JP3807759B2 - Novel thiol derivative and method for producing the same - Google Patents

Novel thiol derivative and method for producing the same Download PDF

Info

Publication number
JP3807759B2
JP3807759B2 JP17950095A JP17950095A JP3807759B2 JP 3807759 B2 JP3807759 B2 JP 3807759B2 JP 17950095 A JP17950095 A JP 17950095A JP 17950095 A JP17950095 A JP 17950095A JP 3807759 B2 JP3807759 B2 JP 3807759B2
Authority
JP
Japan
Prior art keywords
thiol derivative
bis
sulfide
novel thiol
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17950095A
Other languages
Japanese (ja)
Other versions
JPH093058A (en
Inventor
勝政 山本
美香 神崎
雅仁 中野
道夫 鈴木
和夫 崎山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Seika Chemicals Co Ltd
Original Assignee
Sumitomo Seika Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Seika Chemicals Co Ltd filed Critical Sumitomo Seika Chemicals Co Ltd
Priority to JP17950095A priority Critical patent/JP3807759B2/en
Publication of JPH093058A publication Critical patent/JPH093058A/en
Application granted granted Critical
Publication of JP3807759B2 publication Critical patent/JP3807759B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、新規チオール誘導体に関し、更に詳しくは、眼鏡用プラスチックレンズ、フレネルレンズ、レンチキュラーレンズ、光ディスク基盤、プラスチック光ファイバー、LCD用プリズムシート、導光板、拡散シート等の光学材料、塗料、接着剤、封止剤の原料、特に光学材料の原料として、極めて有用な新規チオール誘導体及びその製造方法に関する。
【0002】
【従来の技術】
有機光学材料用樹脂は、ガラス等に比較して軽量で取扱いが簡単であることから、近年は各種材料として汎用されている。
このような有機光学材料用樹脂として、従来から、ポリスチレン系樹脂、ポリメチルメタクリレート系樹脂、ポリカーボネート系樹脂、ジエチレングリコールジアリルカーボナート樹脂等が広く用いられている。
【0003】
しかし、このような従来の有機光学材料用樹脂は、低い屈折率、大きな複屈折、高い分散性の欠点を有し、耐熱性や耐衝撃性にも劣るため、必ずしも満足できるものではなかった。
【0004】
特にレンズ用材料として用いられているジエチレングリコールジアリルカーボナート樹脂(CR−39)等は、屈折率が1.50と低いため、レンズとして使用した場合にはコバ厚や中心厚が厚くなるため、レンズの外観が悪くなり、また重量の増大を招くという欠点があった。
【0005】
これらの欠点を解決するために、主として屈折率を向上させる方法が種々検討されて来た。例えば、特公平5−4404号公報には、芳香環にハロゲンを導入した樹脂が開示されている。しかしながら、この技術により得られた樹脂は、屈折率が1.60と大きくなるものの、比重が1.37と高く、プラスチックレンズの特徴であるレンズの軽量性の点で満足できるものではなかった。
【0006】
特公平4−15249号公報及び特開昭60−199016号公報では、イソシアネート化合物とポリチオールの重合により樹脂を得る技術が開示されている。しかし、この樹脂も屈折率が1.60と大きくなるものの、比重が1.30以上であり、重合温度が比較的低く、また重合速度が速いため、重合時の熱制御が困難となり、そのため光学歪が大きいという欠点があった。
【0007】
【発明が解決しようとする課題】
本発明の目的は、上記現状に鑑み、高屈折率を有する透明な樹脂を製造するために好適な単量体である新規チオール誘導体及びその製造方法を提供することを目的とするものである。
【0008】
【課題を解決するための手段】
本発明は、下記式(I)又は下記式(II)で表される新規チオール誘導体及びその製造方法に関する。
【0009】
【化5】

Figure 0003807759
【0010】
上記式(I)で表されるビス(4−アリルチオフェニル)スルフィドは、例えば下式(III)に示すようにビス(4−メルカプトフェニル)スルフィドとハロゲン化アリルを、アルカリ存在下、攪拌しながら、水中、あるいは、水と有機溶媒との2相系中で反応させることにより製造できる。
【0011】
【化6】
Figure 0003807759
【0012】
(式中Xはハロゲン原子を表す。)
【0013】
ハロゲン化アリルとしては塩化アリル、臭化アリル、ヨウ化アリルが挙げられ、ハロゲン化アリルの使用量は、ビス(4−メルカプトフェニル)スルフィドに対して1〜1.5当量であるが、好ましくは1〜1.2当量である。
【0014】
アルカリとしては水酸化ナトリウム、水酸化カリウム等の金属水酸化物、炭酸ナトリウム、炭酸カリウム等の金属炭酸塩、トリエチルアミン、トリブチルアミン等の第三級アミンが挙げられるが、反応性と経済性の面から水酸化ナトリウムが最も好ましく、使用量はビス(4−メルカプトフェニル)スルフィドに対して1〜1.5当量、好ましくは1〜1.2当量である。
【0015】
この時、反応温度は、0〜70℃、好ましくは、10〜40℃で行うのがよい。
有機溶媒としてはn−ヘキサン、n−ヘプタン、シクロヘキサン、トルエン、キシレン等の炭化水素類、クロロベンゼン、o−ジクロロベンゼン等のハロゲン化炭化水素類を用いることが好ましい。
【0016】
反応後は、有機層と水層を分液し、有機層を水洗した後、溶媒を留去することにより本発明のビス(4−アリルチオフェニル)スルフィドを得ることができる。
【0017】
本発明の上記式(II)で表されるビス(4−(2,3−エピチオプロピルチオ)フェニル)スルフィドは、下記式(IV)に示すようにビス(4−(2,3−エポキシプロピルチオ)フェニル)スルフィドとチオ尿素又はチオシアン酸塩とを有機溶媒中で反応させることにより製造することができる。
【0018】
【化7】
Figure 0003807759
【0019】
原料のビス(4−(2,3−エポキシプロピルチオ)フェニル)スルフィドを製造する方法は特に限定されず、例えば、ビス(4−メルカプトフェニル)スルフィドにエピクロロヒドリンを付加反応させた後、閉環反応を行う方法(J.Appl.Poly.Sci.,39巻、1623(1990年)、米国特許第2731437号明細書)等を挙げることができる。
【0020】
チオシアン酸塩としてはチオシアン酸カリウム、チオシアン酸アンモニウム等のチオシアン酸塩を用いることができる。チオ尿素又はチオシアン酸塩の使用量はビス(4−(2,3−エポキシプロピルチオ)フェニル)スルフィドに対して、1〜4当量、好ましくは1〜3当量である。
【0021】
用いられる有機溶媒としては、塩化メチレン、1,2−ジクロロエタン、クロロベンゼン、o−ジクロロベンゼン等のハロゲン化炭化水素類、n−ヘキサン、n−ヘプタン、シクロヘキサン、トルエン、キシレン等の炭化水素類、テトラヒドロフラン、1,4−ジオキサン等のエーテル類、メタノール、エタノール、iso−プロパノール等のアルコール類が挙げられる。
【0022】
反応温度は、0〜80℃、好ましくは10〜60℃である。反応後は水を添加し有機層と水層を分液し、有機層を水洗した後、溶媒を留去することにより本発明のビス(4−(2,3−エピチオプロピルチオ)フェニル)スルフィドを得ることができる。
【0023】
本発明の新規チオール誘導体は、使用目的等に応じて共重合可能な化合物を配合し、共重合することができる。
本発明の新規チオール誘導体と共重合可能な化合物としては、例えば、ビニル基を有するモノマー、ビニル基を有するオリゴマー、エポキシ基を有するモノマー、エポキシ基を有するオリゴマー、チオール基を有するモノマー、チオール基を有するオリゴマー等が挙げられ、使用目的に応じ単官能化合物だけでなく多官能化合物を選択することができ、またそれらの化合物を2種以上併用することができる。
また、本発明の新規チオール誘導体及び共重合可能な化合物を含む組成物は、通常の方法により、熱、光等によって共重合させることができる。
【0024】
【実施例】
以下、本発明を実施例により具体的に説明する。
【0025】
実施例1
攪拌機、温度計、ジムロート型冷却管を備えた300mlの四つ口フラスコに、ビス(4−メルカプトフェニル)スルフィド50.1g(0.20モル)および水40gを仕込、反応温度を20〜30℃に保ちながら別途調製しておいた水素化ホウ素ナトリウム0.038g(0.001モル)を含む27%水酸化ナトリウム水溶液59.3g(0.40モル)を1時間かけて滴下した。滴下終了後、更に75〜80℃で1.5時間攪拌を続けた後、20℃まで冷却した。次に別途準備した攪拌機、温度計、ジムロート型冷却管を備えた1lの四つ口フラスコに、臭化アリル50.0g(0.416モル)とトルエン300g及び臭化テトラ−n−ブチルアンモニウム1.61g(0.005モル)を仕込、反応温度を20℃以下に保ちながら、前記の反応で得られた水溶液を45分かけて滴下した。更に、20℃で1時間攪拌した後、反応液を分液した。有機層を水100gで2回洗浄した後、無水硫酸ナトリウムで脱水しトルエンを留去して、淡黄色の液体を得た。この液体をカラムクロマトグラフィで精製することにより、無色透明の液体を得た。
【0026】
この新規チオール誘導体の構造を決定するため分析を行った。結果を下記に示す。
屈折率(n25 D )1.666
元素分析値
理論値(%) C:65.41 H:5.49 S:29.10
分析値(%) C:65.47 H:5.53 S:29.00
赤外吸収スペクトル(NaClcm-1
3080、1635、1575、1473、1425、1388、1228、1099、1076、1010、987、924
1H−核磁気共鳴スペクトル(CDCl3 溶媒、テトラメチルシラン基準)δ(ppm)
7.23(S、8H、芳香環水素)、6.1〜5.6(m、2H、−CH=C−)、5.4〜5.0(2d、4H、CH2 =C−)、3.52(d、4H、−SCH2 −)
【0027】
上記の分析結果から無色透明液体は、ビス(4−アリルチオフェニル)スルフィドと同定された。収量は62.3gで、収率は原料のビス(4−メルカプトフェニル)スルフィドに対して94.2%であった。
【0028】
実施例2
攪拌機、温度計及びジムロート型冷却管を備えた1lの四つ口フラスコにビス(4−(2,3−エポキシプロピルチオ)フェニル)スルフィド72.6g(0.2モル)、塩化メチレン200g及びメタノール160gを仕込み、40℃まで昇温した。ついで反応温度を40〜45℃に保ちながらチオ尿素61g(0.8モル)を添加し、そのままの温度で4時間攪拌した。その後、室温まで冷却し水200gを添加し30分攪拌した。有機層と水層を分離した後、有機層を200gの水で2回洗浄し、溶媒を留去した後、トルエン/n−ヘキサンの混合溶媒で再結晶することにより、白色結晶を得た。
【0029】
この新規チオール誘導体の構造を決定するため分析を行った。結果を下記に示す。
融点 41.5〜43.0℃
屈折率(n45 D )1.703
元素分析値
理論値(%) C:54.78 H:4.60 S:40.62
分析値(%) C:54.80 H:4.55 S:40.65
赤外吸収スペクトル(KBrcm-1
2923、1473、1388、1099、1008、806
1H−核磁気共鳴スペクトル(CDCl3 溶媒、テトラメチルシラン基準)δ(ppm)
7.5〜7.2(m、8H、芳香環水素)、3.6〜2.1(m、10H、エピチオプロピルチオ水素)
【0030】
上記の分析結果から白色結晶は、ビス(4−(2,3−エピチオプロピルチオ)フェニル)スルフィドと同定された。収量は73.8gで、収率は原料のビス(4−(2,3−エポキシプロピルチオ)フェニル)スルフィドに対して93.5%であった。
【0031】
【発明の効果】
本発明の新規チオール誘導体は、それ自体で重合させるか、又は、各種の共重合可能な化合物と共重合させることにより、高屈折率であり透明性に優れた硬化物を得ることができる。それ故に、本発明の新規チオール誘導体は優れた物性を有する光学材料、塗料、接着剤、封止材等を与える極めて有用な単量体である。[0001]
[Industrial application fields]
The present invention relates to a novel thiol derivative, and more specifically, optical materials such as plastic lenses for glasses, Fresnel lenses, lenticular lenses, optical disk substrates, plastic optical fibers, LCD prism sheets, light guide plates, diffusion sheets, paints, adhesives, The present invention relates to a novel thiol derivative that is extremely useful as a raw material for a sealant, particularly an optical material, and a method for producing the same.
[0002]
[Prior art]
In recent years, resins for organic optical materials are widely used as various materials because they are lighter and easier to handle than glass and the like.
Conventionally, polystyrene resins, polymethyl methacrylate resins, polycarbonate resins, diethylene glycol diallyl carbonate resins, and the like have been widely used as such resins for organic optical materials.
[0003]
However, such conventional resins for organic optical materials have the disadvantages of low refractive index, large birefringence and high dispersibility, and are inferior in heat resistance and impact resistance.
[0004]
In particular, diethylene glycol diallyl carbonate resin (CR-39) used as a lens material has a low refractive index of 1.50, so that when it is used as a lens, the edge thickness and the center thickness are increased. There were drawbacks in that the appearance of the film deteriorated and the weight increased.
[0005]
In order to solve these drawbacks, various methods for mainly improving the refractive index have been studied. For example, Japanese Patent Publication No. 5-4404 discloses a resin in which a halogen is introduced into an aromatic ring. However, although the resin obtained by this technique has a refractive index as large as 1.60, the specific gravity is as high as 1.37, which is not satisfactory in terms of the light weight of the lens, which is a characteristic of plastic lenses.
[0006]
Japanese Patent Publication No. 4-15249 and Japanese Patent Application Laid-Open No. 60-199016 disclose a technique for obtaining a resin by polymerization of an isocyanate compound and polythiol. However, although this resin also has a large refractive index of 1.60, the specific gravity is 1.30 or more, the polymerization temperature is relatively low, and the polymerization rate is fast, so that it is difficult to control the heat during the polymerization. There was a drawback of large distortion.
[0007]
[Problems to be solved by the invention]
An object of the present invention is to provide a novel thiol derivative, which is a monomer suitable for producing a transparent resin having a high refractive index, and a method for producing the same, in view of the above situation.
[0008]
[Means for Solving the Problems]
The present invention relates to a novel thiol derivative represented by the following formula (I) or the following formula (II) and a method for producing the same.
[0009]
[Chemical formula 5]
Figure 0003807759
[0010]
The bis (4-allylthiophenyl) sulfide represented by the above formula (I) is prepared by, for example, stirring bis (4-mercaptophenyl) sulfide and allyl halide in the presence of an alkali as shown in the following formula (III). However, it can be produced by reacting in water or in a two-phase system of water and an organic solvent.
[0011]
[Chemical 6]
Figure 0003807759
[0012]
(In the formula, X represents a halogen atom.)
[0013]
Examples of the allyl halide include allyl chloride, allyl bromide, and allyl iodide. The amount of allyl halide used is 1 to 1.5 equivalents based on bis (4-mercaptophenyl) sulfide, preferably 1-1.2 equivalents.
[0014]
Examples of the alkali include metal hydroxides such as sodium hydroxide and potassium hydroxide, metal carbonates such as sodium carbonate and potassium carbonate, and tertiary amines such as triethylamine and tributylamine. To sodium hydroxide, and the amount used is 1 to 1.5 equivalents, preferably 1 to 1.2 equivalents, based on bis (4-mercaptophenyl) sulfide.
[0015]
At this time, the reaction temperature is 0 to 70 ° C, preferably 10 to 40 ° C.
As the organic solvent, it is preferable to use hydrocarbons such as n-hexane, n-heptane, cyclohexane, toluene and xylene, and halogenated hydrocarbons such as chlorobenzene and o-dichlorobenzene.
[0016]
After the reaction, the organic layer and the aqueous layer are separated, the organic layer is washed with water, and then the solvent is distilled off to obtain the bis (4-allylthiophenyl) sulfide of the present invention.
[0017]
The bis (4- (2,3-epithiopropylthio) phenyl) sulfide represented by the above formula (II) of the present invention is bis (4- (2,3-epoxy) as shown in the following formula (IV). It can be produced by reacting propylthio) phenyl) sulfide with thiourea or thiocyanate in an organic solvent.
[0018]
[Chemical 7]
Figure 0003807759
[0019]
The method for producing the raw material bis (4- (2,3-epoxypropylthio) phenyl) sulfide is not particularly limited. For example, after adding epichlorohydrin to bis (4-mercaptophenyl) sulfide, Examples thereof include a method for carrying out a ring closure reaction (J. Appl. Poly. Sci., 39, 1623 (1990), US Pat. No. 2,731,437).
[0020]
As the thiocyanate, thiocyanate such as potassium thiocyanate and ammonium thiocyanate can be used. The amount of thiourea or thiocyanate used is 1 to 4 equivalents, preferably 1 to 3 equivalents, relative to bis (4- (2,3-epoxypropylthio) phenyl) sulfide.
[0021]
Examples of the organic solvent used include halogenated hydrocarbons such as methylene chloride, 1,2-dichloroethane, chlorobenzene and o-dichlorobenzene, hydrocarbons such as n-hexane, n-heptane, cyclohexane, toluene and xylene, tetrahydrofuran , Ethers such as 1,4-dioxane, and alcohols such as methanol, ethanol and iso-propanol.
[0022]
The reaction temperature is 0 to 80 ° C, preferably 10 to 60 ° C. After the reaction, water is added to separate the organic layer and the aqueous layer, the organic layer is washed with water, and then the solvent is distilled off to remove the bis (4- (2,3-epithiopropylthio) phenyl) of the present invention. Sulfides can be obtained.
[0023]
The novel thiol derivative of the present invention can be copolymerized by blending a copolymerizable compound depending on the purpose of use and the like.
Examples of the compound copolymerizable with the novel thiol derivative of the present invention include, for example, a monomer having a vinyl group, an oligomer having a vinyl group, a monomer having an epoxy group, an oligomer having an epoxy group, a monomer having a thiol group, and a thiol group. In addition to monofunctional compounds, polyfunctional compounds can be selected according to the purpose of use, and two or more of these compounds can be used in combination.
Moreover, the composition containing the novel thiol derivative of the present invention and a copolymerizable compound can be copolymerized by heat, light, or the like by an ordinary method.
[0024]
【Example】
Hereinafter, the present invention will be specifically described by way of examples.
[0025]
Example 1
A 300 ml four-necked flask equipped with a stirrer, a thermometer and a Dimroth type condenser was charged with 50.1 g (0.20 mol) of bis (4-mercaptophenyl) sulfide and 40 g of water, and the reaction temperature was 20-30 ° C. 59.3 g (0.40 mol) of a 27% aqueous sodium hydroxide solution containing 0.038 g (0.001 mol) of sodium borohydride prepared separately was added dropwise over 1 hour. After completion of dropping, the mixture was further stirred at 75-80 ° C for 1.5 hours, and then cooled to 20 ° C. Next, in a 1 l four-necked flask equipped with a stirrer, a thermometer and a Dimroth type condenser prepared separately, 50.0 g (0.416 mol) of allyl bromide, 300 g of toluene and tetra-n-butylammonium bromide 1 .61 g (0.005 mol) was charged, and the aqueous solution obtained by the above reaction was added dropwise over 45 minutes while maintaining the reaction temperature at 20 ° C. or lower. Furthermore, after stirring at 20 ° C. for 1 hour, the reaction solution was separated. The organic layer was washed twice with 100 g of water, dehydrated with anhydrous sodium sulfate, and toluene was distilled off to obtain a pale yellow liquid. The liquid was purified by column chromatography to obtain a colorless and transparent liquid.
[0026]
Analysis was performed to determine the structure of this novel thiol derivative. The results are shown below.
Refractive index (n 25 D ) 1.666
Elemental analysis value Theoretical value (%) C: 65.41 H: 5.49 S: 29.10
Analytical value (%) C: 65.47 H: 5.53 S: 29.00
Infrared absorption spectrum (NaClcm -1 )
3080, 1635, 1575, 1473, 1425, 1388, 1228, 1099, 1076, 1010, 987, 924
1 H-nuclear magnetic resonance spectrum (CDCl 3 solvent, tetramethylsilane standard) δ (ppm)
7.23 (S, 8H, aromatic hydrogen), 6.1~5.6 (m, 2H, -CH = C -), 5.4~5.0 (2d, 4H, CH 2 = C-) 3.52 (d, 4H, —SCH 2 —)
[0027]
From the above analysis results, the colorless transparent liquid was identified as bis (4-allylthiophenyl) sulfide. The yield was 62.3 g, and the yield was 94.2% based on the raw material bis (4-mercaptophenyl) sulfide.
[0028]
Example 2
In a 1 l four-necked flask equipped with a stirrer, thermometer and Dimroth type condenser, 72.6 g (0.2 mol) of bis (4- (2,3-epoxypropylthio) phenyl) sulfide, 200 g of methylene chloride and methanol 160 g was charged and the temperature was raised to 40 ° C. Subsequently, 61 g (0.8 mol) of thiourea was added while maintaining the reaction temperature at 40 to 45 ° C., and the mixture was stirred at that temperature for 4 hours. Then, it cooled to room temperature, added 200 g of water, and stirred for 30 minutes. After the organic layer and the aqueous layer were separated, the organic layer was washed twice with 200 g of water, the solvent was distilled off, and then recrystallized with a mixed solvent of toluene / n-hexane to obtain white crystals.
[0029]
Analysis was performed to determine the structure of this novel thiol derivative. The results are shown below.
Melting point: 41.5-43.0 ° C
Refractive index (n 45 D ) 1.703
Elemental analysis value Theoretical value (%) C: 54.78 H: 4.60 S: 40.62
Analytical value (%) C: 54.80 H: 4.55 S: 40.65
Infrared absorption spectrum (KBrcm -1 )
2923, 1473, 1388, 1099, 1008, 806
1 H-nuclear magnetic resonance spectrum (CDCl 3 solvent, tetramethylsilane standard) δ (ppm)
7.5 to 7.2 (m, 8H, aromatic ring hydrogen), 3.6 to 2.1 (m, 10H, epithiopropylthiohydrogen)
[0030]
From the above analysis results, the white crystals were identified as bis (4- (2,3-epithiopropylthio) phenyl) sulfide. The yield was 73.8 g, and the yield was 93.5% based on the raw material bis (4- (2,3-epoxypropylthio) phenyl) sulfide.
[0031]
【The invention's effect】
The novel thiol derivative of the present invention can be polymerized by itself or copolymerized with various copolymerizable compounds to obtain a cured product having a high refractive index and excellent transparency. Therefore, the novel thiol derivative of the present invention is a very useful monomer that gives optical materials, paints, adhesives, sealing materials and the like having excellent physical properties.

Claims (4)

下記式(I)で表される新規チオール誘導体。
Figure 0003807759
A novel thiol derivative represented by the following formula (I).
Figure 0003807759
ビス(4−メルカプトフェニル)スルフィドとハロゲン化アリルとをアルカリ存在下で反応させることを特徴とする下記式(I)で表される新規チオール誘導体の製造方法。
Figure 0003807759
A method for producing a novel thiol derivative represented by the following formula (I), wherein bis (4-mercaptophenyl) sulfide and allyl halide are reacted in the presence of an alkali.
Figure 0003807759
下記式(II)で表される新規チオール誘導体。
Figure 0003807759
A novel thiol derivative represented by the following formula (II).
Figure 0003807759
ビス(4−(2,3−エポキシプロピルチオ)フェニル)スルフィドとチオ尿素又はチオシアン酸塩とを反応させることを特徴とする下記式(II)で表される新規チオール誘導体の製造方法。
Figure 0003807759
A method for producing a novel thiol derivative represented by the following formula (II), wherein bis (4- (2,3-epoxypropylthio) phenyl) sulfide is reacted with thiourea or thiocyanate.
Figure 0003807759
JP17950095A 1995-06-21 1995-06-21 Novel thiol derivative and method for producing the same Expired - Fee Related JP3807759B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17950095A JP3807759B2 (en) 1995-06-21 1995-06-21 Novel thiol derivative and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17950095A JP3807759B2 (en) 1995-06-21 1995-06-21 Novel thiol derivative and method for producing the same

Publications (2)

Publication Number Publication Date
JPH093058A JPH093058A (en) 1997-01-07
JP3807759B2 true JP3807759B2 (en) 2006-08-09

Family

ID=16066912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17950095A Expired - Fee Related JP3807759B2 (en) 1995-06-21 1995-06-21 Novel thiol derivative and method for producing the same

Country Status (1)

Country Link
JP (1) JP3807759B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019021115A1 (en) * 2017-07-24 2019-01-31 3M Innovative Properties Company Compositions and methods of making a polymerized composition

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000186086A (en) * 1998-10-15 2000-07-04 Mitsubishi Gas Chem Co Inc Production of episulfide compound
JP2000186087A (en) * 1998-10-15 2000-07-04 Mitsubishi Gas Chem Co Inc Production of episulfide compound
JP2001288181A (en) * 2000-04-07 2001-10-16 Mitsubishi Gas Chem Co Inc Episulfide compound and method for producing the same
JP4857489B2 (en) * 2001-06-19 2012-01-18 三菱瓦斯化学株式会社 Aliphatic cyclic compounds for optical materials
JP5317836B2 (en) * 2009-06-12 2013-10-16 住友精化株式会社 Method for producing alkyl sulfide compound
TWI555725B (en) 2010-03-18 2016-11-01 住友精化股份有限公司 Novel diaryl sulfone compound, and manufacturing method for same
JP5606113B2 (en) * 2010-03-18 2014-10-15 住友精化株式会社 Novel diaryl sulfone compound and method for producing the same
TWI503304B (en) 2010-03-18 2015-10-11 Sumitomo Seika Chemicals Novel diarylcarb compound and a process for producing the same
JP5606112B2 (en) * 2010-03-18 2014-10-15 住友精化株式会社 Novel diaryl sulfone compound and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019021115A1 (en) * 2017-07-24 2019-01-31 3M Innovative Properties Company Compositions and methods of making a polymerized composition
US11505653B2 (en) 2017-07-24 2022-11-22 3M Innovative Properties Company Compositions and methods of making a polymerized composition

Also Published As

Publication number Publication date
JPH093058A (en) 1997-01-07

Similar Documents

Publication Publication Date Title
EP0273661A1 (en) Thiolcarboxylic acid esters
US5502141A (en) Method of making thiol methacrylate or acrylate and a lens made therefrom
JP3807759B2 (en) Novel thiol derivative and method for producing the same
JP4126918B2 (en) High refractive index photocurable composition and cured product thereof
WO1997008139A1 (en) Novel sulfur compounds and process for producing the same
JPH1112273A (en) Episulfide compound and its compound
JP5578512B2 (en) Novel (meth) acrylate compound and method for producing the same
JPH01128966A (en) Sulfur-containing aliphatic acrylic compound
JP4734807B2 (en) Diphenyl sulfide derivatives with oxetane ring
US6528601B1 (en) Polymerizable sulfur-containing (meth) acrylate, polymerizable composition and optical lens
JPH08157446A (en) Polythiol derivative and lens using the same
JP5606112B2 (en) Novel diaryl sulfone compound and method for producing the same
JPH11100435A (en) Composition for optical material and plastic lens
US9040724B2 (en) Diaryl sulfone compound, and manufacturing method for same
EP1302471B1 (en) Sulfur compound and use thereof
JP4736289B2 (en) Naphthalene derivatives with oxetane ring
JPH0359062B2 (en)
JP3541420B2 (en) Sulfur-containing styrene compounds
AU616763B2 (en) Polyfunctional monomers and process for the production thereof
KR100885676B1 (en) Aromatic Allyl Ether Compounds and Photopolymerisable Compositions containing the same
JPH10330352A (en) Thioanisole derivative and its production
JP2002030082A (en) Polymerizable thio(meth)acrylate compound
JP5370892B2 (en) (Meth) acrylate compounds containing sulfur
JP3551508B2 (en) Organic sulfur compounds
JP5606111B2 (en) Novel diaryl sulfone compound and method for producing the same

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060502

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060502

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060516

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees