公知のものが使用できる。代表的なものを例示すると、ベンゾイルパーオキシド、p−クロルベンゾイルパーオキシド、ラウロイルパーオキシド、t−ブチルパーオキシジカーボネート等のパーオキシド、アゾイソブチロニトリル等のアゾ化合物である。熱ラジカル重合開始剤の使用量は、重合条件や開始剤の種類、重合性モノマーの種類や組成によって異なるため一概に限定できないが、一般には重合性基に対して0.01〜10当量%の範囲で用いるのが好適である。重合温度及び重合時間は、重合開始剤の種類と量や重合性モノマーの種類によって大きく変化するので限定できないが、一般には2〜40時間で重合が完結するように条件を選ぶのが好ましい。   The thermal radical polymerization initiator is not particularly limited and known ones can be used. Typical examples are peroxides such as benzoyl peroxide, p-chlorobenzoyl peroxide, lauroyl peroxide, t-butyl peroxydicarbonate, and azo compounds such as azoisobutyronitrile. The amount of the thermal radical polymerization initiator used varies depending on the polymerization conditions, the type of initiator, the type and composition of the polymerizable monomer, and cannot be generally limited, but is generally 0.01 to 10 equivalent% with respect to the polymerizable group. It is preferable to use within a range. The polymerization temperature and polymerization time are not limited because they vary greatly depending on the type and amount of the polymerization initiator and the type of polymerizable monomer, but it is generally preferable to select conditions so that the polymerization is completed in 2 to 40 hours.

また紫外線、可視光、あるいは放射線等の活性エネルギー線を用いたラジカル重合の開始剤としては、特に制限されず公知のものが使用できる。代表的なものとして、ベンゾインメチルエーテル、ベンゾフェノン、アセトフェノン、ベンジルメチルケタール、2−イソプロピルチオキサントン等が用いられる。これらの重合開始剤は、重合性基に対して0.001〜5当量%の範囲で用いるのが一般的である。   The initiator for radical polymerization using active energy rays such as ultraviolet rays, visible light, or radiation is not particularly limited, and known ones can be used. Representative examples include benzoin methyl ether, benzophenone, acetophenone, benzylmethyl ketal, 2-isopropylthioxanthone and the like. These polymerization initiators are generally used in the range of 0.001 to 5 equivalent% with respect to the polymerizable group.

熱カチオン重合開始剤としては、特に制限されず公知のものが使用できる。代表的なものを例示すると、塩化アルミニウム、4塩化スズ、4塩化チタン等が用いられる。熱カチオン重合開始剤の使用量は、重合条件や開始剤の種類、重合性モノマーの種類や組成によって異なるため一概に限定できないが、一般には重合性基に対して0.01〜10当量%の範囲で用いるのが好適である。重合温度及び重合時間は、重合開始剤の種類と量や重合性モノマーの種類によって大きく変化するので限定できないが、一般には2〜40時間で重合が完結するように条件を選ぶのが好ましい。   The thermal cationic polymerization initiator is not particularly limited and known ones can be used. As a typical example, aluminum chloride, tin chloride, titanium tetrachloride and the like are used. The amount of the thermal cationic polymerization initiator used varies depending on the polymerization conditions, the type of initiator, the type and composition of the polymerizable monomer, and cannot be generally limited, but is generally 0.01 to 10 equivalent% with respect to the polymerizable group. It is preferable to use within a range. The polymerization temperature and polymerization time are not limited because they vary greatly depending on the type and amount of the polymerization initiator and the type of polymerizable monomer, but it is generally preferable to select conditions so that the polymerization is completed in 2 to 40 hours.

また紫外線、可視光、あるいは放射線等の活性エネルギー線を用いたカチオン重合の開始剤としては、特に制限されず公知のものが使用できる。代表的なものとして、スルホニウム塩類、ヨードニウム塩類等が用いられる。これらの重合開始剤は、重合性基に対して0.001〜5当量%の範囲で用いるのが一般的である。アニオン重合開始剤としては、特に制限されず公知のものが使用できる。代表的なものを例示すると、水酸化カリウムや水酸化ナトリウム、金属リチウム等が用いられる。   The initiator for cationic polymerization using active energy rays such as ultraviolet rays, visible light, or radiation is not particularly limited, and known ones can be used. Typical examples include sulfonium salts and iodonium salts. These polymerization initiators are generally used in the range of 0.001 to 5 equivalent% with respect to the polymerizable group. The anionic polymerization initiator is not particularly limited, and known ones can be used. As typical examples, potassium hydroxide, sodium hydroxide, metallic lithium and the like are used.

以上の触媒に、各種増感剤や助触媒を加えてもよい。また、3次元硬化物の物性を制御するために、酸化防止剤、金属不活性化剤、紫外線吸収剤、難燃剤、安定剤、レベリング剤等の各種添加剤を加えてもよい。   Various sensitizers and promoters may be added to the above catalyst. In order to control the physical properties of the three-dimensional cured product, various additives such as an antioxidant, a metal deactivator, an ultraviolet absorber, a flame retardant, a stabilizer, and a leveling agent may be added.

さらに、3次元硬化物の特性を高める目的で、シリカや酸化チタン等無機フィラーや有機フィラーを任意の割合で加えてもよい。   Furthermore, for the purpose of enhancing the properties of the three-dimensional cured product, an inorganic filler such as silica or titanium oxide or an organic filler may be added at an arbitrary ratio.

式(3)及び式(4)で示される化合物中に、エポキシ樹脂、アクリル樹脂、ポリスチレン、ポリアミド、ポリイミド、ポリアミドイミド、ポリオレフィン、シロキサンポリマー等の各種ポリマーを任意の割合でブレンドしてもよい。   Various compounds such as epoxy resin, acrylic resin, polystyrene, polyamide, polyimide, polyamideimide, polyolefin, and siloxane polymer may be blended in the compound represented by formula (3) and formula (4) in an arbitrary ratio.

以下、実施例により本発明の樹脂の製造法について詳細に説明するが、本発明はこれら実施例に制限されない。   Hereinafter, although the Example demonstrates the manufacturing method of resin of this invention in detail, this invention is not restrict | limited to these Examples.

(実施例1)
式(5)で示される化合物(以下(5)と略す)を下記の方法で合成した。

Figure 0004553647
500ml三つ口フラスコに、式(6)で示される化合物(以下(6)と略す)カリックスレゾルシンアレーン2.14g(4mmol)、ピリジン7.59ml(96mmol)、テトラヒドロフラン100mlを加え、0℃窒素雰囲気下で攪拌する。クロロアセチルクロリド10.8ml(96mmol)を滴下し24時間攪拌後、酢酸エチル100mlを加え、5mol%炭酸水素ナトリウム水溶液100mlで3回洗浄し、さらに水100mlで3回洗浄した。有機層を無水硫酸マグネシウムで乾燥し、溶媒留去により(5)を淡黄色粉末固体として0.64g(収率13%)得た。
得られた化合物の分析結果を以下に示す。
質量分析(MALDI−TOF MS)
計算値(m/z)1179.44(M+Na)
実測値(m/z)1177.30(M+Na)
IR(cm−1):2968、1769、1491、1234
H−NMR(500MHz、DMSO−d):δ(ppm)1.51(d、3H)、4.09〜4.36(m、5H)、5.98〜7.41(m、2H) Example 1
A compound represented by the formula (5) (hereinafter abbreviated as (5)) was synthesized by the following method.
Figure 0004553647
A compound represented by formula (6) (hereinafter abbreviated as (6)) 2.14 g (4 mmol) of calix resorcinarene, 7.59 ml (96 mmol) of pyridine and 100 ml of tetrahydrofuran was added to a 500 ml three-necked flask, and a nitrogen atmosphere at 0 ° C. Stir below. After adding 10.8 ml (96 mmol) of chloroacetyl chloride dropwise and stirring for 24 hours, 100 ml of ethyl acetate was added, washed with 100 ml of 5 mol% aqueous sodium hydrogen carbonate solution three times, and further washed with 100 ml of water three times. The organic layer was dried over anhydrous magnesium sulfate, and the solvent was distilled off to obtain 0.64 g (yield 13%) of (5) as a pale yellow powder solid.
The analysis results of the obtained compound are shown below.
Mass spectrometry (MALDI-TOF MS)
Calculated value (m / z) 1179.44 (M + Na) + ,
Actual value (m / z) 1177.30 (M + Na) +
IR (cm-1): 2968, 1769, 1491, 1234
1 H-NMR (500 MHz, DMSO-d 6 ): δ (ppm) 1.51 (d, 3H), 4.09 to 4.36 (m, 5H), 5.98 to 7.41 (m, 2H) )

(実施例2)
式(7)で示される化合物(以下(7)と略す)を下記の方法で合成した。

Figure 0004553647
Figure 0004553647
500ml三つ口フラスコに、式(8)で示される化合物(以下(8)と略す)のカリックスレゾルシンアレーン2.14g(4mmol)、ピリジン7.59ml(96mmol)、テトラヒドロフラン100mlを加え、0℃窒素雰囲気下で攪拌する。クロロアセチルクロリド10.8ml(96mmol)を滴下し24時間攪拌後、酢酸エチル100mlを加え、5mol%炭酸水素ナトリウム水溶液100mlで3回洗浄し、さらに水100mlで3回洗浄した。有機層を無水硫酸マグネシウムで乾燥し、溶媒留去により(7)を淡黄色粉末固体として0.64g(収率13%)得た。
得られた化合物の分析結果を以下に示す。
質量分析(MALDI−TOF MS)
計算値(m/z)1179.44(M+Na)
実測値(m/z)1177.30(M+Na)
IR(cm−1):2968、1769、1491、1234
H−NMR(500MHz、DMSO−d6):δ(ppm)1.51(d、3H)、4.09〜4.36(m、5H)、5.98〜7.41(m、2H) (Example 2)
A compound represented by the formula (7) (hereinafter abbreviated as (7)) was synthesized by the following method.
Figure 0004553647
Figure 0004553647
To a 500 ml three-necked flask, 2.14 g (4 mmol) of calixresorcinarene of the compound represented by formula (8) (hereinafter abbreviated as (8)), 7.59 ml (96 mmol) of pyridine, and 100 ml of tetrahydrofuran were added, and nitrogen was added at 0 ° C. Stir under atmosphere. After adding 10.8 ml (96 mmol) of chloroacetyl chloride dropwise and stirring for 24 hours, 100 ml of ethyl acetate was added, washed with 100 ml of 5 mol% aqueous sodium hydrogen carbonate solution three times, and further washed with 100 ml of water three times. The organic layer was dried over anhydrous magnesium sulfate and the solvent was distilled off to obtain 0.64 g (yield 13%) of (7) as a pale yellow powder solid.
The analysis results of the obtained compound are shown below.
Mass spectrometry (MALDI-TOF MS)
Calculated value (m / z) 1179.44 (M + Na) + ,
Actual value (m / z) 1177.30 (M + Na) +
IR (cm −1 ): 2968, 1769, 1491, 1234
1 H-NMR (500 MHz, DMSO-d6): δ (ppm) 1.51 (d, 3H), 4.09 to 4.36 (m, 5H), 5.98 to 7.41 (m, 2H)

(実施例3)
式(9)で示される化合物(以下(9)と略す)を下記の方法で合成した。

Figure 0004553647
50ml三つ口フラスコに、チオ安息香酸カリウム3.0g(18mmol)、(7)0.89g(0.5mmol)、テトラブチルアンモニウムブロミド0.1g(0.31mmol)、N−メチルピロリドン5mlを加え室温で攪拌する。24時間攪拌後、チオ安息香酸カリウム3.1g(19mmol)とN−メチルピロリドン2mlを加え、室温で攪拌する。24時間攪拌後、酢酸エチル20mlを加え水20mlで3回洗浄し、有機層を無水硫酸マグネシウムで乾燥し溶媒留去により(9)を白色粉末固体として0.7g(収率56%)得た。
得られた化合物の分析結果を以下に示す。
融点86.5〜88.0℃
IR(cm−1):3026、1764、1667、1595、1504、1123、772
H−NMR(500MHz、CDCl):δ(ppm)3.67〜4.19(m、9H)、5.71(s、1H)、6.20〜7.32(m、6H)、7.40〜8.00(m、15H) (Example 3)
A compound represented by the formula (9) (hereinafter abbreviated as (9)) was synthesized by the following method.
Figure 0004553647
To a 50 ml three-necked flask, add 3.0 g (18 mmol) of potassium thiobenzoate, 0.89 g (0.5 mmol) of (7), 0.1 g (0.31 mmol) of tetrabutylammonium bromide, and 5 ml of N-methylpyrrolidone. Stir at room temperature. After stirring for 24 hours, 3.1 g (19 mmol) of potassium thiobenzoate and 2 ml of N-methylpyrrolidone are added and stirred at room temperature. After stirring for 24 hours, 20 ml of ethyl acetate was added and washed with 20 ml of water three times. The organic layer was dried over anhydrous magnesium sulfate and the solvent was distilled off to obtain 0.7 g (yield 56%) of (9) as a white powder solid. .
The analysis results of the obtained compound are shown below.
Melting point 86.5-88.0 ° C
IR (cm-1): 3026, 1764, 1667, 1595, 1504, 1123, 772
1 H-NMR (500 MHz, CDCl 3 ): δ (ppm) 3.67 to 4.19 (m, 9H), 5.71 (s, 1H), 6.20 to 7.32 (m, 6H), 7.40-8.00 (m, 15H)

(実施例4)
式(10)で示される化合物(以下(10)と略す)を下記の方法で合成した。

Figure 0004553647
湿度10%以下に保ったドライボックス中で、アンプル管にテトラブチルアンモニウムクロリド0.0447g(0.16mmol)、(9)0.055g(0.02mmol)、3−フェノキシプロピレンスルフィド1.064g(6.4mmol)、N−メチルピロリドン1mlを加え封管する。アンプル管を90℃で24時間攪拌後、テトラヒドロフラン5mlを加えメタノール100ml中に滴下し、得られた固体をさらにテトラヒドロフラン5mlに溶解させてメタノール100ml中に滴下して(10)を黄色固体として1.10g(収率96%)得た。
得られた化合物の分子量をGPC法で測定したところ、数平均分子量1.7x10、分散度1.8であった。
また、3−フェノキシプロピレンスルフィドの量を変えて同様の条件で反応を行い、屈折率を測定したところ以下の値が得られた。
Figure 0004553647
Example 4
A compound represented by the formula (10) (hereinafter abbreviated as (10)) was synthesized by the following method.
Figure 0004553647
In a dry box maintained at a humidity of 10% or less, 0.0447 g (0.16 mmol) of tetrabutylammonium chloride, 0.055 g (0.02 mmol) of (9), 1.064 g of 3-phenoxypropylene sulfide (6 4 mmol), and 1 ml of N-methylpyrrolidone is added and sealed. After stirring the ampoule tube at 90 ° C. for 24 hours, 5 ml of tetrahydrofuran was added and added dropwise to 100 ml of methanol. The obtained solid was further dissolved in 5 ml of tetrahydrofuran and added dropwise to 100 ml of methanol to give (10) as a yellow solid. 10 g (yield 96%) was obtained.
When the molecular weight of the obtained compound was measured by the GPC method, it was a number average molecular weight of 1.7 × 10 4 and a dispersity of 1.8.
Moreover, when the reaction was carried out under the same conditions while changing the amount of 3-phenoxypropylene sulfide and the refractive index was measured, the following values were obtained.
Figure 0004553647

(実施例5)
式(11)で示される化合物(以下(11)と略す)を下記の方法で合成した。

Figure 0004553647
湿度10%以下に保ったドライボックス中で、アンプル管にテトラブチルアンモニウムクロリド0.0447g(0.16mmol)、(10)1.10g(0.02mmol)、3−フェノキシプロピレンオキシド0.048g(0.32mmol)、N−メチルピロリドン1mlを加え封管する。アンプル管を90℃で24時間攪拌後、テトラヒドロフラン5mlを加えメタノール100ml中に滴下し、得られた固体をさらにテトラヒドロフラン5mlに溶解させてメタノール100ml中に滴下して(11)を黄色固体として1.10g(収率98%)得た。
得られた化合物の分子量をGPC法で測定したところ、数平均分子量9.2x10、分散度1.5であった。 (Example 5)
A compound represented by the formula (11) (hereinafter abbreviated as (11)) was synthesized by the following method.
Figure 0004553647
In a dry box maintained at a humidity of 10% or less, 0.0447 g (0.16 mmol) of tetrabutylammonium chloride, 1.10 g (0.02 mmol) of (10), 0.048 g of 3-phenoxypropylene oxide (0 .32 mmol) and 1 ml of N-methylpyrrolidone are added and sealed. After stirring the ampoule tube at 90 ° C. for 24 hours, 5 ml of tetrahydrofuran was added and added dropwise to 100 ml of methanol. The obtained solid was further dissolved in 5 ml of tetrahydrofuran and added dropwise to 100 ml of methanol to give (11) as a yellow solid. 10 g (yield 98%) was obtained.
When the molecular weight of the obtained compound was measured by GPC method, it was number average molecular weight 9.2 × 10 3 and dispersity 1.5.

(実施例6)
式(12)で示される化合物(以下(12)と略す)を下記の方法で合成した。

Figure 0004553647
湿度10%以下に保ったドライボックス中で、アンプル管にテトラブチルアンモニウムクロリド0.0447g(0.16mmol)、(10)1.10g(0.02mmol)、グリシジルメタクリレート0.045g(0.32mmol)、N−メチルピロリドン1mlを加え封管する。アンプル管を90℃で24時間攪拌後、テトラヒドロフラン5mlを加えメタノール100ml中に滴下し、得られた固体をさらにテトラヒドロフラン5mlに溶解させてメタノール100ml中に滴下して(12)を黄色固体として1.10g(収率98%)得た。
得られた化合物の分子量をGPC法で測定したところ、数平均分子量1.5x10、分散度1.9であった。 (Example 6)
A compound represented by the formula (12) (hereinafter abbreviated as (12)) was synthesized by the following method.
Figure 0004553647
In a dry box kept at a humidity of 10% or less, 0.0447 g (0.16 mmol) of tetrabutylammonium chloride, 1.10 g (0.02 mmol) of (10) and 0.045 g (0.32 mmol) of glycidyl methacrylate were placed in an ampule tube. Add 1 ml of N-methylpyrrolidone and seal the tube. After stirring the ampoule tube at 90 ° C. for 24 hours, 5 ml of tetrahydrofuran was added and added dropwise to 100 ml of methanol, and the resulting solid was further dissolved in 5 ml of tetrahydrofuran and added dropwise to 100 ml of methanol to give (12) as a yellow solid. 10 g (yield 98%) was obtained.
When the molecular weight of the obtained compound was measured by the GPC method, it was a number average molecular weight of 1.5 × 10 4 and a dispersity of 1.9.

(実施例7)
式(13)で示される化合物(以下(13)と略す)を下記の方法で合成した。

Figure 0004553647
湿度10%以下に保ったドライボックス中で、アンプル管にテトラブチルアンモニウムクロリド0.0447g(0.16mmol)、(10)0.055g(0.02mmol)、3−フェノキシプロピレンスルフィド0.998g(6.0mmol)、3−メタクリルプロピレンスルフィド0.063g(0.4mmol)、N−メチルピロリドン1mlを加え封管する。アンプル管を90℃で24時間攪拌後、テトラヒドロフラン5mlを加えメタノール100ml中に滴下し、得られた固体をさらにテトラヒドロフラン5mlに溶解させてメタノール100ml中に滴下して(13)を黄色固体として1.10g(収率96%)得た。
得られた化合物の分子量をGPC法で測定したところ、数平均分子量9.5x10、分散度1.9であった。 (Example 7)
A compound represented by the formula (13) (hereinafter abbreviated as (13)) was synthesized by the following method.
Figure 0004553647
In a dry box kept at a humidity of 10% or less, 0.0447 g (0.16 mmol) of tetrabutylammonium chloride, 0.055 g (0.02 mmol) of (10), 0.998 g of 3-phenoxypropylene sulfide (6 0.0 mmol), 0.063 g (0.4 mmol) of 3-methacrylpropylene sulfide and 1 ml of N-methylpyrrolidone are added and sealed. After stirring the ampoule tube at 90 ° C. for 24 hours, 5 ml of tetrahydrofuran was added and dropped into 100 ml of methanol, and the resulting solid was further dissolved in 5 ml of tetrahydrofuran and dropped into 100 ml of methanol to give (13) as a yellow solid. 10 g (yield 96%) was obtained.
When the molecular weight of the obtained compound was measured by the GPC method, it was a number average molecular weight of 9.5 × 10 3 and a dispersity of 1.9.

(実施例8)
(12)の3次元硬化物を下記の方法で合成した。
(12)1.0gをN,N−ジメチルアセトアミド1mlに溶解し、アゾイソブチロニトリル0.01gを加える。溶液をポリエチレンテレフタレートフィルム上にキャストし、オーブン中60℃で20時間加熱後ポリエチレンテレフタレートフィルムからはがしフィルム状の淡黄色固体を得た。
得られた固体のガラス転移温度をDSC法で測定したところ、Tg=145℃であった。固体の熱分解開始温度を測定したところ、空気中で5%重量減少する温度は290℃であった。また固体の屈折率をアッベ法で測定したところ、nD=1.69であった。
(Example 8)
The three-dimensional cured product (12) was synthesized by the following method.
(12) 1.0 g is dissolved in 1 ml of N, N-dimethylacetamide, and 0.01 g of azoisobutyronitrile is added. The solution was cast on a polyethylene terephthalate film, heated in an oven at 60 ° C. for 20 hours, and then peeled off from the polyethylene terephthalate film to obtain a film-like pale yellow solid.
It was Tg = 145 degreeC when the glass transition temperature of the obtained solid was measured by DSC method. When the thermal decomposition start temperature of the solid was measured, the temperature at which 5% weight loss was observed in air was 290 ° C. Moreover, it was nD = 1.69 when the refractive index of solid was measured by the Abbe method.

(実施例9)
(13)の3次元硬化物を下記の方法で合成した。
(13)1.0gをN,N−ジメチルアセトアミド1mlに溶解し、アゾイソブチロニトリル0.01gを加える。溶液をポリエチレンテレフタレートフィルム上にキャストし、オーブン中60℃で20時間加熱後ポリエチレンテレフタレートフィルムからはがしフィルム状の淡黄色固体を得た。
得られた固体のガラス転移温度をDSC法で測定したところ、Tg=130℃であった。固体の熱分解開始温度を測定したところ、空気中で5%重量減少する温度は289℃であった。また固体の屈折率をアッベ法で測定したところ、nD=1.68であった。
Example 9
The three-dimensional cured product (13) was synthesized by the following method.
(13) 1.0 g is dissolved in 1 ml of N, N-dimethylacetamide, and 0.01 g of azoisobutyronitrile is added. The solution was cast on a polyethylene terephthalate film, heated in an oven at 60 ° C. for 20 hours, and then peeled off from the polyethylene terephthalate film to obtain a film-like pale yellow solid.
It was Tg = 130 degreeC when the glass transition temperature of the obtained solid was measured by DSC method. When the thermal decomposition start temperature of the solid was measured, the temperature at which 5% weight loss was observed in air was 289 ° C. Moreover, it was nD = 1.68 when the refractive index of solid was measured by the Abbe method.

新規カリックスレゾルシンアレーン誘導体を用いることにより、高耐熱性を有し屈折率調整可能であり、さらに高屈折率を有する樹脂を提供でき、この樹脂を用いることにより光学レンズ、光学フィルム、光学フィルムを用いた液晶表示装置などの用途に適用することができる。   By using a new calixresorcinarene derivative, it is possible to provide a resin having high heat resistance and adjustable refractive index, and further having a high refractive index. By using this resin, optical lenses, optical films, and optical films can be used. It can be applied to applications such as liquid crystal display devices.

Claims (11)

式(1)で表されるカリックスレゾルシンアレーン誘導体。
Figure 0004553647
(式(1)中、Rは炭素数1〜20のアルキレン基を示し、R炭素数1〜20のアルキル基、フェニル基、ナフチル基又は下記式で表される有機基を示す
Figure 0004553647
A calix resorcinarene derivative represented by the formula (1).
Figure 0004553647
(In the formula (1), R 1 represents an alkylene group having 1 to 20 carbon atoms, R 2 represents an alkyl group, a phenyl group, an organic group represented by a naphthyl group or the following formula 1 to 20 carbon atoms
Figure 0004553647
式(2)で表されるカリックスレゾルシンアレーン誘導体。
Figure 0004553647
(式(2)中、Rは炭素数1〜20のアルキレン基を示し、R炭素数1〜20のアルキル基、フェニル基、ナフチル基又は下記式で表される有機基を示し、Rは炭素数1〜20のアルキル基、フェニル基又はナフチル基を示す
Figure 0004553647
A calix resorcinarene derivative represented by the formula (2).
Figure 0004553647
(In Formula (2), R 1 represents an alkylene group having 1 to 20 carbon atoms, R 2 represents an alkyl group having 1 to 20 carbon atoms, a phenyl group, a naphthyl group, or an organic group represented by the following formula : R 3 represents an alkyl group having 1 to 20 carbon atoms , a phenyl group, or a naphthyl group .
Figure 0004553647
式(3)で表されるカリックスレゾルシンアレーン誘導体。
Figure 0004553647
(式(3)中、nは1〜1000の整数を表し、Rは炭素数1〜20のアルキレン基を示し、R炭素数1〜20のアルキル基、フェニル基、ナフチル基又は下記式で表される有機基を示し、Rは炭素数1〜20のアルキル基、フェニル基又はナフチル基を示し、R及びRはそれぞれ水素、炭素数1〜20のアルキル基、フェニル基、ナフチル基又はフェニルオキシアルキル基を示し、また、RとRは結合して環を形成してもよい。
Figure 0004553647
A calix resorcinarene derivative represented by the formula (3).
Figure 0004553647
(In Formula (3), n represents an integer of 1 to 1000, R 1 represents an alkylene group having 1 to 20 carbon atoms , R 2 represents an alkyl group having 1 to 20 carbon atoms, a phenyl group, a naphthyl group, or the following: An organic group represented by the formula : R 3 represents an alkyl group having 1 to 20 carbon atoms , a phenyl group or a naphthyl group ; R 4 and R 5 represent hydrogen, an alkyl group having 1 to 20 carbon atoms , and a phenyl group, respectively. , Represents a naphthyl group or a phenyloxyalkyl group , and R 4 and R 5 may combine to form a ring.
Figure 0004553647
式(4)で表されるカリックスレゾルシンアレーン誘導体。
Figure 0004553647
(式(4)中、nは1〜1000の整数を表し、mは1〜1000の整数を表し、Rは炭素数1〜20のアルキレン基を示し、R炭素数1〜20のアルキル基、フェニル基、ナフチル基又は下記式で表される有機基を示し、Rは炭素数1〜20のアルキル基、フェニル基又はナフチル基を示し、R及びRはそれぞれ水素、炭素数1〜20ののアルキル基、フェニル基、ナフチル基又はフェニルオキシアルキル基を示し、また、RとRは結合して環を形成してもよく、R及びRはそれぞれ水素、炭素数1〜20のアルキル基、フェニル基、ナフチル基、フェニルオキシアルキル基又は(メタ)アクリロイルオキシアルキル基を示し、また、RとRは結合して環を形成してもよく、Xは酸素又はイオウを示す。
Figure 0004553647
A calix resorcinarene derivative represented by the formula (4).
Figure 0004553647
(In Formula (4), n represents an integer of 1 to 1000, m represents an integer of 1 to 1000, R 1 represents an alkylene group having 1 to 20 carbon atoms , and R 2 represents an alkylene group having 1 to 20 carbon atoms. An alkyl group, a phenyl group, a naphthyl group, or an organic group represented by the following formula ; R 3 represents an alkyl group having 1 to 20 carbon atoms , a phenyl group, or a naphthyl group ; and R 4 and R 5 represent hydrogen, carbon, respectively. Represents an alkyl group having a number of 1 to 20 , a phenyl group, a naphthyl group or a phenyloxyalkyl group, and R 4 and R 5 may combine to form a ring, and R 6 and R 7 each represent hydrogen, An alkyl group having 1 to 20 carbon atoms , a phenyl group, a naphthyl group, a phenyloxyalkyl group or a (meth) acryloyloxyalkyl group , and R 6 and R 7 may be bonded to form a ring; Represents oxygen or sulfur.
Figure 0004553647
Xが酸素で、mが1である請求項4に記載のカリックスレゾルシンアレーン誘導体。 The calix resorcinarene derivative according to claim 4, wherein X is oxygen and m is 1. 請求項3〜5のいずれか一項に記載のカリックスレゾルシンアレーン誘導体を硬化させて得られる3次元硬化物。   A three-dimensional cured product obtained by curing the calix resorcinarene derivative according to any one of claims 3 to 5. 下記式に示されるレゾルシノール体にアセチルクロリド誘導体を反応させる請求項1に記載のカリックスレゾルシンアレーン誘導体の製造方法。
Figure 0004553647
(式中、R2'炭素数1〜20のアルキル基、フェニル基、ナフチル基又はp−ヒドロキシフェニル基を示す)
The method for producing a calixresorcinarene derivative according to claim 1, wherein the resorcinol compound represented by the following formula is reacted with an acetyl chloride derivative.
Figure 0004553647
(Wherein R 2 ′ represents an alkyl group having 1 to 20 carbon atoms, a phenyl group, a naphthyl group or a p-hydroxyphenyl group )
請求項1に記載の誘導体に、チオエステル誘導体のカリウム塩を反応させる請求項2に記載のカリックスレゾルシンアレーン誘導体の製造方法。   The method for producing a calixresorcinarene derivative according to claim 2, wherein the derivative according to claim 1 is reacted with a potassium salt of a thioester derivative. 請求項2に記載の誘導体に、チイラン誘導体を反応させる請求項3に記載のカリックスレゾルシンアレーン誘導体の製造方法。   The method for producing a calixresorcinarene derivative according to claim 3, wherein the derivative according to claim 2 is reacted with a thiirane derivative. 請求項3に記載の誘導体に、エポキシ化合物又はチイラン化合物を反応させる請求項4又は請求項5に記載のカリックスレゾルシンアレーン誘導体の製造方法。   The method for producing a calixresorcinarene derivative according to claim 4 or 5, wherein the derivative according to claim 3 is reacted with an epoxy compound or a thiirane compound. 請求項3〜5のいずれか一項に記載のカリックスレゾルシンアレーン誘導体を、加熱又は活性エネルギー線照射を行うことによって硬化させる請求項6に記載の3次元硬化物の製造方法。   The method for producing a three-dimensional cured product according to claim 6, wherein the calixresorcinarene derivative according to any one of claims 3 to 5 is cured by heating or irradiation with an active energy ray.
JP2004196329A 2004-07-02 2004-07-02 Calix resorcinarene derivative and process for producing the same Expired - Fee Related JP4553647B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004196329A JP4553647B2 (en) 2004-07-02 2004-07-02 Calix resorcinarene derivative and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004196329A JP4553647B2 (en) 2004-07-02 2004-07-02 Calix resorcinarene derivative and process for producing the same

Publications (2)

Publication Number Publication Date
JP2006016342A JP2006016342A (en) 2006-01-19
JP4553647B2 true JP4553647B2 (en) 2010-09-29

Family

ID=35790917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004196329A Expired - Fee Related JP4553647B2 (en) 2004-07-02 2004-07-02 Calix resorcinarene derivative and process for producing the same

Country Status (1)

Country Link
JP (1) JP4553647B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008019234A (en) * 2006-06-14 2008-01-31 Hitachi Chem Co Ltd Graft polymer having sulfur atom in side chain, and method for producing the same
JP2008019233A (en) * 2006-06-14 2008-01-31 Hitachi Chem Co Ltd Graft polymer having sulfur atom in side chain, and method for producing the same
JP2008031134A (en) * 2006-07-07 2008-02-14 Hitachi Chem Co Ltd Phenol derivative and method for producing the same
JP5191682B2 (en) * 2007-01-30 2013-05-08 日立化成株式会社 Phenol derivative having anthracene residue in side chain and method for producing the same
JP4977099B2 (en) * 2008-07-31 2012-07-18 Jsr株式会社 Radical polymerizable group-containing cyclic polysulfide, process for producing the same, and polymer thereof
EP2474565B1 (en) * 2009-08-31 2019-11-27 Mitsubishi Gas Chemical Company, Inc. Cyclic compound, manufacturing method therefor, radiation-sensitive composition, and method for forming a resist pattern
JP5825104B2 (en) 2009-10-06 2015-12-02 三菱瓦斯化学株式会社 CYCLIC COMPOUND, PROCESS FOR PRODUCING THE SAME, RADIATION-SENSITIVE COMPOSITION AND METHOD FOR FORMING RESIST PATTERN
KR101870298B1 (en) * 2010-07-30 2018-07-23 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 Compound, radiation-sensitive composition, and method for forming resist pattern
CN114133548B (en) * 2020-09-03 2022-12-13 华为技术有限公司 Polycarbonate and preparation method thereof, thermoplastic composition, optical product and equipment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003321423A (en) * 2002-05-09 2003-11-11 Jsr Corp Calixresorcinarene derivative and radiation-sensitive resin composition

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11246540A (en) * 1998-03-04 1999-09-14 Ube Ind Ltd Oxetane group-containing calix(4)resorcin arene derivative and its production

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003321423A (en) * 2002-05-09 2003-11-11 Jsr Corp Calixresorcinarene derivative and radiation-sensitive resin composition

Also Published As

Publication number Publication date
JP2006016342A (en) 2006-01-19

Similar Documents

Publication Publication Date Title
JP3074086B2 (en) Photocurable oxetane composition
JP5789545B2 (en) Fluorine-containing compound, liquid repellent treatment agent, and cured film
JP4553647B2 (en) Calix resorcinarene derivative and process for producing the same
WO2019019924A1 (en) Oxetane monomer compound and preparation method therefor
JP5877507B2 (en) Curing composition having resistance to curing shrinkage, cured product obtained by curing said curable composition, and method
JP4485815B2 (en) Calixarene derivative and method for producing the same
JP4794930B2 (en) Thiacalixarene derivative and method for producing the same
JP2007022991A (en) Phenol derivative and method for producing the same
JP2009242242A (en) Alicyclic epoxy group-containing vinyl ether compound and polymerizable composition
TWI510466B (en) Epoxy acrylate, acrylic composition, hardened product and method for producing the same
WO2020253838A1 (en) Silicon-containing monomer containing double oxacyclic rings, preparation therefor and use thereof
JP2001040085A (en) Cation curable composition
JP2008031134A (en) Phenol derivative and method for producing the same
JP2008031394A (en) Novolac phenolic resin derivative and process for its production
JP2013124218A (en) Novel allyl ester compound and method for preparing the same
TW201803878A (en) Novel tetrathiaspiro compound, optical composition including same, and method for producing same
JP5620858B2 (en) Epoxy acrylate, acrylic composition, cured product and method for producing the same
KR102264925B1 (en) Curable compound with high refractive index, adhesive composition for optical member comprising the same and composition for optical sheet comprising the same
JP2010006754A (en) Method for producing alicyclic epoxy group-containing ester compound
JP2001226365A (en) Oxetane compound, method of preparing the same and polymerizable composition
KR100885676B1 (en) Aromatic Allyl Ether Compounds and Photopolymerisable Compositions containing the same
JP2001064278A (en) Sulfur-containing (meth)acrylate-based polymerizable monomer
JP2008050266A (en) Phenol derivative and core crosslinking type star polysulfide obtained from the same
JP3517965B2 (en) Organic sulfur compound-containing polymerizable composition
JP2008273848A (en) Naphthopyran compound and photochromic cured product composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100713

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100713

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees